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Abstract— A schematic model composed of a basic signal
transduction unit and one gene is presented. The regulation of
the signaling pathway by gene expression patterns is analyzed.
In particular, it is shown that a slowly varying gene expression
pattern can induce rapid changes in the steady states or modes
of operation of the (normally varying) signal transduction
pathways, and lead to sustained oscillations. As an application,
a system which operates during the G2 to M phase progression
in embryonic cell cycle (the activation of cell division cycle
protein Cdc2 by cyclin B) is analyzed, and some parameters
identified.

I. INTRODUCTION

Signaling pathways and gene expression can be viewed
as two fundamental levels of intercellular organization and
regulation. The former are responsible for transmitting in-
formation from the exterior to the interior of the cell (or
between two intercellular regions), along signal transduction
cascades. Gene transcription is often the ultimate result of
signaling events but, conversely, changes in gene expression
patterns can also activate a signal transduction cascade.
Signaling pathways and genetic networks frequently interact
to regulate cellular functions, in response to external stimuli.
In general, signal transduction pathways and gene networks
operate at different timescales. Typical signaling times are on
the order of seconds, a fast process when compared to gene
expression patterning (which may range from minutes to
days). In this paper, we will focus on studying the interaction
between fast and slower processes, such as signaling and
genetic networks, or two signaling networks operating at
different timescales. Examples of signaling pathways include
the widely studied mitogen activated protein kinase (MAPK)
cascades, consisting of a family of proteins which are acti-
vated sequentially. Several mathematical models have been
proposed for MAPK cascades [5], [3], [1], [2].

To study the interaction between fast (eg., signaling) and
slow (eg., genetic) networks, a simple loop with one gene
product is coupled to the signal transduction unit proposed
in [2]. It is assumed that protein x in this model activates
transcription of a gene y, and that the corresponding protein
Y promotes degradation of x (see Fig. 1). In this context,
the present work proposes a mechanism for regulation of
the dynamics of the signaling network by slowly varying
dynamical patterns. In particular, if the signal transduction
network has multiple steady states (representing different
modes of operation), the role of the slow (eg., genetic)
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network in inducing major changes, or possible oscillations,
in the concentrations of signaling proteins will be analyzed.

Examples of biological systems where signaling pathways
and genetic networks interact in this way include the p53-
Mdm2 system [6] and the IκB - NFκB pathway [4] nu-
clear factor κB activates transcription of its own inhibitor
(IκB mRNA), leading to oscillatory behavior [9]. Another
biological system which appears to operate according to a
similar fast/slow dynamical mechanism is the activation of
Cdc2 (a cell division cycle protein) by cyclin B, during the
progression from G2 to M phases in the early embryonic
cell cycle in Xenopus laevis oocytes [11], [10]. Cyclin B
(represented by Φ0 in Fig. 1) activates Cdc2 (x0), to form
a complex Cdc2-cyclin B (x). This complex activates its
own activator Cdc25 (represented by the ’+’ loop), and
at the same time Cdc2 activates the Anaphase Promoting
Complex (Y ), which in turn promotes degradation of cyclin
B (inactivation of x back to form x0).
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Fig. 1. Simplified scheme of the mechanism of regulation.

In [11] several experiments are reported, showing that
the Cdc2-cyclin B system does exhibit two stable modes
of operation. Available measurements include Cdc2-cyclin
B steady state curves in response to constant input values of
cyclin B. Further experiments by the same authors in [10]
show that the auto-activation positive feedback (denoted ’+’
in Fig. 1) is necessary for sustained oscillations to occur. The
present work focuses instead on the role of the slowly varying
negative feedback loop (formed by the network y, Y ). Using
steady state data from [11], some of the model’s parameters
are identified. Our analysis provides some conditions for the
existence of oscillations, as well as some predictions on the
period of oscillations and its dependence on the model’s
parameters.
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Fig. 2. The bold curve represents Φ(x) = (Φ0 + V1
x

n

xn+θn
1

)(Xtot − x)

and the other curves represent ψ = γ1yx for three values of y. Values of
parameters: Φ0 = 0.09, Xtot = V1 = 1, V2 = 1.275 × 10−2, γ1 = 8.7,
γ2 = 3.75 × 10−2, θ1 = 0.25, θ2 = 0.2, n = 4, m = 50.

