
Steady-States of Receptor–Ligand Dynamics:

A Theoretical Framework

Madalena Chaves a,∗,1, Eduardo D. Sontag a,2,
Robert J. Dinerstein b

aDepartment of Mathematics, Rutgers University, Piscataway, NJ
bLead Generation Informatics, Aventis, Bridgewater, NJ

Abstract

This paper studies aspects of the dynamics of a conventional mechanism of ligand-
receptor interactions, with a focus on the stability and location of steady-states. A
theoretical framework is developed, which is based upon the rich and deep formalism
of irreducible biochemical networks. When represented in this manner, the mass ac-
tion kinetics of biochemical processes can be clearly seen in terms of their component
biochemical interactions, their kinetic rate constants, and the stoichiometry for the
system. A minimal parametrization is provided for models for two- or multi-state
receptor interaction with ligand, and an “affinity quotient” is introduced, which al-
lows an elegant classification of ligands into agonists, neutral agonists, and inverse
agonists.
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1 Introduction

Models of receptor–ligand interactions play an important role in understanding the bio-
chemical mechanisms that initiate cellular signaling. They also serve the practical purpose
of guiding the identification and optimization of new therapies that interact at receptors.
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The earliest models were based on the specific receptor–ligand interaction that results in
Langmuir saturation [15]. Subsequently, it was realized that receptor–ligand interaction
can have at least three outcomes [8,10]. First, a ligand can function as an agonist, re-
sulting in a distinct biological consequence, such as contraction, secretion, or chemotaxis.
Second, a ligand can bind to a receptor with no effect, i.e., as a neutral agonist, but this
neutral activity can be used to block or antagonize an agonist. And third, if the receptor
produces an intrinsic or constitutive amount of activity, a ligand can suppress this consti-
tutive response by functioning as an inverse agonist. Down-stream biochemical feedback
loops and other processes that modulate or limit the initial receptor–ligand interaction
can further complicate the ligand–receptor interaction; these secondary events will not
be discussed here.

Many models have been developed to explain ligand–receptor interactions (for reviews,
see, inter alia, [16], in [9]). For these models, the biochemical reactions are delineated and
their interactions diagrammed. A system of differential equations is then formulated to
represent the time-dependent events that result from mass action kinetics. Experimental
data for receptor–ligand interactions are obtained at relatively long times that are taken
to be at steady-state, and for this reason, the representative differential equations are
converted to algebraic equations for the steady-state condition. The final results are
expressed in terms of equilibrium constants derived from kinetic constants. Even with a
modest increase in the number of biochemical interactions, these models produce complex
expressions, that can require the use of computer-based equation solvers [1]. The formulas
obtained in this manner are complicated and virtually impossible to interpret in biological
terms, which suggests the appeal of a more theoretical and conceptual approach. In this
paper, we introduce such an approach.

Our approach is based upon the “complex balancing” ideas described by Horn and Jack-
son [7] and Feinberg [5,6]. It allows a systematic and concise description of the mass
action kinetics of biochemical processes, expressed in terms of their component biochem-
ical interactions, their kinetic rate constants, and the stoichiometry for the system, and
it greatly simplifies the study of their dynamical behavior, steady-states, and stability
properties. Among other benefits of this approach, we will be able to:

(1) guarantee existence and uniqueness (subject to stoichiometry constraints) of positive
steady-states,

(2) guarantee global (subject to stoichiometry constraints) stability of these unique
steady-states,

(3) provide an explicit and simple parametric analysis of the dependence of the steady-
state values on the kinetic constants and initial concentrations, and

(4) introduce an affinity quotient which allows the classification of ligands into agonists,
neutral agonists, and inverse agonists.

Using this mathematical formalism, the response curves of a receptor model that consists
of two receptor conformations and corresponding receptor–ligand complexes will be stud-
ied in detail. For example, the two-state model has been used to describe the responses
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of the chemotactic cAMP receptor of the slime mold amoeba Dictyostelium [4]. We show
that this model can exhibit the dose-response curves corresponding to inverse agonists,
as well as those of positive and neutral agonists, depending on the relative values of the
kinetic constants. We will derive equations that characterize agonism classes in terms of
the kinetic constants. These results will be extended to the multi-state receptor case, and
will show that allowing more than two receptor conformations introduces no qualitatively
new behavior into the system, in agreement with previous observations [10,16].

As already mentioned, our approach is based upon the rich and deep theory developed by
Horn, Jackson, and Feinberg for irreducible biochemical networks, and more specifically,
in the language of [6], for zero-deficiency and weakly-reversible chemical networks (we will
call such networks HJF networks, so as to reflect the contributions of the above authors).
For convenience, we employ the formalism and notations introduced in [14], and also
appeal to theoretical results on global convergence shown in that reference and in [3].

2 Theoretical background

Our approach to mathematical models of receptor–ligand interactions begins by formu-
lating the system graphically in terms of nodes consisting of elemental events or “com-
plexes,” and of edges comprised of reaction rates. In order to illustrate the formalism,
let us consider first the two-state receptor model which is depicted in Figure 1. Here,

C2

k21k12 k43k34

k13

k31

k42

k24

R  + L2R  + L1

C1

Fig. 1. A two-state receptor–ligand network.

R1 = [R1] represents the concentration of free receptors in an inactive state, R2 = [R2]
represents the concentration of free receptors in an active state, L = [L] represents the
concentration of free ligand, and C1 = [R1L], C2 = [R2L] represent the two correspond-
ing receptor–ligand complexes. From this diagram, and based on the principles of mass
action kinetics, one derives in a routine fashion the following set of differential equations:

dR1

d t
=−(k21 + k31)R1L + k12C1 + k13R2L

dR2

d t
=−(k13 + k43)R2L + k31R1L + k34C2
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dL

d t
=−k21R1L− k43R2L + k12C1 + k34C2 (1)

dC1

d t
=−(k12 + k42)C1 + k21R1L + k24C2

dC2

d t
=−(k34 + k24)C2 + k42C1 + k43R2L

We now discuss the general formulation, for an arbitrary biochemical network which
consists of reactions among n individual species x1, x2, . . . xn. In the example in Figure 1,
there are five species: R1, R2, L, C1, C2. In such a general network, there will be a number
m of nodes, representing each group of reactants, or group of products, in the network.
In the example in Figure 1, there are four distinct nodes, corresponding to each of R1 +
L,C1, R2 + L,C2. We will always assume that the number of nodes is no larger than the
number of species: m ≤ n. (This is a key condition needed for our theoretical results to
be valid.)

We represent each node i, i = 1, . . . , n by a vector bi. Each bi contains the information
on which individual species participate as reactants at that node. Thus each bi is in fact
a vector in Rn, whose coordinates are bi = (b1i, b2i, . . . , bni)

′, with bli 6= 0 if species xl is
part of the node bi. The m vectors bi form the column vectors of a matrix B ∈ Rn×m:

B := (b1, b2, . . . , bm) .

As an illustration, in the particular case of the network shown in Figure 1, the nodes are
characterized as follows:

R1 + L ; b1; C1 ; b2; R2 + L ; b3; C2 ; b4

where

b1 =




1
0
1
0
0


 ; b2 =




0
0
0
1
0


 ; b3 =




0
1
1
0
0


 ; b4 =




0
0
0
0
1


 .

and

B =




1 0 0 0
0 0 1 0
1 0 1 0
0 1 0 0
0 0 0 1


 .
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For the next step in developing the model, links between nodes are represented by a
matrix containing all of the kinetic constants. Specifically, if the reactants in node bi are
products resulting from the reactants in node bj, then there is an arrow pointing from bj to
bi, with a corresponding kinetic constant kij. A first matrix, representing reactions ending
at a node is Kin = (kij) ∈ Rm×m, where kij 6= 0 if there is an arrow from bj to bi. A second
matrix can be constructed, which contains in its i-th diagonal entry the information on all
the reactions that start from the node bi, that is, Kout := Diag(

∑
kj1,

∑
kj2, . . . ,

∑
kjm).

