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Abstract

This contribution provides an overview of our work on modelling biological pro-
cesses focussing on the example of programmed cell death, also called apoptosis.
Apoptosis is a molecular programme present in all cells of multi-cellular organisms.
It is crucial during development and for cell homoeostasis in the adult. Misregu-
lation is implicated in severe diseases. We review an ordinary differential equation
model describing core processes of apoptosis signalling and the idea of viewing the
life and death decision as a bistable system. Then, we show how small differences in
model parameters can give rise to observed population heterogeneities. Employing
a new conceptional modelling framework, we further show how a single model can
describe a population and how stable steady states then translate into invariant sets
employing a local notion of stability.
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1 Introduction

Biology is a thriving science where exciting new discoveries are made almost
on a daily basis. Thereby, biology has always been in close touch to other
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scientific disciplines which strongly contributed to its development. Quantita-
tive reasoning based on mathematical considerations had strong and driving
influences on biology (Wingreen and Botstein, 2006). On the other hand, with
the emergence of molecular biology many exciting questions were raised and
answered that did not require mathematical models to allow a qualitative un-
derstanding of many principle aspects that make up life. However, by now the
wealth of information about molecular players and their interactions is be-
coming overwhelming and cannot be understood by merely drawing diagrams
of the interacting components of a system. The human genome project does
not mark the completion but the beginning of the next level of understand-
ing. Mathematical biology, metabolic engineering and chemical engineering
approaches towards the cell or an organism, for a long time regarded as pe-
ripheral sciences to biology, are emerging as the “post-(gen)omic” frontiers.
Whereas the “-omic” technologies produce large amounts of data, systems
biology is promising to integrate the wealth of information.

Thereby, systems biology can also be viewed as chemical engineering of the
cell or the organism. As in chemical engineering processes, quantitative and
dynamic modelling approaches describing aspects of, or on the long term, even
the whole living cell or organisms, will become essential to organize and un-
derstand (biological) complexity. The analysis of these models will allow to
more rapidly test biological hypothesis and provide insight not easily acces-
sible by classical experimentation. However, a cell is a crowded environment
where many thousand compounds and reactions happen simultaneously on
a picolitre scale. Further, the involved systems are complex and usually in-
volve nonlinear interactions (Kitano, 2002). Therefore, precise experimental
data and advanced computational methods will be important requirements
for sharp and useful dynamical models.

In this contribution we would like to overview selected aspects around our work
to better understand apoptosis signalling using mathematical models. We will
also introduce a novel modelling concept based on which we generalize the
idea of bistable systems, to systems possessing two invariant sets.

2 Apoptosis biology

Apoptosis, also called programmed cell death, is a very important biological
process that can eliminate selected cells for the benefit of the organisms as a
whole. It is crucial during development and for cellular homoeostasis balancing
cellular reproduction. In the adult human, approximately 10 billion cells die
every day to balance those reproduced during mitosis (Heemels et al., 2000).
Too little apoptosis and uncontrolled reproduction are hallmarks of cancer,
whereas too much apoptosis is implicated in neurodegenerative diseases such
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as Alzheimer (Danial and Korsmeyer, 2004; Hanahan and Weinberg, 2000).

As outlined in Fig. 1, apoptosis can be triggered externally, e.g. by certain cy-
tokines binding to so-called death receptors, or internally, e.g. in response to
DNA damage (Danial and Korsmeyer, 2004; Hanahan and Weinberg, 2000).
Proteases, i.e. proteins able to cleave other proteins, named caspases are cen-
tral in apoptosis signal transduction. Caspases are produced in an inactive
pro-form and become activated through proteolytic cleavage. Initiator cas-
pases sense apoptotic stimuli and propagate the signal to executioner caspases.
These cleave many targets within the cell leading to its destruction and re-
moval. For example, an inhibitor of the Caspase Activated DNase (ICAD) is
cleaved liberating the DNase CAD to fragment nuclear DNA. Internally trig-
gered apoptosis proceeds via mitochondrial cytochrome c release leading to
the activation of the initiator caspase 9. Caspase 9 then activates executioner
caspases, most prominently caspase 3 (C3). Externally triggered apoptosis is
initiated by the binding of so-called death ligands such as Tumor Necrosis Fac-
tor (TNF) to their respective receptors, followed by the activation of receptor
associated initiator caspases 8 and 10 (C8). It then proceeds either also via
the activation of the mitochondrial pathway (type II) or by direct activation
of caspase 3 (type I) (Scaffidi et al., 1998).
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Fig. 1. Apoptosis signalling pathways.
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These steps are regulated at different levels, e.g. Bcl-2 family member pro-
teins regulate the mitochondrial cytochrome c release, or Inhibitor of Apop-
tosis Protein (IAP) family members inhibit activated caspases 3 and 9. In
addition, positive feedback loops have been established yielding a complex
reaction system (Sohn et al., 2005; Stennicke and Salvesen, 1999).

