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Abstract

The dynamics induced by the existence of different timescales in a system is explored, in the context
of a model composed of activation and signalling modules regulated by a slowly evolving process, such
as some particular protein-protein interactions or genetic-like dynamics. It is shown that slowly varying
regulation patterns can induce rapid changes in the steady states of the (fast varying) signal transduction
pathway, and lead to sustained oscillations. These resultsare illustrated by a reduced model of the cdc2-
cyclin B cell cycle oscillator. Using available experimental data, parameters of the model are estimated
and found to agree with the requirements for a mechanism for oscillatory behaviour arising from coupling
fast and slow processes.

1 Introduction

Signalling pathways are fundamental modules of intercellular organization and regulation. They are respon-
sible for transmitting information from the exterior to theinterior of the cell (or between two intercellular
regions), along signal transduction cascades. Signallingpathways frequently interact among each other or
with gene expression, to regulate cellular functions, in response to external stimuli. For instance, gene tran-
scription is often the ultimate result of signalling eventsbut, conversely, changes in gene expression patterns
can also activate a signal transduction cascade. In general, signal transduction pathways and gene networks
operate at different timescales. Typical signalling timesare on the order of seconds, a fast process when
compared to gene expression patterning, which may range from minutes to hours (see, for instance, Table
2.1 in [1]).

In this paper, we study a general system with three components: an activation module, a signalling
module and a slowly evolving regulatory module. The activation and signalling components are considered
fast relative to the regulatory component. In this system, the signalling module has two stable modes of
operation (which correspond to two steady states for a fixed concentration of the regulatory component).
We show how the signalling module can be regulated between its two stable modes of operation by a slowly
varying (e.g., genetic) pattern. In particular, we study the interactionbetween components with different
timescales – slow (genetic-like) component and fast signalling component – which may induce oscillations
in the concentrations of the system’s mRNAs and proteins.

Examples of biological systems where an interaction between genetic and signalling (or two signalling)
modules leads to oscillatory behaviour include the p53-mdm2 [2] or the IκB-NFκB networks [3]. We
will consider 3- and 2-dimensional models as represented schematically in Fig. 1. Our models were
inspired by signal transduction cascades (such as MAPK cascades [4, 5]), and, more particularly, by a
model of the cdc2-cyclin B cell cycle oscillator proposed in[6, 7]. This system plays an important role in
the progression from G2 to M phases in the early embryonic cell cycle in Xenopus laevisoocytes. Cdc2 (a
cell division cycle protein; represented byx0 in Fig. 1) is activated by cyclin B (represented byΦ0), forming
a complex Cdc2-cyclin B (x). This complex activates its own activator Cdc25 (represented by the “+” loop),
and also activates the Anaphase Promoting Complex (Y ), which in turn promotes degradation of cyclin B
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(degradation ofΦ0, as well as inactivation ofx back to formx0). Some remarkable experiments on the Cdc2-
cyclin B have been performed by two groups, Pomerening et al [6], and Sha et al [8], which show that the
Cdc2-cyclin B system does exhibit bistability, that is two stable steady states exist for the same concentration
of cyclin B. Further work by Pomerening et al [7] shows that the auto-activation positive feedback (denoted
“+” in Fig. 1) is necessary for sustained oscillations to occur. The models proposed in [6, 7] have around
10 variables and about 30 parameters. They behave as “integrate-and-fire” or “relaxation” oscillators, using
the conjunction of positive and negative feedback loops.

Here, we consider smaller 2,3-dimensional models, which are also of the type known as relaxation os-
cillators, because the periodic orbit essentially evolvesalong two different branches of thex-nullcline, with
fast jumps between the two branches of thex-nullcline. In other words, along each branch of the nullcline,
x is near quasi-steady state, and jumps rapidly between the two “steady states” In [7] the importance of the
auto-activation positive feedback for generating oscillations was studied. In this paper, the focus is on the
role of the negative feedback loop and on the analysis of the relative timescales of the various biological
processes that are needed to generate a “relaxation” oscillator.

The negative feedback is formed by the system denotedy in Fig. 1, whose outputY = h(y) (for some
appropriate function ofy) contributes to the degradation ofΦ0 andx. In general,y may be ann-dimensional
vector, representing the components in a regulatory module, for instance proteins and messenger RNAs in a
genetic regulatory network or another signalling pathway.In the example studied throughout the paper, we
will considery to be a scalar variable and the output to beY = y. Theoretical conditions on the parameters
are provided, that guarantee an oscillatory behaviour as observed in [7]. First, under constant regulation
(fixed y, Y ), our analysis provides conditions on the parameters for the existence of bistable behaviour.
Then, adding slowly varying protein-protein activity, conditions are given that guarantee the existence of a
periodic orbit. Finally, a set of parameters for the model isidentified from data reported in [6, 7], and it
satisfies all the “fast/slow” theoretical conditions. The model analysis also suggests further experiments to
confirm or not, the hypothesis that the Cdc2-cyclin B oscillatory behaviour is generated by a mechanism
combining a positive feedback with a slowly varying negative loop (as posed also in [7]).

Recent work [9] uses a similar “fast/slow” idea to study a system coupling ann-dimensional monotone
system with a slow varying 1-dimensional system. Conditions are given for the existence of periodic orbits.
An example of a MAPK cascade is given. However, no parameter estimation from the data is performed
in [6, 7] or [9]. Our present study of a reduced 2-dimensionalmodel has the advantage that each variable
can be fitted to the corresponding steady state and time series data, the fast/slow hypotheses checked, and a
maximum of information extracted using a minimum of mathematical machinery.

