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Abstract

The concept of robustness of regulatory networks has been closely related to the nature of the in-
teractions among genes, and the capability of pattern maintenance or reproducibility. Defining this
robustness property is a challenging task, but mathematical models have often associated it to the vol-
ume of the space of admissible parameters. Not only the volume of the space but also its topology and
geometry contain information on essential aspects of the network, including feasible pathways, switch-
ing between two parallel pathways or distinct/disconnected active regions of parameters. A method is
presented here to characterize the space of admissible parameters, by writing it as a semi-algebraic set,
and then theoretically analyzing its topology and geometry, as well as volume. This method provides a
more objective and complete measure of the robustness of a developmental module. As a detailed case
study, the segment polarity gene network is analyzed.

1 Introduction

For biological networks, the concept of robustness often expresses the idea that the system’s regulatory
functions should operate correctly under a variety of situations. The network should respond appropriately
to various stimulii and recognize meaningful ones (either harmful or favorable), but it should also ignore
small (not meaningful) variations in the environment as well as inescapable fluctuations in the abundances
of biomolecules involved in the network [1, 2, 3].

While it is difficult to define this robustness property in a precise form, it has been associated to the space
of admissible kinetic parameters, its volume [3], and the effect of paramater perturbations on the qualitative
behavior of the system [1, 2, 4]. Some methods for parameter sensitivity have been developed [5, 6],
based essentially on derivatives of variables or fluxes with respect to the system’s parameters. The volume
of the parameter space can be used as an indication of “how many” parameter combinations are possible,
and these are related to the ability of the network to work under a variety of situations. For instance,
parameters may range through different orders of magnitude, representing very different environments. A
small parameter space volume is a clear indication of low robustness, as the model will require precise
tuning to reproduce any features. Hence robustness is associated to larger volumes. However, size may
not always be a reliable measure for robustness; other quantities, such as shape, also play a very significant
role, as illustrated in Fig. 1. In the context of systems with uncertain parameters, for instance, it is quite
useful to have an idea of the distribution, or shape, of the sets of good or bad parameters. In [4] statistical
analysis of a chemotaxis network indicates that there are two regions of the uncertain parameter space with
a high concentration of bad parameters (thus suggesting a feasible parameter space of the form Fig. 1 (d)).
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Analysis of the shape or geometry of the admissible parameter set gives an indication not only of its size,
but also how far perturbations around each parameter disrupt the network. A robust biological network will
admit small fluctuations in its parameters without changing its qualitative behavior. So, a robust network
will be associated to a system whose parameter set has few “narrow pieces” and “sharp corners”. In such
sets, reasonable parameter fluctuations may occur without leaving the set, hence maintaining the network’s
qualitative behavior (compare Fig. 1 (a) and (b)). The topology, and in particular the simple-connectedness
or not of the feasible parameter set is also important (compare Fig. 1 (c) and (d)). However, even if the
set is connected, it may exhibit low robustness if it is composed of several pieces with lower dimension
connecting faces, as in Fig. 1 (e). In fact, as will be seen later, this is one of the situations that happen in our
example.

To illustrate the importance of parameter space geometry, and the insight it brings to understanding the
network, the model of the segment polarity network developed by von Dassow and collaborators [3] will
be analyzed as a “case study” of our approach. The segment polarity network is part of a cascade of gene
families responsible for generating the segmentation of the fruit fly embryo [7]. Genes in earlier stages
are transiently expressed, but the segment polarity genes maintain a stable pattern for about three hours. It
has been suggested that the segment polarity genes constitute a robust developmental module, capable of
autonomously reproducing the same behavior or generating the same gene expression pattern, in response
to transient inputs [3, 8, 9]. This robustness would be due to the nature of interactions among genes, rather
than the kinetic parameters of the reactions. The model [3] describes the interactions among the principal
segment polarity genes, is continuous, and involves cell-to-cell communications and around 50 parameters
which are essentially unknown. The authors of [3] explored the model by randomly choosing 240,000
parameter sets out of which about 1,192 (or 0.5%) sets were consistent with the generation (at steady state)
of the wild type pattern. To explore the robustness of the network as a property of its interactions, Albert and
Othmer [9, 10] developed a Boolean model of the segment polarity network, a discrete logical model where
each species has only two states (0 or 1; “OFF” or “ON”), but no kinetic parameters need to be defined. This
Boolean model is amenable to various methods for systematic robustness analysis [11, 12, 13]. Ingolia [8]
focused on the properties of the (slightly changed) model [3] in individual cells, such as bistability, and
extrapolated necessary conditions on parameters to the full intercellular model.

We propose a different approach, that retains the information contained on the kinetic parameters, but
partially approximates the model by a logical form with various possible ON levels and species-dependent
activation parameters. The admissible set of parameters of the model [3] is analyzed by constructing a
cylindrical algebraic decomposition. Among other conclusions, our analysis completely explains the two
“missing links” in von Dassow et. al. original model, namely: why the segment polarity pattern can not be
recovered without the negative regulation of engrailed by Cubitus repressor protein, and why the autocat-
alytic wingless activation pathway vastly increases the network robustness.

The present approach shows that, in contrast to volume only estimates, the topology and geometry of
parameter sets provide reliable quantitative measures of robustness of a system. Some of our work may
be seen as a “global” counterpart to the local analysis done in [14] in which eigenvector analysis was used
to study the “stiff/sloppy” character of good parameter sets. In separate work [15], we study evolutionary
implications of the geometric structure, with a focus on a measure of robustness that is related to having low
rate of exit from the region under random walk [16].

2 The segment polarity network model

The principal segment polarity genes [7] are engrailed (en), wingless, patched, cubitus interruptus and
hedgehog. The wild type expression pattern for these five segment polarity genes is experimentally well
characterized, and is stably maintained for a period of about three hours (approximately during stages 8 to
11 of embryonic development) [17]. The pattern is periodically repeated (every four cells, in the early stages
6-8 of embryonic development), and defines the positions of the parasegments in the embryo of the fly. In
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Figure 1: The role of geometry and topology in robustness. Regions (a) and (b) have the same volume,
but (b) is less robust: the same perturbation leads out of the space. Regions (c) and (d) also have the
same volume, but (d) is not a simply connected set, hence less robust. Region (e), although connected, is
composed of two pieces that touch only along a small face.

wild type, both engrailed and hedgehog are expressed in every third cell [18], while wingless is expressed
in every cell anterior to an en-expressing cell [18]. Further experimental observations show that cubitus is
expressed in all but the cell expressing en [19], and patched is strongly expressed in every cell surrounding
en-expressing cells [18], but not expressed in en-expressing cells. The boundaries of the parasegments are
formed between the two cells expressing wingless and engrailed.

The model proposed by von Dassow et. al. [3] (Appendix B) describes the concentrations of these five
mRNAs and corresponding proteins in a four cell parasegment of the fly embryo, subject to periodic bound-
ary conditions (see also Fig. 6). From now on, each cell is assumed to have a square shape, with four faces
(see Appendix E). Nine of these mRNAs and proteins are considered to have a homogeneous concentration
throughout each cell: engrailed mRNA and protein (en and EN), wingless mRNA and (internal) protein
(wg and IWG), patched mRNA (ptc), cubitus mRNA, active and repressor proteins (ci, CI, and CN), and
hedgehog mRNA (hh). Each of these variables has a distinct concentration in each cell (Xi, i = 1, . . . , 4).
In addition, there are three other proteins whose concentration varies in each of the four cell faces: external
wingless protein (EWG), patched protein (PTC) and hedgehog protein (HH). For each of these variables,
the concentration in cell i at face j is denoted Xi,j , i = 1, . . . , 4, j = 1, . . . , 4. Thus, overall there are:
n = 9 × 4 + 3 × 4 × 4 = 84 variables. Throughout the paper, the following notation will be used (prime
denotes transpose):

X = (X1, X2, X3, X4)′, for X ∈ {en,EN,wg, IWG, ptc, ci,CI,CN, hh}.

and

X = (X1,1, X1,2, X1,3, X1,4, X2,1, . . . , X4,4)′, for X ∈ {EWG,PTC,HH}.

The full vector of concentrations is:

x = (en′,EN′,wg′, IWG′,EWG′, ptc′,PTC′, ci′,CI′,CN′, hh′,HH′).

To formulate the mathematical model, define a vector of species concentrations (x ∈ Rn
≥0) and a parameter

vector (p ∈ Rr
≥0), together with a set of outputs (y ∈ Rm

≥0, the measured gene expression levels). Introduce
functions f : Rn

≥0 × Rr
≥0 → Rn and h : Rn

≥0 → Rm
≥0, where R≥0 = {x ∈ R : xi ≥ 0, for all i}, and

3



consider the system with outputs

dx

dt
= f(x, p) (1)

y = h(x) (2)

where the function h(x) could be, for instance, a vector listing the concentration of wingless, engrailed, and
other of the segment polarity mRNAs which have been experimentally measured. Or, in other words, y is
“the phenotype corresponding to the genotype x”. The function f is, for instance, as shown in Appendix B
for von Dassow et al’s model. The wild type expression pattern for the segment polarity genes can be viewed
as (one of) the steady state solution of system (1).

2.1 The wild type pattern set

An output function is typically composed of variables (or combinations of variables) that are known or
available from measurements. Following [3, 9] (and references therein), as well as the discussion above,
the wild type expression pattern, in each group of four cells, is characterized mainly by the expression of
engrailed, hedgehog, and wingless. Here we will further add expression of cubitus and patched to incorpo-
rate further experimental evidence [19, 18]. These five mRNAs are among the most well documented, so
we will consider the output function h : Rn

≥0 → R20
≥0 to be the state of these five variables. In addition,

experimental data is typically of the form “expressed”/“not expressed”, which may be best translated as “0”
if concentration is below a certain threshold ε, or “1” if concentration is above the threshold. Then we have:

y = h(x) =


hen(x)
hhh(x)
hwg(x)
hci(x)
hptc(x)

 =


signε(en)
signε(hh)
signε(wg)
signε(ci)

signε(ptc)

 , (3)

where signε(r) = 0 if r < ε and signε(r) = 1 if r ≥ ε. From experimental measurements, the wild type
phenotype is characterized as follows. It is well known [17] that both en and hh are expressed in every third
cell, so the desired steady state outputs for these variables are

hen(x) = (0, 0, 1, 0)′, hhh(x) = (0, 0, 1, 0)′, for x ∈ Rn. (4)

Wingless mRNA is only expressed in every second cell, to the left of en, so that its desired steady state
output is

hwg(x) = (0, 1, 0, 0)′, for x ∈ Rn. (5)

Cubitus and patched mRNAs are typically expressed in all but those cells expressing en [19, 18], so the
desired steady state output for ci and ptc is of the form:

hci(x) = (1, 1, 0, 1)′, hptc(x) = (1, 1, 0, 1)′, for x ∈ Rn. (6)

The boundaries of the parasegments are expected to form between every second and third cells. The set
that contains all states which yield an output satisfying (4) to (6) will be the set representing the wild type
pattern for the segment polarity model (Appendix B). From the definition of h (and taking into account the
assumptions below for simplicity of analysis), the set of wild type states is of the form:

W = {x ∈ Rn
≥0 : en = (0, 0, N3, 0)′, hh = (H1,H2,H3,H4)′,

wg = (W1,W2,W3,W4)′,
ci = (U1, U2, 0, U4)′, ptc = (T1, T2, T3, T4)′,
with W4 < W1,3; W1,3,4,H1,2,4 < ε; W2, N3,H3 ≥ ε;
T4 = T2; T1,2, U1,2,4 ≥ ε;T3 < ε; }. (7)
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The value ε is a threshold for mRNA (or protein) concentration above which the gene (or protein) is consid-
ered expressed. In [3] it was assumed that a gene/protein is expressed when it reaches 10% of its maximal
concentration. As discussed below, in the model discussed in this paper the maximal concentration will be
1, hence we will set ε = 0.1.