3 A model for the direct pathway of apoptosis

Graphical models as depicted in Fig. 1 are very useful to overview key pro-
cesses of apoptosis signalling. However, these cannot (easily) capture impor-
tant temporal and quantitative information. Therefore a mathematical model
formulation is desirable.

Apoptosis involves the irreversible decision of whether a cell continues to live
or dies. We translated this into the mathematical requirement for two stable
steady states in a differential equation based model (Eissing et al., 2004).
Experimental evidence suggest that this bistable behaviour is manifested in
the caspase cascade. The activated upstream initiator caspase 8 is produced
at the receptor level and can be considered as an input, while the activation of
the downstream executioner caspase 3 is associated with apoptosis and can be
considered as an output. Thereby, a low amount of C3a corresponds to “life”
whereas a high amount corresponds to “programmed cell death” (Eissing,
2007). Also, on the single cell level the majority of caspase 3 is activated
within minutes (Rehm et al., 2002, 2006). Accordingly, mathematical models
of both the direct and the mitochondrial pathway of apoptosis have recently
been evaluated for bistability (Eissing et al., 2004; Bagci et al., 2006; Legewie
et al., 2006; Eissing et al., 2007a,b).

Based on extensive literature studies, we established a mathematical model of
the core reactions of the direct pathway of apoptosis (including the reaction
rates v1 − v10 indicated in Fig. 1 and detailed in Fig. 2). However, this basic
model exhibited bistable behaviour only for parameter values orders of mag-
nitudes away from those obtained from literature. Therefore, we considered
an extended model (additionally including the reaction rates v11 − v13) which
is now supported by new experimental findings (Eissing et al., 2004; McDon-
ald and El-Deiry, 2004). The bistable behaviour of the model is illustrated
in Fig. 3a where we show the time evolution of C3a for different initial con-
centrations of C8a. As can be seen, for small input concentrations hardly any
caspase 3 is activated, while for larger inputs almost all caspase 3 is activated
within a very short time interval after a certain lag phase whose length is in-
versely related to the input strength. In comparison to this behaviour, Fig. 3b
illustrates how a population of 20,000 cells, where each parameter of each cell
was randomly chosen between 90 and 110 % of its original value, can yield a

4



As indicated in Fig. 1, we consider
the following rates:

v1 = k1 · [C8a] · [C3]

v2 = k2 · [C3a] · [C8]

v3 = k3 · [C3a] · [IAP ]

− k−3[C3aIAP ]

v4 = k4 · [C3a] · [IAP ]

v5 = k5 · [C8a]

v6 = k6 · [C3a]

v7 = k7 · [C3aIAP ]

v8 = k8 · [IAP ] − k−8

v9 = k9 · [C8] − k−9

v10 = k10 · [C3] − k−10

v11 = k11 · [C8a] · [CARP ]

− k−11 · [C8aCARP ]

v12 = k12 · [CARP ] − k−12

v13 = k13 · [C8aCARP ].

(1)

The rate constants are given in the table to
the right. Zero-order reaction constants are in
[molecules · cell−1

· min−1], first-order reaction
constants are in [min−1], and second-order re-
actions constants in [molecules−1

·cell ·min−1].
Further details and explanations can be found
in Eissing et al. (2004).

