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Abstract

The apoptosis network is a fundamental module in cellular signaling. Typically, two outcomes
may be generated by this network, leading to the decision between two steady states: cell life or
programmed cell death (a bistable response). A simple system consisting of three essential com-
ponents is analyzed, which reproduces the main interactions among the apoptosis network and an
anti-apoptotic pathway. To study how the bistability property emerges from the network structure,
activation and inhibition functions are generally formulated, and the two network outcomes are
associated with two disconnected invariant sets in the state space. Network links responsible for
existence of each set, as well as sufficient conditions on the production and degradation rates are
provided, which guarantee existence of both, or only one of the “life” or “death” sets.

1 Introduction

The apoptosis network is responsible for programmed cell death, in response to certain stimuli.
Apoptosis enables the organisms to eliminate unwanted cells and thus prevent, for instance, repli-
cation of damaged cells (see for example [1]). Cancer, as well as other diseases, may develop
if the apoptosis network fails to respond in an appropriate manner. At the heart of the apoptosis
network is a family of proteins (caspases, each existing in a pro-form and an active form), which
are activated in a cascade ([1]; for more references see also [2]). Caspase 3 (C3) is a prominent
downstream member of this cascade, and it is responsible for the cleavage (and destruction) of
other proteins in the cell: thus high abundance of active C3 (C3a) typically leads to cell death.

Other pathways interact with the apoptosis network, in particular the well known Nuclear Fac-
tor κB (NFκB) pathway [1]. NFκB is a transcription factor responsible for transcription of various
genes, including one for its own inhibitor, and another for an inhibitor of C3a. Thus, the pres-
ence of NFκB (or, more precisely, its transcription products) typically promotes survival of the
cell. While the NFκB pathway can be generally considered an anti-apoptotic pathway, it is often
activated in parallel with the pro-apoptotic caspase cascade. For example, a common signal is
stimulation of extrinsic death receptors with Tumor Necrosis Factor (TNF). The interaction among
pro- and anti-apoptotic modules, will influence and fine tune the cellular decision to survive or
undergo apoptosis.

Recently, mathematical models have been proposed for both the NFκB pathway [3] and the
caspase cascade [2, 4]. An interesting challenge is the identification of basic mechanisms that
lead to the choice between a “living” and an “apoptotic” state. In [2, 4], this question is answered
and discussed in detail, for the caspase cascade module. A complementary point of view is now
given, with the analysis of a reduced model including only major players from both pathways.
Representing the basic interactions among the pro- and anti-apoptotic modules, the model aims
to study the importance of the network’s various links and their contribution to bistability in the
cellular decision.

2 The simplest model

The model depicted in Fig. 1 reproduces the main crosstalking interactions among the NFκB path-
way and the apoptosis network. Both modules are triggered by TNF. In this model, C3a represents



Figure 1: The network consisting of three nodes (NFκB, IκB, and C3a) and one input (TNF). A
strong link A promotes apoptosis, while strong links L and L+ support life.

the final result of caspase cascade activation, regulated by NFκB. Because NFκB is also inac-
tivated by an element in its own pathway, two components from the anti-apoptotic pathway are
needed.

NFκB is a transcription factor responsible for, among others, transcription of IκB mRNA and
inhibitor of apoptosis proteins (IAP) mRNA [5]. So NFκB leads to production of its own inhibitor
IκB and the C3a inhibitor IAP. Link L represents the latter interaction. C3a is thought to inactivate
and thereby inhibit NFκB (link A), and also indirectly contribute to the presence of IκB (C3a inac-
tivates an inhibitor of IκB) [6]. This interaction is introduced as a direct activation link (L+) in the
network. Finally, TNF stimulation acts in two ways: it contributes to IκB inhibition, and (through
a longer pathway) activates C3a. The latter activation is also controlled by protein products of
NFκB mediated transcription.

The main objective is to model this network in a form as general as possible, retaining the
structure of the interconnections without specifying particular kinetic laws. Thus we consider that
each of the three nodes is freely degraded, and is produced according to the overall result of the
several activation and inhibition links particular for that node. LetR+ = (0,∞). To each activation
link (x → ·) associate anactivation functionν(x), defined as:

(i) ν : [0,∞) → [0, V ] is strictly increasing, continuously differentiable (V ∈ R+);

(ii) limx→0 ν(x) = 0 andlimx→∞ ν(x) = V ;

(iii) There exists a threshold0 < φ < ∞ and constants0 < ε < 1
2
V , 0 < ∆ < 1

2
φ such that

x ∈ [0, φ−∆] ⇔ ν(x) ∈ [0, ε],

x ∈ [φ + ∆,∞] ⇔ ν(x) ∈ [V − ε, V ].