Remark: For simplicity, we have imposed some additional conditions when writing down the set W ,
compared to merely asking that (4) to (6) hold. These conditions are:

eni = 0, i = 1, 2, 4 rather than eni < ε

ci3 = 0 rather than ci3 < ε

wg4 ≤ min{wg1,wg3}
ptc4 = ptc2.

These are mild assumptions which however allow many analytic calculations to be carried out explicitly
(further discussion can be found in Appendix H), and provide intuition into the dynamics of the segment
polarity model. Furthermore, as will become clear in our analysis, these assumptions are verified for many
sets of feasible parameters - more precisely, for all sets of parameters except in subsets of lower dimension.

3 Steady states define the feasible parameter space

Previous studies [3, 8] have tested the parameter space by randomly choosing sets of parameters and simu-
lating the continuous model. If the corresponding trajectory reaches a steady state, and if this steady state is
compatible with the experimentally observed wild type gene pattern, then the given set of parameters is said
to be a “solution” to the modeling problem.

A more efficient and complete study of the parameter space can be devised, by first solving the algebraic
equations of the model at steady state, and writing the steady state solutions as a function of the parameters.
On the other hand, the steady state solutions are known – the set of elements representing the wild type
pattern is denoted by W – so, one can then look for parameters that yield this pattern. Since many sets of
parameters may be expected to yield the wild type pattern, this procedure provides a family of conditions
defining regions of “good”or feasible parameters “p” for wild type steady states x ∈ W .

The problem of characterizing the sets of feasible parameters is then reduced to finding all possible
parameter vectors p which correspond to a system having a steady state x̄ ∈ W .

This will be the set of “good” parameters:

G = { p ∈ Rr
≥0 : ∃x ∈ W s.t. f(x, p) = 0 }. (8)

3.1 Large Hill coefficients: approximating the continuous model

To find the set G, a straightforward approach would be to solve the steady-state equations for the original
system, thus obtaining expressions for x in terms of p:

f(x, p) = 0 ⇔ x = F (p),

and compare these expressions to the desired form (in W):

F (p) ∈ W ⇔ p ∈ G.

A possible drawback of this method is that explicit solutions x = F (p) for the original system and then
explicit formulas for G may not be easy to compute. On the other hand, many of the equations in the
model [3] involve terms of the form (see also Appendix B):

φ(X,κ, ν) =
Xν

κν +Xν
or ψ(X,κ, ν) =

κν

κν +Xν
,
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meaning that, if species X is above a certain threshold κ, the function φ is active (ON), but the function ψ is
inactive (OFF). The exponent ν, also known as the Hill coefficient, characterizes the steepness of an OFF/ON
transition. As found in [20], the model is more robust when the coefficients ν are large. Indeed, for ν in the
interval [5.0, 10.0], together with some constraints on other parameters (as detailed in Table 1 in [20]), the
proportion of “good parameters” sets increased to 4 out of 5. For large enough exponents, this saturation
function becomes very steep, and φ becomes practically insensitive to the actual value of ν. Let ν be very
large and approximate φ by a step function: it is not unreasonable to expect this approximation to capture a
large part of the feasible parameter space. This is also the basis of the typical on/off logical interpretation of
gene expression. Any such term φ(X,κ, ν), for large ν, may thus be replaced by a multivalued step function
of the form:

θ+(X,κ) =


0, X < κ
[0, 1], X = κ
1, X > κ .

(9)

Define also the symmetric step function θ−(X,κ) = 1 − θ+(X,κ). The approximation of φ(X,κ, ν) by
a step function inevitably has a discontinuity at X = κ. Defining θ+ to be multivalued at κ is one way to
represent all the states that the function φ may take as X is in smaller and smaller neighborhoods of κ, as ν
becomes larger and larger. Thus:

lim
ν→∞

φ(X,κ, ν) = θ+(X,κ), lim
ν→∞

ψ(X,κ, ν) = 1− θ+(X,κ) = θ−(X,κ), (10)

where, for x = κ, we interpret (10) as saying that the corresponding limit belongs to the interval [0, 1]. A
composite function of φ and ψ also frequently appears in the continuous equations (Appendix B):

φ(Xaψ(Xb, κb, νb), κa, νa).

This function can be simplified in terms of step functions to:

θ+(Xaθ
−(Xb, κb), κa) =

{
θ+(Xa, κa)θ−(Xb, κb), Xb 6= κb

θ+(Xa[0, 1], κa), Xb = κb,
(11)

since

Xb > κb ⇒ θ−(Xb, κb) = 0 ⇒ θ+(Xaθ
−(Xb, κb), κa) = θ+(0, κa) = 0,

Xb = κb ⇒ θ−(Xb, κb) = [0, 1] ⇒ θ+(Xaθ
−(Xb, κb), κa) = θ+(Xa[0, 1], κa),

Xb < κb ⇒ θ−(Xb, κb) = 1 ⇒ θ+(Xaθ
−(Xb, κb), κa) = θ+(Xa, κa).

As an example, consider the equation governing engrailed from the original model which can be found
in [3, 20] (or in Appendix B). In this model the concentration of engrailed in cell i (eni), is positively
regulated by external Wingless protein (EWGi) and negatively regulated by Cubitus repressor protein (CNi)
concentrations (further notation is found in Appendix A):

deni

dt
=

1
Hen

(
φ(EWGiψ(CNi, κCNen, νCNen), κWGen, νWGen)− eni

)
.

For large exponents ν, this simplifies to the equation:

deni

dt
=

1
Hen

(
θ+(EWGiθ

−(CNi, κCNen), κWGen)− eni

)
.

To analyticaly study the space of feasible parameters for the segment polarity network model [3], we will
thus consider that all exponents ν are large, and apply method (10) to simplify the original system of equa-
tions. In addition, as discussed, the system is assumed to be at steady state, in which case the gene expression
pattern must satisfy:

eni = θ+(EWGiθ
−(CNi, κCNen), κWGen).
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Applying (10) and then solving the system at steady state yields the set of algebraic equations (52)-(63),
which characterize the gene expression pattern of the segment polarity network according to our approxi-
mation of the von Dassow et. al. model. In particular, note that the cubitus mRNA equation becomes

cii = Uiθ
−(ENi, κENci), i = 1, . . . , 4,

where the choice of the parameters Ui ∈ [0, 1] is explained in Appendix C. Furthermore, in characterizing
the set of feasible parameters, it will become clear that allowing distinct Ui enlarges the space of possible
parameters. Asymmetry in cubitus expression (i.e., distinct values Ui for each i = 1, . . . , 4) could be due,
for instance, to some of the pair rule genes. Sloppy paired, or a combination of Runt and Factor X, regulate
the transition from pair rule to segment polarity genes expression, and induce asymmetric anterior/posterior
parasegment expression [21].

Finally, note that the maximal expression levels of wg are written in terms of the parameters αCIwg and
αWGwg. From equation (54), there are several possible combinations of the step functions, each leading to a
different value for wg2. These possibilities are given by:

w =
RCIαCIwg +RWGαWGwg

1 +RCIαCIwg +RWGαWGwg

, (12)

whereRCI, RWG ∈ [0, 1] reflect the possible values of the step functions. Two different pathways for wingless
activation can be identified. Indeed, wingless can be activated by Cubitus only (in which case RCI > 0,
RWG = 0), or by Wingless only (RCI = 0, RWG > 0), or by both Cubitus and Wingless (RCI, RWG > 0).

4 Missing link: engrailed regulation by Cubitus repressor

A first result from our model formulation is the explanation of a “missing link” in a first version of the model
proposed by von Dassow et. al. [3]. In this first version, engrailed was regulated only by EWG, and no
feasible parameter sets were found. Indeed, below (Theorem 1) we prove that, for any set of parameters, the
mechanism for wingless regulation generates a strong symmetry in the steady state expression of external
Wingless. This symmetry effectively prevents any asymmetry arising in en due to EWG only.

Theorem 1. Letw > 0 and assume wgWT = (w1, w2, w3, w4)′, withw4 ≤ min{w1, w3} ≤ max{w1, w3} <
w2. Then, at steady state:

EWGWT
4 ≤ min{EWGWT

1 ,EWGWT
3 } ≤ max{EWGWT

1 ,EWGWT
3 } < EWGWT

2 . (13)

The proof is based on the following Lemma which is shown in Appendix E.

Lemma 4.1. Let wg = (wg1,wg2,wg3,wg4). There exist constants βmax > βmed > βmin > 0 and γmax >
γmed > γmin > 0 such that:

EWG1 = wg1βmax + (wg2 + wg4)βmed + wg3βmin,

EWG2 = wg2βmax + (wg1 + wg3)βmed + wg4βmin,

EWG3 = wg3βmax + (wg2 + wg4)βmed + wg1βmin,

EWG4 = wg4βmax + (wg1 + wg3)βmed + wg2βmin.

and

IWG1 = wg1γmax + (wg2 + wg4)γmed + wg3γmin,

IWG2 = wg2γmax + (wg1 + wg3)γmed + wg4γmin,

IWG3 = wg3γmax + (wg2 + wg4)γmed + wg1γmin,

IWG4 = wg4γmax + (wg1 + wg3)γmed + wg2γmin.
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Now, consider the steady state equation that would result if no dependence of engrailed on CN is as-
sumed in equation 52:

enWT
i = θ+(EWGWT

i , κWGen)

Compare to states in W:

en3 = N3 and eni = 0, for i = 1, 2, 4.

Then, from the definition of θ+, for consistency in our model it is necessary that:

EWGWT
i ≤ κWGen, for i = 1, 2, 4

EWGWT
3 ≥ κWGen.

However, by (13), the inequalities for i = 2 (and possibly i = 1) and i = 3 are incompatible. This means
that, due to the symmetry in Wingless distribution, such a simple regulation of en can never lead to the
segment polarity pattern. Thus engrailed requires regulation by some other factor, in this case repression
by the Cubitus protein (CN), as in (52). In order to obtain repression of en in the second cell, recalling (11)
one can now ask:

EWGWT
1 ≤ κWGen or CNWT

1 ≥ κCNen,

CNWT
2 ≥ κCNen,

EWGWT
3 ≥ κWGen and CNWT

3 ≤ κCNen,

EWGWT
4 ≤ κWGen or CNWT

4 ≥ κCNen,

that is, CN is responsible for repression in the second, and possibly in the first, cells. This means that, at
steady state, CN must be expressed in both the first and second cells. This in turn requires the presence of
Patched protein in both the first and second cells. On the other hand, from Appendix F, we know that a
steady state x ∈ W , implies ptcWT

1 = PTCWT
1 and ptcWT

3 = PTCWT
3 = 0. While patched expression is typically

weaker in the first than in second and fourth cells (see [3]), this shows that it is nevertheless necessary, that
is, the segment polarity gene pattern obtains only when T1 is above the expression threshold. The discussion
on CN leads to the following conclusion:

Lemma 4.2. Consider system (1) and assume that, at steady state, the system is in W , that is ciWT =
(U1, U2, 0, U4)′ and ptcWT = (T1, T2, T3, T2)′, with U1,2,4 ≥ ε and T3 < ε. Then PTCWT

3,T = 0 and CIWT
3 =

CNWT
3 = ciWT

3 = 0 and PTCWT
2,T = PTCWT

4,T > 0. Also PTCWT
1,2,4 ≥ κPTCCI and

CNWT
i = Ui

QiHCICCI

1 +QiHCICCI

, i = 1, 2, 4, CIWT
i = Ui − CNi = Ui

1
1 +QiHCICCI

, (14)

with

Qi ∈
{
{1}, if PTCi,T > κPTCCI

[0, 1], if PTCi,T = κPTCCI.