Thus, for the network in Figure 1, we write:

Kin :=




0 k12 k13 0
k21 0 0 k24

k31 0 0 k34

0 k42 k43 0




and

Kout :=




k21 + k31 0 0 0
0 k12 + k42 0 0
0 0 k13 + k43 0
0 0 0 k24 + k34


 .

The net contribution of both matrices is:

K := Kin −Kout :=



−(k21 + k31) k12 k13 0

k21 −(k12 + k42) 0 k24

k31 0 −(k13 + k43) k34

0 k42 k43 −(k24 + k34)


 .

In the last step, a vector-valued function is constructed whose components consist of the
mass action elemental events defined at each node as:

θB(x) =




xb11
1 xb21

2 · · · xbn1
n

xb12
1 xb22

2 · · · xbn2
n

...
xb1m

1 xb2m
2 · · · xbnm

n


 .

For the model in Figure 1, with x = (R1, R2, L, C1, C2)
′, this vector is:

θB(x) :=




R1L
C1

R2L
C2


 .
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These elemental events, when multiplied by the suitable kinetic constants, provide the
reaction rates: for instance, the reaction “R1 + L → C1” has a reaction rate given by
k21R1L, as the mass action kinetics rate is usually expressed.

Finally, the time-dependent evolution of the concentration of the n species of this receptor-
ligand model can then be written compactly as the product of B, K and θB:

d x

d t
= BKθB(x) (2)

or equivalently, for each species ` = 1, . . . , n,

d x`

d t
=

m∑
i,j=1

kij x
b1j

1 x
b2j

2 · · · xbnj
n (b`i − b`j). (3)

Expression (2) is equivalent to (1), but has the advantage that the information on the
system is “condensed” into three objects: (1) the matrix B, which defines the nodes
involved in the reactions; (2) the matrix K, which specifies the kinetic constants; and (3)
the vector θB(x), which specifies the elemental events.

Throughout this paper the following assumptions are required:

(A1) the matrix B has full column rank, i.e., the vectors b1, . . ., bm are linearly indepen-
dent, and none of its rows vanish ;

(A2) the matrix Kin is irreducible, i.e., (Kin + I)m has all entries positive, where I is the
identity matrix.

When they are satisfied, we shall say that the network is an HJF network. The first con-
dition translates into a “zero-deficiency” constraint, in the language of [6]. The second
condition amounts to the requirement (“weakly-reversibility” in the language of [6]) that
there is a chemical pathway connecting each pair of nodes. For instance, in the example
in Figure 1, there exists a chemical pathway leading from the node “R1 + L” to the
node “C2”, by passing through “C1”. Similarly, it is possible to travel from “C2” back to
“R1+L” by another chemical pathway. (In the example, the pathways happen to be all re-
versible but, in general, complete reversibility is not needed. ) We need these assumptions
in order to conclude the existence and uniqueness of steady-states of (2) [6,14]. (Actu-
ally, a somewhat weaker condition, block-irreducibility, which asks that each connected
component of the reaction graph should be weakly reversible, would be sufficient.)

2.1 Conservation laws and positive classes

The conservation laws for the networks described by (2) can be found by constructing
a subspace from the differences of the column vectors of B. These differences, called
reaction vectors [7], form the stoichiometric space, given by
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D := span {bi − bj : i, j = 1, . . . ,m} ≡ span {b1 − bj : j = 2, . . . ,m}.

The significance of D is that the concentrations of receptor, ligand, and receptor–ligand
complexes are represented as trajectories constrained to evolve in a subspace which is a
parallel translate of D. That is, if we compute all the vectors which are perpendicular to
that subspace D:

D⊥ := {g ∈ Rn : g is perpendicular to all (b1 − bj)},

it is not difficult to see (from equation (3)) that the inner product

g · d x

d t
≡ 0.

Integrating, it follows that the linear combination “g · x” is constant throughout time:

g · x ≡ g · x(0)

where x(0) is the vector of initial concentrations. So, each vector g in D⊥ expresses a
conservation law of the system. By assumption (A1), the bi’s are linearly independent,
which implies that the space D has dimension m − 1. As a result, there are exactly
n − (m − 1) ≥ 1 other linearly independent vectors (g) perpendicular to D, and hence,
there are also n− (m− 1) distinct conservation laws.

For the model in Figure 1, the space D can be computed to give

D = span {b1 − bj : j = 2, 3, 4} = span







1
0
1
−1
0


 ,




1
−1
0
0
0


 ,




1
0
1
0
−1







and two (= 5− 3) linear independent vectors perpendicular to D can be picked as:




1
1
0
1
1


 and




0
0
1
1
1


,

corresponding to the following conservation equations

L(t) + C1(t) + C2(t) = α

R1(t) + R2(t) + C1(t) + C2(t) = β,

7



for some positive constants α and β. As expected, these equations reflect the conservation
of the total amount of ligand and of the total amount of receptors. In other words, one
can say that

α = Ltotal = L(0) + C1(0) + C2(0) (4)

β = Rtotal = R1(0) + R2(0) + C1(0) + C2(0). (5)

Formally, for each pair of positive constants α, β, the pair of equations (4,5) defines a
subspace of R5, where the trajectories of system (1) evolve whenever the initial conditions
satisfy Ltotal = α and Rtotal = β. We call a positive class any set that is the intersection
of one such subspace with the positive orthant:

Sx0 := {x ∈ Rn
≥0 : g(i) · x = g(i) · x0, i = 1, . . . , n−m + 1 },

where the vectors {g(1), g(2), . . . , g(n−m+1)} form a basis of D⊥ and where x0 ∈ Rn
>0. Each

positive class may also be represented as a parallel translate of the stoichiometric space
D, since

Sx0 = (x0 +D) ∩ Rn
≥0 = {x ∈ Rn

≥0 : x = x0 + d, for some d ∈ D}.

E+

x0

x
0

S

E0

D

x

Fig. 2. A schematic representation of the stoichiometric space D, the positive classes Sx0 , and
the positive steady-state set E+.

2.2 Steady-states

The steady-states of system (2) (i.e., the steady-state concentrations of the component
biochemical species) are the vectors x̄ ∈ Rn defined by
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f(x̄) = BKθB(x̄) = 0,

and can be divided into positive and boundary steady-states:

E+ = {x̄ : f(x̄) = 0, and x̄i > 0, for all coordinates i}

E0 = {z̄ : f(z̄) = 0, and z̄l = 0, for some coordinate l}.

A boundary steady-state corresponds to a situation when at least one of the species
becomes completely depleted. The boundary steady-states for system (2), can be found by
solving the equation θB(z̄) = 0. For model (1) the boundary steady-states are determined
according to:

R1L = 0, C1 = 0, R2L = 0, C2 = 0,

so that the set E0 is given by

E0 = {(r1, r2, 0, 0, 0)′, (0, 0, r3, 0, 0)′ : r1, r2, r3 > 0}.