Similarly, to each inhibition link (x a ·) associate aninhibition functionµ(x), defined as:

(i) µ : [0,∞) → [0, M ] is strictly decreasing, continuously differentiable (M ∈ R+);

(ii) limx→0 µ(x) = M andlimx→∞ µ(x) = 0;

(iii) There exists a threshold0 < θ < ∞ and constants0 < ε < 1
2
M , 0 < ∆ < 1

2
θ such that

x ∈ [0, θ −∆] ⇔ µ(x) ∈ [M − ε, M ],

x ∈ [θ + ∆,∞] ⇔ µ(x) ∈ [0, ε].

So, there is a “tube” inside which the functions must lie. Examples of such functions include
Hill and other sigmoidal shaped functions. Observe that the limiting caseε ≡ ∆ ≡ 0 reduces
essentially to the piecewise linear systems introduced first by Glass and Kauffman [7], and more
recently used to study gene regulatory networks in [8], and [9].



The dynamical system for the network depicted in Fig. 1 can then be written:

d[NFκB]

dt
= −kNFκB[NFκB] + µ1([IκB]) µ3([C3a])

d[IκB]

dt
= −kIκB[IκB] + ν1([NFκB]) ν2([C3a]) µ5([TNF]) (1)

d[C3a]
dt

= −kC3a[C3a] + µ2([NFκB]) (1 + [TNF]µ4([NFκB])) .

The termµ1(·)µ3(·) does not represent a reaction rate, but instead it should be interpreted as a total
production rate for NFκB, which depends only on how large the concentrations of IκB and C3a
are at each instant. Similar interpretation holds for the other production terms. TNF stimulation
maybe assumed as a constant input[TNF] to the system. TNF activates first caspase 8, which in
turn activates caspase 3, and NFκB also functions as an inhibitor of this step (through the activity
of FLIP, an inhibitor of caspase 8) [1]. In this model, we wish to study the existence of steady
states, both with and without TNF stimulation. Thus, this stimulus is represented by the term
(1 + [TNF]µ4([NFκB]): in the absence of TNF the regulatory links between caspase 3 and NFκB
are unchanged, while the presence of TNF enhances the inhibition from C3a to NFκB link.

3 Conditions for bistability

The apoptosis system must be able to respond in two distinct ways, which in previous models
have been represented by two different stable steady states (eg. [2, 4]). Following the introductory
discussion, in model (1) a “living” response corresponds to low concentration of C3a and high
concentration of NFκB, and conversely an “apoptotic” response corresponds to high concentration
of C3a and low concentration of NFκB. A more general approach is now proposed, where the
“living” and “apoptotic” responses are represented by two appropriate sets, rather than two steady
state points, in space. More precisely, in Propositions 3.1 and 3.2 below, we will establish the
existence oftwo disconnected forward-invariant setsfor system (1), one characterized by low C3a /
high NFκB and the other by high C3a / low NFκB (as depicted in Fig. 3). From the biological point
of view, this is a relevant notion: the two invariant sets allow the trajectories to have fluctuations
around a given state, while maintaining their qualitative properties.

We will consider now system (1) without inputs (i.e., TNF= 0). To avoid cumbersome no-
tation, letX = (x, y, c)′ with x := [NFκB], y := [IκB], c := [C3a], denote the three variables.
Since the right-hand side of (1) is continuous, there exists a unique solution of the initial value
problem (1) withX(0) = X0, defined on some intervalT . Let X(t,X0) denote this solution, with
t ∈ T . We will say that a setJ is forward-invariantfor system (1), if every trajectoryX(t,X0)
with X0 ∈ J remains inJ for all times, i.e.,X(t,X0) ∈ J for all t ∈ T . Consider system (1), with
TNF ≡ 0. Let ε > 0, ∆ > 0, and define the functionsµi andνi as above, so thatMi, Vi > 2ε and
θi, φi > 2∆ for all i. Consider the set:

J =

[
0,

1

kNFκB

M1M3

]
×

[
0,

1

kIκB

V1V2

]
×

[
0,

1

kC3a

M2

]
. (2)

It is clear thatJ is a forward-invariant set for the system: the vector field at the boundary ofJ
points toward its interior. Furthermore, sinceJ is compact, any trajectoryX(t,X0), X0 ∈ J is in
fact defined for all times, that isT ≡ [0,∞). From now on, we consider only trajectories evolving
in J .