5 A cylindrical algebraic decomposition of the parameter space

The algebraic equations f(x, p) = 0 together with x ∈ W impose constraints on the set of good parameters
(G), though not providing as yet explicit conditions on p. An explicit characterization of the parameters p
may be obtained by calculating a cylindrical algebraic decomposition (CAD) of G: this is a special type
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of representation of G through a hierarchy of inequalities on the parameters. Suppose that a first family of
parameters, say {p1, . . . , pr1} (with 1 ≤ r1 < r) may take values in a product of intervals L1 × · · · × Lr1

(where each interval may be open, closed or mixed). Then a CAD is defined as follows:

S1 = L1 × · · · × Lr1 ⊂ Rr1

Sj = {(p̂, pj) ∈ Rj : p̂ = (p1, . . . , pj−1)′ ∈ Sj−1, fj(p̂) ≺ pj ≺ gj(p̂)} ⊂ Rj (15)

for j = r1 + 1, . . . , r, where fj , gj : Sj−1 → R>0 are continuous functions such that fj(p̂) ≤ gj(p̂) for all
p̂ ∈ Rj−1, the symbol ≺ denotes either < or ≤, and Sr = G.

Computing the cylindrical algebraic decomposition of a set is a complex problem, but various standard
algorithms are available [22, 23]. Several software packages have been developed, for instance QEPAD [24],
(based in [25]) and in Mathematica [26]. See also [27] for an overview of available software, current
applications, and many other related references. Common applications of CADs include computation of
the controllable or reachabable sets in hybrid systems, see for instance [28, 29], where the latter includes
an application to a genetic network in the fly wing. Constructing a CAD involves the use of symbolic
computation and, while various improvements have been achieved, it still is a time consuming problem. For
instance, the estimated maximum time for the algorithm [22] is dominated by “22kN

”, whereN is the length
of the input formula and 0 < k ≤ 8. Fortunately, in view of these computational complexity difficulties, in
the present example it is relatively easy to directly compute a CAD without using general methods, and we
will do so.

The computation of the feasible parameter set G for the segment polarity network is detailed in Ap-
pendix H. The CAD of G can be used to answer several questions regarding geometry and topology of the
feasible parameter space. First, the volume of G can be estimated, relative to the unitary hypercube [0, 1]r

(r = 31), as described in Section 6. Second, the topology ofG can be analyzed, to find out its connectedness
(e.g., simple-connectedness; or composed of various disconnected components). To summarize, we show
that G can be written as a union of several regions:

G = GI ∪ · · · ∪GVa ∪GVb ∪ · · · ∪GVIIIa ∪GVIIIb ∪GAuto.

These 13 regions are all connected and, in particular, GVa to GVIIIb are connecting faces and have a lower
dimension (see Theorem 2, below).

Each of these regions has a CAD with nine levels, as listed next. The levels S1, . . . , S6 are the same
for all the regions Gk, k ∈ {I, . . . ,VIIIb,Auto}. The form of the last three levels depends on each region:
Sk

7 , Sk
8 , Sk

9 . At the base of the CADs, S1 is a product of intervals for r1 = 23 parameters (while r = 31),
defined as follows:

S1 :


pCI = (HCI, CCI, U1, U2, U3, U4), ∈ [5, 100]× (0, 1]× [ε, 1]2 × (0, 1]× [ε, 1],
pPTC−HH = (HPTC, HHH, [PTC]0, [HH]0, rLMPTC, rLMHH, κPTCHH) ∈ [5, 100]2 × (0, 1]5,
pWG = (HWG, rM , rLM , rendo, rexo) ∈ [5, 100]× (0, 1]4,
αCIwg, αIWGwg ∈ [ ε

1−ε , 10],
κENci, κENhh, κCNhh ∈ (0, 1].

(16)

Levels S2 to S4 are characterized as follows:

S2 = {(p̂, κPTCCI) : p̂ ∈ S1, 0 < κPTCCI ≤ min{FPTC1,T , FPTC2,T} }, (17)

S3 = {(p̂, κCNptc) : p̂ ∈ S2, max{ UiQiHCICCI

1 +QiHCICCI

} ≤ κCNptc ≤ 1 }, (18)

S4 = {(p̂, κCIptc) : p̂ ∈ S3, 0 < κCIptc ≤ min{ Ui

1 +QiHCICCI

} }, (19)
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where FPTC1,T , FPTC2,T are the solutions of the algebraic equations (58) for the set of parameters p̂. Let
w2 ∈ { αCI

1+αCI
, αWG

1+αWG
, αWG+αCI

1+αWG+αCI
}. Then levels S5 and S6 are characterized as:

S5 = {(p̂, κWGen) : p̂ ∈ S4, 0 < κWGen ≤ w2βmed}, (20)

S6 = {(p̂, κCNen) : p̂ ∈ S5, 0 < κCNen ≤ min
i=1,2

{ UiQiHCICCI

1 +QiHCICCI

}, if κWGen ∈ [w2βmin, w2βmed];

or 0 < κCNen ≤ min
i=1,2,4

{ UiQiHCICCI

1 +QiHCICCI

}, if κWGen ∈ [0, w2βmin]} (21)

Finally, the last three levels have different expressions depending on the region of the parameter space:

Sk
7 = {(p̂, κWGwg) : p̂ ∈ S6, f

k
WGwg(p̂) ≺ κWGwg ≺ gk

WGwg(p̂) }, (22)

Sk
8 = {(p̂, κCNwg) : p̂ ∈ Sk

7 , f
k
CNwg(p̂) ≺ κCNwg ≺ gk

CNwg(p̂) }, (23)

Sk
9 = {(p̂, κCIwg) : p̂ ∈ Sk

8 , f
k
CIwg(p̂)} ≺ κCIwg ≺ gk

CIwg(p̂) }, (24)

where k ∈ {I, . . . ,VIIIb,Auto} and the functions fk
j and gk

j (j ∈ {WGwg, CNwg, CIwg}) are listed in Tables 4
and 5. These CADs have a biological interpretation (see discussion in Section 5.1): from equations (52)-
(63) subject to (4)-(5), several parameters are free to take any values, within physiological restrictions only
– these form S1. The parameters defined at the levels S2 to S6 have constraints which depend only on
the family of parameters defined in S1. The last levels, Sk

7 to Sk
9 define different regions of G, with the

property that each region is associated to the activation of a particular biological pathway: GAuto corresponds
to activation of wingless on the second cell by the autocatalytic pathway only. In regions GI to GVIIIb the
Cubitus pathway also promotes activation of wingless.

In the next lemma it is shown that each region Gk is topologically equivalent to a unitary closed hyper-
cube, hence topologically trivial. However, some regions (GVa to GVIIIb) have a lower dimension. This is
clear by observing Table 5: in each of these eight regions, either of the parameters κCNwg or κCIwg is a single
point (as opposed to a non-trivial interval).

To simplify notation, for i = 1, . . . , 4 define

Ũi = Ui
QiHCICCI

1 +QiHCICCI

and observe that CNi = Ũi and CIi = Ui − Ũi.
Let ≺ denote either of the symbols < or ≤ and define

Lj = {x ∈ R : aj ≺ x ≺ bj }.

Let I denote the unitary interval (open, closed or mixed):

I = {x ∈ R : 0 ≺ x ≺ 1 }.

Theorem 2. Consider the sets Sk
9 , k ∈ {I, . . . ,VIIIb,Auto}, obtained from (24). Then (with r = 31):

(i) Sk
9 , k = Auto, I, II, III, IV are homeomorphic to Ir;

(ii) Sk
9 , k = Va,Vb,VIa,VIb,VIIa,VIIb,VIIIa,VIIIb are homeomorphic to Ir−1 × {1}.

Proof. Consider first case (i). To argue by induction, note that each Lj is clearly homeomorphic to the
interval I (with the same open, closed or mixed boundaries as Lj), for j = 1, . . . , 23. Since aj < bj for all
j = 1, . . . , 23, simply consider the bijective function φj : Lj → I given by φj(p) = (bj − p)/(bj − aj).
Then the set S1 = L1×· · ·×L23 is homeomorphic to the product I23, by considering the bijective function
ϕ1 : S1 → I23 given by ϕ1(p1, . . . , p23) = (φ1(p1), . . . , φ23(p23))′.

10



Figure 2: Projection of set G into the (U1, U2, U4) space (case Qi = 1, i = 1, 2, 4). The critical hyperplanes
U2 = U4 (yellow/light grey) and U2 = U1 (blue/dark grey) define four strictly feasible components.

For i ≥ 2, assume that Si−1 is homeomorphic to Ii−1. Note that fi(p) < gi(p) for all i = 2, . . . , 9, for
Sk

9 with k = Auto, I, II, III, IV. Next, define the following continuous function:

ϕi : Si−1 × I → Si−1 × R, ϕi(p, t) = (p, fi(p) + t (gi(p)− fi(p))).

For each fixed p, fi(p) < gi(p) + t (gi(p) − fi(p)) < gi(p) for all t ∈ I. Therefore, ϕi maps into Si.
On the other hand, since gi(p) − fi(p) > 0 for all p ∈ Si−1, ϕi has an inverse function defined on Si and
continuous, given by:

ϕ−1
i : Si → Si−1 × I, ϕ−1

i (p, y) =
(
p,

y − fi(y)
gi(p)− fi(p)

)
.

So Si is homeomorphic to Si−1 × I, and therefore, by inductive hypothesis, to Ii.
Next, consider case (ii). From Table 5 it is clear that, in regions GVa to GVIIIb, exactly one of the

parameters κCNwg or κCIwg has a single point as an interval. So, the previous argument is valid up to Sr−1 and
then the last parameter is a point. This finishes the proof.

5.1 Two wingless mRNA activation pathways

Following the model of von Dassow et al, there are two possible parallel pathways for wingless activation:
either by the Cubitus interruptus protein (CI), or through auto-activation; both pathways could be simulta-
neously activating wingless production. Since the activation constants αCIwg and αWGwg, are free parameters,
in each of the three cases wgWT

2 will have a different ON level as calculated from (12). Computation of EWG
and IWG depends on wgWT

2 , so each of these three cases must be separately analyzed for feasibility. For
both pathways, exact analytic computation of PTCi,j and HHi,j (i, j = 1, . . . , 4) is also carried out (see
Appendix F). When CI and CN contribute to regulate wingless expression, it is easy to see from (54), (5)
and (14) that:

Ui
1

1 +QiHCICCI

≤ κCIwg or Ui
QiHCICCI

1 +QiHCICCI

≥ κCNwg, (25)

for i = 1, 3, 4, and

U2
1

1 +Q2HCICCI

≥ κCIwg and U2
Q2HCICCI

1 +Q2HCICCI

≤ κCNwg. (26)
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Figure 3: Projection of G on the space (κCIwg, κCNwg, κWGwg), of the fibre over the point represented by “∗” in
Fig. 2. This point corresponds to choosing values for (U1, U2, U4) in region GII. Depending on the choice
of parameters S1, the interval for κWGwg in GAuto may or may not intersect the other two. The values w2;· are
defined in Table 4.
From observation of (25), (26) it is clear that the situations Ũ2 = Ũ1 or Ũ2 = Ũ4 define some critical
regions. To see this, for simplicity consider Qi = 1 (which is true for many parameter sets, i.e., κPTCCI <
min{FPTC1,T , FPTC2,T}). Then Ũ2 = Ũ1 is compatible with the wild type pattern only when κCIwg = U1−Ũ1 =
U2Ũ2 or κCNwg = Ũ1 = Ũ2. Moreover, recalling the definition of step function, it follows that in this case
θ+(CI2θ−(CN2, κCNwg), κCIwg) = [0, 1] and wg may in fact be either activated or not in cell 2. The set G can
thus be partitioned into four “strictly feasible” components, divided by the critical hyperplanes Ũ2 = Ũ1 or
Ũ2 = Ũ4 (Fig. 2). Note that, for parameters belonging to these hyperplanes: wg2 = RCIαCI+RWGαWG

1+RCIαCI+RWGαWG

where RCI is any number in the interval [0, 1]. Thus there are multiple possible steady states, and some of
these may not provide the right phenotype. These hyperplanes correspond, in fact, to regions GV to GV III .