Balancing (1) yields:

˙[C8] = −v2 − v9

˙[C8a] = v2 − v5 − v11

˙[C3] = −v1 − v10

˙[C3a] = v1 − v3 − v6

˙[IAP ] = −v3 − v4 − v8

˙[C3a∼IAP ] = v3 − v7

˙[CARP ] = −v11 − v12

˙[C8a∼CARP ] = v11 − v13,

(2)

with standard parameter values:

k1 5.8 · 10−5 k11 5 · 10−4

k2 1 · 10−5 k12 1 · 10−3

k3 5 · 10−4 k13 1.16 · 10−2

k4 3 · 10−4 k−3 0.21

k5 5.8 · 10−3 k−8 464

k6 5.8 · 10−3 k−9 507

k7 1.73 · 10−2 k−10 81.9

k8 1.16 · 10−2 k−11 0.21

k9 3.9 · 10−3 k−12 540

k10 3.9 · 10−3

Fig. 2. Model for the direct pathway of receptor induced apoptosis (Eissing et al.,
2004).

completely different picture on the population level. Whereas the single cells
show a rapid caspase 3 activation, the caspase 3 activity increases much slower
on the population level. While the steady states are independent of the input
strength in the deterministic model, the timing is different for different inputs
resulting in an averaging on the population level. These qualitative differences
reflect observed differences in single cell and population experiments, and are
likely important for physiological function.

Thus, while a single cell has its own steady states and can respond very quickly,
a population includes different cells of the same type with slightly different
steady states and kinetics, so the response of the population as a whole can
be graded rather than switch-like (Rehm et al., 2002; Tyas et al., 2000).
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Fig. 3. a) Bistable behaviour of a model for the direct pathway of apoptosis (Eiss-
ing et al., 2004). b) Population behaviour (red) and (nominal) single cell behaviour
(green) as relative concentrations of C3a for C8a(t=0) = 3,000 molecules/cell. The
light grey bars indicate how many cells in the relevant time frame exceed a thresh-
old of 500 molecules/cell C3a. 20,000 cells were simulated, each with parameters
randomly chosen between 90 and 110 % of its original value.

4 Population and single cell modelling

This apparent difference between cell population and single cell responses, as
exemplified above, has been experimentally detected in other biological sys-
tems which also exhibit bistability (for example, the lac operon in E. Coli,
Ozbudak et al., 2004, and the cell cycle oscillator in Xenopus laevis, Pomeren-
ing et al., 2003). These observations suggest that experiments involving a pop-
ulation of cells may reflect an “average” response over all cells and represent
the fraction of cells which are in a given steady state, for each given stimulus
concentration. In reality, each cell has its own “threshold point” where the
system jumps from one steady state to the other. This threshold point typi-
cally varies from cell to cell and depends on activation/inhibition constants,
degradation rates, and other parameters of the system. For families of cells of
the same type, these parameters may be expected to vary within a reasonably
“small” region of the parameter space. Thus, cells in the same type exhibit
similar qualitative behaviour, although within a certain variability margin.

4.1 0-Invariant sets and bistability

In deterministic continuous models, each steady state is associated with a
single fixed point in the state space. However, since individual cells typically
have their own specific operating points, it can be expected that also the
mathematical fixed points will vary from cell to cell. For a whole population
of cells of a single type, one can imagine that the individual fixed points will be
contained in a well defined bounded set, such as a cube in several dimensions.
Thus, a system is bistable if there are two such cubes (and disjoint) in the
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state space: each cube represents one of the two stable responses of the system.

We have developed a method which allows one family of cells to be described by
one general (deterministic and continuous) mathematical formulation, which
incorporates cell-to-cell variability (Chaves et al., 2008). The class of mod-
els we propose is defined by activation and inhibition functions which vary
within “tubes” (see below). In this way, the same model is flexible to accom-
modate the characteristic parameter values describing all individual cells in
a given group. Moreover, intervals for the parameters can be determined, to
guarantee that the system exhibits bistability (or monostability). Disjoint sets
representing each of the stable responses are also characterized in terms of the
parameters. In analogy with the definition of a stable fixed point, and using
the language of control theory, we expect each of the response sets to be a 0-

invariant set for the system. In other words, in the absence of stimuli (or zero
input), once the trajectories enter this set, they will remain inside the set for
all times. If a trajectory is evolving inside a 0-invariant set, it can only leave
that set if an appropriate stimulus can be applied. For example, suppose that
the caspase cascade is operating with low levels of active caspase; then only a
sufficiently strong stimulation (e.g., with TNF) can activate the cascade and
lead to high caspase levels.