Next we will establish conditions on the degradation and production rates (summarized in
Table 1), that guarantee existence of both the “living” and “apoptotic” responses, or only one of



Table 1: Sufficient conditions for existence of one or more distinct steady states.
Apoptosis Apoptosis and Living Living
ε < M2 − kC3a(θ3 + ∆) ε < min{kNFκB

M1
(θ2 −∆), ε < M3 − kNFκB

m1
(θ2 + ∆)

M2 − kC3a(θ3 + ∆),
kC3a(θ3 −∆),
M3 − kNFκB

m1
(θ2 + ∆)}

kNFκB > M1M3

θ2−∆
, kC3a < M2

θ3+∆
kNFκB < m1M3

θ2+∆
, kC3a < M2

θ3+∆
kNFκB < m1M3

θ2+∆
, kC3a > M2

θ3−∆

them. Define also

m1 := µ1

(
1

kIκB

V1V2

)
. (3)

Proposition 3.1 Assume: (a) 1
kC3a

ε < θ3 −∆, and (b) m1

kNFκB
(M3 − ε) > θ2 + ∆. Then the set:

L =

[
m1

kNFκB

(M3 − ε),
M1

kNFκB

M3

]
×

[
0,

1

kIκB

V1V2

]
×

[
0,

1

kC3a

ε

]
,

is forward-invariant for system (1).

Proof: Pick anyX0 ∈ L, and letX(t) = (x(t), y(t), c(t))′ denote the corresponding solution.
First, note thatL ⊂ J , and that the interval fory is unchanged (compare to (2)). So it is enough
to show thatx(t) ≥ m1(M3 − ε)/kNFκB andc(t) ≤ ε/kC3a for all t ≥ 0. To prove the statement by
contradiction, consider the first instant whenX(t) leavesL:

t0 = inf{t ≥ 0 : X(t) /∈ L}.

Assume that coordinatex is the first to leave the set (a similar argument holds ifc is the one). So:
x(t0) ≤ m1(M3 − ε)/kNFκB andc(t0) ≤ ε/kC3a.

By assumption (a),c(t0) < θ3 −∆ which impliesµ3(c(t0)) > (M3 − ε) (by definition ofµ3).
Therefore

fNFκB(X(t0)) = −kNFκBx(t0) + µ1(y(t0))µ3(c(t0)) > −kNFκBx + m1(M3 − ε) ≥ 0,

and by continuity of solutions, there is an interval(t0 − δ, t0 + δ), wheref(X(t)) > 0. Then
x(t0 − δ) < x(t0), contradicting the minimality oft0.

Following a similar reasoning, it can be shown that:

Proposition 3.2 Assume: (c) 1
kC3a

(M2 − ε) > θ3 + ∆, and (d) M1

kNFκB
ε < θ2 −∆. Then the set:

A =

[
0,

M1

kNFκB

ε

]
×

[
0,

1

kIκB

V1V2

]
×

[
1

kC3a

(M2 − ε),
1

kC3a

M2

]
,

is forward-invariant for system (1). �

Propositions 3.1 and 3.2 give conditions for the existence of “living” (L) and “apoptotic” (A)
sets, respectively, both contained in the larger setJ (Fig. 3). Note thatε < M2/2, and so these sets
are disconnected if and only ifM1ε < m1(M3−ε). This is guaranteed, for instance, by sufficiently
smallε. The next two Propositions provide stricter conditions, which guarantee that only one of
the two possible responses may ultimately happen.



Figure 3: The “living” (L) and “apoptosis” (A) invariant sets.

Proposition 3.3 Assume: (e) 1
kC3a

M2 < θ3−∆. Then the following set is an attractor of system (1):

L∗ =

[
m1

kNFκB

(M3 − ε),
M1

kNFκB

M3

]
×

[
0,

1

kIκB

V1V2

]
×

[
0,

1

kC3a

M2

]
.

Proof. Pick anyX0 ∈ L∗, and letX(t) = (x(t), y(t), c(t))′ denote the corresponding solution.
Again, note thatL∗ ⊂ J , and that the intervals for bothy andc are unchanged (see (2)). So it is
enough to show thatx(t) ≥ m1(M3 − ε)/kNFκB for all t. To prove the statement by contradiction,
assume that there existst2 > 0 such thatx(t2) < m1

kNFκB
(M3−ε). If this is so (and because solutions

are continuous), then there exists a nonemtpy interval[t2 − δ, t2] wherex(t) decreases, while in
the interval[0, m1

kNFκB
(M3− ε)). From assumption (e), the form of the invariant set (2), and from the

definition ofµ3 we have, for allt,

c(t) < θ3 −∆ ⇔ µ3(c(t)) ≥ M3 − ε ⇒ fNFκB(X(t)) ≥ −kNFκBx + m1(M3 − ε).