When only the wingless auto-activation pathway contributes to wingless activation, the necessary con-
ditions are (when Qi = 1):(

U2
1

1 +Q2HCICCI

< κCIwg or U2
Q2HCICCI

1 +Q2HCICCI

> κCNwg

)
and IWG2 ≥ κWGwg. (27)

Comparing (26) and (27) it is not surprising that, for each triple (Ũ1, Ũ2, Ũ4), κCIwg and κCNwg belong to
complementary intervals, since they define whether or not the CI/CN pathway is active. The projection on
the (κCIwg,κCNwg,κWGwg)-dimensions, shown in Fig. 3, compares the regions where CI/CN is active (GII ) or
only WG is active (GAuto), both polyhedrons.

6 Geometry, volume and the second missing link

From the CAD (16)- (24) it is very easy to compute the (relative) volume of G. Following a Monte Carlo
approach, the free parameters (16) and also (17) to (19) are chosen first, from a uniform distribution in their
respective intervals. Then the quintuple of parameters κWGen, κCNen, κCIwg, κCNwg, and κWGwg are randomly cho-
sen (from a uniform distribution) in the interval [0, 1]. It is then checked whether the whole parameter set
falls inside or outside G. If the parameter set falls inside G, we also check which wingless activation path-
ways are compatible, as well as the region (U1, U2, U4). This Monte Carlo approach provides an estimate
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of the volume of G, when projected into the (κCNen,κWGen,κCIwg,κCNwg,κWGwg) dimensions. In addition, we also
obtain an estimate of the fraction of the feasible parameter sets that correspond to either of the wingless ac-
tivation pathways. The volume of this 5-dimensional cube occupied by feasible parameter sets is only about
0.3%. Interestingly, we also found that the vast majority of the feasible parameter space corresponds to auto-
regulation of wingless. As illustrated by the polyhedrons in Fig. 3, regionGAuto is much larger than the others.
Here, regions GI to GVIIIb are re-grouped according to the biological pathway, following the indications in
Tables 3 and 4. Region GCI corresponds to wingless mRNA regulation by cubitus only, and region GCI,WG

corresponds to regulation by both cubitus and wingless proteins. We have: GCI ∪GCI,WG = GI ∪ · · · ∪GVIIIb,
where each Gi intersects GCI and GCI,WG.

Table 1: Relative volume of G. Fraction of G corresponding to each of the three wingless activation path-
ways: auto-regulation only (GAuto), cubitus regulation only (GCI), and both cubitus and wingless regulation
(GCI,WG). Note: GCI∪GCI,WG = GI∪· · ·∪GVIIIb. Total number of parameter sets generated: 1×107. Number
of feasible parameter sets: 33276.

Region Volume
GAuto 322× 10−5

GCI 8.5× 10−5

GCI,WG 1.5× 10−5

The large difference observed between GCI, GCI,WG and GAuto explains the second “missing link” in the
first version of von Dassow et. al. model, namely the wingless autocatalytic activation. Note that the
presence of this link greatly increases the total volume of the feasible parameter space: in fact the region
GAuto is 96% of the total feasible volume.

6.1 Geometry: parameter distributions

To further analyze the geometry of the feasible parameter space, one may ask how the parameters are
distributed in their intervals. For instance, is each parameter pi more likely to attain high or low values more
frequently, and can a specific “tendency” for each parameter pi be identified. An answer to this question
is obtained by computing the marginal distribution of each parameter from a family of randomly generated
parameters in the full parameter space G. Taking all the parameter sets generated proviously to compute the
relative volume of G, and computing a histogram for each parameter, the result shown on Fig. 5 is obtained.
As expected, many parameters have a uniform distribution, as their values do not influence the final outcome
of the network in any particular way (for instance, most half-lives and diffusion-related parameters). Other
parameters exhibit a marked tendency for higher (e.g., κCNptc), medium (e.g., κWGwg) or lower (e.g., κCIptc)
values. All the parameters that exhibit a marked tendency are listed in Table 2, and classified according to
their function in the network: for instance, κCNptc represents the repression of ptc by CN, and therefore, high
values of κCNptc correspond to a weak repression.

A very similar analysis was performed by von Dassow and Odell [20], who also plotted the distribution
of their family of feasible parameters to determine possible constraints for each parameter. Overall, our
results agree very well with those of von Dassow and Odell: most tendencies found by these authors (see
Fig. 6 and Table 1 of [20]) are confirmed by our parameter analysis. There are only six exceptions, where our
analysis showed no tendency (compare columns 3 and 4 of Table 2), suggesting that these five parameters
can, in fact, take values in a larger set, implying that the parameter space is larger than estimated in [20].
From these exceptions, κENci, κENhh, κCNhh, and rendoWG all belong to the group of parameters which can be
freely chosen. The other parameters are κCNwg, κCIwg, which depend on the Ui regions, and again our analysis
shows that this pair has no preferred tendency.
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A more detailed examination of the conditions on κCIwg and κCNwg turns out to be very illuminating. First,
note that κCIwg and κCNwg actually define the pathway through which wingless is activated. That is, in each of
the regions GAuto, GCI or GCI,WG, κCIwg and κCNwg belong to distinct intervals as a function of Ui. Thus, it may
be expected that the distribution of these parameters varies in each region. By plotting the histograms for
κCIwg and κCNwg for each region alone (Fig. 4), we note that these show a marked tendency only outside region
GAuto, for low κCIwg and high κCNwg. The tendency of κCIwg and κCNwg outside GAuto is, however, the opposite
of that observed by von Dassow and Odell, a fact that can be explained once again by the “second missing
link”. Since the volume of GAuto is about 96% of G, it dominates the overall tendency. Indeed, since all
feasible parameter sets in [3, 20] were found only after adding the autocatalytic wingless activation link, it
can be inferred that those parameters belong to region GAuto.

Table 2: Comparison between the constraints identified by von Dassow and Odell [20], and the exact con-
straints given by the regions defined above. Total number of parameters generated in G: 33276.

Parameter Description Tendency Tendency Tendency
([20], Table 1) (within G) (GCI +GCI,WG)

κWGen WG activation of en Moderate Moderate
κCNen CN repression of en Strong Strong
κWGwg WG autoactivation Moderate Moderate
κCIwg CI activation of wg Weak — Strong
κCNwg CN repression of wg Strong — Weak
κCIptc CI activation of ptc Strong Strong
κCNptc CN repression of ptc Weak Weak
κENci EN repression of ci Moderate —
κPTCCI PTC stimulation of CI cleavage Strong Strong
κENhh EN activation of hh Weak —
κCNhh CN repression of hh Strong —
CCI Maximal cleavage rate of CI Rapid Rapid
HIWG Half-life of intracellular WG Short Short
rendoWG Rate of WG endocytosis Slow —
rexoWG Rate of WG exocytosis Moderately slow Moderately fast
rMxferWG Rate of WG cell-to-cell exchange Slow Slow
αWGwg Maximal WG autocatalytic rate — Moderately rapid

7 Discussion and conclusions

Analysis of the feasible parameter set, by estimating its volume, identifying connected components, and
studying its geometric properties, are valuable tools for establishing and quantifying robustness in regula-
tory networks. The concept of robustness, in the sense that the system’s regulatory functions should operate
correctly under a variety of situations, is closely related to the parameter space and the effect of parameter
perturbations. In this context, our analysis of the model of the segment polarity network proposed in [3]
shows that its feasible parameter space is composed of a single connected component, indicating a high
robustness. However, we have found one topological and one geometric property which may contribute to
lower robustness. First, there are two distinct regions in the parameter space (which correspond to two adja-
cent “cubes” , see Fig. 3) associated with two different biological pathways: either auto-catalytic activation
of wingless or activation by cubitus proteins only. Second, we have identified two lower dimensional planes
of critical parameters (Ũ2 = Ũ1 and Ũ2 = Ũ4), where the model may fail to generate the wild type pattern.
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Since they form a lower dimensional space, these critical parameters are not likely to be an operating mode
of the network. Nevertheless, the critical planes separate part of the feasible parameter space into four re-
gions. An implication of this topological characterization is a diminished capacity of the network to respond
well to environmental perturbations. Random fluctuations may drive the system through one of the critical
planes, and possibly lead to a break down of the network or a different phenotype.

The reason why the planes Ũ2 = Ũ1 and Ũ2 = Ũ4 are critical can be traced in large part to an incom-
patibility of cubitus repression functions in the second cell: CN2 should be present to repress engrailed
expression, but should be absent to enhance CI2 activation of wingless. To increase the network’s robustness
to environmental fluctuations, the segment polarity model should account for engrailed regulation by other
factor than cubitus. One possibility is to include regulation by pair-rule gene products, such as sloppy paired,
as explored both in [9] and [8]. An external factor, again possibly from the pair-rule genes, will also play
a major role in establishing asymmetry in the cubitus levels (Ui). These contribute to a larger admissible
parameter space, and together with an improved engrailed regulation, will greatly enhance robustness of
the segment polarity network in maintaining its pattern. An extension of the current analysis including the
regulation by sloppy paired is currently in preparation by A. Dayarian at one of our labs [15].

Comparing the volume estimates for the regions GAuto and GCI or GCI,WG shows that the first accounts
for about 96% of the total feasible volume. Thus it is seems much more likely that wild type expression in
this model of the segment polarity network is achieved through the wingless auto-activation pathway. In the
absence of the auto-activation link, von Dassow et. al. failed to observe any feasible parameter set in their
numerical experiments. However, as soon as the auto-activation pathway was added (the second “missing
link” in the model [3]), immediately a significant percentage of feasible parameter sets were observed.
This is not surprising, as elucidated by our analysis: while wingless auto-activation is not strictly necessary
to establishing the segment polarity genes pattern, it does greatly increase the probably that the pattern
is achieved, by increasing the volume of the feasible parameter space. At the same time, the parameter
histogram for the activity threshold κWGwg is very sharp, when compared with the other parameters (and our
results are in clear agreement with the original study by von Dassow et. al. [20]). This indicates that fine
tuning of κWGwg is essential to maintenance of the asymmetric wg pattern. Note that (cf. Theorem 1) wingless
protein concentration is only sligthly higher in the wg-expressing cell (2nd cell) than in its two immediate
neighbours (1st and 3rd cells). Thus, fine tuning of κWGwg is necessary to promote auto-activation in the 2nd

cell but prevent auto-activation in the 1st and 3rd cells.
The analysis developed in this paper can be applied to other systems and regulatory networks, to system-

atically characterize and explore the admissible space of parameters, its topology and geometry. The method
presented here assumes there is a (fixed) set of target states or “pattern” (W) to be reproduced (or avoided)
by the system, typically a desired steady state of the system. This pattern should also satisfy a family of
algebraic equations (x = f(x; p)), on the variables and parameters of the system (p). These equations can
be those characterizing the system at steady state for instance, but can also include other constraints as long
as they are written in this form. To obtain a family of equations that is easier to deal with, the functions
f(x; p) may be simplified using reasonable approximations. For instance, sigmoidal type functions may be
approximated by piecewise constant step functions. These equations are then symbolically solved with re-
spect to the parameters. As a result, one obtains a family of inequalities characterizing the set of parameters
compatible with the desired pattern and constraints. It is not guaranteed that an nonempty set of compatible
parameters exists, as this depends on the constraints. Computation of a cylindrical algebraic decomposition
is the main difficulty of this method. In general one may expect that it will work best with smaller/medium
systems (on the order of 10-20 variables).

