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Abstract

The dynamics induced by the existence of different timesscial a system is explored, in the context
of a model composed of activation and signalling modulesleggd by a slowly evolving process, such
as some particular protein-protein interactions or gedéte dynamics. It is shown that slowly varying
regulation patterns can induce rapid changes in the steatsof the (fast varying) signal transduction
pathway, and lead to sustained oscillations. These remd@tdiustrated by a reduced model of the cdc2-
cyclin B cell cycle oscillator. Using available experimaldata, parameters of the model are estimated
and found to agree with the requirements for a mechanisisfall@atory behaviour arising from coupling
fast and slow processes.

1 Introduction

Signalling pathways are fundamental modules of intertagllorganization and regulation. They are respon-
sible for transmitting information from the exterior to theeerior of the cell (or between two intercellular
regions), along signal transduction cascades. Signgtlatgways frequently interact among each other or
with gene expression, to regulate cellular functions, gpomse to external stimuli. For instance, gene tran-
scription is often the ultimate result of signalling evelnis, conversely, changes in gene expression patterns
can also activate a signal transduction cascade. In gesayaal transduction pathways and gene networks
operate at different timescales. Typical signalling tiraes on the order of seconds, a fast process when
compared to gene expression patterning, which may range rfimutes to hours (see, for instance, Table
2.1in[1)]).

In this paper, we study a general system with three compsnent activation module, a signalling
module and a slowly evolving regulatory module. The acibraand signalling components are considered
fast relative to the regulatory component. In this systdm, dignalling module has two stable modes of
operation (which correspond to two steady states for a fixegtentration of the regulatory component).
We show how the signalling module can be regulated betwedwit stable modes of operation by a slowly
varying €.g, genetic) pattern. In particular, we study the interactietween components with different
timescales — slow (genetic-like) component and fast sligigatomponent — which may induce oscillations
in the concentrations of the system’s mRNAs and proteins.

Examples of biological systems where an interaction batvgemetic and signalling (or two signalling)
modules leads to oscillatory behaviour include the p53-xd#j or the kB-NFxB networks [3]. We
will consider 3- and 2-dimensional models as representéérsatically in Fig. 1.  Our models were
inspired by signal transduction cascades (such as MAPKadasc[4, 5]), and, more particularly, by a
model of the cdc2-cyclin B cell cycle oscillator proposed6n7]. This system plays an important role in
the progression from G2 to M phases in the early embryoniacgele in Xenopus laevisocytes. Cdc2 (a
cell division cycle protein; represented by in Fig. 1) is activated by cyclin B (represented dy), forming
a complex Cdc2-cyclin B«). This complex activates its own activator Cdc25 (represiby the “+” loop),
and also activates the Anaphase Promoting Comgtgx\hich in turn promotes degradation of cyclin B
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(degradation ofb(, as well as inactivation af back to formz). Some remarkable experiments on the Cdc2-
cyclin B have been performed by two groups, Pomerening é]abhd Sha et al [8], which show that the
Cdc2-cyclin B system does exhibit bistability, that is tvialde steady states exist for the same concentration
of cyclin B. Further work by Pomerening et al [7] shows tha #uto-activation positive feedback (denoted
“+"in Fig. 1) is necessary for sustained oscillations to ocdure models proposed in [6, 7] have around
10 variables and about 30 parameters. They behave as ‘dtgegind-fire” or “relaxation” oscillators, using
the conjunction of positive and negative feedback loops.

Here, we consider smaller 2,3-dimensional models, whieradso of the type known as relaxation os-
cillators, because the periodic orbit essentially evoblesg two different branches of thenulicline, with
fast jumps between the two branches of thpullcline. In other words, along each branch of the nuile]i
x IS near quasi-steady state, and jumps rapidly between ihésteady states” In [7] the importance of the
auto-activation positive feedback for generating oséiltegs was studied. In this paper, the focus is on the
role of the negative feedback loop and on the analysis ofdlaive timescales of the various biological
processes that are needed to generate a “relaxation”atscill

The negative feedback is formed by the system dengtedrig. 1, whose output” = h(y) (for some
appropriate function af) contributes to the degradation ®f andz. In generaly may be am-dimensional
vector, representing the components in a regulatory mothiénstance proteins and messenger RNAs in a
genetic regulatory network or another signalling pathwaythe example studied throughout the paper, we
will considery to be a scalar variable and the output to¥be- y. Theoretical conditions on the parameters
are provided, that guarantee an oscillatory behaviour asrgbd in [7]. First, under constant regulation
(fixed y,Y"), our analysis provides conditions on the parameters feretkistence of bistable behaviour.
Then, adding slowly varying protein-protein activity, ciions are given that guarantee the existence of a
periodic orbit. Finally, a set of parameters for the modetentified from data reported in [6, 7], and it
satisfies all the “fast/slow” theoretical conditions. Thedal analysis also suggests further experiments to
confirm or not, the hypothesis that the Cdc2-cyclin B osilia behaviour is generated by a mechanism
combining a positive feedback with a slowly varying negalvop (as posed also in [7]).

Recent work [9] uses a similar “fast/slow” idea to study atsgscoupling am-dimensional monotone
system with a slow varying 1-dimensional system. Condgiare given for the existence of periodic orbits.
An example of a MAPK cascade is given. However, no parametgmation from the data is performed
in [6, 7] or [9]. Our present study of a reduced 2-dimensianaldel has the advantage that each variable
can be fitted to the corresponding steady state and timesstata, the fast/slow hypotheses checked, and a
maximum of information extracted using a minimum of mathgoah machinery.