II. THE MODEL

In this model, a signal transduction unit consisting of two
proteins x (active form) and x0 (inactive form) is coupled to
a simple genetic network, consisting of one messenger RNA
and its corresponding protein (see Fig. 1). For simplicity, the
genetic network will be represented by one variable only, y.
An external signal or input (Φ0) activates transformation of
protein x0 to its form x. An auto-activation feedback loop
(represented by a term of the form V1

xn

xn+θn
1

x0), further
promotes production of x. Activation of transcription by
protein x is represented by the term V2

xm

xm+θm
2

and regulation
of the degradation of protein x by the genetic network is
represented by −γ1yx. γ2 is the degradation rate of gene
y. Taking the total concentration of protein to be constant,
x0 + x = Xtot, the equations are given by:

ẋ = Φ(x) − γ1yx = f(x, y)

ẏ = V2
xm

xm + θm
2

− γ2y = g(x, y) (1)

where

Φ(x) =

(
Φ0 + V1

xn

θn
1 + xn

)
(Xtot − x).

All parameters are positive, and it is easy to see that the non-
negative orthant ([0,∞[×[0,∞[) is invariant for the system.
The x equation follows closely one of the signaling modules
analyzed in [2]: the new feature is that the degradation rate
is now regulated by gene product y.

For each fixed y > 0, the steady states of x are obtained by
solving the equation (for x < Xtot): Φ(x) = γ1yx. As shown
in [8], there are at least one (see Fig. 2, cases y = 0.01 or
y = 0.1) and at most three (see Fig. 2, case y = 0.05) steady
states for system (1). In this paper, we will consider the case
when multiple steady states for x exist, representing different
modes of operation of the signal transduction network (for
each fixed y, in an appropriate interval). Next, letting y vary
according to (1), we will study the response of x under
the hypothesis that there is a significant difference between
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Fig. 3. Representation of nullclines. By varying θ2, one of two cases is
obtained: either θ2 belongs to the interval ]xmin, xmax[ (middle figure); or
θ2 is outside the interval [xmin, xmax], either below xmin (top figure), or
above xmax (bottom figure). Parameters are as in Fig. 2 and (top to bottom)
a) θ2 = 0.07, b) θ2 = 0.2, and c) θ2 = 0.35.

the timescales of dynamical processes governing x and y.
Our goal is to study the role of slow processes (such as a
genetic network) in the regulation of a faster process (such
as a signal transduction network). In particular, we will study
conditions under which the slower dynamics can induce the
fast signaling network to jump between two steady states, or
modes of operation.

III. ANALYSIS OF STABILITY

To study the dynamics of system (1), we will first state
suitable hypotheses (A1-A6 below) and characterize the
steady states of the system. The nullclines of system (1) are
defined by the equations f(x, y) = 0 and g(x, y) = 0, which
can be solved for y to obtain:

f0(x) =
(Φ0 + V1

xn

xn+θn
1

)(Xtot − x)

γ1x
,

g0(x) =
V2

γ2

xm

xm + θm
2

.

Here, we will study the system under the following assump-
tions on the parameters:
A1. γ2 < min{1, 1

2Xtot,
XtotΦ0

Φ0+V2

} and γ2 � γ1

γ2

V2;
A2. m is large;



A3. there exist 0 < xmin < xmax with df0/dx(xmin) =
df0/dx(xmax) = 0, df0/dx > 0 for all x ∈]xmin, xmax[,
and df0/dx < 0 for all x /∈ [xmin, xmax];

A4. f0(xmax) < max(g0) (or f0(xmax) < V2

γ2

, when m
tends to infinity);

A5. f0(xmin) > min(g0) (or f0(xmax) > 0, when m tends
to infinity); and

A6. n > 1+αn

1−αθ1/Xtot

(
Φ0

V1

1+αn

αn + 1
)

, for any α ∈ [1/2, 1].