Our results emphasize that robustness of a regulatory module should not be measured simply as a func-
tion of the volume of its admissible parameter space. The geometry (for instance, convexity or existence
of sharp points) and topology (connectedness) of the parameter space play fundamental roles in measuring
robustness. These provide reliable information on how the network’s interactions contribute to its robustness
or fragility, and serve as measures to classify robust regulatory modules.
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Table 3: Parameters common to all regions: κPTCCI, κCIptc, κCNptc, κWGen, and κCNen. Let w2 ∈
{ αCI

1+αCI
, αWG

1+αWG
, αWG+αCI

1+αWG+αCI
}

Parameters Intervals

κPTCCI (0,min{FPTC1,T , FPTC2,T}]

κCIptc (0,min{ Ui
1+QiHCICCI

}]

κCNptc (max{ UiQiHCICCI
1+QiHCICCI

, 1]

κWGen (0, w2βmed]

κCNen (0,mini=1,2{ UiQiHCICCI
1+QiHCICCI

}] if κWGen ∈ [w2βmin, w2βmed]

(0,mini=1,2,4{ UiQiHCICCI
1+QiHCICCI

}] if κWGen ∈ (0, w2βmin]

Table 4: Parameter κWGwg in each region. In regions GI to GVIIIb the cubitus pathway contributes to wingless
mRNA regulation. In region GAuto only the wingless pathway contributes to wingless mRNA regulation.
Define: w2;C = αCI

1+αCI
, w2;C,W = αWG+αCI

1+αWG+αCI
, and w2;W = αWG

1+αWG
.

Region Intervals

Gk, k = I, . . . , VIIIb [w2;Cγmax, 1] (cubitus pathway only)

[w2;C,Wγmed, w2;C,Wγmax] (both cubitus and wingless pathways)

GAuto [w2;Wγmed, w2;Wγmax]
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Table 5: Parameters κCNwg and κCIwg in each region. In regions GI to GV III the cubitus pathway contributes
to wingless mRNA regulation. In region GAuto only the wingless pathway contributes to wingless mRNA
regulation. Define Ũi = UiQiHCICCI

1+QiHCICCI
, and note that Ui − Ũi = Ui

1+QiHCICCI
.

Region Intervals
κCNwg κCIwg

GI (maxi=1,4 Ũi < Ũ2) [Ũ2, 1] [maxi=1,4(Ui − Ũi), U2 − Ũ2]

GII (Ũ4 < Ũ2 < Ũ1) [Ũ2, Ũ1] [U4 − Ũ4, U2 − Ũ2]

GIII (Ũ2 < mini=1,4 Ũi) [Ũ2,mini=1,4 Ũi] (0, U2 − Ũ2]

GIV (Ũ1 < Ũ2 < Ũ4) [Ũ2, Ũ4] [U1 − Ũ1, U2 − Ũ2]

GVa (Ũ4 = Ũ2 < Ũ1) {Ũ2} (0, U2 − Ũ2]

GVb (Ũ4 = Ũ2 < Ũ1) [Ũ2, Ũ1] {U2 − Ũ2}

GVIa (Ũ4 < Ũ2 = Ũ1) {Ũ2} [U4 − Ũ4, U2 − Ũ2]

GVIb (Ũ4 < Ũ2 = Ũ1) [Ũ2, 1] {U2 − Ũ2}

GVIIa (Ũ1 = Ũ2 < Ũ4) {Ũ2} (0, U2 − Ũ2]

GVIIb (Ũ1 = Ũ2 < Ũ4) [Ũ2, Ũ4] {U2 − Ũ2}

GVIIIa (Ũ1 < Ũ2 = Ũ4) {Ũ2} [U1 − Ũ1, U2 − Ũ2]

GVIIIb (Ũ1 < Ũ2 = Ũ4) [Ũ2, 1] {U2 − Ũ2}

GAuto (0, Ũi] or [Ui − Ũi, 1] (each i = 1, 2, 4)
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Figure 4: Comparison of histograms for the pair κCIwg, κCNwg, in the whole feasible parameter space (G) and
in the regions corresponding to the auto-catalytic pathway (GAuto), or the cubitus pathway (GCI + GCI,WG).
The x-axis is shown in log10 scale.
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Figure 5: Parameter histograms out of 33276 parameter sets (refer to model equations for explanation of
parameters). The notation and scales follow those of Fig. 6 in [20]. In the y-axis, the histograms are all
normalized to their maximal value.
The half-lifes (denoted Hx) range between 5 and 100 mins in a linear scale. The coefficients aCIwg and
aWGwg range between ε/(1− ε) = 1/9 and 10.0 also in a linear scale. All other parameters range between
10−3 and 1, and shown in log10 scale.
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A Notation

The original model can be found in [3, 20]. In order to make our work more clear, we include the notation
as well as the original equations below. Without loss of generality (the geometry remains unchanged),
each cell is assumed to have four faces (Fig. 6), rather than six as in the original model [3]. The model
reproduces a parasegment of four cells and uses repetition of this group of four cells to reproduce the
embryo’s anterior/posterior axis (A/P axis in Fig. 6), and the circular ventral/dorsal axis (V/D axis in Fig. 6).
Because intercellular diffusion is only considered along the A/P axis (left/right), and because cells repeat in
the orthogonal V/D direction (up/down), it is indeed equivalent to consider symmetric four-sided or six-sided
hexagonal cells.

wg en wg en

wg en wg en

wg en wg en

1
2

3
4

1
2

3
4

1
2

3
4

1
2

3
4

...    2        3       4       1        2        3       4   ...

Four-cell parasegment

A/P

V/D

⋮

⋮

Figure 6: Four cells in a parasegment, with periodic boundary conditions in both dimensions. Each cell has
four membranes. The relative values of Wingless in each cell (EWGi) are shown.

A saturation function, and its horizontal reflexion, are introduced:

φ(X,κ, ν) =
Xν

κν +Xν
,

ψ(X,κ, ν) = 1− φ(X,κ, ν).

The subscripted variables are as follows:

Xi = concentration of species X on cell i (when homogeneous throughout the cell ),

Xi,j = concentration of species X on cell i, at face j,

κXY = threshold for activation of species Y , induced by species X,

n(i, j) = index of neighbor to cell i, at face j,

Xn(i,j),j+3 = concentration of species X on cell face apposite to i, j,

Xi,T =
6∑

j=1

Xi,j = total concentration of species X on cell i,

Xi =
6∑

j=1

Xn(i,j),j+3 = total concentration of species X presented to cell i by its neighbors.
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B Original equations

From [3, 20], the model equations are:

deni

dt
=

1
Hen

(
φ(EWGiψ(CNi, κCNen, νCNen), κWGen, νWGen)− eni

)
(28)

dENi

dt
=

1
HEN

(eni − ENi) (29)

dwgi

dt
=

1
Hwg

(
αCIwgφ(CIiψ(CNi, κCNwg, νCNwg), κCIwg, νCIwg) + αWGwgφ(IWGi, κWGwg, νWGwg)

1 + αCIwgφ(CIiψ(CNi, κCNwg, νCNwg), κCIwg, νCIwg) + αWGwgφ(IWGi, κWGwg, νWGwg)
− wgi

)
(30)

dIWGi

dt
=

1
HWG

(wgi − IWGi + rendoHIWGEWGi,T −HWGrexoIWGi) (31)

dEWGi,j

dt
=

1
6
rexoIWGi − rendoEWGi,j + rM (EWGn(i,j),j+3 − EWGi,j)

+rLM (EWGi,j−1 + EWGi,j+1 − 2EWGi,j)−
EWGi,j

HWG

(32)

dptci

dt
=

1
Hptc

(φ(CIiψ(CNi, κCNptc, νCNptc), κCIptc, νCIptc)− ptci) (33)

dPTCi,j

dt
=

1
HPTC

(
1
6

ptci − PTCi,j − κPTCHHHPTC[HH]0HHn(i,j),j+3PTCi,j

)
+rLMPTC(PTCi,j−1 + PTCi,j+1 − 2PTCi,j) (34)

dcii
dt

=
1
Hci

(φ(Biψ(ENi, κENci, νENci), κBci, νBci)− cii) (35)

dCIi
dt

=
1
HCI

(cii − CIi −HCICCICIiφ(PTCi,T, κPTCCI, νPTCCI)) (36)

dCNi

dt
=

1
HCI

(HCICCICIiφ(PTCi,T, κPTCCI, νPTCCI)− CNi) (37)

dhhi

dt
=

1
Hhh

(φ(ENiψ(CNi, κCNhh, νCNhh), κENhh, νENhh)− hhi) (38)

dHHi,j

dt
=

1
HHH

(
1
6

hhi − HHi,j − κPTCHHHHH[PTC]0PTCn(i,j),j+3HHi,j

)
+rLMHH(HHi,j−1 + HHi,j+1 − 2HHi,j) (39)
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C Simplified model, for large ν

Using the approximations (10), (11) the right hand side of the von Dassow et. al. is simplified as follows:

feni =
1
Hen

(
θ+(EWGiθ

−(CNi, κCNen), κWGen)− eni

)
(40)

fENi =
1
HEN

(eni − ENi) (41)

fwgi
=

1
Hwg

(
αCIwgθ

+(CIiθ−(CNi, κCNwg), κCIwg) + αWGwgθ
+(IWGi, κWGwg)

1 + αCIwgθ+(CIiθ−(CNi, κCNwg), κCIwg) + αWGwgθ+(IWGi, κWGwg)
− wgi

)
(42)

fIWGi =
1
HWG

(wgi − IWGi + rendoHIWGEWGi,T −HWGrexoIWGi) (43)

fEWGi,j =
1
4
rexoIWGi − rendoEWGi,j + rM (EWGn(i,j),j+3 − EWGi,j)

+rLM (EWGi,j−1 + EWGi,j+1 − 2EWGi,j)−
EWGi,j

HWG

(44)

fptci =
1
Hptc

(
θ+(CIiθ−(CNi, κCNptc), κCIptc)− ptci

)
(45)

fPTCi,j =
1

HPTC

(
1
4

ptci − PTCi,j − κPTCHHHPTC[HH]0HHn(i,j),j+3PTCi,j

)
+rLMPTC(PTCi,j−1 + PTCi,j+1 − 2PTCi,j) (46)

fcii =
1
Hci

(
Uiθ

−(ENi, κENci)− cii
)

(47)

fCIi =
1
HCI

(
cii − CIi −HCICCICIiθ+(PTCi,T, κPTCCI)

)
(48)

fCNi =
1
HCI

(
HCICCICIiθ+(PTCi,T, κPTCCI)− CNi

)
(49)

fhhi =
1
Hhh

(
θ+(ENiθ

−(CNi, κCNhh), κENhh)− hhi

)
(50)

fHHi,j =
1
HHH

(
1
4

hhi − HHi,j − κPTCHHHHH[PTC]0PTCn(i,j),j+3HHi,j

)
+rLMHH(HHi,j−1 + HHi,j+1 − 2HHi,j). (51)

To obtain equation (47) note that, in the original model of von Dassow et. al. , ci is written in terms of a
constant forcing Bi:

cii = θ+(Biθ
−(ENi, κENci), κBci),

where Bi is itself a parameter. Our definition of step function allows to merge the two parameters Bi and
κBci into one single parameter Ui by letting

Ui ∈


{0}, Bi < κBci

[0, 1], Bi = κBci

{1}, Bi > κBci.