2 Coupling fast signalling and slow regulatory modules

Our goal is to study the role of slow processes (such as aigemdivork) in the regulation of a faster process
(such as a signal transduction network). For simplicity,wiléconsider one slow variablg (representing

a regulatory genetic network or slowly evolving proteim{gin interactions), and one fast varying variable
x which represents a common signal transduction network) asca MAPK cascade [4, 5] (see Fig. 1).
Thus there are in fact two forms of a proteih inactive (o) and active £), but the their total concentration
is constantixg + r = Xyot. If x is below a certain thresholdy), y is only weakly activated. but once
increases above that threshajdecomes fully activated. The slow variable is charactdrizean increasing
sigmoidal activation function and a linear degradatioe:rétis is also the mathematical form typically used
to describe a transcription/translation process [1]. Ouafysis is thus applicable to systems coupling signal
transduction and gene expression, or other genetic-likegsses. The fast variable is negatively regulated
by the slow variabley promotes degradation af), but there is also a positive auto-regulation tefinix)),
that isxz increases depending on the available quantity of inactiey = X0 — ):

z = O(x)( Xt — ) — Myx,

xm
o= Vo — v 1
Y 2 om o Y2y 1)
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The function® should be an increasing function:ofand in the rest of the paper we will choose one general
form (see Section 2.1). In particular, we wish to study ctads under which the slower dynamics can
induce oscillations in the system. Suppose that, for soreéfiXfor y in some interval, ), the equation for

x admits multiple steady states, representing differentenad operation of the signal transduction network.
Suppose also that, fgroutside this interval,,, only a single steady state forexists. Then, as the regulatory
networky changes slowly to exit the multistability interval, thenodule will respond by jumping from one
steady state to another. The positive auto-regulationbsedloop is essential to generate two stable states
for x. Then the negative feedback loop is necessary to inducechange between its two (stable) states.
Conditions are given to guarantee (or not) the existenceaflations. Finally, the oscillatory dynamics is
important: here, we wish to study the case whespends most of the time near one of its stable modes, and
then responds to a slowly evolvingby rapidly switching to its other state. This dynamics walllow from
appropriate hypotheses on the timescales of the diffefiefadical processes. The theorem of Poincaré-
Bendixson will be used to establish the existence of osicitia - this is a standard result for 2-dimensional
systems (see, for instance, [10]; a recent example of itfarsestablishing conditions for oscillations in
chemical reaction networks can be found in [11]).

This kind of oscillatory systems has been mathematicaliglistl before [10], but never really applied to
estimate parameters from biological experimental datatifythat the fast/slow conditions hold. Another
new aspect analyzed in this paper is the use of the slowHasieivork to obtain analytical estimates for
the period of the orbit in terms of the parameters of the syst&everal predictions can then be made,
for instance, which parameter most affects the period aadiiine spent in each “steady state” or mode of
operation.

2.1 The model

To study the system (1) we will next introduce a general foomfdinction®. This is motivated by a model
of the cell cycle oscillator studied in [6, 7]. Equations ¢an be viewed as a reduced model of the cell cycle
oscillator: the proteirx represents Cdc2-Cyclin , and the slow variaplepresents the Anaphase Promoting
Complex (or APC). An inactive form of Cdc2-Cyclin B is alsonsidered, which satisfiegy = X;,; — .
The transformation of protein, to its active formz is mediated by another proteim, for which we will
add a simple equation with a constant synthesis rafe A basal level or external input may also be added
(wp), resulting in an activation ternby = ki (wo + w), as shown in Fig. 1. The auto-activation feedback
loop will be of the formV; %xo. The proteinz activates modulg (represented by the terir x,,f—fegl),
and a linear degradation rate is assumedyf¢t-y). In turn, the module, regulates degradation of both
proteinsz andw, by proteolysis ofw (terms—~,yx and—~,yw). Taking the total concentration of Cdc2 to
be constantyy + © = X;., the equations are given by:

w = ks —ysyw (2)
. x"

T = <k1 (wo +w) +V; T :1:"> (Xtot — ) — myx (3
-V o (4)
y = V2 Zm + 0 72Y.

All parameters are positive, and it is easy to see that thaegative orthant[(, oo[x [0, co[x [0, o) is
invariant for the system. We will study this system usingitlea that each of the three model’s components
has a specific response timeframe, and the three are clastilyct In other words, it will be assumed
that three distinct timescales are present in the systegnadtivating stimulusw() has the faster timescale,
followed by the signalling proteir, with an intermediately fast or “normal” timescale, and thgulatory
model has the slowest timescale (see Table 1).

The difference between signalling and transcription&laimon times is well documented by now [1].
Regarding the activation by, for this system, the mechanism for regulation and balanofrcyclin B is
apparently not yet clear. It is well established that cy&8iis hardly present up to G2/M phase, where it
rapidly accumulates to high concentration and activates?2Cét the end of mitosis, cyclin B is observed



to degrade rapidly, through proteolysis by APC. In our asiglyve will assume that the time response of
w is faster than that of or y. We will treat this as an hypothesis, part of the model, to dxefiomed or
contradicted from the comparison of experimental data éodymnamical behaviour of the model arising
from these hypotheses. In particular, it will be assumethfrow on thatw is at quasi-steady state, that is,

w="" g (5)

for y > 0 (it will be shown thaty is strictly positive). Taking a new variable~ z/X,, and setting also
0; ~ 0;/ X0t (i = 1,2), the system becomes:

. a "
T = <k1(w0+—1)—|—V1 - n) (1—2) —nyz
Y 07 +x
xm
) = S . 6
Yy Vo T Y2y (6)

A similar system was studied in [12] (wilty, = 0), and it was shown that, for each fixgdthere are at
most three and at least one steady states fdiris not difficult to check that this is still true for the @ent
x equation (see Fig. 2).