For our results, in addition to assumptions (A1)-(A2), we also require:

(A3) There exist no boundary steady-states in each positive class, i.e.,

S ∩ E0 = ∅.

Assumption (A3) is often satisfied for biochemical networks. This is indeed the case for
this two-state model, and can be verified as follows. Upon substitution into equations (4)
and (5), note that points of the type

(r1, r2, 0, 0, 0)′ imply that Rtotal = r1 + r2, and Ltotal = 0,

so this would be an experiment involving no ligand, and thus no reactions would occur.
Similarly, points of the type

(0, 0, r3, 0, 0)′ imply that Rtotal = 0, and Ltotal = r3,

corresponding to an experiment where only molecules of ligand are present, and again
no reactions would occur. In both cases, the pair (α, β) = (Ltotal, Rtotal) does not define a
positive class, because either Ltotal = 0, or Rtotal = 0.

On the other hand, it can be shown (see [6,7]) that each positive class contains exactly
one positive steady-state, and that this positive steady-state is globally asymptotically
stable (see [14]) with respect to the class. In other words, for HJF networks, i.e. under
the assumptions (A1)-(A3) (as in the case of the two-state model, and later on for the
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multi-state model), the trajectory of system (2) with a given initial condition x(0) = x0,
converges to the unique positive steady-state x̄ in the same class of x0.

The positive steady-states (E+) can be further characterized in terms of the kinetic
constants kij. In order to give this characterization, we need to introduce the set

nullspace(K) := {v = (v1, v2, v3, v4)
′ : Kv = 0}.

The steady-states satisfy

x̄ ∈ E+ ⇔ BKθB(x̄) = 0 ⇔ KθB(x̄) = 0 ⇔ θB(x̄) ∈ nullspace(K),

where the second equivalence is justified because, by assumption (A1), the matrix B has
full column rank, and the third equivalence is simply the definition of the nullspace of
K.

Then the following statement (“complex balancing”) is immediate from the assumptions;
see e.g. [7] or Lemma V.1 in [14]:

Lemma 1 The point x̄ is a positive steady-state if and only if the vector θB(x̄) belongs
to the nullspace of K. 2

Assumption (A2) states that the matrix Kin is irreducible (as was mentioned earlier,
this assumption is essentially a mathematical way to describe the property of “weak
reversibility” of the biochemical network). This irreducibility property allows a very useful
characterization of the nullspace of K:

(1) the nullspace of K has dimension one,
(2) the nullspace of K is spanned by a positive vector.

This means that the nullspace of K can be characterized by a scaling factor σ and positive
constants v2, v3 and v4 as

nullspace(K) = {σ(1, v2, v3, v4)
′ : σ ∈ R}.

The positive constants v2, v3 and v4 depend only on the kinetic constants kij. A compu-
tation of the nullspace of K for the model in Figure 1 is presented in Appendix A, where
explicit expressions for the parameters v2, v3 and v4 in terms of the kij are obtained.
This characterization of the nullspace of K is obtained as a routine application of the
Perron-Frobenius Theorem from linear algebra, see e.g. [2]; for ease of reference, a sketch
of the proof is also presented in Appendix A. For each steady-state x̄ ∈ E+, there is an
appropriate, positive, value of σ so that
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θB(x̄) = σ




1
v2

v3

v4


 . (6)

where the factor σ depends on the initial conditions x(0).

To summarize, the steady-states for the receptor–ligand model of Figure 1 are completely
characterized by (6), and (4), (5):

BKθB(x̄) = 0 ⇔




R̄1L̄
C̄1

R̄2L̄
C̄2


 = σ




1
v2

v3

v4


 , (7)

and

L̄ + C̄1 + C̄2 = Ltotal (8)

R̄1 + R̄2 + C̄1 + C̄2 = Rtotal, (9)

so there are 6 independent equations to determine 6 distinct quantities L̄, C̄1, C̄2, R̄1, R̄2

and σ (which also depends on Ltotal and Rtotal).

The steady-states can be parametrized by the three numbers v2, v3, v4 which summarize all
the information needed about the kinetic constants, together with the two numbers Ltotal

and Rtotal which summarize all the information needed about the initial states.

2.3 Remarks on the scaling factor σ and parameters v2, v3 and v4

In essence, the factor σ has recast the receptor–ligand model in terms of the product of the
steady-state amounts of the basic conformation R1 and free ligand L. And, as we shall see,
the three numbers v2, v3, v4 lump the eight kinetic constants kij and, together with σ, they
provide a complete description of the steady-state condition for the model with a minimal
number of parameters. It had already been remarked in [16] that only 3 out of 8 constants
that describe the network of reactions would be independent. The formalism described
in this Section shows one possible way of extracting the independent constants, as well
as providing them with a physical meaning. According to (7), the vi’s are equilibrium
constants that give the fraction of steady-state values of the elemental events relative
to one another: for instance, v2 is the fraction of the steady-state concentration of the
receptor–ligand complex C̄1 relative to the value R̄1L̄. As will be seen in Section 3.3, in
the case the reaction R1 + L → C1 is much faster then its reverse, then v2 is the inverse
of the dissociation constant for that reaction.
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3 Steady-state activity of the two-state receptor model

In this Section, the two–state model is examined in detail, using the formalism described
earlier. Our steady-state analysis will show that this model provides a good description
for receptor–ligand interactions not only for the case of agonists, but also for the case of
neutral and inverse agonists, by varying the relative values of the kinetic constants. We
will develop explicit expressions for several quantities of interest and provide a charac-
terization of the different classes of ligand affinity in terms of the system’s parameters.
In Section 5, the same analysis will be extended to a multi-state receptor model with p
receptor conformations and corresponding receptor–ligand complexes.

The steady-state response for different initial ligand concentrations is determined ex-
perimentally using ligand binding assays [16]. What is observed in these experiments is
usually some combination of the concentration of the species in the model, or as intro-
duced by Segel, Goldbeter et. al. in [12], one may consider the final steady-state activity
as a linear combination

A = a1R̄1 + a2C̄1 + a3R̄2 + a4C̄2.

Here the activity coefficients a1, a2, a3 and a4 are arbitrary nonnegative constants. For the
general case of arbitrary (nonnegative) activity coefficients, we will provide a complete
and exact analysis of the final steady-state activity, A, as a function of the initial amount
of ligand, Ltotal. This analysis will then lead to a characterization of affinity classes based
on the values of the activity coefficients ai (as well as the kinetic constants). We will
assume, from now on, that the initial conditions are of the form

R1(0) = R10, R2(0) = R0 −R10, L(0) = L0, C1(0) = 0, C2(0) = 0,

that is, initially there are as yet no receptor–ligand complexes. In particular, note that

Ltotal = L0 and Rtotal = R0.

As an example, we remark that a typical “response” may be determined as the fraction of
receptors in one of the two possible states [1,4], and plotted as a concentration-response
curve, that is,

[R̄2 + C̄2]/Rtotal, vs. log Ltotal,

corresponding to the choice

a1 = 0, a2 = 0, a3 = 1, a4 = 1,
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in the final steady-state activity, A.