More generality is obtained by assuming that Bi = κBci, and always allowing Ui ∈ [0, 1].
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D Steady state equations

Solving equations (28)-(39) at steady state (dx/dt = f(x) = 0), and using the approximations (10), (11),
yields the algebraic expressions:

eni = θ+(EWGiθ
−(CNi, κCNen), κWGen) (52)

ENi = eni (53)

wgi =
αCIwgθ

+(CIiθ−(CNi, κCNwg), κCIwg) + αWGwgθ
+(IWGi, κWGwg)

1 + αCIwgθ+(CIiθ−(CNi, κCNwg), κCIwg) + αWGwgθ+(IWGi, κWGwg)
(54)

IWGi =
HIWGrendo

1 +HIWGrexo

EWGi,T +
1

1 +HIWGrexo

wgi (55)

M EWG = −1
4

rexo

1 +HIWGrexo

w̃g (56)

ptci = θ+(CIiθ−(CNi, κCNptc), κCIptc) (57)

PTCi,j =
1
4

ptci − κPTCHHHPTC[HH]0HHn(i,j),j+3PTCi,j

+rLMPTCHPTC(PTCi,j−1 + PTCi,j+1 − 2PTCi,j) (58)

cii = Ui θ
−(ENi, κENci) (59)

CIi = Ui
1

1 +HCICCI θ+(PTCi,T, κPTCCI)
θ−(ENi, κENci) (60)

CNi = Ui
HCICCI θ

+(PTCi,T, κPTCCI)
1 +HCICCI θ+(PTCi,T, κPTCCI)

θ−(ENi, κENci) (61)

hhi = θ+(ENiθ
−(CNi, κCNhh), κENhh) (62)

HHi,j =
1
4

hhi − κPTCHHHHH[PTC]0PTCn(i,j),j+3HHi,j

+rLMHHHHH(HHi,j−1 + HHi,j+1 − 2HHi,j) (63)

EWG is a vector in R16 with components:

EWG = ( EWG1,1,EWG1,2,EWG1,3,EWG1,4,EWG2,1,EWG2,2,EWG2,3,EWG2,4,

EWG3,1,EWG3,2,EWG3,3,EWG3,4,EWG4,1,EWG4,2,EWG4,3,EWG4,4)′

w̃g is also a vector in R16, given by the following Kronecker tensor product

w̃g = (wg1,wg2,wg3,wg4)
′ ×kron (1, 1, 1, 1)′

= (wg1,wg1,wg1,wg1,wg2,wg2,wg2,wg2,wg3,wg3,wg3,wg3,wg4,wg4,wg4,wg4)
′.
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Putting together the 16 equations (56), and substituting IWGi by its steady state expression (55), it is not
difficult to see that the matrix M ∈ R16 × R16 is composed of various 4× 4 blocks, as follows:

M =


E F24 0 F42

F42 E F24 0
0 F42 E F24

F24 0 F42 E

 (64)

where

E =


−d rLM rM rLM

rLM −d rLM 0
rM rLM −d rLM

rLM 0 rLM −d

 + h


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


with

d = H−1
IWG + rendo + rM + 2rLM ,

h =
1
4

HIWG rexo

1 +HIWGrexo

rendo

F24 =


0 0 0 0
0 0 0 rM
0 0 0 0
0 0 0 0

 , F42 = F ′
24 =


0 0 0 0
0 0 0 0
0 0 0 0
0 rM 0 0

 .

Note that the steady state equations for EN, IWG, EWG and PTC are algebraic, and in fact exact solutions
can be computed from the steady state values of wg and ptc. These are discussed in more detail in the
Appendices E and F.

Remark: The parameters are as in [3], except Ui, which represent the maximal values of ci, in each
cell. These take values in the interval [0, 1] and generalize the possible ON values of ci (see explanation in
Appendix C).

E Analytically solving Wingless levels

The steady states of Wingless proteins (56) and (55) are given directly by algebraic equations, depending
only on wingless mRNA (wg2) and diffusion parameters for intracellular (membrane-to-membrane) and
intercellular communication. Consider equation (56): it is easy to see that M is in fact always invertible (if
all parameters are positive). First note that the matrix is diagonally dominant, by adding up the entries in
any column:

−
(
H−1

IWG + rendo + rM + 2rLM

)
+ 2rLM + rM + 4h = −H−1

IWG − rendo

1
1 +HIWGrexo

which is always a negative quantity. By Geršgorin’s Theorem, all eigenvalues ofM are contained in the disk
centered at −d+ h with radius 2rLM + rM + 3h, therefore all have negative real parts. Thus, the matrix M
is symmetric and negative definite, and since the right-hand-side vector is also non-positive, all solutions are
real and positive, whatever the choice of parameters. As a fact, note that the vector ~1 = (1, 1, . . . , 1)′ ∈ R16

is an eigenvector of M , corresponding to the eigenvalue λ1 = −H−1
IWG − rendo

1
HIWG+rexo

.
The solution of equations (56) and (55) can be written in terms of wg = (wg1,wg2,wg3,wg4) as de-

scribed next.
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Lemma E.1. There exist constants βmax > βmed > βmin > 0 and γmax > γmed > γmin > 0 such that:

EWG1 = wg1βmax + (wg2 + wg4)βmed + wg3βmin,

EWG2 = wg2βmax + (wg1 + wg3)βmed + wg4βmin,

EWG3 = wg3βmax + (wg2 + wg4)βmed + wg1βmin,

EWG4 = wg4βmax + (wg1 + wg3)βmed + wg2βmin.

and

IWG1 = wg1γmax + (wg2 + wg4)γmed + wg3γmin,

IWG2 = wg2γmax + (wg1 + wg3)γmed + wg4γmin,

IWG3 = wg3γmax + (wg2 + wg4)γmed + wg1γmin,

IWG4 = wg4γmax + (wg1 + wg3)γmed + wg2γmin.

Proof. Observe that (56) can be written:

~E = −1
4

rexo

1 +HIWGrexo

M−1w̃g

= −wg1cM
−1


~1
~0
~0
~0

− wg2cM
−1


~0
~1
~0
~0

− wg3cM
−1


~0
~0
~1
~0

− wg4cM
−1


~0
~0
~0
~1

 (65)

where c = 1
4

rexo
1+HIWGrexo

, ~E ∈ R16
≥0, ~1 = (1, 1, 1, 1)′, and ~0 = (0, 0, 0, 0)′. Defining

L =


1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0


one obtains: 

EWG1

EWG2

EWG3

EWG4

 = L~E.

Theorem 1 (proved below) is equivalent to saying that:

X = −cLM−1


~0
~1
~0
~0

 =


βmed

βmax

βmed

βmin


where: βmax > βmed > βmin > 0. In fact, X = (EWG1, . . . ,EWG4) corresponds to the solution of (56)
when wg = (0, 1, 0, 0), in which case EWG2 = βmax, EWG1 = EWG3 = βmed, and EWG4 = βmin.

By symmetry of the system, it is easy to see that

−cLM−1


~1
~0
~0
~0

 =


βmax

βmed

βmin

βmed


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and so on (by circulating the positions of the β∗). Linear combination gives the general solution for the
EWGi.

Similarly, to compute the solution of (55), define

Q =


1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1


and recall that 

EWG1,T

EWG2,T

EWG3,T

EWG4,T

 = Q~E.

Now consider the solution for the case wg = (0, 1, 0, 0):

Y = −cQM−1


~0
~1
~0
~0


Using Facts E.1 and E.2, and then E.4 and E.6 (below), we define constants γ̂max > γ̂med>̂γmin > 0:

Y1 = 2E1,1 + E1,2 + E1,4 := γ̂med,

Y2 = 2E2,1 + 2E2,2 := γ̂max,

Y3 = 2E1,1 + E1,2 + E1,4 := γ̂med,

Y4 = 2E4,1 + 2E4,2 := γ̂min,

Substituion into (55) yields:
Z1

Z2

Z3

Z4

 =
HIWGrendo

1 +HIWGrexo


Y1

Y2

Y3

Y4

 +
1

1 +HIWGrexo


0
1
0
0

 =


ĉγ̂med

c̃+ ĉγ̂max

ĉγ̂med

ĉγ̂min


where ĉ = HIWGrendo

1+HIWGrexo
and c̃ = 1

1+HIWGrexo
. Define:

γmax = c̃+ ĉγ̂max, γmed = ĉγ̂med, γmin = ĉγ̂min.

The solutions for the cases wg = (1, 0, 0, 0), wg = (0, 0, 1, 0), wg = (0, 0, 0, 1) are analogous (circulating
the positions of the γ∗). An appropriate linear combination yields the desired result for IWG.

Proof of Theorem 1 First, we state Facts E.1 and E.2, which hold for any wg.

Fact E.1. For all i = 1, 2, 3, 4 it holds that

EWGi,1 = EWGi,3.
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Proof. This is easy to see from the respective equations:

(−d+ h)EWGi,1 + (rM + h)EWGi,2 + (rM + h)EWGi,3 + (rM + h)EWGi,4 = − h

rendoHIWG

wgi

(rM + h)EWGi,1 + (rM + h)EWGi,2 + (−d+ h)EWGi,3 + (rM + h)EWGi,4 = − h

rendoHIWG

wgi

which can be rearranged to

−(d+ rM )EWGi,1 + (rM + h)(EWGi,2 + EWGi,4) + (rM + h)(EWGi,3 + EWGi,1) = − h

rendoHIWG

wgi

−(d+ rM )EWGi,3 + (rM + h)(EWGi,2 + EWGi,4) + (rM + h)(EWGi,3 + EWGi,1) = − h

rendoHIWG

wgi . (66)

Subtracting these two equations yields the desired result.

Fact E.2. It holds that

EWG2,2 = EWG2,4, EWG4,2 = EWG4,4, EWG1,2 = EWG3,4, EWG1,4 = EWG3,2.

Proof. Exchanging the indexes:

2, 2 ↔ 2, 4 4, 2 ↔ 4, 4 1, 2 ↔ 3, 4 1, 4 ↔ 3, 2

it is easy to see that the system remains unchanged (see also Fig. 6).

Assume now that wg = (0, w, 0, 0), for any w > 0. The equality part in (13) is now clear:

Fact E.3. EWG1 = EWG3.

Proof. We first show that EWG1,1 = EWG3,3. Writing equation (66) for i = 1 and i = 3:

−(d+ rM )EWG1,1 + (rM + h)(EWG1,2 + EWG1,4) + (rM + h)(EWG1,3 + EWG1,1) = 0
−(d+ rM )EWG3,3 + (rM + h)(EWG3,2 + EWG3,4) + (rM + h)(EWG3,3 + EWG3,1) = 0

Using Fact E.1 one has EWG1,1 = EWG1,3 and EWG3,1 = EWG3,3, and then using Fact E.2 obtains:

−(d+ rM − 2rM − 2h)EWG1,1 + (rM + h)(EWG3,4 + EWG3,2) = 0
−(d+ rM − 2rM − 2h)EWG3,3 + (rM + h)(EWG3,2 + EWG3,4) = 0.

Subtracting these two equations shows that EWG1,1 = EWG3,3. Now recalling the notation for Xi from
Appendix A

EWG1 = EWG1,1 + EWG2,4 + EWG1,3 + EWG4,2

EWG3 = EWG3,1 + EWG4,4 + EWG3,3 + EWG2,2.

Using EWG1,1 = EWG3,3, Fact E.1 and Fact E.2 obtains:

EWG1 = EWG3,1 + EWG2,2 + EWG3,3 + EWG4,4 = EWG3.

as we wanted to prove.
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To show the other inequalities, note first that the 16 variables EWGi,j are thus reduced to only seven:

E1,1 = EWG1,1 = EWG1,3 = EWG3,1 = EWG3,3

E1,2 = EWG1,2 = EWG3,4

E1,4 = EWG1,4 = EWG3,2

E2,1 = EWG2,1 = EWG2,3

E2,2 = EWG2,2 = EWG2,4

E4,1 = EWG4,1 = EWG4,3

E4,2 = EWG4,2 = EWG4,4

and satisfy the equations:

−(d− rM − 2h)E1,1 + (rLM + h)E1,2 + (rLM + h)E1,4 = 0 (67)

2(rLM + h)E1,1 − (d− h)E1,2 + hE1,4 + rME2,2 = 0 (68)

2(rLM + h)E1,1 + hE1,2 − (d− h)E1,4 + rME4,2 = 0 (69)

−(d− rM − 2h)E2,1 + 2(rLM + h)E2,2 = − h

rendoHIWG

wg2 (70)

2(rLM + h)E2,1 − (d− 2h)E2,2 + rME1,2 = − h

rendoHIWG

wg2 (71)

−(d− rM − 2h)E4,1 + 2(rLM + h)E4,2 = 0 (72)

2(rLM + h)E4,1 − (d− 2h)E4,2 + rME1,4 = 0 . (73)

To simplify notation, set:

A = d− rM − 2h, B = 2(rLM + h), w̄ =
h

rendoHIWG

wg2,

and note that A > B > 0.