The class of models proposed here, couples free (linear) degradation rates
and an overall production rate. The latter is a combination of activation and
inhibition functions, as determined by the network structure. Let N be a
strictly positive real number. A function ν : [0,∞) → [0, N ] is an activation

function if:

(i) ν is continuously differentiable;
(ii) 0 < x < ∞ implies ν(x) > 0 and ν(0) = 0;
(iii) There exists a threshold value 0 < φ < ∞ and constants ε, ∆ ∈ (0, 1)
such that

x ∈ [0, φ(1 − ∆)) ⇒ ν(x) ∈ [0, εN),

x ∈ (φ(1 + ∆),∞) ⇒ ν(x) ∈ (N(1 − ε), N ].

An inhibition function is defined in a similar manner, and can also be seen as:
µ(x) = N − ν(x). Observe that sigmoidal and also saturation type functions
(corresponding to Hill or Michaelis-Menten kinetics), can be written in the
form of ν or µ functions, with appropriate ε and ∆ values.

Define c3 = [C3a], c8 = [C8a], y = [IAP], and u = [TNF] or an appropriate
stimulus. In this framework, a reduced model for the caspase cascade network
can be written as
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ċ3 =−k3c3 + ν1(c8)µ1(y)

ċ8 =−k8c8 + ν2(c3) + ν3(u) (3)

ẏ =−kIAPy + µ2(c3) + ν4(u).

This reduced model is intended to capture the qualitative dynamics resulting
from four central interactions: mutual activation between C3a and C8a (rep-
resented by functions ν1 and ν2), and mutual inhibition between C3a and IAP
(represented by functions µ1 and µ2). Following the definition of activation
functions, the maximal value of each νi is denoted Ni while the maximal value
of each µi is denoted Mi. Thus, the equation for c3 reflects simply its degra-
dation (−k3c3) and its overall production (ν1(c8)µ1(y)) rates. Equations for c8

and y are similarly written, but an additive term is added to account for the
effect of stimulation (ν3,4(TNF)).

In the absence of inputs (u = 0), the maximal overall production rates are
Vc3 = N1M1, Vc8 = N2, and VIAP = M2. Because the functions νi and µi

are all bounded, the following cube is a 0-invariant and global attractor for
system (3):

Q =
[

0,
Vc3

k3

]

×

[

0,
Vc8

k8

]

×

[

0,
VIAP

kIAP

]

.

Indeed, all trajectories of the system will eventually evolve inside this set: note
that ν1(c8)µ1(y) ≥ N1M1 = Vc3 for all c8 and all y, and

c3 >
Vc3

k3

implies ċ3 <−k3
Vc3

k3

+ N1M1 < −Vc3 + Vc3 = 0,

implying that c3 strictly decreases towards
Vc3

k3
, whenever it starts above this

value. Similar arguments can be applied to the variables c8 and y. From now
on, we will assume that trajectories evolve in Q and call the quotients Vc3/k3,
Vc8/k8, and VIAP/kIAP the maximal values of c3, c8 and y, respectively.

For some values of the parameters, this cascade may indeed exhibit bistable
behaviour, in the sense that two disjoint 0-invariant sets exist, representing
apoptosis (A) and cell survival (L). For other values of the parameters, it
is possible to show that only one 0-invariant set exists, either representing
apoptosis (A∗) or cell survival (L∗). Regions of parameters on which system (3)
is bistable or monostable are indicated in Table 1. For all cases in this Table,
the constants ε and ∆ must satisfy the following conditions:

ε <
1

2
and ∆ < 1 − 2ε.
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For the region of parameters were system (3) is bistable, the two stable re-
sponses of the cascade caspase can be identified with the two 0-invariant sets:

A=
[

(1 − ε)2Vc3

k3

,
Vc3

k3

]

×

[

(1 − ε)
Vc8

k8

,
Vc8

k8

]

×

[

0, ε
VIAP

kIAP

]

corresponding to an apoptotic response, since the levels of both caspases re-
main above an 1 − ε fraction (higher than 50%) of their maximal values, and

L=
[

0, ε2Vc3

k3

]

×

[

0, ε
Vc8

k8

]

×

[

(1 − ε)
VIAP

kIAP

,
VIAP

kIAP

]

corresponding to a living cell response, because the caspases are below an ε
fraction (lower than 50%) of their maximal value (Fig. 4).