Since the steady-state values R̄1, R̄2, L̄, C̄1 and C̄2 are uniquely characterized by a set
of algebraic equations (7)-(9), in principle, it is possible to obtain the exact values for
these constants in terms of the kinetic constants (kij), and the initial conditions (R1(0),
R2(0), L(0), C1(0) and C2(0)). However, the use of direct substitution to solve this set of
algebraic equations can lead to very complex expressions (see [1]). Alternatively, one may
solve the set of differential equations (1) numerically, since one knows that the solutions
do converge to a (unique, positive) steady-state. However, focusing only on a numerical
solution would not allow for general conclusions about the actual functional dependence
of R̄1,...,C̄2, on the parameters kij and the initial conditions R0, L0. The knowledge of
this functional dependence would enable one to show whether the model does indeed
exhibit the experimental curves A versus log L0, characteristic of the three classes of
ligand affinity. For this specific system, a closed explicit expression for R̄1, R̄2, L̄, C̄1

and C̄2, can be given, using the techniques developed in [6], [14] and later in [3], and
summarized in Section 2.

3.1 Steady-state response

We will now analyze the steady-state values and their dependence on the initial conditions
and other parameters. From equation (7) it is immediate to see that:

C̄1 = v2σ, C̄2 = v4σ, (10)

and then from the conservation equation (8) it follows that:

L̄ = L0 − (v2 + v4)σ. (11)

Substituting this expression for L̄ back into (7) we have

R̄1 =
σ

L0 − (v2 + v4)σ
, R̄2 =

v3σ

L0 − (v2 + v4)σ
. (12)

As we noted above, the factor σ depends on the initial conditions, and to compute this
dependence we will use the second conservation equation (9):

σ

L0 − (v2 + v4)σ
+

σv3

L0 − (v2 + v4)σ
+ v2σ + v4σ = R0 .

This leads to a quadratic polynomial on σ:
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(v2 + v4)
2σ2 − [(L0 + R0)(v2 + v4) + (1 + v3)]σ + R0L0 = 0,

together with the fact that L0 − (v2 + v4)σ > 0 (since L̄ > 0). There are two possible
solutions for this quadratic equation, but the correct one is found to be:

σ =
1

2(v2 + v4)


L0 + R0 +

1 + v3

v2 + v4

−
√[

L0 + R0 +
1 + v3

v2 + v4

]2

− 4R0L0


 . (13)

We remark that the expression inside the square root can be simplified to

(L0 −R0)
2 +

(
1 + v3

v2 + v4

)2

+ 2(R0 + L0)
1 + v3

v2 + v4

which is indeed a positive quantity, for all possible L0 ≥ 0, R0 ≥ 0. The other solution,
σ+ = · · · +√· · ·, would violate the conservation laws of the total amount of ligand and
receptors. To see that this is so, we add up equations (8) and (9):

L̄ + R̄1 + R̄2 + 2C̄1 + 2C̄2 = L0 + R0,

then use equations (10):

L̄ + R̄1 + R̄2 + 2(v2 + v4)σ = L0 + R0

and finally substitute σ = σ+ (note that the factors 2(v2 + v4) cancel out), to obtain:

L̄ + R̄1 + R̄2 + L0 + R0 +
1 + v3

v2 + v4

+

√[
L0 + R0 +

1 + v3

v2 + v4

]2

− 4R0L0 = L0 + R0.

This equation says that

L0 + R0 + positive quantity = L0 + R0,

which is obviously not true, and thus we conclude that σ+ cannot be the correct solution
to the quadratic equation.

In this fashion, we have now computed explicit expressions for the steady-state values,
in terms of L0, R0 and the parameters kij. The dependence on the kinetic constants kij

is condensed into the three positive constants v2, v3 and v4 (see Appendix A).

We are now interested in analysing the behavior of the activity A as a function of L0.
In order to do this, fix R0 and recall that v2, v3 and v4 are constant factors, as well as
a1, a2, a3, and a4. Define σ = σ(L0) to be a function of L0 as given by (13), and define
another function

14



τ(L0) :=
σ(L0)

L0 − (v2 + v4) σ(L0)
(14)

and observe that

A(L0) = (a1 + a3v3) τ(L0) + (a2v2 + a4v4) σ(L0) .

For very small or very large amounts of L0, the following limits may be computed:

lim
L0→0

σ(L0) = 0, lim
L0→+∞

σ(L0) = R0
1

v2 + v4

.

The limit as L0 → 0 is immediate. To compute the limit as L0 → +∞ write

Z = L0 + R0 +
1 + v3

v2 + v4

⇒ σ(L0) =
1

2(v2 + v4)

[
Z −

√
Z2 − 4R0L0

]

and then multiply and divide σ by the quantity Z +
√

Z2 − 4R0L0, use the identity
(a− b)(a + b) = a2 − b2 which is true for every pair of real numbers a, b, to obtain:

lim
L0→+∞

σ(L0) = lim
L0→+∞

1

2(v2 + v4)

Z2 − (Z2 − 4R0L0)

Z +
√

Z2 − 4R0L0

= lim
L0→+∞

1

2(v2 + v4)

4R0L0

Z +
√

Z2 − 4R0L0

= lim
L0→+∞

1

2(v2 + v4)

4R0

Z/L0 +
√

(Z/L0)2 − 4R0/L0

=
1

2(v2 + v4)

4R0

2
= R0

1

v2 + v4

where we used the fact that limL0→+∞ Z/L0 = 1. Similarly, we have

lim
L0→0

τ(L0) = R0
1

1 + v3

, lim
L0→+∞

τ(L0) = 0,

where the limit of τ(L0) as L0 → +∞ follows from the limit of σ(L0), and the limit as
L0 → 0 may be computed using the same technique as above:

lim
L0→0

τ(L0) = lim
L0→0

1

2(v2 + v4)

Z −√Z2 − 4R0L0

L0 − 1
2
Z + 1

2

√
Z2 − 4R0L0

= lim
L0→0

1

2(v2 + v4)

[
Z −√Z2 − 4R0L0

] [
L0 − 1

2
Z − 1

2

√
Z2 − 4R0L0

]
(L0 − 1

2
Z)2 − 1

4
(Z2 − 4R0L0)
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= lim
L0→0

1

2(v2 + v4)

L0

[
Z −√Z2 − 4R0L0

]
− 1

2
(Z2 − (Z2 − 4R0L0))

L2
0 − ZL0 + R0L0

= lim
L0→0

1

2(v2 + v4)

L0

[
Z −√Z2 − 4R0L0 − 2R0

]
L0 [L0 − Z + R0]

=
1

2(v2 + v4)

−2R0

− 1+v3

v2+v4

= R0
1

1 + v3

Therefore,

lim
L0→0

A(L0) = R0
a1 + a3v3

1 + v3

, lim
L0→+∞

A(L0) = R0
a2v2 + a4v4

v2 + v4

.

We can define the affinity quotient as

q =
A(∞)

A(0)
=

a2v2 + a4v4

a1 + a3v3

1 + v3

v2 + v4

. (15)

The affinity quotient, q, is well defined for each set of activity coefficients, as long as
a1 6= 0 or a3 6= 0. The numerator of q will be strictly positive, since, typically, either
a2 6= 0 or a4 6= 0. Then, we postulate that in the case a1 = a3 = 0 (a situation when
no free receptor in any state contributes to the final steady-state activity), the affinity
quotient takes the value +∞. The main results are summarized next.

Theorem 1 Let R0 be a fixed constant. Let a1, a2, a3, a4 be arbitrary nonnegative
constants, with a2 + a4 6= 0. The following statements hold:

(i) σ(L0) is a strictly increasing function of L0;
(ii) τ(L0) is a strictly decreasing function of L0;
(iii) as a function of L0, A(L0) is

– strictly decreasing whenever q < 1,
– strictly increasing whenever q > 1,
– constant whenever q = 1.