It is immediate to see thatx < m1(M3−ε)/kNFκB impliesfNFκB > 0, so on the interval[0, m1

kNFκB
(M3−

ε)), x(t) is always an increasing function, contradicting the initial hypothesis.

Proposition 3.4 Assume: (f)M1M3

kNFκB
< θ2−∆. Then the following set is an attractor of system (1):

A∗ =

[
0,

M1

kNFκB

M3

]
×

[
0,

1

kIκB

V1V2

]
×

[
1

kC3a

(M2 − ε),
1

kC3a

M2

]
.

�

The proof is quite similar to that of Proposition 3.3.
Observe that the conditions (a)-(d) are compatible, that is they can be simultaneously satisfied

to guarantee existence of both setsA andL. Alternatively, (a),(b) and (e) can be combined to
produce a system whose trajectories eventually converge to setL. Likewise (c), (d) and (f) can be
combined to produce an apoptotic cell, that is, a system whose trajectories eventually converge to
setA. The results are summarized in Table 1, and can be written in the form of an upper bound on
ε – which is arbitrary, and can indeed be chosen as small as desired – and on the ratio of production
to degradation rates of NFκB and C3a. Indeed,M3 denotes the maximal production rate of NFκB
(without loss of generality one may assumeM1 = 1) andM2 denotes the maximal production rate
of C3a. The conditions for existence of only the “living” set can be written as:

rate of production
rate of degradation

⌋
NFκB

>
1

m1

inhibition thresholdNFκBaC3a + ∆,

rate of production
rate of degradation

⌋
C3a

< inhibition thresholdC3aaNFκB −∆,



that is, in a living cell there should be enough NFκB available to inhibit C3a, but low amounts
of C3a so that inhibition of NFκB is weak, in agreement with the network pathways described
in the introduction. Alternatively, a living cell may have a very high threshold valueθ3, meaning
that a very large concentration of C3a is required to inhibit NFκB (link A in Fig. 1 is weak). Not
surprisingly, the existence of only the “apoptotic” set is guaranteed by opposite inequalities. The
life/death decision depends heavily on the relative strength of the mutual inhibition between NFκB
and C3a (links A and L in Fig. 1). Therefore, a bistable response emerges from the network’s
interconnections, rather than from specific reaction functions.

4 The role of TNF in the apoptosis/living decision

To study the effect of TNF stimulation on the system, assume that TNF is a constant input to the
system. As before, we adopt the notationx := [NFκB], y := [IκB], c := [C3a], and also define
u := TNF. An immediate observation is that the previous results are still valid, provided the value
M2 is updated:

M2  M2(1 + M4TNF).

Thus, if all other constants are fixed, as TNF increases there will be a point where condition (e) is
no longer satisfied, and another point after which only condition (c) is satisfied:

TNF≥ 1

M2M4

(kC3a(θ3 −∆)− (M2 − ε)).

Roughly, TNF stimulation weakens the activation link L+, and strengthens the inhibition link
A. For a numerical example, Fig. 4 indicates that, the intermediate, unstable, steady state shifts
towards higher NFκB values, as TNF strength increases. As a result, the basin of attraction of the
“living” steady state (high NFκB) decreases.

Figure 4: The steady states of the system as TNF strength increases. The dashed line represents
kNFκB[NFκB], while the remaining functions representµ1(x) µ3(y), for increasing values of TNF
(left to right) after numerically solving equation (4) for each constantu = TNF. The intermediate
steady state (square) increases with TNF.