Assumption A3 implies that f0 increases in ]xmin, xmax[ and
decreases in [0, xmin] and [xmax, Xtot] (see Fig. 3). Below
(Lemma 4.1, with assumption A6) explicit conditions on the
parameters are given for A3. Assumptions A2, A4 and A5
imply that f0 and g0 intersect in a single point (x∗, y∗), as
seen in Fig. 3. Stability of this intersection point will be
analyzed for two cases: a) θ2 /∈ [xmin, xmax], and b) θ2 ∈
]xmin, xmax[. (The analysis of the particular cases θ2 = xmin

or θ2 = xmax will not be presented here.) We deduce the
following relations from the equation of nullclines,

∂f(x, y)

∂x
+
∂f(x, y)

∂y

(dy
dx

)

1
= 0

∂g(x, y)

∂x
+
∂g(x, y)

∂y

(dy
dx

)

2
= 0. (2)

Let s1 =
(

dy
dx

)

1
and s2 =

(
dy
dx

)

2
be, respectively, the slopes

of nullclines f(x, y) = 0 and g(x, y) = 0 at steady state
(x∗, y∗). The Jacobian is given by

J =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
=

[
−s1∂f/∂y ∂f/∂y
−s2∂g/∂y ∂g/∂y

]
.

We know that, for a system of second order, the steady state
is stable if the trace trJ < 0 and the determinant det J >
0. The steady state is unstable if trJ > 0 and det J > 0.
General conditions for stability are:

C1: s1 <
∂g(x, y)

∂y

∣∣∣
(x∗,y∗)

(
∂f(x, y)

∂y

∣∣∣
(x∗,y∗)

)−1

C2 : s2 > s1,
where C1 implies trJ < 0 and C2 implies det J > 0.
For parameter sets satisfying A1-A5, condition C2 is always
satisfied: indeed, for θ2 /∈ [xmin, xmax], s1 < 0 < s2, and
for θ2 ∈]xmin, xmax[ it can be seen directly from Fig. 3 that
s2 > s1. Condition C1 is satisfied if θ2 /∈ [xmin, xmax]: note
that trJ = −s1∂f/∂y + ∂g/∂y = s1γ1x

∗ − γ2 < 0, since
s1 < 0. So case a) always yields a stable steady state.

The next lemma characterizes case b), which admits an
unstable steady state (see also Fig. 4).

Lemma 3.1: Assume A1-A5 hold. If θ2 ∈]xmin, xmax[,
then system (1) admits a stable limit cycle.
Proof. Let θ2 ∈]xmin, xmax[ and prove, first, that the unique
steady state (x∗, y∗) is unstable. It was shown above that
det J > 0. To show that trJ = s1γ1x

∗ − γ2 > 0, note
that s1 > 0 and that x∗ > xmin. Note also that xmin is
independent of γ2 (since obtained from df0/dx = 0). Thus,
using assumption A1, one can choose γ2 sufficently small
such that γ2 < s1γ1xmin < s1γ1x

∗.
To prove the existence of a stable limit cycle, the theorem

of Poincaré-Bendixon can be applied. First, we will show that

the set D = [γ2, Xtot] × [V2

2
γm−1

2

γm
2

+θm
2

, V2/γ2] is an invariant
compact set which contains the unstable point (x∗, y∗). To
determine whether a given domain D is invariant, we evaluate
the vector field on the boundary of the domain. If the vector
field points towards the interior of D, then D is invariant.
It is clear that dx

dt < 0 whenever x = Xtot, and dy
dt ≤ 0

whenever y = V2

γ2

. Using assumption A1, one can choose γ2

sufficiently small such that dx
dt > 0 when x = γ2, and dy

dt > 0

when y = V2

2
γm−1

2

γm
2

+θm
2

. Hence, the domain D is invariant and
contains an unique unstable steady state. We deduce that D
contains a stable limit cycle.