The proof of this Theorem follows essentially by computing the derivatives of the func-
tions σ and τ , and analyzing their signs, as a function of L0. The details can be found in
Appendix B.

The affinity quotient can be interpreted in terms of the notion of weighted average. In
general, the weighted average of a set of values X1,. . .,Xp, with respect to a set of weight
factors w1,. . .,wp is defined by

〈X〉w :=
X1w1 + X2w2 + . . . + Xpwp

w1 + w2 + · · ·+ wp

,
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and if the weights are all equal, then the weighted average coincides with the usual notion
of the average value. Observe that q may be written as

q =
a2v2 + a4v4

v2 + v4

/
a1 + a3v3

1 + v3

and then, multiplying and dividing be the quantity σ, and recalling from equation (7)
that σ = R̄1L̄, v2σ = C̄1,v3σ = R̄2L̄ and v4σ = C̄2, we have:

q =
a2v2σ + a4v4σ

v2σ + v4σ
/

a1σ + a3v3σ

1σ + v3σ
=

a2C̄1 + a4C̄2

C̄1 + C̄2

/
a1R̄1L̄ + a3R̄2L̄

R̄1L̄ + R̄2L̄
.

In the second factor, the quantity L̄ cancels out, so we finally obtain:

q =
a2C̄1 + a4C̄2

C̄1 + C̄2

/
a1R̄1 + a3R̄2

R̄1 + R̄2

=
〈activity of bound receptors〉v
〈activity of free receptors〉v ,

so we may view the affinity quotient as the ratio between the weighted average of the
activity of bound receptors and the weighted average of the activity of free receptors. The
equilibrium constants vi play the role of weight factors for the activity coefficients ai, thus
“choosing” the level of contribution from each species to the final activity. For example,
if a1 = a2 = 0 and a3 = a4 = 1 then

q =
C̄2

C̄1 + C̄2

/
R̄2

R̄1 + R̄2

. (16)

The results of Theorem 1 hold for any two-state receptor model formulated according to
the framework described in Section 2. Specifically, for a network consisting of the four
elemental events R1 +L, R2 +L, C1 and C2, possible formulations of a two-state receptor
model are:

(a) a cycle,

R1 + L → R2 + L

↑ ↓
C1 ← C2,

(b) a (reversible) acyclic network

C1 ® R1 + L ® R2 + L ® C2,

(c) any such representation that maintains the connectivity of the network.
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Each of these models is characterized by a different matrix K, and hence the correspond-
ing parameters vi also have different values, but all the conclusions of Theorem 1 are
unchanged.

3.2 Ligand affinity characterization

Part (iii) in Theorem 1 provides a complete characterization of the responses according
to the values of the kinetic constants and activity coefficients. The different qualitative
responses for the model can now be related to the ligand affinity classes mentioned earlier.
For each set of kinetic constants kij, the affinity quotient q characterizes the affinity class
in the following way:

(a) Agonists: q > 1
(b) Neutral Agonists (or antagonists): q = 1
(c) Inverse Agonists: q < 1

Thus, different agonist behavior is obtained depending on the relative values of the scaling
factors v2, v3 and v4 (for the meaning of these parameters, see Section 3.3 below), and also
on the activity coefficients a1, a2, a3, and a4. These classes, when represented graphically,
have the features of typical receptor–ligand binding curves [1,9,13,16].
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Fig. 3. Graphs of A(L0)/R0 vs. log L0, when a1 = a2 = 0 and a3 = a4 = 1. Examples of: (a) an
agonist (q = 1.21), (b) a neutral agonist (q = 1.0), and (c) an inverse agonist (q = 0.5217).

As an example, we consider the case already mentioned above when A = R̄2 + C̄2

(see [1,4]). In this case, the quotient takes the value (16), where the activity of free
and bound receptors is measured, respectively, by a3 (or R̄2) and a4 (or C̄2).
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In Figure 3 it is immediate to see that

(1) As L0 → 0: the concentration-response curve tends to a value which reflects the
partition of receptors between the two possible states in the absence of ligand, (a1 +
a3v3)/(1 + v3) (as the amount of ligand decreases to zero, the amount of receptor–
ligand complexes also decreases to zero);

(2) As L0 → +∞: the concentration-response curve reflects the capacity of the ligand
to saturate the receptors, (a2v2 + a4v4)/(v2 + v4) (for large amounts of ligand, all
the receptors tend to be bound).

Furthermore, the affinity quotient q relates to the following ratio (see [8])

fraction of R2 (L0 → +∞)

fraction of R2 (L0 → 0)
=

η(1 + κ)

1 + ηκ
. (17)

According to [8], in the case when a receptor exists only in two conformations (say R1

and R2), the effect of a ligand on changing the ratio between the two conformations is
given by (17), where η measures the affinity of ligand L for the conformation R2, and κ
is an allosteric constant

η =
affinity of L for R2

affinity of L for R1

, κ =
active receptors

inactive receptors
.

When the ratio (17) is > 1 the presence of ligand enriches the conformation R2, and
when it is < 1, the presence of ligand leads to depletion of the conformation R2. In
this sense, the ratio (17) is equivalent to our affinity quotient q and one can make the
correspondence

q =
[v4/v2v3](1 + v3)

1 + v4/v2

,

with

κ ; v3 =
R̄2L̄

σ
=

R̄2L̄

R̄1L̄
=

R̄2

R̄1

,

and

η ;
v4

v2v3

=
C2/σ

C1/σ

1

v3

=
C̄2

C̄1

R̄1

R̄2

.
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3.3 Biochemical significance of the scalars v2, v3, v4

The constants v2, v3, v4 can be regarded as a concise parametrization of the biochemical
networks being considered. Consider the case where the reactions

R1 + L ­ C1, with dissociation constant KD12

and

R2 + L ­ C2, with dissociation constant KD34

are uncoupled. Remembering that v1 is set to unity, the constants v2, v3 and v4 satisfy
(from Appendix A)

KD12 =
v1

v2

=
1

v2

, and KD34 =
v3

v4

.

Using the experimental evidence (see [9], Chapter 2) that the forward binding constants
(such as k21 and k43 in Figure 1) are much larger (of order 106, 107) than comparable
dissociation constants (of order 10−1, 10−2), we can obtain estimates for the vi. The
equation for dR1/d t, at steady-state, is:

−(k21 + k31)R̄1L̄ + k12C̄1 + k13R̄2L̄ = 0, (18)

and using the fact that k21 À k31 we obtain:

−k21R̄1L̄ + k12C̄1 + k13R̄2L̄ ≈ 0.

Since the model is symmetric with respect to R1, R2, without loss of generality, we can
assume that R̄1 ≥ R̄2, and again using k21 À k13:

k21R̄1L̄ À k13R̄2L̄.

So, equation (18) is reduced to:

−k21R̄1L̄ + k12C̄1 ≈ 0,

and yields

C̄1

R̄1L̄
≈ k21

k12

=
1

KD12

.
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We also have, from (7), that

v2 =
C̄1

R̄1L̄
≈ k21

k12

.

Next, using the equations that provide the nullspace of K (see Appendix A), we may
obtain expressions for v3 and v4 from v2:

−(k21 + k31) + k12v2 + k13v3 = 0

−(k21 + k31) + k21 + k13v3 = 0 ⇒ v3 =
k31

k13

,

and:

k21 − (k12 + k42)v2 + k24v4 = 0

k21 − k21 − k42
k21

k12

+ k24v4 = 0 ⇒ v4 =
k42

k24

k21

k12

.