Although details are given for the cdc2-cyclin B system, elg@)-(4) can also be used to describe
other biological systems. Consider, as another exampmd\ & B-I1x<B network [3]. The transcription fac-
tor NFxB is present in the cytoplasmuw(=NFxB.,;) and in the nucleus{=NFxB,,,.), where it activates
transcription of the4B gene ¢ =IxB mMRNA). The protein £B will bind NFxB, thus preventing its tran-
scriptional activity §,yx,vsyw). Active and inactive forms of NEB can be considered:( xg). Several
other feedback loops exist (notably, through anti-apotptodteins such as IAP), which can be summarized
by the positive auto-regulatory termﬁ. With these components, model (2)-(4) also describeslascil
tions in the NixB-1xB network.

2.2 Different timescales

Following the biologically reasonable assumption thatdireamics of the signalling network is faster than
the dynamics of the protein-protein regulatory module, s iewrite the model under a standard slow/fast
approach (under a fast time):= f(z,y) andy = ~v2g(x, y) with 75 small (see Al). Normalizing variable

y to:

J= o
2‘/27

system (6) can be rewritten as:

n

dx Y2 a1 x Vo _

— =k > = Vi 1-— - —

7 ( 1(wo + V y)+ 13:”—1—0?)( x) ’Ylw?ﬂ

dy x™ -

—_— = _ 7
dr 2 <xm+951 y> (7

with the additional hypothesis th%Vg > v, (see Table 1).
The variablew can also be normalized with respect to some appropriate Mali, :

o w = ks
Wtot ° Wtot '

to obtain

dw - Ys Vo _

M k(1- 2 25).

dt ks 72
The parametef:, should be large to justify the quasi-steady state assumg&p Note thata; = ﬁ—
From the normalized equations, it follows that there wilthiee distinct timescales in system (2)-(4) if the

parameters satisfy the constraints listed in Table 1.
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Table 1: Timescales of the model's components.

Component Timescale Assumptions

Activation,w fast > kwo + Vis s > m
Signalling,z normal
Regulationy slow Yo < min{kjwgy + V1, VQ%}

3 Stability analysis

The steady states of system (6) can be found by looking antbesection between the nuliclingse, y) = 0
andg(z,y) = 0. These can be solved with respecttto obtain:

1 1 1—=x
= A(z) + — [ Az)? + 4
fO(JZ‘) 271 (ZL') + 271\/ (.1‘) + klawl . s
(@)=
90 — Y zm + 9517

where

" 1—x
Alz) = [ k .
() < 1w0+‘/19§‘+x"> T

The form of fy(z) depends on the values of the parameters. For instance, iecatrictly decreasing, or
it can have an increasing region in between two decreasgigne (as depicted in Fig. 3). Thenulicline

is always a strictly increasing function. ff is strictly decreasing, it is not difficult to check that thas
only one (stable) steady state. Here we will focus on the oégg with three monotonic regions, as in
Fig. 3. In addition,V, v2, andm will be assumed such tha intersectsf, only once. The stability of this
unique steady state depends on which regipand f; intersect (as shown below). Thus, the system will
be studied under the following assumptions on the parasieter

AL 7, < min{}, 380} andqy < 215;
A2. m is sufficiently large;

A3. there exist) < zpin < Tmax With dfy/dz(zmin) = dfo/dx(zmax) = 0, dfp/dx > 0 for all x €
| min, Tmax[, @nddfy/dz < 0 for all z ¢ [Tmin, Tmax;

A4, fo(@max) < max(go) (OF fo(amax) < 22, whenm tends to infinity);

A5. fo(@min) > min(gg) (OF fo(zmin) > 0, whenm tends to infinity);

AB. n >yt (293818 4 ko + V3.

wo 1—01

These assumptions guarantee that system (6) has the foassageg to exhibit oscillations. More precisely:
Al guarantees that the equation is slow relative to the equation (see Table 1); A2 guarantees that the
activation ofy by x is sufficiently steep to be fairly well approximated by a sli&p function (this is used
later in Section 5 to compute an analytical expression ®ptriod of the orbit); A3 establishes the existence
of a bistability region by saying thafy increases ifxmin, Tmax| @nd decreases i, z,iy| and [zyax, 1]
(see Figs. 2 and 3). If the functiofy is strictly decreasing, then system (6) has only one stabéaly state,
and no oscillations are possible. If there is a region whfgris increasing then system (6) may have an
unstable steady state and a periodic orbit, as will be shéign 8, middle). The values,in, Zmax €an in
fact be viewed as an interval for theactivation threshold,. Estimates fotryin, max Will be given in
Lemma 3.4, with the help of assumption A6; A4 and A5, togethigh A2, guarantee that system (6) has



exactly one steady state, given by the intersection of tleeriwliclines fy andgg. The “flat” parts of they
nullcline should not intersect thenullcline (see Fig. 3):

xr > 92 : gO(x) ~ VQ/'YQ > fO(xmax)
x>03: go(x) =0 < fo(Tmin)-

Finally, A6 says that should be sufficiently large to generate a bistability ragih is used in Lemma 3.4
to find explicit conditions on the parameters to satisfy Ait B is a conservative assumption: smalter
also satisfy the conditions.

First, we show that there are forward-invariant regionsbimth 3-dimensional and reduced systems. A
setD € R" is forward-invariant for a system = f(z) if: for all zyp € D, the solutionz(t) of the initial
value problemi = f(z), z(0) = = satisfiesz(t) € D for all ¢t > 0.

Lemma 3.1 Assume Al holds. Then the compact set

2m m 2m
C— 1 ks v 4Eﬁ’h +92}X[21]X[VQ 72 Vz}

- ) 725 —
27 Vo' m Ve  Em 2

292 73™ + 05" 72
is a forward-invariant set for system (2)-(4). Furthermahe quasi-steady state approximation (5) is well
defined inC and

2m
D= [7%7 1] X |:—V2 o 72 7E:|
299 y5™ + 05" ¥o

is a forward-invariant set for the reduced system (6).