To establish that a given set is 0-invariant in a given region of parameters,
one intuitive method is to compute the vector field at the boundary of the set,
and show that it points towards the interior of the set: in other words, this
guarantees that once a trajectory enters the set, it cannot leave the set. In the
Appendix, we use this method to show that both sets A and L are 0-invariant
for the bistability region of parameters indicated in Table 1.

Table 1
Conditions for bistability or monostability of the caspase cascade. φX⊣Z (resp.,
φX→Z) denotes the threshold constant for inhibition (resp., activation) of species
Z by X. A “high” expression level indicates that species is above a 1 − ε fraction
(above 50%) of its maximal value. Conversely, a “low” level indicates that species
is below an ε fraction (below 50%) of its maximal value.

Steady states Parameter quotients Interval Expression levels

Bistability VIAP

kIAP

1
φIAP⊣c3

(

1+∆
1−ε

, 1−∆
ε

)

A: high C3a, C8a;

low IAP

(A, L)
Vc3

k3

1
φc3→c8

,
Vc3

k3

1
φ

c3⊣IAP

(

1+∆
(1−ε)2

, 1−∆
ε2

)

L: low C3a, C8a;

Vc8

k8

1
φc8→c3

(

1+∆
1−ε

, 1−∆
ε

)

high IAP

Monostability VIAP

kIAP

1
φIAP⊣c3

(0, 1 − ∆)

(case I, A∗)
Vc3

k3

1
φc3→c8

(

1+∆
(1−ε)2

,∞
)

high C3a, C8a

Vc8

k8

1
φc8→c3

(

1+∆
1−ε

,∞
)

any IAP

Monostability
Vc8

k8

1
φc8→c3

(0, 1 − ∆) low C3a

(case II, L∗) any C8a, IAP

Not surprisingly, Table 1 shows that the capacity for bistability depends on
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an appropriate balance between the maximal value of a variable X and the
threshold constants for the links which are influenced by X. Interestingly, a
very weak inhibition of C3a by IAP (high φIAP⊣c3) is not sufficient to guaran-
tee apoptosis and prevent a bistable response. Similarly, a strong activation
of C3a by C8a (low φc8→c3) alone is also not sufficient to guarantee apoptosis.
Rather, both conditions should be verified to guarantee an apoptotic response
(monostability, case I). In addition, C3a and C8a should be able to main-
tain each other, through the positive feedback cycle C3a ⇌ C8a. In contrast,
low activation of C3a by C8a (high φc8→c3) is sufficient to rule out apoptosis
(monostability, case II).

Inhibitors of caspase 8 activation, such as CARP, may also be added to this
model. The effect of CARP can be modelled, for instance, by decreasing the
maximal production rate N2 = Vc8 . From Table 1, it is easy to see that a
pronounced decrease in Vc8 will fail to satisfy the conditions for bistability.
Very low Vc8 leads to the condition for monostability (II), as might be expected.

4.2 Classifying cells: healthy or malfunctioning

Besides the bistable response, also conditions for two distinct monostable sce-
narios (I and II) can be found. The 0-invariant sets identified for each of the
two monostable scenarios are

A∗ =
[

(1 − ε)2Vc3

k3

,
Vc3

k3

]

×

[

(1 − ε)
Vc8

k8

,
Vc8

k8

]

×

[

0,
VIAP

kIAP

]

and

L∗ =
[

0, ε
Vc3

k3

]

×

[

0,
Vc8

k8

]

×

[

0,
VIAP

kIAP

]

.

In each region of parameters, the sets A∗ or L∗ are 0-invariant (using the
same method of computing the vector field at the boundary of the sets, and
showing that it points towards the interior of the set). Furthermore, each
set is also globally attractive: when caspase stimulation ceases, the system
naturally converges to A∗ (in scenario I) or L∗ (in scenario II). Therefore, both
scenarios represent anomalous or malfunctioning cells. In scenario I, there will
eventually be a high level of active caspase 3, always leading the cell to the
apoptotic pathway. In contrast, in scenario II the system will be depleted of
active caspase 3, and be unable to go to the apoptotic pathway. Our analysis
suggests that it is more difficult to find a cell which always goes through the
apoptosis pathway, than a cell which always fails to have an apoptotic response
– for scenario I three conditions on the parameters need to be satisfied, while
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for scenario II only one condition needs to be satisfied. Indeed, among other
diseases, the relatively common cancerous cells can be classified into case II,
while not many diseases are known to be caused by “completely apoptotic”
cells.