So the constants vi may be estimated from dissociation constants as

1

KD12

=
k21

k12

= v2,
1

KD13

=
k31

k13

= v3 and
1

KD24KD12

= v4,

which can be measured.

Under these circumstances (namely, (a) the order of magnitude of k21 and k43 is much
larger then the order of magnitude of the other kinetic constants, and (b) R̄1 ≥ R̄2,
meaning that KD12 is the dissociation constant associated to the more abundant confor-
mation of R1), the affinity quotient q, associated with the final activity A = R̄2 + C̄2,
becomes:

q =
v4

v3

1 + v3

v2 + v4

≈ 1/(KD12KD24)

1/KD13

1 + 1/KD13

1/KD12 + 1/(KD12KD24)
=
KD13 + 1

KD24 + 1
.

This expression indicates that the affinity class of the ligand is ultimately decided by the
balance between the final distribution of free and bound receptors among the two-states,
since

KD13 ≈ R̄1

R̄2

and KD24 ≈ C̄1

C̄2

.

An inverse agonist is characterized by KD24 > KD13, or equivalently C̄1/C̄2 > R̄1/R̄2,
while an agonist is characterized by C̄1/C̄2 < R̄1/R̄2. For instance, the inverse agonist in
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Figure 3 was obtained with k43 = k21 = 5, k24 = 4, k31 = 3 and all other kinetic constants
equal to 1, corresponding to KD12 = 0.2, KD13 = 0.33 and KD24 = 4; while the agonist
was obtained with k43 = k21 = 5, k42 = 2, k13 = 1.99 and all other kinetic constants
equal to 1, corresponding to KD12 = 0.2, KD13 = 1.99 and KD24 = 0.5.

Thus, the scalars vi can be seen to generalize the concept of the equilibrium constants
in the context of biochemical networks. They capture, in addition to direct reversibility
between reactants and their products, all other network routes that achieve the same
outcome and are present in the stoichiometry.

3.4 Comparison with experimental data

Devreotes and Sherring [4] identify two receptor conformations for the cAMP receptor of
Dictyostelium. Assuming that the interactions between cAMP (ligand) and its receptors
can be described by the model depicted in Figure 1, and that the concentration-response
curve is determined as [R̄2 + C̄2], as a function of of L0, the authors measured the
dissociation constants:

KD12 =
k12

k21

= 15× 10−9M, KD34 =
k34

k43

= 30× 10−9M,

k31 = 0.012 min−1, k13 = 0.104 min−1, k42 = 0.222 min−1, k24 = 0.055 min−1.

Also from the experimental concentration-response curve, the values:

[R̄2 + C̄2]

R0

(0) ≈ 0.15,
[R̄2 + C̄2]

R0

(∞) ≈ 0.804 (19)

can be obtained. We may now compute the values of our constants v2, v3, v4 (as estimated
in Section 3.3) from the kij obtained in this experiment, and then compare the ratios
v3/(1 + v3) and v4/(v2 + v4) with the values (19). We have:

v2 = 6.67× 107M−1, v3 = 0.115, v4 = 2.69× 108M−1

and

v3

1 + v3

= 0.103,
v4

v2 + v4

= 0.806,

which are in agreement with the values (19).
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4 Application of HJF networks to a classical model

As further illustration of the flexibility of the theory described in Section 2, we now apply
the HJF networks formalism to analyze a classical model in the literature, a model that
was studied in great detail by Segel, Goldbeter et. al. in [12], and is depicted in Figure 4.

C2C1

1R  R  2

k−1

k1

k Ldk−d

k2

k−2

k−r k Lr

Fig. 4. The model studied in [12].

There are two essential differences between the models of Figures 1 and 4:

1. In the model of Figure 4, the amount of ligand L is assumed to be constant, i.e.,

L ≡ L0 ≡ L̄,

and thus L is a parameter, but not a variable of the system, while in our two-state
model (Figure 1) the amount of ligand is allowed to change, as it binds to the cell
receptors, and therefore L is a variable of the system.

2. In the model of [12] (and also other references such as [9], Chapter 2), the ex-
change between receptor conformations occurs independently of the presence of lig-
and, whereas in our model (Figure 1), from the discussion of elemental events, the
exchange between receptor conformations may occur only in the presence of lig-
and. This leads to the appearance of nonlinear terms (R1(t)L(t), R2(t)L(t)) in the
differential equations (1).

The HJF networks formalism also allows the rigorous analysis of the model in Figure 4.
The equations that describe this model are (recall that L is assumed to be constant, and
thus dL/dt ≡ 0, as opposed to our model (1))

dR1

dt
=−k1 R1 + k−1 R2 − kr L R1 + k−r C1

dR2

dt
= k1 R1 − k−1 R2 − kd L R2 + k−d C2

dC1

dt
=−k2 C1 + k−2 C2 + kr L R1 − k−r C1
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dC2

dt
= k2 C1 − k−2 C2 + kd L R2 − k−d C2.

(These are equations (1a-d) in [12] and, in their notation, R1 ; R, R2 ; D, C1 ; X
and C2 ; Y .) There is only one conservation equation:

R̄1 + R̄2 + C̄1 + C̄2 = R0.

Since the elemental events are simply R1, R2, C1 and C2, the positive steady-states of
the system are given by:

R̄1 = σ, C̄1 = σv̂2, R̄2 = σv̂3, C̄2 = σv̂4.

One can solve for σ, using the conservation equation, to obtain

σ = R0
1

1 + v̂2 + v̂3 + v̂4

.

Comparing Figures 1 and 4, there is the following correspondence between kinetic con-
stants:

k12 = k−r, k21 = kr L, k13 = k−1, k31 = k1,

(20)

k24 = k−2, k42 = k2, k34 = k−d, k43 = kd L,

so in this case the scalars v̂i depend on L. Nevertheless, we may still define the steady-
state activity and the affinity quotient as before, by carefully computating the limits
A(L → 0) and A(L → +∞). Following the expressions in Appendix A and the corre-
spondence (20), the scalars v̂i have the form

v̂3 =
k−rk1(k−2 + k−d) + k−dk2(krL + k1)

k−rk−2(k−1 + kdL) + k−1k−d(k−r + k2)

and

v̂2 = −k−1

k−r

v̂3 +
krL + k1

k−r

, v̂4 =
k−1 + kdL

k−d

v̂3 − k1

k−d

.

Then

A(L) = R0
a1 + a2v̂2 + a3v̂3 + a4v̂4

1 + v̂2 + v̂3 + v̂4
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= R0

a1 + a2
krL+k1

k−r
− a4

k1

k−d
+ v̂3

(
a3 − a2

k−1

k−r
+ a4

k−1+kdL
k−d

)
1 + krL+k1

k−r
− k1

k−d
+ v̂3

(
1− k−1

k−r
+ k−1+kdL

k−d

) .

Now, it is not difficult to see that

lim
L→0

v̂3 =
k1

k−1

, lim
L→+∞

v̂3 =
kr k2 k−d

k−r k−2 kd

,

and, upon substitution into A(L), standard limit computations yield:

lim
L→0

A(L) =
a1 + a3 k1/k−1

1 + k1/k−1

, and lim
L→+∞

A(L) =
a2 + a4 k2/k−2

1 + k2/k−2

.