Proof. To determine whether a given domdihis forward-invariant, we evaluate the vector field on the
boundary of the domain. If the vector field points towardsittterior of D, thenD is invariant. To check
thatC is a forward-invariant set for (2)-(4), it is clear th% < 0 wheneverr = 1, and% < 0 whenever

» . 1 ke
y = 2. Itis also easy to check thdﬁ(;ul,:c,y) > 0 wheneverw; = 3232 and (wl,:c,g/) e C, or
d ks y2 73" +05" _ _ Vo " ;
% (wr,w,y) < 0 wheneverw, = 4%3,—5% and (w,,z,y) € C. Fory =y, = ﬁﬁfw using
x > ~3 itis clear that

d 2m V- 2m

Y w,z, ) > Vo B — - > 0.

dt 0 + 127 22y 2 10

for all (w, z,y;) € C. Finally, using assumption Al, one can choesesufficiently small such that (setting
x; = 35, and usingy < Va/7s):

dx
E(w7xl7y) > <k1w0 + ‘/17
.

> (1—73) — 'YlE'YQQ > §lflwo —mVay2 >0

V2 4
for all (w,z;,y) € C, usingy, > 0 and~e < 1/2 for the first inequality, andy, < %% for the
second inequality. Hence, the domdiiis invariant.

To prove the second part of the Lemma, sigas strictly positive (and remains inside a strictly postiv
closed interval), the quasi-steady state approximatipis(&ell defined inC. Note thatD is the projection
of C on (z,y), and a similar proof shows th@t is indeed invariant for system (6). [ |

The next result shows that system (6) has a unique equilibiiLD, and analyses its stability.

Lemma 3.2 Assume A1-A5 hold. Then system (6) has a unique steady statey*), and (a) if6y ¢
[Tmin, Tmax), then(z*, y*) is stable; (b) iffy €]z min, Tmax| then(z*, y*) is unstable.



Proof. Assumptions A2, A4 and A5 imply thaf, and gy intersect at a single poiritz*, y*) (as depicted
in Fig. 3). To analyse stability of the steady state, conside Jacobian. The following relations can be
deduced from the nullclines’equations:

of (x,y) n of (x,y)

ox oy s1=0
99(z.y) , d9(z.y) _ ®)
ox oy

wheres; = g—g(x*) ands, = %(m*) are the slopes of nulicline andgy, computed at the steady state.
Then the Jacobian is given by

J_ | of/o= 3f/5y]:[—818f/0y of /oy
dg/0x  9g/0y —s209/0y 0g/0y |

For a system of second order, it is well known that, Jf & 0 anddet J > 0 then the steady state is stable.
In contrast, t7 > 0 anddet J > 0 imply that the steady state is unstable. For both cases ¢a)aiit holds
thatdet J > 0. To see this, note that
af dg
det J = —81)=——
e (s2 81)@y dy
sodet J > 0iff s > s1. This is always true for parameter sets satisfying AL-AS:000¢ [Zmin, Tmax), it
follows thats; < 0 < sg; for 03 €|xmin, Tmax|, With m large enough, it follows that, > s; > 0. To check
the sign of the trace of, note that
af | 9y
trJ=—s1-—+ == * — .
Slc’?y + oy S171T° — Y2
For case (a)s1 < 0 so clearly t/ < 0 and the steady state is stable. For casegb)> 0 but note that
x* > Tmin, Wherez i, is independent ofi», (since obtained fromdf, /dz = 0). Thus, using assumption
Al, one can choose, sufficently small such thafs < s1v1zmin < s1y12*. Thus, for case (b) the steady
state is unstable. [ |
The dynamical behaviour of system (6) in case (b) can beduxharacterized (see also Fig. 5).

Lemma 3.3 Assume A1-A5 hold. 1Py €]z min, Tmax|, then system (6) admits a periodic orbit.

Proof. The existence of a periodic orbit follows immediately frome theorem of Poincaré-Bendixson [10]
and the previous lemmas. The following two conditions amgfiegl: (i) there exists a bounded, invari-
ant region in thery-plane O, Lemma 3.1); and (i) this region contains a unique unstabdady state
(Lemma 3.2). [ |

Finally, we will give sufficient conditions on the parameatéor the system to verify assumption A3, and
hence exhibit a periodic orbit. It is not easy to find explexpressions fof,;, andz ., in terms of the
parameters of the system. To solve this problem, we wileidtshow that there exists > 0 such that the
interval I = [(1 — A)61, 61] Clrmin, Tmax[. In this case, a sufficient condition for existence of an aivist
equilibrium pointisfy € [(1 — A)6y, 61].

Lemma 3.4 Leta = 1/2% € [%, 1] and suppose assumption A6 holds. Thep, < af; andxy.x > 6.

Proof. To prove this, it is sufficient to verify that, fot large enough, the derivative ¢f, is positive for
x = M) for any A € [a, 1], and becomes negative somewhere outside this intervak folows from
assumption A6 and the expression of the derivativeg,of

d 1 dA 11 ( dA 1
&= ma e ( )

= Y (24 dkaiy—
dr  2vidr 2vic 1NN 2

dx



wherec denotes the expressionQ/A(a;)2 + 4k1a1'y11_7$. Note that% <0 implies‘fif—ggJ < 0 and that

dA dA 1
— >0andA— > 2kia1— 9)
dx dx 2

implies that¥ > 0. Forz = A¢; with A < 1 obtain:

A 1— X0,
A =
(M\01) <k1w0 +W pY 1) 2
— (A0 = — | nVi——=(1—-X01) — k -V .
az M0V A262 <” "o+ 1)2( V)~ huwo = Vige 1>
SinceA(x) is positive for allz, to satisfy (9) it is sufficient that
Mo a2y : + kywo + V5
" - V1(1 — 91) 19m 1— 01 k1w 140 !
(A" + 1)2 A0 1 A7
S | 2kia — + krwp + V5 ,
= V00 | T N e+ iy

where we have used that fact tHag2 < A\ < 1 and the following inequalities:

AT 01 A1
0 .
Ml T=0, 1=,

4>AN"4+1)2 1>

Now, by assumptiol\ > o = 1/2%, which leads to:

712 2k1a 4
‘/1(1—91) ! 1711—91 /ﬁwo

nA"Zna":gZ + kywo + V1|,
where assumption A6 was used in the last inequality. Thezefonder the assumptions, conditions (9) are
indeed both satisfied. n

4 Parameter identification

To illustrate the theoretical results we will use systenms(42 and (6) as a simple model for the mecha-
nism of Cdc2 activation by cyclin B. This is is known to fur@tias an autonomous oscillator [6] in the
progression from G2 to M phases in the early embryonic cellecgf Xenopusocytes.