IV. FAST AND SLOW DYNAMICS

In this section, we will give sufficient conditions for the
system to exhibit a limit cycle, and then estimate its period
in terms of the parameters. Lemma 3.1 shows that one needs
to choose θ2 in the interval ]xmin, xmax[. But it is not easy
to find explicit expressions for xmin and xmax in terms of
the parameters of the system. To solve this problem, we will
instead show that there exists ∆ > 0 such that the interval
I = [(1 − ∆)θ1, θ1] ⊂]xmin, xmax[. In this case, a sufficient
condition for existence of an unstable equilibrium point is
θ2 ∈ [(1 − ∆)θ1, θ1].

Following the biologically reasonable assumption that the
dynamics of the signaling network is faster than the dynamics
of the genetic network, we can rewrite the model under a
standard slow/fast approach (under a fast time): ẋ = f(x, y)
and ẏ = γ2g(x, y) with γ2 small (see A1). Normalizing
variables and parameters to:

x̃ =
x

Xtot
, ỹ = γ2

y

V2
, θ̃1 =

θ1
Xtot

, θ̃2 =
θ2
Xtot

,

system (1) can be rewritten as:

dx̃

dt
=
(
Φ0 + V1

x̃n

x̃n + θ̃n
1

)
(1 − x̃) − γ1

V2

γ2
ỹx̃

dỹ

dt
= γ2

(
x̃m

x̃m + θ̃m
2

− ỹ

)
(3)

where γ1

γ2

V2 � γ2 (see A1). In these new variables,

Lemma 3.1 applies with θ̃2, x̃max = xmax/Xtot, and x̃min =
xmin/Xtot. The new x-nullcline is given by f̃0(x̃) = (Φ0 +
V1

x̃n

x̃n+θ̃n
1

) 1−x̃
x̃

γ2

γ1V2

. The next Lemma gives explicit estimates

for the local extrema of f̃0, x̃min and x̃max (see assumption
A3):

Lemma 4.1: Suppose assumption A6 holds. Then x̃min <
αθ̃1 and x̃max > θ̃1.
To prove this Lemma, it is sufficient to verify that the
derivative of f̃0 is positive for all x̃ = αθ̃1 with α ∈ [1/2, 1].
This follows from assumption A6 and the expression of
the derivative. Then, since df̃0/dx̃ = 0 at the extrema, the
conclusion of the Lemma follows.

To further simplify the system, for large Hill coefficient
m (assumption A2), the expression V2x

m/(xm + θm
2 ) can

be approximated by a step function with s(x) = 0 if x < θ2
and s(x) = V2 if x > θ2. The expression V1x

n/(xn + θn
1 )



can be aproximated by a piecewise linear function, so that
the first nonlinear term Φ(x) in (3) can then be approximated
by a continuous, piecewise linear or quadratic function, with
three regions from now on labeled Φl (left), Φc (center) and
Φr (right):

Φl(x̃) = Φ0(1 − x̃), x̃ < (1 − ∆)θ̃1

Φc(x̃) =
(
Φ0 + V1

2∆θ̃1

(x̃− (1 − ∆)θ̃1)
)

(1 − x̃),

(1 − ∆)θ̃1 ≤ x̃ ≤ (1 + ∆)θ̃1
Φr(x̃) = (Φ0 + V1)(1 − x̃), x̃ > (1 + ∆)θ̃1.

(4)

with ∆ = 2/n and 1 − ∆ = n−2
n . Taking α = 1 − ∆ in

Lemma 4.1, we conclude that system (1) has a limit cycle
whenever θ̃2 ∈ [(1 − ∆)θ̃1, θ̃1].