2 Coupling fast signalling and slow regulatory modules

Our goal is to study the role of slow processes (such as a genetic network) in the regulation of a faster process
(such as a signal transduction network). For simplicity, wewill consider one slow variabley (representing
a regulatory genetic network or slowly evolving protein-protein interactions), and one fast varying variable
x which represents a common signal transduction network, such as a MAPK cascade [4, 5] (see Fig. 1).
Thus there are in fact two forms of a proteinX, inactive (x0) and active (x), but the their total concentration
is constant:x0 + x = Xtot. If x is below a certain threshold (θ2), y is only weakly activated. but oncex
increases above that threshold,y becomes fully activated. The slow variable is characterized by an increasing
sigmoidal activation function and a linear degradation rate: this is also the mathematical form typically used
to describe a transcription/translation process [1]. Our analysis is thus applicable to systems coupling signal
transduction and gene expression, or other genetic-like processes. The fast variable is negatively regulated
by the slow variable (y promotes degradation ofx), but there is also a positive auto-regulation term (Φ(x)),
that isx increases depending on the available quantity of inactiveX (x0 = Xtot − x):

ẋ = Φ(x)(Xtot − x) − γ1yx,

ẏ = V2
xm

xm + θm
2

− γ2y. (1)
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The functionΦ should be an increasing function ofx, and in the rest of the paper we will choose one general
form (see Section 2.1). In particular, we wish to study conditions under which the slower dynamics can
induce oscillations in the system. Suppose that, for some fixedy (for y in some intervalIy), the equation for
x admits multiple steady states, representing different modes of operation of the signal transduction network.
Suppose also that, fory outside this intervalIy, only a single steady state forx exists. Then, as the regulatory
networky changes slowly to exit the multistability interval, thexmodule will respond by jumping from one
steady state to another. The positive auto-regulation feedback loop is essential to generate two stable states
for x. Then the negative feedback loop is necessary to inducex to change between its two (stable) states.
Conditions are given to guarantee (or not) the existence of oscillations. Finally, the oscillatory dynamics is
important: here, we wish to study the case wherex spends most of the time near one of its stable modes, and
then responds to a slowly evolvingy by rapidly switching to its other state. This dynamics will follow from
appropriate hypotheses on the timescales of the different biological processes. The theorem of Poincaré-
Bendixson will be used to establish the existence of oscillations - this is a standard result for 2-dimensional
systems (see, for instance, [10]; a recent example of its usefor establishing conditions for oscillations in
chemical reaction networks can be found in [11]).

This kind of oscillatory systems has been mathematically studied before [10], but never really applied to
estimate parameters from biological experimental data to verify that the fast/slow conditions hold. Another
new aspect analyzed in this paper is the use of the slow/fast framework to obtain analytical estimates for
the period of the orbit in terms of the parameters of the system. Several predictions can then be made,
for instance, which parameter most affects the period and the time spent in each “steady state” or mode of
operation.

2.1 The model

To study the system (1) we will next introduce a general form for functionΦ. This is motivated by a model
of the cell cycle oscillator studied in [6, 7]. Equations (1)can be viewed as a reduced model of the cell cycle
oscillator: the proteinx represents Cdc2-Cyclin , and the slow variabley represents the Anaphase Promoting
Complex (or APC). An inactive form of Cdc2-Cyclin B is also considered, which satisfiesx0 = Xtot − x.
The transformation of proteinx0 to its active formx is mediated by another protein,w, for which we will
add a simple equation with a constant synthesis rate (ks). A basal level or external input may also be added
(w0), resulting in an activation termΦ0 = k1(w0 + w), as shown in Fig. 1. The auto-activation feedback
loop will be of the formV1

xn

xn+θn
1

x0. The proteinx activates moduley (represented by the termV2
xm

xm+θm
2

),
and a linear degradation rate is assumed fory (γ2y). In turn, the moduley regulates degradation of both
proteinsx andw, by proteolysis ofw (terms−γ1yx and−γsyw). Taking the total concentration of Cdc2 to
be constant,x0 + x = Xtot, the equations are given by:

ẇ = ks − γsyw (2)

ẋ =

(
k1(w0 + w) + V1

xn

θn
1 + xn

)
(Xtot − x) − γ1yx (3)

ẏ = V2
xm

xm + θm
2

− γ2y. (4)

All parameters are positive, and it is easy to see that the nonnegative orthant ([0,∞[×[0,∞[×[0,∞[) is
invariant for the system. We will study this system using theidea that each of the three model’s components
has a specific response timeframe, and the three are clearly distinct. In other words, it will be assumed
that three distinct timescales are present in the system: the activating stimulus (w) has the faster timescale,
followed by the signalling proteinx, with an intermediately fast or “normal” timescale, and theregulatory
model has the slowest timescale (see Table 1).

The difference between signalling and transcription/translation times is well documented by now [1].
Regarding the activation byw, for this system, the mechanism for regulation and balancing of cyclin B is
apparently not yet clear. It is well established that cyclinB is hardly present up to G2/M phase, where it
rapidly accumulates to high concentration and activates Cdc2. At the end of mitosis, cyclin B is observed
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to degrade rapidly, through proteolysis by APC. In our analysis we will assume that the time response of
w is faster than that ofx or y. We will treat this as an hypothesis, part of the model, to be confirmed or
contradicted from the comparison of experimental data to the dynamical behaviour of the model arising
from these hypotheses. In particular, it will be assumed from now on thatw is at quasi-steady state, that is,

w =
ks

γs

1

y
= a1

1

y
, (5)

for y > 0 (it will be shown thaty is strictly positive). Taking a new variablex ; x/Xtot and setting also
θi ; θi/Xtot (i = 1, 2), the system becomes:

ẋ =

(
k1(w0 +

a1

y
) + V1

xn

θn
1 + xn

)
(1 − x) − γ1yx

ẏ = V2
xm

xm + θm
2

− γ2y. (6)

A similar system was studied in [12] (witha1 = 0), and it was shown that, for each fixedy, there are at
most three and at least one steady states forx. It is not difficult to check that this is still true for the present
x equation (see Fig. 2).

Although details are given for the cdc2-cyclin B system, model (2)-(4) can also be used to describe
other biological systems. Consider, as another example, the NFκB-IκB network [3]. The transcription fac-
tor NFκB is present in the cytoplasm (w =NFκBcyt) and in the nucleus (x =NFκBnuc), where it activates
transcription of the iκB gene (y =IκB mRNA). The protein IκB will bind NFκB, thus preventing its tran-
scriptional activity (γ1yx,γsyw). Active and inactive forms of NFκB can be considered (x, x0). Several
other feedback loops exist (notably, through anti-apototic proteins such as IAP), which can be summarized
by the positive auto-regulatory termV1

xn

xn+θn
1

. With these components, model (2)-(4) also describes oscilla-
tions in the NFκB-IκB network.

2.2 Different timescales

Following the biologically reasonable assumption that thedynamics of the signalling network is faster than
the dynamics of the protein-protein regulatory module, we can rewrite the model under a standard slow/fast
approach (under a fast time):ẋ = f(x, y) andẏ = γ2g(x, y) with γ2 small (see A1). Normalizing variable
y to:

ỹ = γ2
y

V2
,

system (6) can be rewritten as:

dx

dt
=

(
k1(w0 +

γ2

V2

a1

ỹ
) + V1

xn

xn + θn
1

)
(1 − x) − γ1

V2

γ2
ỹx

dỹ

dt
= γ2

(
xm

xm + θm
2

− ỹ

)
(7)

with the additional hypothesis thatγ1

γ2
V2 ≫ γ2 (see Table 1).