Fact E.4. The following hold:

(a) E4,1 < E4,2 < E1,4 < E1,2 < E2,2;

(b) E4,1 < E1,1 < E1,2;

(c) E1,2 + E1,4 < E2,2 + E4,2

Proof. To prove part (a), from eqs. (72), (73) it holds that

E4,1 =
B

A
E4,2; E4,2 =

rMA

A2 −B2 + rMA
E1,4

Because A > B > 0, it is clear that E4,1 < E4,2 < E1,4. From eqs. (70), (71) it holds that

E2,1 =
B

A
E2,2 +

1
A
w̄; E2,2 =

rMA

A2 −B2 + rMA
E1,2 +

A+B

A2 −B2 + rMA
w̄

Then eqs. (68), (69) can be written in the form(
d− rM

rMA

A2 −B2 + rMA

)
E1,2 = BE1,1 + h(E1,2 + E1,4) + rM

A+B

A2 −B2 + rMA
w̄(

d− rM
rMA

A2 −B2 + rMA

)
E1,4 = BE1,1 + h(E1,2 + E1,4)
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which implies that E1,4 < E1,2 (it is easy to see that the factor multiplying both E1,2 and E1,4 is positive,
since d > rM ).

We still need to prove the last inequality in (a), but we can now prove (b). From eq. (67)

E1,1 =
1
2
B

A
(E1,2 + E1,4) < E1,2

using (a) and because B < A. This proves the second inequality in (b). To prove (c), substitute this E1,1

expression into the sum of eqs. (68), (69):

E2,2 + E4,2 =
A2 −B2 + rMA

rMA
(E1,2 + E1,4) > E1,2 + E1,4.

The last part of (a) now follows from (c) together with E4,2 < E1, 4, which implies E1,2 < E2,2.
Finally, the first part of (b) is easy to see from:

E1,1 − E4,1 =
1
2
B

A
(E1,2 + E1,4)−

B

A
E4,2 >

1
2
B

A
(E1,2 + E1,4 − E1,4) > 0.

To prove the first inequality of Theorem 1 is now straighforward.

Fact E.5. EWG4 < EWG1

Proof. Recall the notation for EWGi and use Fact E.4

EWG1 − EWG4 = 2E1,1 + E2,2 + E4,2 − 2E4,1 − 2E1,4

= 2(E1,1 − E4,1) + (E2,2 + E4,2 − E1,2 − E1,4) + (E1,2 − E1,4) > 0.

To prove the other inequality we need the next result.

Fact E.6. It holds that: E2,1 > E2,2.

Proof. First notice that

E1,2 = rM
A+B

d(A2 −B2 + rMA)− r2MA
w̄

+
1
2
rM

A2 −B2 + rMA

d(A2 −B2 + rMA)− r2MA

−A2 +B2 + (d− rM )A
(A−B)(A2 −B2 + 2rMA)

w̄.

Now consider

E2,1 − E2,2 = −A−B

A

rMA

A2 −B2 + rMA
E1,2 −

A−B

A

A+B

A2 −B2 + rMA
w̄ +

1
A
w̄.

The last two terms can be combined into

rM
A2 −B2 + rMA

w̄,

and the two terms due to E1,2 can be simplified to:

−rM
1

A2 −B2 + rMA

(A−B)(A+B)
d

rM
(A2 −B2 + rMA)− rMA

w̄
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and

−rM
2

1
A2 −B2 + 2rMA

−A2 +B2 + (d− rM )A
d

rM
(A2 −B2 + rMA)− rMA

w̄.

Factoring out rM w̄/( d
rM

(A2 −B2 + rMA)− rMA), one obtains

1
rM w̄

d

rM
(A2 −B2 + rMA)− rMA)(E2,1 − E2,2) =

1
A2 −B2 + rMA

(
d

rM
(A2 −B2 + rMA)− rMA− (A2 −B2)

)
− 1

2
−A2 +B2 + (d− rM )A

A2 −B2 + 2rMA

which can be further simplified to(
d

rM
− 1

)
(A2 −B2)

A2 −B2 + rMA
+

1
2

A2 −B2

A2 −B2 + 2rMA
+

(d− rM )A
A2 −B2 + rMA

− 1
2

(d− rM )A
A2 −B2 + 2rMA

> 0

because the first two terms are clearly positive, and the last two terms add up to a positive number. This
shows that E2,1 > E2,2, as we wanted to prove.

The proof of Theorem 1 can now be completed.

Fact E.7. EWG1 < EWG2.

Proof. Consider:

EWG2 − EWG1 = 2E2,1 + 2E1,2 − 2E1,1 − E2,2 − E4,2

= 2(E1,2 − E1,1) + (E2,1 − E2,2) + (E2,1 − E4,2),

which is positive because E1,2 > E1,1 (Lemma E.4(b)), and E2,1 > E2,2 > E4,2 (Lemma E.6 and
Lemma E.4(a)).

F Analytically solving PTC and HH levels

In this section, we prove uniqueness of solutions for PTC and HH given any set of parameters pPTC−HH

(see (16)), and hh = (0, 1, 0, 0) and ptc = (T1, T2, 0, T4), with T2 = T4. The steady state levels of Patched
and Hedgehog proteins are given by a system of nonlinear equations (58) and (63). These equations can be
solved explicitly and uniquely in the case ptc2 = ptc4 = T2, which is true if the steady state is in W . To
simplify notation, we use

rP = rLMPTC, rH = rLMHH, κH = κPTCHH[HH]0, κP = κPTCHH[PTC]0,

and define

dP =
1

HPTC

+ 2rP , dH =
1
HHH

+ 2rH .

We introduce further notation:

βP =
2r2PdP

d2
P − 2r2P

, γP =
1

4HPTC

+
1

4HPTC

2rP (rP + dP )
d2

P − 2r2P
=

1
4HPTC

dP (2rP + dP )
d2

P − 2r2P
.
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Lemma F.1. Let x ∈ W . Then, the solution for HH is:

HHi,1 = HHi,2 = HHi,3 = HHi,4 = 0, i = 1, 2, 4,
HH3,2 = HH3,4 = Root+ ,

HH3,1 = HH3,3 =
1
dH

(
1
4

hh3

HHH

+ rHHH3,2 + rHHH3,4),

where Root+ is the positive root of the quadratic equation:

kH(d2
H − 4r2H)X2 +

(
(dP − βP )(d2

H − 4r2H)− kH(dH + 2rH)
hh3

4HHH

+ dHkPγP ptc2

)
X

−(dP − βP )(dH + 2rH)
hh3

4HHH

= 0.

And the solution for PTC is:

PTC3,1 = PTC3,2 = PTC3,3 = PTC3,4 = 0,

PTC2,2 = PTC4,4 =
γPT2

dP − βP + kHHH3,4
,

PTC2,1 = PTC2,3 = PTC4,1 = PTC4,3 =
1

d2
P − 2r2P

(
rPdP PTC2,2 +

1
4HPTC

(dP + rP )T2

)
,

PTC2,4 = PTC4,2 =
1
dP

(
1
4
T2

HPTC

+ 2rP PTC2,1).

Proof. Let x ∈ W and h(x) be a vector defined by (3). Because hedgehog is not expressed in cells 1, 2
and 4, note that for i = 1, 2, 4

HHi,T =
4∑

j=1

HHi,j = hhi − κP (· · · ) + rH

4∑
j=1

(HHi,j+1 + HHi,j−1 − 2HHi,j)

= −κP (· · · )

since hh = (0, 0, 1, 0), and the sum that multiplies rH cancels out. The terms in κP (· · · ) are all nonnegative,
and therefore they can only be zero. We conclude that:

HHi,1 = HHi,2 = HHi,3 = HHi,4 = 0, i = 1, 2, 4.

A similar argument shows that ptc3 = 0 implies:

PTC3,1 = PTC3,2 = PTC3,3 = PTC3,4 = 0.

Therefore, the only nonlinear terms appear in the equations for PTC2,2 and PTC4,4:

dP PTC2,2 − rP PTC2,1 − rP PTC2,3 + κHPTC2,2HH3,4 =
1

4HPTC

ptc2

dP PTC4,4 − rP PTC4,1 − rP PTC4,3 + κHPTC4,4HH3,2 =
1

4HPTC

ptc4 .

Moreover, symmetry of the system shows that PTC2,1 = PTC2,3 and PTC4,1 = PTC4,3, because each pair
satisfies exactly the same equation:

dP PTC2,1 − rP PTC2,2 − rP PTC2,4 =
1

4HPTC

ptc2 (74)

dP PTC4,3 − rP PTC4,4 − rP PTC4,2 =
1

4HPTC

ptc4. (75)
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We then have:

PTC2,4 =
1
dP

(
1

4HPTC

ptc2 + 2rP PTC2,1)

PTC4,2 =
1
dP

(
1

4HPTC

ptc4 + 2rP PTC4,1).

Solving for PTC2,1 as a function of PTC2,2, and for PTC4,1 as a function of PTC4,4:

PTC2,1 =
1

d2
P − 2r2P

(
rPdP PTC2,2 +

1
4HPTC

(dP + rP )ptc2

)
PTC4,1 =

1
d2

P − 2r2P

(
rPdP PTC4,4 +

1
4HPTC

(dP + rP )ptc4

)
.

Thus we get equations depending only on PTC2,2 and HH3,4, and on PTC4,4 and HH3,2:

dP PTC2,2 −
2rP

d2
P − 2r2P

(
rPdP PTC2,2 +

1
4HPTC

(dP + rP )ptc2

)
+ κHPTC2,2HH3,4 =

1
4HPTC

ptc2 (76)

dP PTC4,4 −
2rP

d2
P − 2r2P

(
rPdP PTC4,4 +

1
4HPTC

(dP + rP )ptc4

)
+ κHPTC4,4HH3,2 =

1
4HPTC

ptc4 . (77)

On the other hand, since PTC3,j = 0 for all j, it follows that:

HH3,1 = HH3,3 =
1
dH

(
1

4HHH

hh3 + rHHH3,2 + rHHH3,4),

and substituting into the HH3,4 and HH3,2 equations:

dHHH3,4 − 2
rH
dH

(
1

4HHH

hh3 + rHHH3,2 + rHHH3,4)− κP PTC2,2HH3,4 =
1

4HHH

hh3 (78)

dHHH3,2 − 2
rH
dH

(
1

4HHH

hh3 + rHHH3,2 + rHHH3,4)− κP PTC4,4HH3,2 =
1

4HHH

hh3 . (79)

The last four equations may be solved for the four variables PTC2,2, PTC4,4 HH3,2 and HH3,4, and the
remaining PTC, HH will then follow. Recalling the notation introduced above, one can write

PTC2,2 =
γP ptc2

dP − βP + kHHH3,4
, PTC4,4 =

γP ptc4

dP − βP + kHHH3,2
. (80)

This leads to

dHHH3,4 − 2
rH
dH

(
1

4HHH

hh3 + rHHH3,2 + rHHH3,4)− κPγP ptc2

HH3,4

dP − βP + kHHH3,4
=

1
4HHH

hh3

dHHH3,2 − 2
rH
dH

(
1

4HHH

hh3 + rHHH3,2 + rHHH3,4)− κPγP ptc4

HH3,2

dP − βP + kHHH3,2
=

1
4HHH

hh3 .

From the symmetry of these equations, it is easy to see that

ptc2 = ptc4 ⇒ HH3,4 = HH3,2.
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and thus have the following equation for HH3,4 = HH3,2 = X (after some simple algebra steps):

kH(d2
H − 4r2H)X2 +

(
(dP − βP )(d2

H − 4r2H)− kH(dH + 2rH)
hh3

4HHH

+ dHkPγP ptc2

)
X

−(dP − βP )(dH + 2rH)
hh3

4HHH

= 0. (81)

We next show that only one of the two roots of this second order polynomial is positive and hence the unique
solution to HH3,2, HH3,4. Let the polynomial be of the form c2X

2 + c1X + c0 = 0. The term inside the
square root will be c21 − 4c0c2 where:

−4c0c2 = 4kH(d2
H − 4r2H)(dP − βP )(dH + 2rH)

hh3

4HHH

.