In conclusion, by measuring the production rates, as well as degradation rates
and activation/inhibition thresholds for a given network, one can then check
which of the conditions (Table 1) are satisfied. Once the system is classified,
it may be possible to construct an appropriate input, or induces changes in
some of the parameters, to control/restore the system to a desired behaviour.

Fig. 4. The “apoptosis” (A) and “living” (L) 0-invariant sets, and two trajectories of
system (3) projected into the (c3, y)-plane. The two trajectories start from the same
initial condition (o), (c3, c8, y) = (0.3, 0.2, 0.4), for one realization of system (3).
Parameters are as indicated in Section 4.3. One trajectory corresponds to no TNF
stimulation (i.e., ν3(TNF) = ν4(TNF) = 0), and converges to the “living” set. The
other trajectory corresponds to constant TNF stimulation with ν3(TNF) = 1 and
ν4(TNF) = 0.1 and converges to the apoptosis set. Stimulation duration is 1.5 time
units (total running time is 15 units). The symbol ∗ marks the state at the point
when TNF was turned off.

4.3 TNF stimulation

So far, the behavior of the system, and its capacity for bistability, have been
analysed in the case without stimulation. We will now briefly analyse the ef-
fect of, for example, TNF stimulation. Suppose that the system is in a state
with low caspase levels, for instance point “o” in Fig. 4. Constant TNF stim-
ulation during a sufficiently long interval increases the concentration of active
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caspase 8. This is immediate by looking at the equation ċ8 ≥ −k8c8 +ν3(TNF)
which implies that c8(t) increases faster than ν3(TNF)(1−e−k8t)/k8. Similarly,
TNF stimulation also induces an increase in IAP concentration (via the NFκB
pathway not further discussed in this contribution). However, C8a promotes
and IAP opposes resistance to increasing the concentration of C3a. If the ac-
tivation effect of C8a is stronger than the inhibition effect of IAP, then C3a
concentration tends to increase. If the trajectory reaches A (or its basin of
attraction), since A is a 0-invariant set for the system, TNF stimulation may
now be “turned off” and the system continues to evolve in A, thus enabling
the cell to enter the apoptotic pathway.

This behaviour is illustrated in Fig. 4, with one realization of system (3). A
set of parameters satisfying the bistability conditions, and appropriate acti-
vation and inhibition functions were chosen as follows: ε = 0.2, ∆ = 0.48,
k3 = k8 = kIAP = 1, N1 = 2, N2 = M1 = M2 = 1, φc8→c3 = φIAP⊣c3 = 0.4,
and φc3→c8 = φc3⊣IAP = 0.3. The functions νi and µi (i = 1, 2) are Hill func-
tions with maximal amplitude, respectively, Ni and Mi, Hill exponent equal
to 6, and threshold values φ··· as indicated before. Since u =TNF is assumed
constant, the terms ν3,4(TNF ) were simply set to 0 (no TNF stimulation) or
ν3(TNF) ≡ 1, ν4(TNF) ≡ 0.1 for one time unit (with TNF stimulation).

5 Discussion and Conclusions

In this study we introduced the need for quantitative modelling approaches
in biology by discussing the example of apoptosis signalling. We reviewed a
bistable apoptosis model for the direct pathway of receptor induced apop-
tosis and illustrated how small parameter differences can explain different
behaviours on the single cell and population level. While the activation of
caspase 3, a key molecule in apoptosis, is slow on the population level, it is
rapidly activated on the single cell level. The different timing in individual
cells can also be explained, for example, by a distributed input (Eissing et al.,
2004) or different protein concentrations. Extended analysis in the context
of robustness, which appears to be an important property of many biological
systems (Stelling et al., 2004), indicate that the cell has achieved a favourable
robustness-performance trade-off, imposed by network structure and evolu-
tionary constraints. On the one hand, inhibitors of apoptosis function as noise
filters and reduce variability caused by the stochastic nature of reactions (Eiss-
ing et al., 2005). Further, qualitative properties such as bistability are compa-
rably robust to parameter changes supporting proper decisions. On the other
hand, quantitative aspects are comparably sensitive. This allows for variability
in a population, as observed in experiments, and which is likely important for
physiological function as recently indicated in immunological studies (Hawkins
et al., 2007). Our analyses further indicated that the trade-off leads to fragili-
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ties. For example, an up-regulation of IAPs, as observed in certain cancers,
can not only desensitise cells to apoptotic stimuli, as also suggested by exper-
imental studies, but can contribute to cancer aggressiveness and progression
through additional mechanisms (Eissing, 2007).

