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1 Parameter estimates

1.1 Bistability

To obtain analytic explicit expressions for the “high” and “low” steady states of the system

ẋ = Φ(x)− γ0x =
(

k1(w0 + u) + V1
xn

xn + θn
1

)
(1− x)− γ0x, (1)

the function Φ in (1) is approximated as follows:

Φ(x) ≈


Φl(x) = Φ0(1− x), x < (1−∆)θ1

Φm(x) =
(
Φ0 + V1

2∆θ1
(x− (1−∆)θ1)

)
(1− x), (1−∆)θ1 ≤ x ≤ (1 + ∆)θ1

Φr(x) = (Φ0 + V1)(1− x), x > (1 + ∆)θ1,

(2)

where ∆ = 2/n and Φ0 = k1(w0 + u). Using this approximation, the steady states of the system as
functions of the input u can be obtained by finding the solutions to:

Φl(x) = γ0x, Φm(x) = γ0x, or Φr(x) = γ0x.

The “low” steady state is always given by the intersection of the line γ0x with the left branch Φl(x). The
“high” steady state can be given by intersection of the line γ0x with either the middle or the right branch,
depending on the parameters. The two cases are illustrated in Fig. 1, blue and red lines.

To determine the beginning and end points of the bistability interval, [umin, umax], note that the umax

is found by the last intersection possible between Φl(x) and γ0x. There are two possible cases for umin,
shown in Fig. 1, depending on which branch intersects the line γ0x first, as u decreases from large values.
Thus

u = umax ⇒ x̄low(umax) = (1−∆)θ1

u = umin ⇒ x̄high(umin) = β

where

β =
{

(1 + ∆)θ1, if Φr(β;umin)− γ0β = 0 (Fig. 1, right)
−1

2
c1
c2

, if Φm(β;umin)− γ0β = 0 (Fig. 1, left)

with

c0 = w0 + u− 1
2∆θ1

V1

k1
(1−∆)θ1,

c1 =
1

2∆θ1

V1

k1
(1 + (1−∆)θ1)−

(
w0 + u +

γ0

k1

)
,

c2 = − 1
2∆θ1

V1

k1
.

For the optimal set of parameters, the function Φ(x;u) is of the form seen at left in Fig. 1.
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Figure 1: The two possible cases for calculating the expressions of the bistability interval, [umin, umax]. The
value of umax is always obtained from Φl((1 − ∆)θ1;umax) = γ0(1 − ∆)θ1 (black lines). A very large
value of u lead to the existence of a unique steady state defined by the intersection with the right branch
Φr(x̄high;ularge) = γ0x̄high (red lines). Left: umin is obtained from Φm(β;umin) = γ0β, where β is such that
the two roots of this quadratic expression are equal (see explicit expression in the Appendix of the article).
Right: umin is obtained from Φr((1 + ∆)θ1;umin) = γ0(1 + ∆)θ1 (blue line). The parameters used in each
case were: V1/k1 = 901, w0 = 88.5, θ1 = 0.29, and on the left γ0/k1 = 1466, ∆ = 0.5, while on the right
γ0/k1 = 2492, ∆ = 0.2.

Since we assume that n = 4 is fixed from the start (to simplify the estimation algorithm), the vector of
parameters is:

p(1) =
V1

k1
, p(2) = θ1, p(3) =

γ0

k1
, p(4) = w0.

The function to minimize is

J(p) = 10
∑

i=min,max

∣∣∣∣ui − uobs,i

uobs,i

∣∣∣∣2 +
∑
u∈U

∣∣∣∣∣∣
x̄(u)

x̄high(100) −
wu

w∗
100

wu
w∗

100

∣∣∣∣∣∣
2

where U = [0, 25, 40, 45, 50, 60, 75], wu, uobs,min = 42.5, uobs,max = 72.5 denote the data points, w∗
100 =

160, and x̄(u) denotes the corresponding “low” or “high” steady state expression. The factor 10 multiplying
the first sum aims to increase the weight of the error related to the bistability region, since this was a very
important part of the modelling. The computation of the cost J(p) includes an algorithm to verify which of
the forms of x̄high(u) is the correct one.