The factor d2
H − 4r2H is positive, by definition of dH . The factor

dP − βP = dP −
2r2PdP

d2
P − 2r2P

= dP (d2
P − 4r2P )

is also positive, again by definition of dP . This means that c21 − 4c0c2 > c21, so whatever the sign of c1,
−c1 −

√
c21 − 4c0c2 < 0, which leaves us with:

HH3,2 = HH3,4 =
−c1 +

√
c21 − 4c0c2

2c2
(the coefficients are as in (81)).

F.1 Asymmetry in patched ON levels

The assumption T2 = T4 is now relaxed, and the more general case is analyzed. The main question is how
Patched asymmetry influences the space of parameters, G, and whether the five components can become
connected. In other words, does the more general case assumption T2 6= T4 leads to a increasing network
robustness. It will be seen that this is actually not true. The presence of CN in the first cell is still necessary
(because Wingless protein expression is not affected by ptc levels), but expression of CN in the second and
fourth cells may now be different. While it is now difficult to explicitly solve the nonlinear equations for
PTCi and HHi, it can still be shown that ptc2 < ptc4 implies PTC2 < PTC4.

Fact F.1. (ptc2 − ptc4)(PTC2 − PTC4) > 0.

Proof. To see this assume that ptc2 > ptc4 (the opposite case follows a similar argument). From the
discussion above, the Hedgehog values must satisfy

dHHH3,4 − a1ptc2

HH3,4

a2 + a3HH3,4
= dHHH3,2 − a1ptc4

HH3,2

a2 + a3HH3,2
(82)

with some positive constants a1,2,3. Because this is an increasing function of HH·,·, and decreasing with
ptc·, it follows that HH3,4 > HH3,2. Rewriting (82)

HH3,4(dH − a1ptc2

1
a2 + a3HH3,4

) = HH3,2(dH − a1ptc4

1
a2 + a3HH3,2

)

and comparing with the Patched values from (76),
HH3,4

HH3,2

dH − a0PTC4,4

dH − a0PTC2,2
> 1

for an appropriate positive constant a0. This last inequality shows that PTC2,2 > PTC4,4. Finally, retracing
back to (74), it is not difficult to see that

ptc2 > ptc4 ⇒ PTC2,T > PTC4,T.
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G The regulation of cubitus proteins

The cubitus interruptus activator and repressor proteins may only be expressed whenever engrailed is absent.
In addition, they auto-regulate themselves through patched mRNA and protein. Using EN = en note that CI
can be written in terms of CN:

CIi = cii − CNi = Uiθ
−(eni, κENci)− CNi

Note that, if Y = U −X:

θ+(X,κa) = θ−(Y, U − κa).

Furthermore,

θ−(Y, U − κa)θ−(Y, κb) = θ−(Y,min{U − κa, κb}).

Then ptc can be simplified as follows:

ptci = θ+(CIiθ−(CNi, κCNptc), κCNptc)) =
{
θ+(CIi, κCIptc)θ−(CNi, κCNptc), CNi 6= κCNptc

θ+(CIi, κCIptc), CNi = κCNptc

=
{
θ−(CNi,min{cii − κCIptc, κCNptc}), CNi 6= κCNptc

θ−(CNi, cii − κCIptc), CNi = κCNptc
(83)

ptc is used to compute PTC explicitly (as in Section F), which feeds back into CN :

CNi = cii
HCICCIθ

+(PTCi,T , κPTCCI)
1 +HCICCIθ+(PTCi,T , κPTCCI)

= Uiθ
−(eni, κENci)

HCICCIθ
+(PTCi,T , κPTCCI)

1 +HCICCIθ+(PTCi,T , κPTCCI)
.

Throughout this paper we will consider that θ−(en3, κENci) = 0 and θ−(eni, κENci) = 1 for i = 1, 2, 4. In
addition, defining Qi = 1 if PTCi,T > κPTCCI, Qi = 0 if PTCi,T < κPTCCI, and Qi ∈ [0, 1] if PTCi,T = κPTCCI,
we have:

CNi = Ui
QiHCICCI

1 +QiHCICCI

. (84)

H Computing the cylindrical algebraic decomposition

A CAD for the parameter space G can be computed from equations (52)-(63), by imposing the conditions
x ∈ W , as given by (7). Following von Dassow et al’s criteria, conditions on wild type expression of en, hh,
and wg at steady state, are obtained from a threshold expression:

enWT
3 ≥ ε and enWT

i < ε, i = 1, 2, 4 (85)

hhWT
3 ≥ ε and hhWT

i < ε, i = 1, 2, 4 (86)

wgWT
2 ≥ ε and wgWT

i < ε, i = 1, 3, 4. (87)

Throughout this paper we will consider also that

ciWT
3 < ε and ciWT

i ≥ ε, i = 1, 2, 4, (88)

ptcWT
3 < ε and ptcWT

i ≥ ε, i = 1, 2, 4, (89)
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thus incorporating further experimental data [19, 18] into the analysis. We will make four assumptions,
only slightly stronger then (86), (87), and (88), but which allow to obtain clean analytical results for a large
part of the problem of finding the feasible parameter space. These analytical results include Theorem 1
(for establishing symmetry of EWG) and explicit computation of PTC and HH. The modified assumptions
are (85), (87), (88), and (89) are:

enWT
3 ≥ ε and enWT

i = 0, i = 1, 2, 4 (90)

wgWT
2 ≥ ε and wg4 ≤ min

i=1,3
wgWT

i < ε (91)

ciWT
3 = 0 and ciWT

i ≥ ε, i = 1, 2, 4 (92)

ptcWT
3 < ε and ptcWT

2 = ptcWT
4 , ptcWT

1 ≥ ε, (93)

Then, from (92) and (83), it is clear that:

CI3 = CN3 ≡ 0 and ptc3 ≡ 0.

H.1 pCI, pPTC−HH, pWG, αCIwg

As already remarked, a CAD is not unique, and the choice of the “free” parameters, or those that come at
the top of the hierarchy have to be chosen. In this case, we choose the parameters and intervals already
listed in (16), which form S1 von Dassow et al chose the interval [5, 100] for half-lifes (HX ) and (0, 1] for
ON/OFF parameters (κXY ) to denote the range of physiological values. This is reasonable since, by model
construction, all variables are “normalized” to 1. Assuming ON/OFF constants κXY > 1 would amount to
assume that Y is permanently activated (or inhibited) by X .

Lemma H.1. Assume conditions (90), (86), and (92) hold. Then κENci, κENhh ∈ (0, σen3 ], κCNhh ∈ (0, 1]. Also
U3 ∈ [0, 1], U1,2,4 ∈ [ε, 1].

Proof. Recalling (59) and EN = en, conditions (92) can be re-written:

en3 > κENci and en1,2,4 ≤ κENci.

These are equivalent to κENci ∈ [max{eni, i = 1, 2, 4}, en3). From (90), max{eni, i = 1, 2, 4} = 0 and
en3 = σen3 ∈ [ε, 1] denotes the possible values of θ−(EWG3, κWGwg) when EWG3 = κWGwg. Next, since
ci3 = 0 due to θ−(EN3, κENci) = 0, U3 can take any value in [0, 1], and U1,2,4 have to be larger than the
thresdold ε.

Conditions (86) translate to:

en3 ≥ κENhh and CN3 ≤ κCNhh

eni ≤ κENhh or CNi ≥ κCNhh, i = 1, 2, 4. (94)

Since en1,2,4 = 0, no restrictions on κCNhh are needed, so κCNhh ∈ (0, 1]. Since CN3 = 0, all conditions are
verified iff κENhh ∈ (0, σen3 ].

H.2 κPTCCI, κCIptc, and κCNptc

For simplicity, here we will treat the case wg2 > 0, wgi = 0 (i = 1, 3, 4). As shown below (Section H.3),
this is true for almost all sets of parameters. It also implies that EWG1EWG3.

Lemma H.2. For system (1) with steady state set (7), the following hold:

(a) κPTCCI ∈ (0,min{T1,PTCWT
2,T}];
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(b) κCNptc ∈
[
maxi=1,2,4 Ui

QiHCICCI
1+QiHCICCI

, 1
]
;

(c) κCIptc ∈
(
0,mini=1,2,4

Ui
1+QiHCICCI

]
.

Proof. By assumption (93) (and definition of W), ptcWT
2 = ptcWT

4 , By Lemma F.1 in Appendix F, we then
have PTC2,T = PTC4,T . By Theorem 1 and (90) it follows that CNWT

2 > 0 is always required for a
nonemtpy parameter set. In the case EWG1EWG3, Theorem 1 also shows that CNWT

1 > 0 is necessary.
From Appendix H this can only be achieved iff κPTCCI ≤ {PTC1,T ,PTC2,T } where PTC1,T = T1.

From Appendix G we can write, for i = 1, 2, 4:

ptci =
{
θ−(CNi,min{Ui − κCIptc, κCNptc}), CNi 6= κCNptc

θ−(CNi, Ui − κCIptc), CNi = κCNptc

and (from W) ptci ≥ ε, for i = 1, 2, 4. This implies CNi ≤ min{Ui − κCIptc, κCNptc} which translates into
intervals (b) and (c).

H.3 κWGen, κCNen, κWGwg, κCNwg, and κCIwg

Recall the expression of wg at steady state, given in (12). For most sets of parameters, it will happen that
RCI, RWG ∈ {0, 1}, yielding four possible values for wgi:

wgi ∈
{

0,
αWG

1 + αWG

,
αCI

1 + αCI

,
αCI + αWG

1 + αCI + αWG

}
.

For the cases when variables CI, CN or IWG fall on their threshold values, CIi = κCIwg, CNi = κCNwg and/or
IWGi = κWGwg, it will happen that RCI, RWG ∈ [0, 1]. Since these cases imply a fine tuning of κCIwg, κCNwg,
or κWGwg, they will happen for a much smaller family of parameters. Therefore, in this Section, we analyze
only the case RCI, RWG ∈ {0, 1}. (However, note that the product “RCIαCI” can be treated as a new “αCI”,
and hence the cases RCI,WG ∈ (0, 1) may be analyzed in a similar way.) According to the choice of αCI and
αWG in (16), we have:

ε ≤ min
{

αWG

1 + αWG

,
αCI

1 + αCI

}
In this case, either the cubitus pathway or the wingless pathway may maintain wingless in the second cell,
and both pathways need to be shutdown on the other cells:

wg2 ∈
{

αWG

1 + αWG

,
αCI

1 + αCI

,
αCI + αWG

1 + αCI + αWG

}
and wgi = 0, i = 1, 3, 4,

Conditions (90) can then be written as inequalities on wg and CN:

EWG3 = wg2βmed ≥ κWGen and CN3 ≤ κCNen,

EWG1 = wg2βmed < κWGen or CN1 > κCNen,

EWG2 = wg2βmax < κWGen or CN2 > κCNen,

EWG4 = wg2βmin < κWGen or CN4 > κCNen. (95)

Since βmax > βmed, it is clear that (95), (95), (95) can only be satisfied if

CN1,CN2 > κCNen.
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Conditions (91) translate to:

wg2γmax ≥ κWGwg or CN2 ≤ min{κCNwg, U2 − κCIwg},
wg2γmed ≤ κWGwg and CN1 ≥ min{κCNwg, U1 − κCIwg},

wg2γmed ≤ κWGwg and CN3 ≥ min{κCNwg, 0− κCIwg}, (96)

wg2γmin ≤ κWGwg and CN4 ≥ min{κCNwg, U4 − κCIwg}.

From (92) it follows that CN3 = 0. So the inequalities that represent enWT and wgWT are reduced to:

κWGen ≤ wg2βmed,

κCNen < min{CN1,CN2},
κWGen > wg2βmin or κCNen < CN4,

κWGwg ≤ wg2γmax or min{κCNwg, U2 − κCIwg} ≥ CN2,

κWGwg > wg2γmed,

min{κCNwg, U1 − κCIwg} < CN1,

min{κCNwg, U4 − κCIwg} < CN4,

There are now three possibilities according to the value of wg2, yielding the intervals listed in Tables 3, 4,
and 5.
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