Two types of experiments were performed by Pomerening aralutwors. In the first set of experi-
ments [6], a non-destructible form of cyclin B was used, Whgnot subject to APC-mediated degradation.
Cyclin B was used as a constant input to the syst&emopusegg extracts were treated with different con-
centrations of cyclin B and allowed to reach a steady stagaBility and hysteresis were observed. In the
second set of experiments [7], the importance of the pesféedback loop is explored (represented by the
x auto-regulation in our models), and cyclin B is not extdgnabntrolled as before. Simultaneous mea-
surements of cyclin B and Cdc2-cyclin B activity are avdidab/Ne will next use two sets of experimental
data to estimate parameters for model (6), and then checthertthese are compatible with the timescales’
assumptions.

4.1 Bistability

The experiments reported in [6] (see, in particular, Figc) 3 this reference) can be interpreted as the
response to constant inputsv. The data consists of steady state values, ébr each constant. In Fig. 4,

the hysteresis curve for steady states of Cdc2-cyclin B ametibn of the input: is reproduced as white
squares and black stars. Since a non-destructible formctihdy was used, in our 3-dimensional model, the
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w equation becomes redundant, and the system is modeled agd3}), with constanty = u. According
to our analysis, ifc is at steady state, then we expegdb remain fixed at some (unknown) value

Under these hypotheses, model (2)-(4) can be reduced te dggiation, with a new parametes =
Y190, t0 be estimated:

n

T =®(x) — yx = <k1(wo +u) + lei

o) (=)= e (10)

The input term forx is of the form®y = k; (wo + u), whereu = [665 — cyclin B] represents the concen-
tration of the non-destructible cyclin B (knownjy represents a basal concentration of cyclin B (unknown
parameter), ané; is the corresponding reaction rate.

A set of parameters that describe the biological system eagstimated by minimizing the difference
between the data and the model’s steady states. Howeveg, thie data consists of steady state measure-
ments, it contains no information on the rapidity of conegrce to steady state. That is, only the ratios
Vi/k1 and~p/k; can be obtained from the data. Observe also that, for lardgeis not possible to derive
an explicit expression for the steady states of (10). Theeeffor the purposes of parameter estimation,
we have chosen to approximate the sigmoidal expresﬂg@g? by a ramp function (see also [12]). For
simplicity, the exponent will be fixed atn = 4. The estimation procedure is described in the Appendix,
and further details given in the Supplementary materialuAaries from 0 to 40 nM, there should be only
a “low” steady state; fow roughly in the interval 45 - 70 nM there should be both a “lowitaa “high”
steady state; finally, for larger than 75nM there should be only a “high” steady stabe the existence of a
bistability region, there are two possible cases for the”land a “high” stable steady states. The estimated
parameters are given in Table 2.

Table 2: Estimated parameters. The errors indicated quonesto the diameter of a 95% confidence region
for the bistability data, and 95% confidence intervals fertime series data.
Simultaneous Cdc?2 activity, Cyclin B data

Bistability Cdc2 activity data Parameter Value
Parameter Value wo 19.78 £ 3.57 nM ,
o 192 L17ATM a 1.504 + 0.208 nM
Vi ky 3.769 x 107* £3.92 x 1076 nM~!min—!
a 430.86 + 4.09 nM -
o 843.42 - 5.06 NM 1% 0.162 4 0.0032 min
gl 0 27'52 N 0'0012 Vo 0.251 £ 0.069 nM min—!
nl ) : o 0.358 + 0.09 NM~'min~!
Yo 0.026 + 0.0051 min—!
0y 0.269 =+ 0.045

4.2 Oscillations

One of the experiments reported in [7] (nhamely, Fig. 1V of tieference) shows the simultaneous evolution
of both cyclin B () and Cdc2-cyclin B activity£) (in a wild type case), but there are no APC measurements
(). Under the different timescales hypothesis, we conslurdyclin B responds much faster than Cdc2 to
changes in APC, obtaining reduced system (6).

The parameters already obtained from the bistability datamew be used in the estimation of the
remaining parameters, as follows:

e 0 € [(1—A)by,0,] (see Appendix);
¢ to simplify computational work, we choose and fix= 6;
e 1 is newly estimated (since, is in fact~;yq, with unknowny);

e wy is newly estimated, since basal levels may depend on theimeal conditions;
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e a1, V5, and~yy are newly estimated,;
e Ly is newly estimated; based on it the paraméfecan be computed.

The estimation procedure is a nonlinear least squares ahetleere the cost to be minimized is the differ-
ence between data points and model trajectories, both fieeddo their maximal values (see Appendix).
As before, this procedure was implemented in Matlab 7.3yguie functiond sqnonl i n. The parameters
obtained are shown in Table 2, and the final fit may be seen irdFig

4.3 Validation of different timescales hypotheses

Estimates have now been obtained for all parameters oin@-slystem (6). To check whether the assump-
tions on the timescales are verified recall that (Table 1):

v2 < min{kjwg + V1, lVg} :0.026 +£0.0051 < min{0.17,1.54}.
72

Assumption Al further requires:

§k1(wo + al) .