V. PERIOD OF LIMIT CYCLE

Assume now that conditions A1-A6 are satisfied, and sys-
tem (1) has a limit cycle. The partial state ỹ (genetic variable)
represents a variable whose evolution is slow relative to x̃
(signaling variable). Fig. 4 shows a decomposition of the
cycle into four portions (AB;BC;CD;DA). Portions BC
and DA correspond to the jump of the protein x between a
state of high concentration to a state of low concentration.
Under the assumptions, the time spent by the trajectory on
the portions BC and DA is much smaller than the time spent
on the portions AB and CD [7]. The period of the limit cycle
may then be approximated by the time to travel AB (T1)
and CD (T2). From now on, for simplicity of notation, we
will drop the tilde from variables x and y. In the nullcline
y = f̃0(x), between the portion AB and CD, the second
equation becomes

dy

dt
≈ f̃ ′0(x)

dx

dt
= γ2

(
xm

xm + θm
2

− f̃0(x)

)
.

In the portion AB, approximating xm

xm+θm
2

by a step function,
we obtain the following equation:

f̃ ′0(x)
dx

dt
= −γ2f̃0(x) ⇒

∫ xB

xA

f̃ ′0(x)

f̃0(x)
dx = −

∫ T1

0

γ2dt

Integration gives:

T1 =
ln f̃0(xA) − ln f̃0(xB)

γ2
.

In the portion CD, with G(x) = 1 − f̃0(x),

f̃ ′0(x)
dx

dt
= γ2G(x) ⇒

∫ xD

xC

f̃ ′0(x)

G(x)
dx =

∫ T2

0

γ2dt

and integration gives:

T2 =
lnG(xC) − lnG(xD)

γ2
.

Fig. 4 shows that xmin ≈ xB , xmax ≈ xD, f̃0(xA) ≈
f̃0(xD) ≈ f̃0(xmax) and that f̃0(xC) ≈ f̃0(xB) ≈ f̃0(xmin).
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) approximated by a step function. Parameters

are as in Fig. 2.

Following Lemma 4.1, we approximate xmin ≈ (1 − ∆)θ1
and xmax ≈ θ1 to obtain (after algebraic simplification)

P ≈
1

γ2
ln

[
γ1
V2

Φ0

(1 − ∆)θ̃1

1 − (1 − ∆)θ̃1
− γ2

]

−
1

γ2
ln

[
γ1

V2

Φ0 + 1
2V1

θ̃1

1 − θ̃1
− γ2

]
. (5)

For the example, in Fig. 4, the approximated period is 60s
while the numerical full period is 56s, an error of 9%
which could come from the approximations made for xmin,
xmax, and f0(x). To guarantee that expression (5) is positive
assume that:

γ1V2
1

Φ0 + 1
2V1

θ̃1

1 − θ̃1
> 2γ2 (6)

1

Φ0

(1 − ∆)θ̃1

1 − (1 − ∆)θ̃1
>

1

Φ0 + 1
2V1

θ̃1

1 − θ̃1
. (7)

These conditions can be easily satisfied because, according
to A1 we can choose γ2 sufficiently small, and it also holds
that Φ0 � V1. By differentiating expression (5) relative to
each parameter, it is observed that increasing V1 or Xtot

induces an increase in the period, while increasing Φ0, θ1,
V2 or γ1 decreases the period. If we add the assumption



1
Φ0+

1

2
V1

θ̃1

1−θ̃1

> 1, we verify that the period also decreases
with γ2 (see [8]). Some biological observations confirm these
trends. For the biological system p53-Mdm2 [6], experiments
show that an increase in Φ0 reduces the period. For the
system IκB-NFκB [4], one model [9] predicts a reduction
of the period when V2 increases.