We further introduced a new modelling framework, which describes reactions
by generalized activation and inhibition functions. Bistable systems can then
be characterized by possessing two disconnected invariant sets. This descrip-
tion nicely integrates differences between single cells into one model. Patho-
logical cellular states can be identified and characterized by the presence of a
single, globally attractive set. Two cases can be distinguished, one represent-
ing apoptosis resistant cells and one representing hypersensitive cells, both of
which are known to exist.

The presented models can be extended to integrate alternative routes of apop-
tosis signalling as outlined in Fig. 1. Also, several additional signalling path-
ways are known that can fine-tune or even strongly influence the decision on
whether a cell continues to life or dies (e.g. Janes et al. 2005, 2006). Certainly,
much more work will be needed before a system-level understanding of apop-
tosis and, more generally, biology is achieved. Thereby, the involved scales in
biology and the inherent complexity pose great challenges. However, the po-
tential rewards are high – strong and lasting influences on biotechnology and a
rationalization of medicine are to be expected. In biotechnology, for example,
model based considerations are already maximizing product yields, and the
first drug candidates whose targets were indicated by analysing mathematical
models are under investigation.
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Appendix: Checking 0-invariance of sets A and L

Consider the region of parameters defined in Table 1, under “Bistability”.
They can be written as:

13



(1.1)
VIAP

kIAP

1

φIAP⊣c3

>
1 + ∆

1 − ε

(1.2)
VIAP

kIAP

1

φIAP⊣c3

<
1 − ∆

ε

(2.1)
Vc3

k3

1

φc3→c8

,
Vc3

k3

1

φc3⊣IAP

>
1 + ∆

(1 − ε)2

(2.2)
Vc3

k3

1

φc3→c8

,
Vc3

k3

1

φc3⊣IAP

<
1 − ∆

ε2

(3.1)
Vc8

k8

1

φc8→c3

>
1 + ∆

1 − ε

(3.2)
Vc8

k8

1

φc8→c3

<
1 − ∆

ε

Under these conditions, both L and A are 0-invariant sets. The arguments
used for one set or the other are very similar. Thus, we will present only the
0-invariance for A.

We will pick any point P at the boundary of A and show that the vector field
points towards the interior of the set, whenever the parameter satisfy the given
conditions. First, note that A is contained in the cube Q, which is also a (large)

invariant set for the system. Note also that, at points of the form (
Vc3

k3
, c8, y),

(c3,
Vc8

k8
, y) or (c3, c8, 0), the boundary of A coincides with the boundary of Q.

Thus, at these points, the vector field points towards the interior of Q and A.

For points of the form

P3 =

(

(1 − ε)2Vc3

k3

, c8, y

)

, c8, y ∈

[

(1 − ε)
Vc8

k8

,
Vc8

k8

]

×

[

0, ε
VIAP

kIAP

]

it follows from (1.2) and (3.1) that

y ≤ ε
VIAP

kIAP

< ε
1 − ∆

ε
φIAP⊣c3

c8 ≥ (1 − ε)
Vc8

k8

> (1 − ε)
1 + ∆

1 − ε
φc8→c3

which implies, using the definition of activation and inhibition functions,

y < (1 − ∆)φIAP⊣c3 ⇒ µ1(y) > (1 − ε)M1

c8 > (1 + ∆)φc8→c3 ⇒ ν1(c8) > (1 − ε)N1.

Then, looking at the c3 equation, and recalling that Vc3 = N1M1:

14



ċ3 >−k3
(1 − ε)2Vc3

k3

+ (1 − ε)M1(1 − ε)N1

=−(1 − ε)2Vc3 + (1 − ε)2Vc3 = 0,

which means that for points of the form P3, c3 will increase, i.e., the vector
field points towards the interior of A.

A similar argument can be used for points of the form

P8 =

(

c3,
(1 − ε)Vc8

k8

, y

)

, c3, y ∈

[

(1 − ε)2Vc3

k3

,
Vc3

k3

]

×

[

0, ε
VIAP

kIAP

]

.