0.026 £ 0.0051 < 0.034.
4 W

Y2 <

We have considered the error bars for each parameter to #nuhitimum values ok, wg + V4, %Vg and

%. Since we have no way to accegsor kg /W, it cannot be checked whether the quasi-steady

state assumption om is justified. However, looking at the data in Fig. 4, we obsdhat cyclin B € w)
has a fairly constant value during the sharp increase in €gcln B (= x) (the symbols ¢’ in the time
interval [75,85] minutes). According to the modglremains pratically constant during the sharmse (see
also Fig. 5). This argues in favor of the approximations a, /y.

The estimated parameters satisfy all inequalities. Thesdts indicate that system (2), together with the
hypotheses of substantially different timescales is aomse model of the Cdc2-cyclin B oscillator. This
2-dimensional model may have the disavantage of being toensatic and not containing enough detail, but
many advantages are also gained: it is suitable for pararestienation from the available measurements,
avoiding many problems related to underdetermined systams it still provides a faithful and useful
phenomenological description of the biological system.

5 Period, sensitivity analysis and more experiments

Assume now that conditions A1-A6 are satisfied, and systenh#6 a periodic orbit. To obtain some
knowledge on the period of the orbit, as well as its depenelemche various parameters, we will again use
the “fast/slow” variables assumptions. The partial sta{eegulation variable) represents a variable whose
evolution is slow relative ta: (signalling variable). As an example, consider the paramseaibtained for the
cdc2-cyclin B system and the corresponding trajectoriés 8-(a),(b)). It can be observed thaswitches
rapidly between two (“steady”) states or two distinct modésperation ofz: x remains for some time
(roughly around 50s) on a low concentration statg)( before rapidly jumping to a high concentration state
(z4). The time spent in the high state is much shorter (roughbyirgd 7s), and them quickly falls back

to zp. In contrast, the variablg responds slowly to changing concentration. i evolves according to
decreasing or increasing negative exponentials). In tlasebkpace (Fig. 5 (a)), this fast/slow dynamics is
seen by the fact that the periodic orbit moves practicalynglthey = fy(z) nullcline asy decreases from
its maximal to minimal value: along this nullcling,= 0, soz remains practically constant in this part of
the cycle (atr 4). This type of dynamics is more clearly illustrated in Figc},(d) (where two parameters
are slightly changed from those in Table 2). Here, it is cthat the “slow” part of the system corresponds
to changes iy with an almost constant, as trajectories move along thenullicline (y = fo(z)). The fast
part of the system corresponds to rapid changes as it jumps from one state to another in responsg to
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5.1 Period of the orbit

Using the above arguments, the time spent by the system lnaédlce operation modes can be analytically
estimated. Let:

Ty = time spent in mode s,
T> = time spent in mode: 4.

During 77, we assume that the trajectory evolves along the nullgliee fo (), with x = 2. Moreover, the
dynamics ofy can be simplified: for large Hill coefficient (assumption A2), the expressidpz™ /(" +
05") can be approximated by a step function withr) = 0 if x < 62 ands(z) = Va if © > #2. Then they
equation becomes

dy Vo ™

fo( ) _72 <’Y W

As z increases fromxg to z 4, integration gives:

In fo(za) —In fo(zp)
V2 '

- fo(ﬂ«")> ~ —v2fo(x)

T =

During T», we assume once more that the trajectories are close tpthg,(z) nulicline, and letG(z) =

— fo(x) to obtain:
da A fi(x) "
) 0 = dt
(@G =ne@ = [ = [T

InG(xp) —InG(x,)
V2 '
Following Lemma 3.4, we approximaig; ~ (1 — A)#; andz 4 ~ 6; to obtain:

fo(61)
fo((1 = A)6h)
Ty =~ i In % _VfO(( — A6 ~
V2 =2 — fo(0h)

and integration gives:
Ty =

T, ~ 1 ~ 29.2,

These analytical formulas are interesting for severalamesis

e the ratio betweefl; andT5 gives an idea of the fraction of time spent by the system oh e&ds
stable operation modes { or x ). In the example?; /(11 + T>) ~ 0.94 meaning that the oscillator
remains 94% of its cycle with relatively low concentratiafsactive Cdc2-cyclin B;

e it is often difficult to obtain analytical estimates for therjpd of a periodic orbit, but these formulas
give an indication (see Fig. 6): using the different timéssdypotheses, the system could be simpli-
fied enough to write down an approximate analytical expoessHowever, if the hypotheses are not
strongly satisfied, there can be a large difference betweeanalytical estimates and the real perid.
For the parameters in Table 2, we ha@é + T5)/Period= 27.55/79.76 = 0.34, an error of 66%.
As the difference between timescales becomes more matkedum?; + 15 will provide better
estimates, and their sum gives a reasonable estimate afitiogdle period (with errors as low as 7%,
as seen in Fig. 2 in the Supplementary material). The quallitie 77 + 15 estimate depends on how
well the valuesfy(zg) = fo((1 — A)1) and fo(z4) = fo(#1) approximate the actual value gfas
x jumps between low and high levels;

e these formulas show how each parameter will influence theeval 77, 15 and hence the period of
the orbits (Fig. 6).
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A sensitivity analysis of the time duratiéhy + 75, and the total period of the orbit is shown in Fig. 6.
Only one parameter was varied at a time, with all others fixateir estimated values shown in Table 2.
Each parameteys was varied in an interval0.85p, 1.15p] (i.e., between a 15% decrease and increase to its
original value). The total period was computed by simutatine system with the new set of parameters,
while T7 + T3 was directly computed from the (approximated) analyticaihfulas. Note thai} + 15 is
indeed a good predictor of the changes in the period in resptmchanges in each parameter: a variation
in the period is always captured by a similar variatioint- 7. For a 15% perturbation in each parameter
a periodic orbit still exists, except in the cas&of Indeed, for small values @k, there is no periodic orbit,
and the system converges to a steady state (not shown).sThiagreement with Lemma 3.3 which provides
an interval forf; which guarantees existence of oscillations, and Lemma Bi2hasays that, outside that
interval, there exists a stable fixed point.