The variablew can also be normalized with respect to some appropriate value,Wtot:

w̃ =
w

Wtot
, k̃s =

ks

Wtot
,

to obtain

dw̃

dt
= k̃s

(
1 −

γs

k̃s

V2

γ2
ỹw̃

)
.

The parameter̃ks should be large to justify the quasi-steady state assumption (5). Note thata1 = k̃s

γs
.

From the normalized equations, it follows that there will bethree distinct timescales in system (2)-(4) if the
parameters satisfy the constraints listed in Table 1.
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Table 1: Timescales of the model’s components.

Component Timescale Assumptions

Activation,w fast ks

Wtot
≫ k1w0 + V1; γs ≫ γ1

Signalling,x normal
Regulation,y slow γ2 ≪ min{k1w0 + V1, V2

γ1

γ2
}

3 Stability analysis

The steady states of system (6) can be found by looking at the intersection between the nullclinesf(x, y) = 0
andg(x, y) = 0. These can be solved with respect toy to obtain:

f0(x) =
1

2γ1
A(x) +

1

2γ1

√
A(x)2 + 4k1a1γ1

1 − x

x
,

g0(x) =
V2

γ2

xm

xm + θm
2

,

where

A(x) =

(
k1w0 + V1

xn

θn
1 + xn

)
1 − x

x
.

The form off0(x) depends on the values of the parameters. For instance, it canbe strictly decreasing, or
it can have an increasing region in between two decreasing regions (as depicted in Fig. 3). They nullcline
is always a strictly increasing function. Iff0 is strictly decreasing, it is not difficult to check that there is
only one (stable) steady state. Here we will focus on the caseof f0 with three monotonic regions, as in
Fig. 3. In addition,V2, γ2, andm will be assumed such thatg0 intersectsf0 only once. The stability of this
unique steady state depends on which regiong0 andf0 intersect (as shown below). Thus, the system will
be studied under the following assumptions on the parameters:

A1. γ2 < min{1
2 ,

3
4

k1(w0+a1)
γ1V2

} andγ2 ≪ γ1

γ2
V2;

A2. m is sufficiently large;

A3. there exist0 < xmin < xmax with df0/dx(xmin) = df0/dx(xmax) = 0, df0/dx > 0 for all x ∈
]xmin, xmax[, anddf0/dx < 0 for all x /∈ [xmin, xmax];

A4. f0(xmax) < max(g0) (or f0(xmax) <
V2

γ2
, whenm tends to infinity);

A5. f0(xmin) > min(g0) (or f0(xmin) > 0, whenm tends to infinity);

A6. n ≥ 24
V1(1−θ1)

(
2a1γ1

w0

θ1

1−θ1
+ k1w0 + V1

)
.

These assumptions guarantee that system (6) has the form necessary to exhibit oscillations. More precisely:
A1 guarantees that they equation is slow relative to thex equation (see Table 1); A2 guarantees that the
activation ofy by x is sufficiently steep to be fairly well approximated by a step-like function (this is used
later in Section 5 to compute an analytical expression for the period of the orbit); A3 establishes the existence
of a bistability region by saying thatf0 increases in]xmin, xmax[ and decreases in[0, xmin] and [xmax, 1]
(see Figs. 2 and 3). If the functionf0 is strictly decreasing, then system (6) has only one stable steady state,
and no oscillations are possible. If there is a region wheref0 is increasing then system (6) may have an
unstable steady state and a periodic orbit, as will be shown (Fig. 3, middle). The valuesxmin, xmax can in
fact be viewed as an interval for they activation thresholdθ2. Estimates forxmin, xmax will be given in
Lemma 3.4, with the help of assumption A6; A4 and A5, togetherwith A2, guarantee that system (6) has

5



exactly one steady state, given by the intersection of the two nullclinesf0 andg0. The “flat” parts of they
nullcline should not intersect thex nullcline (see Fig. 3):

x > θ2 : g0(x) ≈ V2/γ2 > f0(xmax)

x > θ2 : g0(x) ≈ 0 < f0(xmin).

Finally, A6 says thatn should be sufficiently large to generate a bistability region. It is used in Lemma 3.4
to find explicit conditions on the parameters to satisfy A3. But it is a conservative assumption: smallern
also satisfy the conditions.

First, we show that there are forward-invariant regions forboth 3-dimensional and reduced systems. A
setD ∈ R

n is forward-invariant for a systeṁx = f(x) if: for all x0 ∈ D, the solutionx(t) of the initial
value problemẋ = f(x), x(0) = x0 satisfiesx(t) ∈ D for all t ≥ 0.

Lemma 3.1 Assume A1 holds. Then the compact set

C =

[
1

2

ks

γ1

γ2

V2
, 4
ks

γ1

γ2

V2

γ2m
2 + θm

2

γ2m
2

]
×

[
γ2
2 , 1

]
×

[
V2

2γ2

γ2m
2

γ2m
2 + θm

2

,
V2

γ2

]

is a forward-invariant set for system (2)-(4). Furthermore, the quasi-steady state approximation (5) is well
defined inC and

D =
[
γ2
2 , 1

]
×

[
V2

2γ2

γ2m
2

γ2m
2 + θm

2

,
V2

γ2

]

is a forward-invariant set for the reduced system (6).