We will next make these remarks more precise. Fig. 4 indicates that steady states will vary con-
tinuously with TNF and, moreover, at an unstable steady state the NFκB coordinate will increase
with TNF while the C3a coordinate will decrease. To prove this, first note that the steady states of



system (1) can be determined by solving the system (withu = TNF) F (x, y, c, u) = 0:

F (x, y, c, u) =

 −kNFκBx + µ1(y) µ3(c)
−kIκBy + ν1(x) ν2(c) µ5(u)
−kC3ac + µ2(x) (1 + uµ4(x))

 = 0. (4)

The derivatives ofF are (“prime” denotes derivative with respect to a function’s unique argument):

∂F

∂X
=

 −kNFκB µ′1µ3 µ1µ
′
3

ν ′1ν2µ5 −kIκB ν1ν
′
2µ5

µ′2(1 + uµ4) + uµ2µ
′
4 0 −kC3a

 ,
∂F

∂u
=

 0
ν1ν2µ

′
5

µ2µ4

 ,

and:

D(X, u) = det

(
∂F

∂X

)
= kIκBkC3a(R(X, u)P (X, u)−N(X, u))

where (dropping dependencies onX andu, for simplicity)

R = − 1

kIκBkC3a

(µ′1µ3ν1ν
′
2µ5 + kIκBµ1µ

′
3)

N = kNFκB −
1

kIκB

µ′1µ3ν
′
1ν2µ5

P = −µ′2(1 + uµ4)− uµ2µ
′
4.

Note that by definition of the functionsµi, νi it holds thatR, N, P > 0 for anyX ∈ R3
≥0. Now

suppose thatX∗ = (x∗, y∗, c∗)′ is a steady state of the system, for TNF= TNF∗ = u∗, and such
thatD(X∗, u∗) 6= 0. Then, by the Implicit Function Theorem, there exist neighbourhoodsV∗ ⊂ R3

of X∗, andU∗ ⊂ R+ of u∗, and a functionf such that

f : U∗ → V∗, X = f(u) and
df

du
= −

(
∂F

∂X

)−1
∂F

∂u
.

Some simple algebra shows that (withQ = − 1
kIκB

µ′1µ3 > 0):

(
∂F

∂X

)−1

=

×× − Q
RP−N

− R
RP−N

×× ×× ××
×× 1

kC3a

QP
RP−N

1
kC3a

N
RP−N

 .

Then:

dx∗

du
=

Q

RP −N

(
ν1ν2µ

′
5 +

R

Q
µ2µ4

)
dc∗

du
= − 1

kC3a

PQ

RP −N

(
ν1ν2µ

′
5 +

N

PQ
µ2µ4

)
.

Consider next funtionsµi andνi and an input TNF∗ such that conditions (a)-(d) are satisfied, so
both setsL andA exist. Then there must exist a (unstable) steady state of system (1), denoted
X∗ = (x∗, y∗, c∗)′, in J \ (L ∪ A). The following result is now straightforward:

Proposition 4.1 Assume: (g)limu→∞ µ′5(u) = 0, and (h)R(X∗, TNF∗)P (X∗, TNF∗) > N(X∗, TNF∗).
Then, the determinantD(X∗, TNF∗) is positive and steady stateX∗ is unstable. Furthermore, for
sufficiently large TNF∈ U∗, x∗ (NFκB) increases andc∗ (C3a) decreases with TNF.



Proof. Assumption (h) immediately implies that the determinant is positive, and this means
that at least one of the eigenvalues of∂F/∂X has positive real part. LetV∗ andU∗ be the neigh-
bourhoods provided by the Implicit Function Theorem. By assumption (g), and since functionsνi

andµi are bounded in these neighbourhoods, there existsū such that|ν1ν2µ
′
5| < (R/Q)µ2µ4, and

|ν1ν2µ
′
5| < (N/PQ)µ2µ4 for all u ≥ ū. If, in addition,ū ∈ U∗, then

dx∗

du
> 0 and

dc∗

du
< 0, ∀ u ∈ {u ∈ U∗ : u ≥ ū}.

While this result is not very satisfying (if̄u /∈ U∗, the second statement becomes empty), it
indicates that strong TNF stimulation will shift the steady states in such a way that a larger set of
initial conditions will evolve towards an apoptotic state.

5 Conclusions

A model of the network of interactions among pro- and an anti-apoptotic pathways was studied.
One of the main features of the model is its general formulation, which allows freedom in the forms
for activation and inhibition functions. The two possible outcomes of the apoptosis network, “life”
and “death”, are associated with two disconnected invariant sets, thus allowing the the model
to capture cell-to-cell variability. Links which promote the existence of each invariant set are
identified, and sufficient conditions for existence of both or only one of the sets are provided,
relating the production-to-degradation ratios with the inhibition thresholds. The bistable response
of the network thus emerges as a consequence of its links and structure, and does not depend on
very specific reaction rates’ functions. Under TNF stimulation, the model predicts that the “life”
invariant set will vanish and the “death” invariant set becomes an attractor of the system: that is,
the outcome of the network will more likely be cell death. This response to TNF stimulation is
also in agreement with experimental observations.
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