To solve the optimization problem, we followed a Monte Carlo approach by randomly choosing 1000 ini-
tial conditions in the 4-dimensional set G, and optimizing the cost J with the Matlab function lsqnonlin.
Numerical experiments showed that values of V1

k1
, γ0

k1
lower than 100 yielded very high costs, and similarly

for w0 larger than 100. Recall that θ1 is normalized to 1. Therefore we considered:

G =
{

p :
V1

k1
,
γ0

k1
∈ [100, 2000], θ1 ∈ [0.1, 0.9], w0 ∈ [1, 100}

}
. (3)

The parameter set p∗ corresponding to the lower final cost was chosen as best fit. It satisfies:

p∗(1) = 430.86, p∗(2) = 0.2752, p∗(4) = 843.42, p∗(5) = 61.98,

J(p∗) = 0.9872.
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The sets of parameters satisfying to J(p) ≤ 0.99 are shown in Fig. 2. They correspond to the 6% lower
costs:

P = {p ∈ G : J(p) ≤ 1.06J(p∗)}.

Note that, for all p ∈ P , each parameter p(i) falls on a reasonably small subinterval of its initial interval in
G, with V1/k1 ∈ [420, 445], γ0/k1 ∈ [800, 900], θ1 ∈ [0.27, 0.28], and w0 ∈ [58, 68].

Figure 2: Sets of parameters satisfying J(p) ≤ 0.99 (the top 6% best parameters). The optimal parameter is
represented by the red star.

To access the quality of the parameter estimation, a classical method is the covariance matrix. For linear
models this matrix provides the basis for computation of confidence intervals and correlation values [1].
However, our model is highly nonlinear and, in addition, involves some discontinuities in the functions to
be fitted. For our case, the covariance matrix was ill-conditioned, and no useful confidence intervals could
be deduced. Therefore, we used another classical method to compute a local confidence region for the
parameters [1]. A 100(1− α)% confidence region is given by:

Pcr = {p : J(p) ≤ Jcr},

with

Jcr = J(p∗)
(

1 +
Np

Ndata −Np
F (1− α;Np, Ndata −Np)

)
where Np = 5 is the number of parameters, Ndata = 16 is the number of data points and F (1−α;Np, Ndata−
Np) is the value at 1− α of the F -distribution with Np and Ndata −Np degrees of freedom. The diameter
of this region can be computed by letting only one parameter vary at a time, as in a sensibility analysis
(see Fig. 3). For α = 0.05, the confidence region Pcr consists of the points p such that J(p) ≤ 1.22. The
approximate diameter of the 95% confidence region is given by:

Parameter Diameter of 95% conf. region
p(1) [426.77, 434.95]
p(2) [0.2740, 0.2764]
p(3) [838.36, 848.48]
p(4) [60.28, 63.75]
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Figure 3: Estimating the diameter of a 95% confidence region (bistability data).

1.2 Oscillations

Using the time series data the following parameters were estimated:

po(1) = γ1, po(2) = a1, po(3) = θ2, po(4) =
V2

γ2
, po(5) = γ2, po(6) = k1, po(7) = w0.

The cost function to be minimized was

Jo(p(1), . . . , p(7)) = 5Jx + Jy,

where a larger weight was assigned to Jx because preliminary experiments showed that typically Jx < Jy.

Jx(p) =
∑
t∈T

∣∣∣∣ x(t)
maxt∈T x(t)

− W c(t)
maxt∈T W c(t)

∣∣∣∣2 /

∣∣∣∣ W c(t)
maxt∈T W c(t)

∣∣∣∣2
Jy(p) =

∑
t∈T

∣∣∣∣ 1/y(t)
maxt∈T 1/y(t)

− WB(t)
maxt∈T WB(t)

∣∣∣∣2 /

∣∣∣∣ WB(t)
maxt∈T WB(t)

∣∣∣∣2

where t ∈ {22, 24, . . . , 94} (the data points used here start at t = 22, and are spaced 2mins apart), W c(t)
denotes the concentration of cdc2-cyclin B, and WB(t) that of cyclin B.