5.2 Model predictions and experiments

The positive auto-regulation is a very important comporadrthe model, since this is the component re-
sponsible for the existence of two stable steady statedfifed y), and hence two distinct stable modes
of operation for system (6) (Section 2.1). Recall that tlosifive feedback is represented by the term
Viz™ /(2™ + 07), so thatV; is the strength of the auto-regulation effect.

Interestingly, analysis of the expressidn+ 75 shows that it is inversely proportional to all parameters,
exceptV; (Fig. 6). For instance, for the Cdc2-cyclin B oscillator iffig all parameters as in Table 2), the
model predicts a 10% increase’in + T, in response to a 15% increaselin

In [7], the effect of the positive regulation was studied evymentally, by attempting to “break” the
loop. This was achieved by adding a non-phosphorylatalyia fuif Cdc2, thus decreasing the strength of
the positive regulation. The average period observed fowiid type Cdc2-cyclin B oscillator was around
80 mins., while the modified system had a shorter period,rat&5 mins. (Fig. 2 in[7], and Table 3 below).
This, indeed, agrees with the model’s predictions for a 48@tuction in the strength of the auto-regulatory
loop.

Table 3: Influence of the positive feedback on the period.

System Experiment [7] Model Parameters
Wild type Cdc2 80 mins 79.76 mins _ as in Table 2
Non-phosphorylated Cdc2 55 mins 55.6 minsV; = 0.57V;

(weaker positive feedback)

Another prediction of the model is th&} influences onlyrs, the time spent in: 4 (the high concentra-
tion state). Thus is it possible to obtain a modified dynamfiasinstance by forcing the periodic orbit to
spend the same amount of time in each operation mode, sirplgdreasind’. This is illustrated in Fig. 5
(c) and (d), withV, = 0.15V5. This suggests a new experiment to check whether the decyllnechanism
of Cdc2-cyclin B is generated by a model of the type (6). Byéasing the rate of synthesis gf does
the firing-peak duration increase, that is can one obsemgasiorders of magnitude for the duratiofis
andT5,? This would correspond to a situation where the cyclin BzCa&illator spends similar amounts of
time in each of its two modes; 4 andxp (respectively, at high and low concentrations of Cdc2iayBl
complex). If all other parameters are unchanged, this gt ancrease the period of oscillations.

6 Conclusions
Itis well known that different biological processes mayéaery distinct timescales (for instance, transcrip-

tion or translation are typically slower than signallingeets). Here we have studied a possible dynamical
outcome induced by the interconnection between biologizalules whose response times are substantially
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different. We proposed and analysed a mechanism througthvefowly varying regulation patterns (such
as genetic-like) can induce rapid changes in the mode oftiparof signal transduction networks, and thus
lead to sustained oscillations (a system of the class ystefltred to as “relaxation oscillators”). Under
appropriate assumptions on the timescales (there aré, “fastmal”, and “slow” variables), explicit suf-
ficient conditions on the parameters are provided, for thet@xce of a periodic orbit. This mechanism is
illustrated by an application to the Cdc2-cyclin B oscilatUsing experimental data reported in [6, 7] a set
parameters was identified, which satisfies all the diffetiem¢scales hypotheses.

These results suggest the following interpretation of tieadhics of cyclin B in the Cdc2-cyclin B
oscillator. From the biological point of view, it is well edtlished that cyclin B is hardly present up to G2/M
phase, where it rapidly accumulates to high concentratioieativates Cdc2. At the end of mitosis, cyclin B
is observed to degrade rapidly, through proteolysis by Af@yever, there appear to be many uncertainties
still on the process of cyclin B synthesis and balancing. $bunly suggests that cyclin B follows very rapidly
the dynamics of APC (or group of proteins related to this phaSince this regulation module has a slower
timescale, cyclin B would appear to also evolve slowly, lumsufficient concentration of APC is available
to degrade it. Thus, cyclin B is possibly regulated by prof@ioducts from the APC phase. Our results also
suggest possible candidates (for componghtbased on its activation thresholgi € [(1 — A), 1]6;.

A further experiment suggested by our analysis is to ineré¢ls rate of synthesis of produgis The
prediction is that the high concentration peak in activeZ=cigclin B complex will broaden, so the system
will spend more time in its high Cdc2-cyclin B concentratstate. The system would then switch rapidly
between its two modes of operation (while spending sim@agths of time in each of these).

Finally, we would like to emphasise that this study presentimple, very schematic model, which
has the advantages of being intuitive and amenable to &slytieoretical analysis. In this way, we were
able to generate conditions on the parameters that guarardesired dynamical behaviour. Furthermore,
since available data consists essentially of the measutsroétwo variables, a 2-dimensional model is also
more suitable for parameter estimation, in the sense tluat @ethe model’s variables can be compared to
data, and the most information extracted using a minimumathematical machinery. The model has the
advantage of providing a faithful phenomenological degmn and thus suggest possible experiments to
further understand the dynamical mechanisms of the bicéd@iscillator.
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A Parameter estimation details

A.1 Bistability

To obtain analytic explicit expressions for the “high” anldw” steady states the functio@ in (10) is
approximated as follows:

(I)l(flj) = <I>0(1 — ZC), T < (1 — A)Hl
D)~ Bpl) = (@0 + oKp(w—(1-2)0)) (1-2), (1-A<a<(1+A) (11
B, (x) = (B0 + V1)(1 - ), v > (1+ A0,

whereA = 2/n and®, = k1 (wo + u). Using this approximation, the steady states of (10) astimme of
the inputu can be obtained by finding the solutions to:

q)l(l’) =07, q)m({p) = Yox, Or (pr(l’) = Y.
The “low” steady state is always given by the intersectiotheflineyx with the left branchd;(x):

wo + U

— 0 c0,(1-A) 12
mrusE C00-28) 12)