Thus the affinity quotient for the model developed in [12] is

q =
a2 K2 + a4

K2 + 1
/

a1 K1 + a3

K1 + 1
, (21)

where K1 = k−1/k1 and K2 = k−2/k2. As a final remark, we point out that this affinity
quotient in some sense expresses the concept of “sensory adaptation” introduced in [12].
This concept of adaptation involves choosing the activity coefficients ai so that the final
steady-state activity is always equal to the basal activity or, in other words, so that
A(L1) = A(L0), for every pair of values L0, L1. Equivalently, the choice of coefficients
should satisfy

A(0) = A(∞) ⇔ q = 1,

and, indeed, setting q = 1 in equation (21), yields precisely equation (26a) of [12], for
exact adaptation.

5 Extension to multi-state receptor models

The versatility of the approach summarized in equation (2), where the receptor–ligand
model is analyzed as an HJF network, can be seen in its extension to more complex
systems. For example, consider the model in Figure 5, where a single ligand binds to
multiple receptor states.

The results in Section 2 extend very naturally to the model of Figure 5. Now the vec-
tor of concentrations takes the form x = (R1, R2, . . . , Rp, L, C1, C2, . . . , Cp)

′. The two
conservation laws become
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Fig. 5. A “ladder” receptor–ligand network, incorporating p receptor conformations.

L̄ + C̄1 + C̄2 + · · ·+ C̄p = L0

R̄1 + R̄2 + · · ·+ R̄p + C̄1 + C̄2 + · · ·+ C̄p = R0,

while the matrix of reaction nodes B and the matrix of kinetic constants K extend in
the obvious way, and the vector of elemental events becomes

θB(x) =




R1L
C1

R2L
C2
...

RpL
Cp




= σ




1
v2

v3

v4
...

v2p−1

v2p




.

The nullspace of K is now the set

nullspace(K) = {σ(1, v2, v3, . . . , v2p) : σ ∈ R}

where v2, v3, . . . , v2p are still positive scalars, given in terms of the kij only. Solving the
new equations for the steady-state of the system, we find that, for each σ > 0,

C̄1 = v2σ, C̄2 = v4σ, . . . , C̄p = v2pσ ,

L̄ = L0 − (v2 + v4 + · · ·+ v2p)σ ,

R̄1 =
σ

L0 − (v2 + v4 + · · ·+ v2p)σ
, R̄2 =

v3 σ

L0 − (v2 + v4 + · · ·+ v2p)σ
,

R̄3 =
v5 σ

L0 − (v2 + v4 + · · ·+ v2p)σ
, . . . , R̄p =

v2p−1 σ

L0 − (v2 + v4 + · · ·+ v2p)σ
.

And finally, σ satisfies a quadratic polynomial very similar to the two state case (we only
need to replace the sums of odd indexed vi and even indexed vi):
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1 + v3 ; So = 1 + v3 + v5 + · · ·+ v2p−1

v2 + v4 ; Se = v2 + v4 + v6 + · · ·+ v2p ,

so that

σ(L0) =
1

2Se


L0 + R0 +

So

Se

−
√√√√[

L0 + R0 +
So

Se

]2

− 4R0L0




and

τ(L0) =
σ(L0)

L0 − Se σ(L0)

For this extended model, the final steady-state activity measurements would be given by:

A = a1R̄1 + a2C̄1 + . . . + a2p−1R̄p + a2pC̄p

as a function of L0, and the affinity quotient is

q =
a2v2 + . . . + a2pv2p

a1 + . . . + a2p−1v2p−1

So

Se

(22)

Under these conditions, the results in Theorem 1 are still valid, for any choice of constants
ai ≥ 0, with a2 + a4 + a2p > 0.

As before, the affinity classes are characterized by the affinity quotient, which can again
be interpreted as

q=
a2C̄1 + . . . + a2pC̄p

C̄1 + C̄2 + C̄3 + · · ·+ C̄p

/
a1R̄1 + . . . + a2p−1R̄p

R̄1 + R̄2 + R̄3 + · · ·+ R̄p

= 〈activity of bound receptors〉v / 〈activity of free receptors〉v
the ratio between the weighted averages of the activity of bound and free receptors, where
the vi’s play the role of weight factors. Another interpretation for the affinity quotient is
in terms of the distribution of the receptor conformation states (referred to as “allosteric
constants” in [8]):

κi =
receptors in state i

receptors in inactive state
=

L̄R̄i

L̄R̄1

=
σv2i−1

σv1

= v2i−1,

(note that κ1 = 1) and the relative affinity of ligand for each conformation:
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ηi =
v2i

v2(a1 + a3v3 + · · ·+ a2p−1v2p−1)
=

C̄i

C̄1

R̄1

a1R̄1 + a3R̄2 + · · ·+ a2p−1R̄p

.

Then

q =
(a2η1 + a4η2 + · · ·+ a2pηp)(1 + κ2 + κ3 + · · ·+ κp)

1 + (η1 + η2 + · · ·+ ηp)(a1 + a3κ2 + · · ·+ a2p−1κp)

or, in a more compact notation,

q =
(
∑

a2i ηi) (1 +
∑

κi)

1 + (
∑

ηi) (
∑

a2i−1 κi)

generalizes expression (17)

fraction of R2 (L0 → +∞)

fraction of R2 (L0 → 0)
=

η(1 + κ)

(1 + ηκ)
,

which is indeed recovered for the particular case of the two-state model, with η ≡ η2,
κ ≡ κ2 and a1 = a2 = 0, a3 = a4 = 1 (as we saw in Section 3.2).

As noted in Section 3, Theorem 1 implies that any number of reactions among the
nodes may be added or removed (as long as the irreducibility property of the network
is maintained), causing the values of the vi’s to change, but the general results and
conclusions still hold. Consider, for instance a “star” network, as in Figure 6, in which
only the “basic” receptor conformation (R1) is allowed to change to other conformations
(R2, R3, R4). In this case, the nullspace of K is very simple to compute and the following
values are obtained:

v2 =
k21

k12

, v3 =
k31

k13

, v4 =
k43

k34

k31

k13

,

v5 =
k51

k15

, v6 =
k65

k56

k51

k15

, v7 =
k71

k17

, v8 =
k87

k78

k71

k17

,

so, in this “star” example the vi are exactly given by dissociating constants, which is
consistent with the notion that all receptors in the network are accessible via R1.

6 Concluding remarks

Receptor–ligand interactions can be represented as HJF biochemical networks, in the
form of equation (2), consisting of three essential objects (see also [7]): The vector θB(x)
containing the elemental events; The matrix K of kinetic constants; And the matrix B
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R  + L2

C2

C3

R  + L4

C4

R  + L3

k65

k56

k51

k15 k21

k12

k13k31

k34k43

k87k78

k71k17

C1R  + L1

Fig. 6. A “star” receptor–ligand network.

that relates the nodes of the network to the rate of change of the individual species’
concentrations. Formulated in this way, the conservation laws for this system are a con-
sequence of the matrix B and establish a set of invariant subspaces for the system. The
nullspace of the matrix K then identifies the set of steady-state points in these subspaces,
using a minimal set of parameters. From our analysis, it becomes clear that this mini-
mal set of parameters generalizes the role of the equilibrium constants in the context of
biochemical networks, by incorporating the effect of the network as a whole (while it is
often the case that the network is decoupled, for the purpose of computing the equilib-
rium constants of the “receptor+ligand ↔ complex” reactions). With this minimal set
of parameters, a detailed analysis of the steady-state activity of the two-state model is
achieved, under general assumptions on the available biochemical pathways (which are
identified by the nonzero entries of the matrix K in).