Proof. To determine whether a given domainD is forward-invariant, we evaluate the vector field on the
boundary of the domain. If the vector field points towards theinterior ofD, thenD is invariant. To check
thatC is a forward-invariant set for (2)-(4), it is clear thatdx

dt
< 0 wheneverx = 1, and dy

dt
≤ 0 whenever

y = V2

γ2
. It is also easy to check thatdw

dt
(wl, x, y) > 0 wheneverwl = 1

2
ks

γ1

γ2

V2
and (wl, x, y) ∈ C, or

dw
dt

(wr, x, y) < 0 wheneverwr = 4ks

γ1

γ2

V2

γ2m
2

+θm
2

γ2m
2

and(wr, x, y) ∈ C. For y = yl = V2

2γ2

γ2m
2

γ2m
2

+θm
2

, using

x ≥ γ2
2 it is clear that

dy

dt
(w, x, yl) > V2

γ2m
2

θm
2 + γ2m

2

− γ2
V2

2γ2

γ2m
2

γ2m
2 + θm

2

> 0.

for all (w, x, yl) ∈ C. Finally, using assumption A1, one can chooseγ2 sufficiently small such that (setting
xl = γ2

2 , and usingy ≤ V2/γ2):

dx

dt
(w, xl, y) >

(
k1w0 + V1

γ2n
2

θn
1 + γ2n

2

)
(1 − γ2

2) − γ1
V2

γ2
γ2
2 >

3

4
k1w0 − γ1V2γ2 > 0

for all (w, xl, y) ∈ C, usingγ2 > 0 andγ2 < 1/2 for the first inequality, andγ2 <
3
4

k1(w0+a1)
γ1V2

for the
second inequality. Hence, the domainC is invariant.

To prove the second part of the Lemma, sincey is strictly positive (and remains inside a strictly positive
closed interval), the quasi-steady state approximation (5) is well defined inC. Note thatD is the projection
of C on (x, y), and a similar proof shows thatD is indeed invariant for system (6).

The next result shows that system (6) has a unique equilibrium inD, and analyses its stability.

Lemma 3.2 Assume A1-A5 hold. Then system (6) has a unique steady state,(x∗, y∗), and (a) ifθ2 /∈
[xmin, xmax], then(x∗, y∗) is stable; (b) ifθ2 ∈]xmin, xmax[ then(x∗, y∗) is unstable.
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Proof. Assumptions A2, A4 and A5 imply thatf0 andg0 intersect at a single point(x∗, y∗) (as depicted
in Fig. 3). To analyse stability of the steady state, consider the Jacobian. The following relations can be
deduced from the nullclines’equations:

∂f(x, y)

∂x
+
∂f(x, y)

∂y
s1 = 0

∂g(x, y)

∂x
+
∂g(x, y)

∂y
s2 = 0, (8)

wheres1 = df0

dx
(x∗) ands2 = dg0

dx
(x∗) are the slopes of nullclinesf0 andg0 computed at the steady state.

Then the Jacobian is given by

J =

[
∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

]
=

[
−s1∂f/∂y ∂f/∂y
−s2∂g/∂y ∂g/∂y

]
.

For a system of second order, it is well known that, if trJ < 0 anddetJ > 0 then the steady state is stable.
In contrast, trJ > 0 anddet J > 0 imply that the steady state is unstable. For both cases (a) and (b) it holds
thatdet J > 0. To see this, note that

detJ = (s2 − s1)
∂f

∂y

∂g

∂y

sodetJ > 0 iff s2 > s1. This is always true for parameter sets satisfying A1-A5: for θ2 /∈ [xmin, xmax], it
follows thats1 < 0 < s2; for θ2 ∈]xmin, xmax[, withm large enough, it follows thats2 > s1 > 0. To check
the sign of the trace ofJ , note that

trJ = −s1
∂f

∂y
+
∂g

∂y
= s1γ1x

∗ − γ2.

For case (a),s1 < 0 so clearly trJ < 0 and the steady state is stable. For case (b),s1 > 0 but note that
x∗ > xmin, wherexmin is independent ofγ2 (since obtained fromdf0/dx = 0). Thus, using assumption
A1, one can chooseγ2 sufficently small such thatγ2 < s1γ1xmin < s1γ1x

∗. Thus, for case (b) the steady
state is unstable.

The dynamical behaviour of system (6) in case (b) can be further characterized (see also Fig. 5).

Lemma 3.3 Assume A1-A5 hold. Ifθ2 ∈]xmin, xmax[, then system (6) admits a periodic orbit.

Proof. The existence of a periodic orbit follows immediately from the theorem of Poincaré-Bendixson [10]
and the previous lemmas. The following two conditions are verified: (i) there exists a bounded, invari-
ant region in thexy-plane (D, Lemma 3.1); and (ii) this region contains a unique unstablesteady state
(Lemma 3.2).

Finally, we will give sufficient conditions on the parameters for the system to verify assumption A3, and
hence exhibit a periodic orbit. It is not easy to find explicitexpressions forxmin andxmax in terms of the
parameters of the system. To solve this problem, we will instead show that there exists∆ > 0 such that the
intervalI = [(1 − ∆)θ1, θ1] ⊂]xmin, xmax[. In this case, a sufficient condition for existence of an unstable
equilibrium point isθ2 ∈ [(1 − ∆)θ1, θ1].

Lemma 3.4 Let α = 1/2
1

n ∈ [12 , 1] and suppose assumption A6 holds. Thenxmin < αθ1 andxmax > θ1.

Proof. To prove this, it is sufficient to verify that, forn large enough, the derivative off0 is positive for
x = λθ1 for any λ ∈ [α, 1], and becomes negative somewhere outside this interval. This follows from
assumption A6 and the expression of the derivative off0:

df0

dx
=

1

2γ1

dA

dx
+

1

2γ1

1

c

(
2A

dA

dx
− 4k1a1γ1

1

x2

)
,
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wherec denotes the expression:
√
A(x)2 + 4k1a1γ1

1−x
x

. Note thatdA
dx
< 0 implies df0

dx
< 0 and that

dA

dx
> 0 andA

dA

dx
> 2k1a1γ1

1

x2
(9)

implies thatdf0

dx
> 0. Forx = λθ1 with λ ≤ 1 obtain:

A(λθ1) =

(
k1w0 + V1

λn

λn + 1

)
1 − λθ1
λθ1

dA

dx
(λθ1) =

1

λ2θ2
1

(
nV1

λn

(λn + 1)2
(1 − λθ1) − k1w0 − V1

λn

λn + 1

)
.

SinceA(x) is positive for allx, to satisfy (9) it is sufficient that

nλn ≥ 4
2

V1(1 − θ1)

[
2k1a1γ1

θ1
1 − θ1

1

k1w0
+ k1w0 + V1

]

≥
(λn + 1)2

V1(1 − λθ1)

[
2k1a1γ1

λθ1
1 − λθ1

1

k1w0 + V1
λn

λn+1

+ k1w0 + V1
λn

λn + 1

]
,

where we have used that fact that1/2 ≤ λ < 1 and the following inequalities:

4 > (λn + 1)2, 1 >
λn

λn + 1
> 0,

θ1
1 − θ1

>
λθ1

1 − λθ1
.