VI. PARAMETER IDENTIFICATION

As application of the regulation of a rapid signaling
pathway by a slower process, we will use model (3) as
a simple model for the mechanism of Cdc2 activation by
cyclin B. This is is known to function as an autonomous
oscillator [11] in the progression from G2 to M phases in
the early embryonic cell cycle of Xenopus oocytes. Cyclin B
(Φ0) activates Cdc2 (x̃0) to form the complex Cdc2-cyclin
B (x̃). This complex activates its own activator, Cdc25 (the
auto-feedback loop). At the same time, Cdc2 activates the
Anaphase Promoting Complex (APC) (ỹ), which in turn
promotes cyclin B degradation. The experiments reported
in [11] can be interpreted as the response x̃, to constant
inputs Φ0. The data consists of steady state values of x̃, for
each constant Φ0. According to our analysis, if x̃ is at steady
state, then we expect ỹ to remain fixed at some (unknown)
value ỹ0.

Under this hypothesis, model (3) can be reduced to the x̃
equation, with a new parameter γ0 = γ1ỹ0, to be estimated.
The data in [11] can then in principle be used to estimate
the parameters V1, θ̃1, ∆ and γ0. In Fig. 6, the hysteresis
curve for steady states of Cdc2-cyclin B as a function of the
input Φ0 (Fig. 3(c) of [11]) is reproduced as white squares
and black stars. Note that the input term is, in general, of
the form Φ0 = k(u + ub), where u = [δ65 − cyclin B]
represents the concentration of a special form of cyclin B
(known input), ub represents a basal concentration of cyclin
B (unknown parameter), and k is the corresponding reaction
rate, another parameter to be estimated.

From the piecewise quadratic expression (4), explicit an-
alytic expressions for steady states as functions of the input
u can be obtained. Analysis of (3) in Section III shows
that there is a region of parameter Φ0 where the system is
bistable, i.e., it has two stable steady states (x∗low and x∗high) and
one unstable steady state (x∗med). In terms of the parameter u,
this region will be denoted [umin, umax]. It is not difficult to
check that the line ψ = γ0x̃ intersects Φl at most once, and
Φc either once or twice (see also Fig. 5). In the latter case,
ψ = γ0x̃ does not intersect Φr. In the former case, then
ψ = γ0x̃ intersects each of the three pieces exactly once.
Thus the two possible cases are:

xa
low =

k(u+ ub)

k(u+ ub) + γ0
∈ [0, (1 − ∆)θ̃1)

xa
med =

−c1 −
√
c21 − 4c0c2

2c2
∈ [1 − ∆, 1 + ∆]θ̃1

xa
high =

k(u+ ub) + V1

k(u+ ub) + V1 + γ0
∈ ((1 + ∆)θ̃1, 1],

or

xb
low =

k(u+ ub)

k(u+ ub) + γ0
∈ [0, (1 − ∆)θ̃1)

xb
med =

−c1 −
√
c21 − 4c0c2

2c2
∈ [1 − ∆, 1 + ∆]θ̃1

xb
high =

−c1 +
√
c21 − 4c0c2

2c2
∈ [1 − ∆, 1 + ∆]θ̃1,

where

c0 = k(u+ ub) −
V1

2

1 − ∆

∆
,

c1 =
V1

2∆θ̃1
(1 + (1 − ∆)θ̃1) − (ku+ ub) − γ0,

c2 = −
V1

2∆θ̃1
.

In all experiments, measurements are given in terms of
phosphoimager units, so the issue of converting these into
concentration units should be considered. Since the total
concentration Xtot is not known we will normalize data to
the maximal steady state, and also normalize the mathemat-
ical equation to the theoretical steady state. To estimate the
bistable region from the hysteresis data in Fig. 6, observe that
umax is the value for which the lower steady state coincides
with (1 − ∆)θ1 (see Fig. 5, solid line):

(1 − ∆)θ̃1 = x∗low =
k(umax + ub)

k(umax + ub) + γ0

yielding

umax = −ub +
(1 − ∆)θ̃1

1 − (1 − ∆)θ̃1

γ0

k
.