Tiow(u) =

Then the lineyz intersects the middle branah,, (=) at least once, giving rise to an unstable steady state.
(See Fig. 1 in the Supplementary material.) The “high” syesidte z,,,,(u) can be given by a second
intersection ofyyx with @, (z):

—c1 /2 —4
:r:;;gh(u):max{ a-va COCQ} €[1— A1+ A, (13)

262

whereA = 2/n and

1 W
_ SIS VRN
co = wo +u N /~€1( )01,
_ 1 W 0
61—2A91k1(1+(1 A)Ql) <wo+u+k1>,
_ 1N
RSN N
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Or it can be given by the intersection @fz with the right branchb,.(x):

wo—l-U'i‘K
wo+u+ 2+ 2

€ ((1+A4)6,1],

j:igh(u) =

To compare these expressions to the data there is anothemprarecall that the variableis normalized to

is maximal value X;,;, SO any steady state satisfies. z < 1. The data is given in terms of phosphorimager
units, and there is no way to estimatg,;. To avoid this problem, we have considered the data rel&dive
the steady state at= 100nM, and also normalized the model’s steady. Since the datamdmn = 100nM
seems messy (and after some preliminary numerical test)sed the lowest possible value allowed by the
error bar (white squaresyj,, = 220 — 60 = 160. Thus the expressions to fit to the data are in fact:

Tiow(W) i%h(u) jﬁigh(u)
Zhign(100) " Zpign(100) " Zign(100)

In addition, we can also estimate the bistability rediofi,, umax] from the data:

U = Umax = -Tlow(umax) = (1 - A)Hl

U = Umin = -i‘high(umin) = ﬁ
where = (1 4 A)6; or such that the two roots of the quadratic are eqdak - Zor- (See Fig. 1in the
Supplementary material.) Under these conditions theviatig parameters can be |dent|f|ed

Wi

= 1 p(2) =01, p(3) = A, p(4) = 12, p(5) = wp.
1

k1

These parameters where estimated using the funcsgmonl i n in Matlab (version 7.3) to minimize:

_T(u) wa |

Lu
+ Z ﬂcmgh 100) T wiyg

uelU w100

J(p) —10 Z — Uobs,i

. X Uobs,i
i=min,max

whereU = [0, 25, 40, 45, 50, 60, 75], Wy, Uobs,min = 42.5, Usbs max = 72.5 denote the data points;j,, =
160 (see note above), anelu) denotes the corresponding “low” or “high” steady state ezpion. The
factor 10 multiplying the first sum aims to increase the weafithe error related to the bistability region,
since this was a very important part of the modelling. Thepotation of the cosf (p) includes an algorithm
to verify which of the forms ofz,,() is the correct one. More details, including sensitivity lgsis for the
optimized parameter set and a confidence region, can be fouhd Supplementary material.

A.2 Oscillations

There were seven parameters to estimate from the data an By@ /y) and the cdc2-cyclin Baf) activity.
The cost function to be minimized was

v
Jo(p(l)v s >p(7)) = JO(717a17027 7_27727 k1>w0) =5J; + Jya

where a larger weight was assigned/tobecause preliminary experiments showed that typically J,.

2 2

B (1) we(t) W)
R tEZT maxer (1) N maxer We(t) maxyer We(t)

_ 1/y(t) whe P wPe [
W)= ; maxyer 1/y(t)  maxier WB(t) ‘maxteT WE(t)
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Figure 2: The bold curve represeditr) = (<I>0+Vlﬁ)(l—a:) and the other curves represent v, yx

for three values of;, as indicated. Values of parameteds; = 0.09, V; = 1, Vo = 1.275 x 1072, v, = 8.7,
v2 =375 x 1072, 0; = 0.25, fy = 0.2, n = 4, m = 50.

wheret € {22,24,...,94} (the data points used here start at 22, and are spaced 2mins apaft),(t)
denotes the concentration of cdc2-cyclin B, aiid(¢) that of cyclin B. At each step of the optimization
procedure, equations (6) were solved (using the curreanpeter set), and a “candidate” periodic orbit was
detected. One period of this candidate orbit was then naethto maximal values (both andy), and
the costJ, was calculated. More details, including the covariancerisnand confidence intervals for the
optimized parameter set, can be found in the Supplementatgrial.
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Figure 3: Representation of nullclines. By varyifig one of two cases is obtained: eittiigrbelongs to the
interval |z in, Tmax| (Middle); ords is outside the intervalr iy, Tmax], €ither belowr,,;, (left), or above
Tmax (right). Parameters are as in Fig. 2 and (left to right)-a)= 0.07, b) 8, = 0.2, and c)d, = 0.35.
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Figure 4: Data fitting. Left: steady state response of Cdairt B activity. Solid lines represent expres-
sions (12), (13) with parameters as in Table 2. The stars quakss represent the hysteresis data from Fig.
3(c) of [6]. Right: dynamical evolution of Cdc2-cyclin B agty ('+') and cyclin B ('0’). The symbols
represent data from Fig. 1V of [7]. Solid curves represeattiodel variables, normalized to their maximal
value. Variabler fits to '+ and 1/y fitsto '0’.
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Figure 5: Periodic orbit and trajectories for system (6thwarameters as in Table 2 (a),(b), or with new
Vs = 0.2V5 for (c),(d). In (a) and (c) the nullclineg (dashed line) ang, (dotted line) are shown, together

with one trajectory (solid line) in the phase plane. In (b}l &d) the same trajectory is shown as a function
of time (x(¢) andy(t) are represented, respectively, by the solid and dashebliities).
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Figure 6: Sensitivity with respect to each parameter, ferpkriod and the time intervalg,, 7>. Each
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The period (open squares) was numerically calculated framalation of the system. The values Bf
andT; (solid lines with dots) where calculated directly from thie@irmulas.
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