Now, by assumptionλ ≥ α = 1/2
1

n , which leads to:

nλn ≥ nαn =
n

2
≥

12

V1(1 − θ1)

[
2k1a1γ1

θ1
1 − θ1

1

k1w0
+ k1w0 + V1

]
,

where assumption A6 was used in the last inequality. Therefore, under the assumptions, conditions (9) are
indeed both satisfied.

4 Parameter identification

To illustrate the theoretical results we will use systems (2)-(4) and (6) as a simple model for the mecha-
nism of Cdc2 activation by cyclin B. This is is known to function as an autonomous oscillator [6] in the
progression from G2 to M phases in the early embryonic cell cycle ofXenopusoocytes.

Two types of experiments were performed by Pomerening and co-authors. In the first set of experi-
ments [6], a non-destructible form of cyclin B was used, which is not subject to APC-mediated degradation.
Cyclin B was used as a constant input to the system:Xenopusegg extracts were treated with different con-
centrations of cyclin B and allowed to reach a steady state. Bistability and hysteresis were observed. In the
second set of experiments [7], the importance of the positive feedback loop is explored (represented by the
x auto-regulation in our models), and cyclin B is not externally controlled as before. Simultaneous mea-
surements of cyclin B and Cdc2-cyclin B activity are available. We will next use two sets of experimental
data to estimate parameters for model (6), and then check whether these are compatible with the timescales’
assumptions.

4.1 Bistability

The experiments reported in [6] (see, in particular, Fig. 3(c) of this reference) can be interpreted as the
responsex to constant inputsw. The data consists of steady state values ofx, for each constantw. In Fig. 4,
the hysteresis curve for steady states of Cdc2-cyclin B as a function of the inputu is reproduced as white
squares and black stars. Since a non-destructible form of cyclin B was used, in our 3-dimensional model, the
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w equation becomes redundant, and the system is modeled by (3)and (4), with constantw ≡ u. According
to our analysis, ifx is at steady state, then we expecty to remain fixed at some (unknown) valuey0.

Under these hypotheses, model (2)-(4) can be reduced to thex equation, with a new parameterγ0 =
γ1y0, to be estimated:

ẋ = Φ(x) − γ0x =

(
k1(w0 + u) + V1

xn

xn + θn
1

)
(1 − x) − γ0x (10)

The input term forx is of the formΦ0 = k1(w0 + u), whereu = [δ65 − cyclin B] represents the concen-
tration of the non-destructible cyclin B (known),w0 represents a basal concentration of cyclin B (unknown
parameter), andk1 is the corresponding reaction rate.

A set of parameters that describe the biological system can be estimated by minimizing the difference
between the data and the model’s steady states. However, since the data consists of steady state measure-
ments, it contains no information on the rapidity of convergence to steady state. That is, only the ratios
V1/k1 andγ0/k1 can be obtained from the data. Observe also that, for largen, it is not possible to derive
an explicit expression for the steady states of (10). Therefore, for the purposes of parameter estimation,
we have chosen to approximate the sigmoidal expressionxn

xn+θn
1

by a ramp function (see also [12]). For
simplicity, the exponentn will be fixed atn = 4. The estimation procedure is described in the Appendix,
and further details given in the Supplementary material. Asu varies from 0 to 40 nM, there should be only
a “low” steady state; foru roughly in the interval 45 - 70 nM there should be both a “low” and a “high”
steady state; finally, foru larger than 75nM there should be only a “high” steady state. For the existence of a
bistability region, there are two possible cases for the “low” and a “high” stable steady states. The estimated
parameters are given in Table 2.

Table 2: Estimated parameters. The errors indicated correspond to the diameter of a 95% confidence region
for the bistability data, and 95% confidence intervals for the time series data.

Bistability Cdc2 activity data

Parameter Value
w0 61.92 ± 1.74 nM
V1

k1
430.86 ± 4.09 nM

γ0

k1
843.42 ± 5.06 nM

θ1 0.2752 ± 0.0012
n 4

Simultaneous Cdc2 activity, Cyclin B data

Parameter Value
w0 19.78 ± 3.57 nM
a1 1.504 ± 0.208 nM2

k1 3.769 × 10−4 ± 3.92 × 10−6 nM−1min−1

V1 0.162 ± 0.0032 min−1

V2 0.251 ± 0.069 nM min−1

γ1 0.358 ± 0.09 nM−1min−1

γ2 0.026 ± 0.0051 min−1

θ2 0.269 ± 0.045

4.2 Oscillations

One of the experiments reported in [7] (namely, Fig. 1V of this reference) shows the simultaneous evolution
of both cyclin B (w) and Cdc2-cyclin B activity (x) (in a wild type case), but there are no APC measurements
(y). Under the different timescales hypothesis, we consider that cyclin B responds much faster than Cdc2 to
changes in APC, obtaining reduced system (6).

The parameters already obtained from the bistability data will now be used in the estimation of the
remaining parameters, as follows:

• θ2 ∈ [(1 − ∆)θ1, θ1] (see Appendix);

• to simplify computational work, we choose and fixm = 6;

• γ1 is newly estimated (sinceγ0 is in factγ1y0, with unknowny0);

• w0 is newly estimated, since basal levels may depend on the experimental conditions;
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• a1, V2, andγ2 are newly estimated;

• k1 is newly estimated; based on it the parameterV1 can be computed.

The estimation procedure is a nonlinear least squares method, where the cost to be minimized is the differ-
ence between data points and model trajectories, both normalized to their maximal values (see Appendix).
As before, this procedure was implemented in Matlab 7.3, using the functionlsqnonlin. The parameters
obtained are shown in Table 2, and the final fit may be seen in Fig. 4.

4.3 Validation of different timescales hypotheses

Estimates have now been obtained for all parameters of (2-dim) system (6). To check whether the assump-
tions on the timescales are verified recall that (Table 1):

γ2 ≪ min{k1w0 + V1,
γ1

γ2
V2} : 0.026 ± 0.0051 ≪ min{0.17, 1.54}.

Assumption A1 further requires:

γ2 <
3

4

k1(w0 + a1)

γ1V2
: 0.026 ± 0.0051 < 0.034.