It follows from (2.1) that

c3 ≥ (1 − ε)2Vc3

k3

> (1 − ε)2 1 + ∆

(1 − ε)2
φc3→c8 ,

which implies, using the definition of activation function,

c3 > (1 + ∆)φc3→c8 ⇒ ν2(c3) > (1 − ε)N2.

Then, looking at the c8 equation, and recalling that Vc8 = N2:

ċ8 >−k8
(1 − ε)Vc8

k8

+ (1 − ε)N2

=−(1 − ε)Vc8 + (1 − ε)Vc8 = 0,

which means that for points of the form P8, c8 will increase, i.e., again the
vector field points towards the interior of A.

Finally, for points of the form

PIAP =
(

c3, c8, ε
VIAP

kIAP

)

, c3, c8 ∈

[

(1 − ε)2Vc3

k3

,
Vc3

k3

]

×

[

(1 − ε)
Vc8

k8

,
Vc8

k8

]

.

it follows from (2.1) that

c3 ≥ (1 − ε)2Vc3

k3

> (1 − ε)2 1 + ∆

(1 − ε)2
φc3⊢IAP,

which implies, using the definition of inhibition function,

c3 > (1 + ∆)φc3⊢IAP ⇒ µ2(c3) < εM2.
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Then, looking at the y equation, and recalling that VIAP = M2:

ẏ >−kIAPε
VIAP

kIAP

+ εM2

=−εVIAP + εVIAP = 0,

which means that for points of the form PIAP, y will increase, i.e., again the
vector field points towards the interior of A.
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Legewie, S., Blüthgen, N., Herzel, H., 2006. Mathematical Modeling Identifies
Inhibitors of Apoptosis as Mediators of Positive Feedback and Bistability.
PLoS Comput. Biol. 2 (9), e120.

McDonald, 3rd, E. R., El-Deiry, W. S., 2004. Suppression of caspase-8- and
-10-associated RING proteins results in sensitization to death ligands and
inhibition of tumor cell growth. Proc. Natl. Acad. Sci. U. S. A. 101 (16),
6170–6175.

Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I., Oudenaarden,
A. V., 2004. Multistability in the lactose utilization network of Escherichia
coli. Nature 427 (6976), 737–740.

Pomerening, J., Sontag, E., J.E. Ferrell, Jr., 2003. Building a cell cycle oscil-
lator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5,
346–351.

Rehm, M., Dussmann, H., Janicke, R. U., Tavare, J. M., Kogel, D., Prehn,
J. H., 2002. Single-cell fluorescence resonance energy transfer analysis
demonstrates that caspase activation during apoptosis is a rapid process. J.
Biol. Chem. 277 (27), 24506–24514.

Rehm, M., Huber, H. J., Dussmann, H., Prehn, J. H. M., 2006. Systems anal-
ysis of effector caspase activation and its control by X-linked inhibitor of
apoptosis protein. EMBO J. 25 (18), 4338–4349.

Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J.,
Debatin, K. M., Krammer, P. H., Peter, M. E., 1998. Two CD95 (APO-
1/Fas) signaling pathways. EMBO J. 17 (6), 1675–1687.

Sohn, D., Schulze-Osthoff, K., Jänicke, R. U., 2005. Caspase-8 can be acti-
vated by interchain proteolysis without receptor-triggered dimerization dur-
ing drug-induced apoptosis. J. Biol. Chem. 280 (7), 5267–5273.

Stelling, J., Sauer, U., Szallasi, Z., Doyle, 3rd, F. J., Doyle, J., 2004. Robust-
ness of cellular functions. Cell 118 (6), 675–685.

Stennicke, H. R., Salvesen, G. S., 1999. Catalytic properties of the caspases.
Cell Death Differ. 6 (11), 1054–1059.

Tyas, L., Brophy, V. A., Pope, A., Rivett, A. J., Tavare, J. M., 2000. Rapid
caspase-3 activation during apoptosis revealed using fluorescence-resonance
energy transfer. EMBO Rep. 1 (3), 266–270.

Wingreen, N., Botstein, D., 2006. Back to the future: education for systems-
level biologists. Nat. Rev. Mol. Cell Biol. 7 (11), 829–832.

17