As above, a Monte Carlo approach was used to find a good initial guess. The cost Jo was evaluated at
randomly chosen points in the set Go (some preliminary tests were performed to avoid a too large Go):

Go = {p : w0 ∈ [1, 30], k1 ∈ [10−4, 10−3], a1 ∈ [0.8, 10], γ1 ∈ [0.1, 1],
V2

γ2
∈ [2, 10], θ2 ∈ [0.5θ1, θ1], γ2 ∈ [0.01, 0.1]

}
The initial conditions corresponding to the 1% lower costs were used to find an optimal set of parameters
with the Matlab function fminsearch. The best fit parameter set is

p∗o(1) = 0.358, p∗o(2) = 1.504, p∗o(3) = 0.269, p∗o(4) = 9.438,

p∗o(5) = 0.0266, p∗o(6) = 3.769× 10−4, p∗o(7) = 19.72,
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Figure 4: Sensitivity of the cost function Jo with respect to each of the final parameters. Each parameter
was varied between 90% and 110% of its original value (only one parameter is varied at a time).

with J(p∗o) = 52. The covariance matrix (V ) and confidence intervals for these parameters were then
computed with nlinfit and nlparci, built-in functions in the Matlab Statistics toolbox. V is:

2.06× 10−3 3.21× 10−3 0.98× 10−3 10.5× 10−3 0.06× 10−3 4.81× 10−8 −0.053
3.21× 10−3 10.90× 10−3 1.95× 10−3 −7.83× 10−3 0.26× 10−3 −5.22× 10−8 −0.187
0.98× 10−3 1.95× 10−3 0.52× 10−3 3.31× 10−3 0.04× 10−3 1.40× 10−8 −0.032
10.5× 10−3 −7.83× 10−3 3.31× 10−3 153.4× 10−3 −0.38× 10−3 76.9× 10−8 0.163
0.06× 10−3 0.26× 10−3 0.04× 10−3 −0.38× 10−3 0.006× 10−3 −0.22× 10−8 −0.005
4.81× 10−8 −5.22× 10−8 1.40× 10−8 76.9× 10−8 −0.22× 10−8 3.88× 10−12 103.5× 10−8

−0.053 −0.187 −0.032 0.163 −0.005 103.5× 10−8 3.24



Parameter 95% conf. interval 75% conf. interval
po(1) [0.27, 0.44] [0.31, 0.41]
po(2) [1.28, 1.70] [1.37, 1.61]
po(3) [0.225, 0.315] [0.244, 0.296]
po(4) [8.66, 10.22] [8.98, 9.89]
po(5) [0.022, 0.032] [0.024, 0.030]
po(6) [3.73× 10−4, 3.80× 10−4] [3.75× 10−4, 3.79× 10−4]
po(7) [16.20, 23.37] [17.70, 21.87]

The error for V2 =
[

V2
γ2

]
γ2 = po(4) · po(5) was computed by error propagation:

dV2 = dpo(4) · p0(5) + po(4) · dp0(5).

A similar formula was used to compute the error for V1 = p(1) · po(6). Finally, for the optimal set of
parameters, sensibility analysis was also performed by varying one parameter at a time, as shown in Fig. 4.
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2 Period Estimates

As the difference between timescales becomes more marked, the sum T1 + T2 will provide better estimates,
and their sum gives a reasonable estimate of the full cycle period. For instance, for the parameter set:

n = 3, m = 20, w0 = a1 = 1, k1 = 0.1, V1 = 2, V2 = 0.1,

γ1 = 0.14, γ2 = 0.003, θ1 = 0.25, θ2 = 0.2, (4)

the ratio (T1 + T2)/Period≈ 404.6/434.3 = 0.93, i.e., an error of 7%, as opposed to (T1 + T2)/Period≈
27.55/79.76 = 0.3, an error of 66% for the optimized parameter set (see also Fig. 5).

The quality of the T1 + T2 estimate depends on how well the values f0(xB) = f0((1 − ∆)θ1) and
f0(xA) = f0(θ1) approximate the actual value of y as x jumps between low and high levels;

Figure 5: Periodic orbit and trajectories for system, with parameters as in Table 2 (top row), or with the
parameters listed above (bottom row), which enhance the difference between timescales.
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