We have considered the error bars for each parameter to find the minimum values ofk1w0 + V1, γ1

γ2
V2, and

k1(w0+a1)
γ1V2

. Since we have no way to accessγs or ks/Wtot, it cannot be checked whether the quasi-steady
state assumption onw is justified. However, looking at the data in Fig. 4, we observe that cyclin B (= w)
has a fairly constant value during the sharp increase in Cdc2-cyclin B (= x) (the symbols ’o’ in the time
interval [75,85] minutes). According to the model,y remains pratically constant during the sharpx rise (see
also Fig. 5). This argues in favor of the approximationw ≈ a1/y.

The estimated parameters satisfy all inequalities. These results indicate that system (2), together with the
hypotheses of substantially different timescales is a reasonable model of the Cdc2-cyclin B oscillator. This
2-dimensional model may have the disavantage of being too schematic and not containing enough detail, but
many advantages are also gained: it is suitable for parameter estimation from the available measurements,
avoiding many problems related to underdetermined systems; and it still provides a faithful and useful
phenomenological description of the biological system.

5 Period, sensitivity analysis and more experiments

Assume now that conditions A1-A6 are satisfied, and system (6) has a periodic orbit. To obtain some
knowledge on the period of the orbit, as well as its dependence on the various parameters, we will again use
the “fast/slow” variables assumptions. The partial statey (regulation variable) represents a variable whose
evolution is slow relative tox (signalling variable). As an example, consider the parameters obtained for the
cdc2-cyclin B system and the corresponding trajectories (Fig. 5 (a),(b)). It can be observed thatx switches
rapidly between two (“steady”) states or two distinct modesof operation ofx: x remains for some time
(roughly around 50s) on a low concentration state (xB), before rapidly jumping to a high concentration state
(xA). The time spent in the high state is much shorter (roughly around 7s), and thenx quickly falls back
to xB. In contrast, the variabley responds slowly to changingx concentration. (y evolves according to
decreasing or increasing negative exponentials). In the phase space (Fig. 5 (a)), this fast/slow dynamics is
seen by the fact that the periodic orbit moves practically along they = f0(x) nullcline asy decreases from
its maximal to minimal value: along this nullcline,ẋ = 0, sox remains practically constant in this part of
the cycle (atxA). This type of dynamics is more clearly illustrated in Fig. 5(c),(d) (where two parameters
are slightly changed from those in Table 2). Here, it is clearthat the “slow” part of the system corresponds
to changes iny with an almost constantx, as trajectories move along thex-nullcline (y = f0(x)). The fast
part of the system corresponds to rapid changes inx, as it jumps from one state to another in response toy.
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5.1 Period of the orbit

Using the above arguments, the time spent by the system in each of the operation modes can be analytically
estimated. Let:

T1 = time spent in modexB ,

T2 = time spent in modexA.

DuringT1, we assume that the trajectory evolves along the nullcliney = f0(x), with x = xB. Moreover, the
dynamics ofy can be simplified: for large Hill coefficientm (assumption A2), the expressionV2x

m/(xm +
θm
2 ) can be approximated by a step function withs(x) = 0 if x < θ2 ands(x) = V2 if x > θ2. Then they

equation becomes
dy

dt
≈ f ′0(x)

dx

dt
= γ2

(
V2

γ2

xm

xm + θm
2

− f0(x)

)
≈ −γ2f0(x)

As x increases fromxB to xA, integration gives:

T1 =
ln f0(xA) − ln f0(xB)

γ2
.

DuringT2, we assume once more that the trajectories are close to they = f0(x) nullcline, and letG(x) =
V2

γ2
− f0(x) to obtain:

f ′0(x)
dx

dt
= γ2G(x) ⇒

∫ xA

xB

f ′0(x)

G(x)
dx =

∫ T2

0
γ2dt

and integration gives:

T2 =
lnG(xB) − lnG(xA)

γ2
.

Following Lemma 3.4, we approximatexB ≈ (1 − ∆)θ1 andxA ≈ θ1 to obtain:

T1 ≈
1

γ2
ln

f0(θ1)

f0((1 − ∆)θ1)
≈ 29.2,

T2 ≈
1

γ2
ln

V2

γ2
− f0((1 − ∆)θ1)

V2

γ2
− f0(θ1)

≈ 3.0.

These analytical formulas are interesting for several reasons:

• the ratio betweenT1 andT2 gives an idea of the fraction of time spent by the system on each of its
stable operation modes (xA or xB). In the example,T1/(T1 + T2) ≈ 0.94 meaning that the oscillator
remains 94% of its cycle with relatively low concentrationsof active Cdc2-cyclin B;

• it is often difficult to obtain analytical estimates for the period of a periodic orbit, but these formulas
give an indication (see Fig. 6): using the different timescales hypotheses, the system could be simpli-
fied enough to write down an approximate analytical expression. However, if the hypotheses are not
strongly satisfied, there can be a large difference between the analytical estimates and the real perid.
For the parameters in Table 2, we have(T1 + T2)/Period=≈ 27.55/79.76 = 0.34, an error of 66%.
As the difference between timescales becomes more marked, the sumT1 + T2 will provide better
estimates, and their sum gives a reasonable estimate of the full cycle period (with errors as low as 7%,
as seen in Fig. 2 in the Supplementary material). The qualityof theT1 + T2 estimate depends on how
well the valuesf0(xB) = f0((1 − ∆)θ1) andf0(xA) = f0(θ1) approximate the actual value ofy as
x jumps between low and high levels;

• these formulas show how each parameter will influence the value ofT1, T2 and hence the period of
the orbits (Fig. 6).
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A sensitivity analysis of the time durationT1 + T2, and the total period of the orbit is shown in Fig. 6.
Only one parameter was varied at a time, with all others fixed at their estimated values shown in Table 2.
Each parameterp was varied in an interval:[0.85p, 1.15p] (i.e., between a 15% decrease and increase to its
original value). The total period was computed by simulating the system with the new set of parameters,
while T1 + T2 was directly computed from the (approximated) analytical formulas. Note thatT1 + T2 is
indeed a good predictor of the changes in the period in response to changes in each parameter: a variation
in the period is always captured by a similar variation inT1 + T2. For a 15% perturbation in each parameter
a periodic orbit still exists, except in the case ofθ2. Indeed, for small values ofθ2, there is no periodic orbit,
and the system converges to a steady state (not shown). This is in agreement with Lemma 3.3 which provides
an interval forθ2 which guarantees existence of oscillations, and Lemma 3.2 which says that, outside that
interval, there exists a stable fixed point.