For the other extremity of the bistability interval, umin, there
are two possible cases: either (i) xa

high = (1 + ∆)θ̃1 or (ii)
xb

med = xb
high. To see which of these two cases applies, note

that for case (ii) xb
high = −c1/(2c2) ∈ [1−∆, 1+∆]θ̃1. If this

condition is not valid, then case (ii) is not possible, and case
(i) applies. The value of umin can be computed by solving
c21 = 4c0c2 with respect to u, and then checking if it is in
the required interval. For case (i), we have

(1 + ∆)θ̃1 =
k(umin + ub) + V1

k(umin + ub) + V1 + γ0

⇒ umin = −ub −
V1

k
+

(1 + ∆)θ̃1

1 − (1 + ∆)θ̃1

γ0

k
.

(Note that the final result is as in case (ii), see Fig. 5, dash-
dotted line.) These analytical expressions were compared
to the data from the various experiments, and parameters
estimated using a non-linear least squares method (in this
case, the function nonlinsq from Matlab) to minimize:

Jss(V1, γ0, θ̃1,∆, ub, k) =
∑

u∈U

∣∣∣∣∣∣

x∗(u)
x∗(100) −

w∗

u

w∗

100

w∗

u

w∗

100

∣∣∣∣∣∣

2

Jbi(V1, γ0, θ̃1,∆, ub, k) =
∑

i=min,max

∣∣∣∣
ui − uobs,i

uobs,i

∣∣∣∣
2
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Fig. 5. The line γ0x̃ and the piecewise quadratic function Φ, for the
parameters of Table I and umin (solid), umax (dash-dot).

where U = [0, 25, 40, 45, 50, 60, 75], and w∗

u, uobs,i denote
the data points. To find a reasonable initial condition, we
first computed the costs Jss and Jbi on a grid (V1, γ0 ∈
[0.005, 0.2], θ̃1,∆ ∈ [0.1, 0.9], k = [10−5, 10−4], ub ∈
[10, 50]), and then refined the grid based on the lower costs.
Then choosing initial conditions on:

V1 ∈ {0.008, 0.009, 0.01, 0.02},

γ0 ∈ {0.015, 0.02, 0.025, 0.03},

θ̃1 ∈ {0.2, 0.25, 0.3, 0.35},

ub ∈ {20, 25, 30, 35}

and running the optimization function for each point of this
grid, the average results are shown in Table I.

Suppose now that the slower process governing y is
added to the system. Choosing parameters V2, γ2 that satisfy
assumptions A1-A6 the full system will exhibit a limit cycle.

TABLE I

ESTIMATED PARAMETERS.

Parameter Value

V1 0.01 s−1

γ0 0.028 s−1

θ̃1 0.25
∆ 0.45
k 3.1 × 10−5 s−1

ub 66.7 nM
umin 45.9 nM
umax 77.3 nM

VII. CONCLUSIONS

The interaction between two pathways with different
timescales was studied by coupling a one-element genetic
network with a signal transduction pathway. A mechanism
was proposed through which slowly varying gene expression
patterns can induce rapid changes in the mode of operation
of signal transduction networks, and also lead to sustained
oscillations. From experimental data on the Cdc2-cyclin B
system, parameters were identified. The obtained parameters
satisfy the modeling assumptions, indicating that the mech-
anism coupling fast and slow dynamics is reasonable. The
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Fig. 6. Steady state response of the model (solid lines, parameters as in
Table I). The stars and squares represent the hysteresis data in Fig. 3(c)
of [11]. Note: the upper points at u = 100nM were not considered for the
optimization process.

present analysis provides conditions for oscillatory behavior
regulated by gene expression patterns, as well as estimates
for the period of oscillations and its dependence on the
model’s parameters. Our results also suggest possible exper-
iments to test the contribution of the negative feedback loop
to the Cdc2-cyclin B dynamics, for instance, by identifying
a suitable candidate for component y based on its activation
threshold θ2 ∈ [(1 − ∆), 1]θ1.
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entre expression génétique et signalisation. In Réseaux d’interactions
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