5.2 Model predictions and experiments

The positive auto-regulation is a very important componentof the model, since this is the component re-
sponsible for the existence of two stable steady states (forfixed y), and hence two distinct stable modes
of operation for system (6) (Section 2.1). Recall that this positive feedback is represented by the term
V1x

n/(xn + θn
1 ), so thatV1 is the strength of the auto-regulation effect.

Interestingly, analysis of the expressionT1 +T2 shows that it is inversely proportional to all parameters,
exceptV1 (Fig. 6). For instance, for the Cdc2-cyclin B oscillator (fixing all parameters as in Table 2), the
model predicts a 10% increase inT1 + T2 in response to a 15% increase inV1.

In [7], the effect of the positive regulation was studied experimentally, by attempting to “break” the
loop. This was achieved by adding a non-phosphorylatable form of Cdc2, thus decreasing the strength of
the positive regulation. The average period observed for the wild type Cdc2-cyclin B oscillator was around
80 mins., while the modified system had a shorter period, around 55 mins. (Fig. 2 in [7], and Table 3 below).
This, indeed, agrees with the model’s predictions for a 40% reduction in the strength of the auto-regulatory
loop.

Table 3: Influence of the positive feedback on the period.

System Experiment [7] Model Parameters

Wild type Cdc2 80 mins 79.76 mins as in Table 2
Non-phosphorylated Cdc2 55 mins 55.6 minsṼ1 = 0.57V1

(weaker positive feedback)

Another prediction of the model is thatV2 influences onlyT2, the time spent inxA (the high concentra-
tion state). Thus is it possible to obtain a modified dynamics, for instance by forcing the periodic orbit to
spend the same amount of time in each operation mode, simply by decreasingV2. This is illustrated in Fig. 5
(c) and (d), withṼ2 = 0.15V2. This suggests a new experiment to check whether the oscillatory mechanism
of Cdc2-cyclin B is generated by a model of the type (6). By increasing the rate of synthesis ofy, does
the firing-peak duration increase, that is can one observe similar orders of magnitude for the durationsT1

andT2? This would correspond to a situation where the cyclin B-Cdc2 oscillator spends similar amounts of
time in each of its two modes,xA andxB (respectively, at high and low concentrations of Cdc2-cyclin B
complex). If all other parameters are unchanged, this will also increase the period of oscillations.

6 Conclusions

It is well known that different biological processes may have very distinct timescales (for instance, transcrip-
tion or translation are typically slower than signalling events). Here we have studied a possible dynamical
outcome induced by the interconnection between biologicalmodules whose response times are substantially
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different. We proposed and analysed a mechanism through which slowly varying regulation patterns (such
as genetic-like) can induce rapid changes in the mode of operation of signal transduction networks, and thus
lead to sustained oscillations (a system of the class usually refered to as “relaxation oscillators”). Under
appropriate assumptions on the timescales (there are “fast”, “normal”, and “slow” variables), explicit suf-
ficient conditions on the parameters are provided, for the existence of a periodic orbit. This mechanism is
illustrated by an application to the Cdc2-cyclin B oscillator. Using experimental data reported in [6, 7] a set
parameters was identified, which satisfies all the differenttimescales hypotheses.

These results suggest the following interpretation of the dynamics of cyclin B in the Cdc2-cyclin B
oscillator. From the biological point of view, it is well established that cyclin B is hardly present up to G2/M
phase, where it rapidly accumulates to high concentration and activates Cdc2. At the end of mitosis, cyclin B
is observed to degrade rapidly, through proteolysis by APC,However, there appear to be many uncertainties
still on the process of cyclin B synthesis and balancing. Ourstudy suggests that cyclin B follows very rapidly
the dynamics of APC (or group of proteins related to this phase). Since this regulation module has a slower
timescale, cyclin B would appear to also evolve slowly, until a sufficient concentration of APC is available
to degrade it. Thus, cyclin B is possibly regulated by protein products from the APC phase. Our results also
suggest possible candidates (for componentsy), based on its activation threshold:θ2 ∈ [(1 − ∆), 1]θ1.

A further experiment suggested by our analysis is to increase the rate of synthesis of productsy. The
prediction is that the high concentration peak in active Cdc2-cyclin B complex will broaden, so the system
will spend more time in its high Cdc2-cyclin B concentrationstate. The system would then switch rapidly
between its two modes of operation (while spending similar lengths of time in each of these).

Finally, we would like to emphasise that this study presentsa simple, very schematic model, which
has the advantages of being intuitive and amenable to analytical theoretical analysis. In this way, we were
able to generate conditions on the parameters that guarantee a desired dynamical behaviour. Furthermore,
since available data consists essentially of the measurements of two variables, a 2-dimensional model is also
more suitable for parameter estimation, in the sense that each of the model’s variables can be compared to
data, and the most information extracted using a minimum of mathematical machinery. The model has the
advantage of providing a faithful phenomenological description and thus suggest possible experiments to
further understand the dynamical mechanisms of the biological oscillator.
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A Parameter estimation details

A.1 Bistability

To obtain analytic explicit expressions for the “high” and “low” steady states the functionΦ in (10) is
approximated as follows:

Φ(x) ≈





Φl(x) = Φ0(1 − x), x < (1 − ∆)θ1

Φm(x) =
(
Φ0 + V1

2∆θ1
(x− (1 − ∆)θ1)

)
(1 − x), (1 − ∆)θ1 ≤ x ≤ (1 + ∆)θ1

Φr(x) = (Φ0 + V1)(1 − x), x > (1 + ∆)θ1,

(11)

where∆ = 2/n andΦ0 = k1(w0 + u). Using this approximation, the steady states of (10) as functions of
the inputu can be obtained by finding the solutions to:

Φl(x) = γ0x, Φm(x) = γ0x, or Φr(x) = γ0x.

The “low” steady state is always given by the intersection ofthe lineγ0x with the left branchΦl(x):

x̄low(u) =
w0 + u

w0 + u+ γ0

k1

∈ [0, (1 − ∆)θ1) (12)

Then the lineγ0x intersects the middle branchΦm(x) at least once, giving rise to an unstable steady state.
(See Fig. 1 in the Supplementary material.) The “high” steady statex̄high(u) can be given by a second
intersection ofγ0x with Φm(x):

x̄m
high(u) = max

{
−c1 ±

√
c21 − 4c0c2

2c2

}
∈ [1 − ∆, 1 + ∆]θ1, (13)

where∆ = 2/n and

c0 = w0 + u−
1

2∆θ1

V1

k1
(1 − ∆)θ1,

c1 =
1

2∆θ1

V1

k1
(1 + (1 − ∆)θ1) −

(
w0 + u+

γ0

k1

)
,

c2 = −
1

2∆θ1

V1

k1
.
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Or it can be given by the intersection ofγ0x with the right branchΦr(x):

x̄r
high(u) =

w0 + u+ V1

k1

w0 + u+ V1

k1
+ γ0

k1

∈ ((1 + ∆)θ1, 1],

To compare these expressions to the data there is another problem: recall that the variablex is normalized to
is maximal value,Xtot, so any steady state satisfies0 ≤ x̄ ≤ 1. The data is given in terms of phosphorimager
units, and there is no way to estimateXtot. To avoid this problem, we have considered the data relativeto
the steady state atu = 100nM, and also normalized the model’s steady. Since the data aroundu = 100nM
seems messy (and after some preliminary numerical tests), we used the lowest possible value allowed by the
error bar (white squares):w∗

100 = 220 − 60 = 160. Thus the expressions to fit to the data are in fact:

x̄low(u)

x̄high(100)
,

x̄m
high(u)

x̄high(100)
,

x̄r
high(u)

x̄high(100)
.

In addition, we can also estimate the bistability region[umin, umax] from the data:

u = umax ⇒ x̄low(umax) = (1 − ∆)θ1

u = umin ⇒ x̄high(umin) = β

whereβ = (1 + ∆)θ1 or such that the two roots of the quadratic are equal,β = −c1
2c2

. (See Fig. 1 in the
Supplementary material.) Under these conditions the following parameters can be identified:

p(1) =
V1

k1
, p(2) = θ1, p(3) = ∆, p(4) =

γ0

k1
, p(5) = w0.

These parameters where estimated using the functionlsqnonlin in Matlab (version 7.3) to minimize:

J(p) = 10
∑

i=min,max

∣∣∣∣
ui − uobs,i

uobs,i

∣∣∣∣
2

+
∑

u∈U

∣∣∣∣∣∣

x̄(u)
x̄high(100)

− wu

w∗

100

wu

w∗

100

∣∣∣∣∣∣

2

whereU = [0, 25, 40, 45, 50, 60, 75], wu, uobs,min = 42.5, uobs,max = 72.5 denote the data points,w∗

100 =
160 (see note above), and̄x(u) denotes the corresponding “low” or “high” steady state expression. The
factor 10 multiplying the first sum aims to increase the weight of the error related to the bistability region,
since this was a very important part of the modelling. The computation of the costJ(p) includes an algorithm
to verify which of the forms of̄xhigh(u) is the correct one. More details, including sensitivity analysis for the
optimized parameter set and a confidence region, can be foundin the Supplementary material.

A.2 Oscillations

There were seven parameters to estimate from the data on cyclin B (1/y) and the cdc2-cyclin B (x) activity.
The cost function to be minimized was

Jo(p(1), . . . , p(7)) = Jo(γ1, a1, θ2,
V2

γ2
, γ2, k1, w0) = 5Jx + Jy,

where a larger weight was assigned toJx because preliminary experiments showed that typicallyJx < Jy.

Jx(p) =
∑

t∈T

∣∣∣∣
x(t)

maxt∈T x(t)
−

W c(t)

maxt∈T W c(t)

∣∣∣∣
2

/

∣∣∣∣
W c(t)

maxt∈T W c(t)

∣∣∣∣
2

Jy(p) =
∑

t∈T

∣∣∣∣
1/y(t)

maxt∈T 1/y(t)
−

WB(t)

maxt∈T WB(t)

∣∣∣∣
2

/

∣∣∣∣
WB(t)

maxt∈T WB(t)

∣∣∣∣
2
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Figure 1: Simplified scheme of the mechanism of regulation.
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Figure 2: The bold curve representsΦ(x) = (Φ0+V1
xn

xn+θn
1

)(1−x) and the other curves representψ = γ1yx

for three values ofy, as indicated. Values of parameters:Φ0 = 0.09, V1 = 1, V2 = 1.275× 10−2, γ1 = 8.7,
γ2 = 3.75 × 10−2, θ1 = 0.25, θ2 = 0.2, n = 4,m = 50.

wheret ∈ {22, 24, . . . , 94} (the data points used here start att = 22, and are spaced 2mins apart),W c(t)
denotes the concentration of cdc2-cyclin B, andWB(t) that of cyclin B. At each step of the optimization
procedure, equations (6) were solved (using the current parameter set), and a “candidate” periodic orbit was
detected. One period of this candidate orbit was then normalized to maximal values (bothx andy), and
the costJo was calculated. More details, including the covariance matrix and confidence intervals for the
optimized parameter set, can be found in the Supplementary material.
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Figure 3: Representation of nullclines. By varyingθ2, one of two cases is obtained: eitherθ2 belongs to the
interval ]xmin, xmax[ (middle); orθ2 is outside the interval[xmin, xmax], either belowxmin (left), or above
xmax (right). Parameters are as in Fig. 2 and (left to right) a)θ2 = 0.07, b) θ2 = 0.2, and c)θ2 = 0.35.
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Figure 4: Data fitting. Left: steady state response of Cdc2-cyclin B activity. Solid lines represent expres-
sions (12), (13) with parameters as in Table 2. The stars and squares represent the hysteresis data from Fig.
3(c) of [6]. Right: dynamical evolution of Cdc2-cyclin B activity (’+’) and cyclin B (’o’). The symbols
represent data from Fig. 1V of [7]. Solid curves represent the model variables, normalized to their maximal
value. Variablex fits to ’+’ and1/y fits to ’o’.
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Figure 5: Periodic orbit and trajectories for system (6), with parameters as in Table 2 (a),(b), or with new
Ṽ2 = 0.2V2 for (c),(d). In (a) and (c) the nullclinesf0 (dashed line) andg0 (dotted line) are shown, together
with one trajectory (solid line) in the phase plane. In (b) and (d) the same trajectory is shown as a function
of time (x(t) andy(t) are represented, respectively, by the solid and dash-dotted lines).
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Figure 6: Sensitivity with respect to each parameter, for the period and the time intervalsT1, T2. Each
parameter was varied between 80% and 120% of its original value (only one parameter is varied at a time).
The period (open squares) was numerically calculated from asimulation of the system. The values ofT1

andT2 (solid lines with dots) where calculated directly from their formulas.
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