Experimentally, steady-state measurements are a linear combination, A, of contributing
species, e.g., all sources of a receptor, both free and bound to ligand (see also [12]). This
steady-state activity can also be expressed in terms of the minimal set of parameters,
and depends on the activity coefficients and on the total amount of ligand present. The
quotient concisely relating the final activity at the limiting conditions of zero and infinite
amounts of ligand, summarizes the distribution of the species in the model. This affinity
quotient can also be interpreted as the ratio of the weighted averages of, respectively, the
activity of bound receptors and the activity of free receptors. The weight factors are, in
fact, the set of minimal parameters, which are responsible for selecting the appropriate
contribution from each species to the steady-state activity. The classification of the ligand
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as agonist, neutral agonist or inverse agonist is then readily determined from the value
of this affinity quotient. And finally, the flexibility of this formalism can be appreciated
through its extension to multi-state receptor systems. All of the concepts can be directly
generalized, and the characterizations of the steady-state activity and the corresponding
affinity quotient are similarly preserved.

It is now well recognized that a simple mass action interaction between ligand and re-
ceptor is not the typical event initiating cell signaling. Rather, the response to ligand
activation is a complex process that can eventuate in different receptor states and lead
to a variety of functional consequences. The economic use of a single receptor type to
initiate elaborate downstream signaling can be seen, for example, in the selective and
sensitive response of cells to chemotactic factors and in the shifting responses to growth
factors during different time points in development. Because of the potential for complex
biological systems to be represented by equally complex sets of equations, significant
progress in mathematical descriptions of these elaborate signaling processes will be best
achieved with concise expressions that still capture the dynamics of the essential bio-
chemical events taking place.

Despite their complexity, biochemical pathways still operate under the principles of mass
action and stoichiometry. Additionally, metabolic networks and signaling pathways have
been intuitively, but not formally, understood to be weakly reversible. Taken together,
these basic concepts can lead to the formalism that has been presented here, in which
brevity and flexibility are achieved through a minimal set of parameters that can ulti-
mately be regarded as equilibrium constants for the signaling network. This generalization
leads to the characterization of multiple receptor states in terms of weighted averages of
its respective activities, with the generalized parameters as weighting factors. How these
parameters can be further exploited to character drug receptor interactions and signaling
in more complex biochemical networks is the subject of further investigations.
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A The nullspace of K

A.1 Computing the scalars v2, v3, v4

Consider the model in Figure 1 and the corresponding matrix K. The vectors in the
nullspace of K satisfy Kv = 0. The vector v = (1, v2, v3, v4)

′ can be determined from the
equations:

−(k21 + k31) + k12v2 + k13v3 = 0

k21 − (k12 + k42)v2 + k24v4 = 0

k31 − (k13 + k43)v3 + k34v4 = 0

which yield

v3 =
k31k12(k24 + k34) + k34k42(k21 + k31)

k12k24(k13 + k43) + k13k34(k12 + k42)

and from this expression both v2 and v4 can then be computed by

v2 = −k13

k12

v3 +
k21 + k31

k12

and v4 =
k13 + k43

k34

v3 − k31

k34

.

A.2 Characterization of the nullspace of K

We review here some standard facts about irreducible matrices. By construction, K is
irreducible and it has negative entries only on its diagonal. So there is a constant γ > 0
such that M = K+γI has all entries nonnegative. Thus M ≥ 0 and M is also irreducible.
For such matrices, the Perron-Frobenius Theorem states that:

(1) the spectral radius of M , ρ, is an eigenvalue of M of multiplicity one;
(2) an eigenvector, vρ, corresponding to the eigenvalue ρ (so that Mvρ = ρvρ) may be

chosen with all entries positive.

Recall that the spectral radius of M is defined as the largest absolute value of all the
eigenvalues of M (ρ = max{|λ|, λ is an eigenvalue of M}). In addition,

(3) any vector in the nullspace of K is an eigenvector of M , corresponding to the eigen-
value γ:

Mv = Kv + γIv = γv;
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(4) the columns of K add up to zero, a fact that can be written as 1̄K = 0 where
1̄ = ( 1 1 · · · 1 ).

Then we have

1̄Mvρ = 1̄(ρvρ) = ρ(1̄vρ), (A.1)

where 1̄vρ is a positive scalar, because all the entries of vρ are positive. On the other
hand, because 1̄K = 0,

1̄Mvρ = 1̄Kvρ + γ(1̄vρ) = γ(1̄vρ). (A.2)

Comparing equations (A.1) and (A.2), it turns out that

ρ(1̄vρ) = γ(1̄vρ) ⇔ ρ = γ

Therefore:

ρvρ = Mvρ = Kvρ + γvρ = Kvρ + ρvρ ⇔ Kvρ = 0,

meaning that vρ is a vector in the nullspace of K. Conversely, point (3) above shows that
any element in the nullspace of K must be an eigenvector of M , corresponding to the
eigenvalue γ = ρ. This is exactly what we wanted to conclude: the nullspace of K has
dimension one and is spanned by a positive vector (vρ).

B Proof of Theorem 1

To show that σ is a strictly increasing function of L0, we only need to compute its
derivative and check that it is always positive. From expression (13) we see that

dσ

dL0

=
1

2(v2 + v4)


1− 2

[
L0 + R0 + 1+v3

v2+v4

]
− 4R0

2

√[
L0 + R0 + 1+v3

v2+v4

]2 − 4R0L0




=
1

2(v2 + v4)


1− L0 −R0 + 1+v3

v2+v4√
(L0 −R0)2 +

(
1+v3

v2+v4

)2
+ 2(L0 + R0)

1+v3

v2+v4


 .
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If (L0−R0)+(1+v3)/(v2+v4) ≤ 0, then dσ/dL0 is clearly a positive quantity. Otherwise,
if (L0 − R0) + (1 + v3)/(v2 + v4) > 0, then notice that the negative term is of the form
(a + b)/

√
a2 + b2 + c, with c > 2ab, and so:

(
a + b√

a2 + b2 + c

)2

=
a2 + b2 + 2ab

a2 + b2 + c
< 1.

implying that dσ/dL0 is a positive quantity. Therefore, σ is an increasing function of L0.

Next, recall the conservation equation (9), which may be written as:

(1 + v3) τ(L0) + (v2 + v4) σ(L0) = R0

Note that v2, v3 and v4 are constant factors, and that the left hand side of this equation
is to remain constantly equal to R0. Taking derivatives with respect to L0 on both sides
of this equation yields:

dτ

dL0

= −v2 + v4

1 + v3

dσ

dL0

.

From (i) we know that dσ/dL0 > 0 for all L0, so it follows that dτ/dL0 < 0 for all L0.
This proves part (ii).

Finally, to prove part (iii), observe that

dA
dL0

= (a1 + a3v3)
dτ

dL0

+ (a2v2 + a4v4)
dσ

dL0

=
(
−(a1 + a3v3)

v2 + v4

1 + v3

+ (a2v2 + a4v4)
)

dσ

dL0

.

Assume first that q < 1. Then,

a1 + a3v3

a2v2 + a4v4

v2 + v4

1 + v3

> 1 ⇒ (a1 + a3v3)
v2 + v4

1 + v3

> (a2v2 + a4v4) ⇒ dA
dL0

< 0

and therefore A is a strictly decreasing function of L0. Assuming that q > 1, we can
conclude by a similar argument that dA/dL0 is positive and hence the function is strictly
increasing. Finally, whenever q = 1, it is clear that dA/dL0 ≡ 0, and so the function is
constant.

33



References

[1] Bywater, R.P., Sørensen, A., Røgen, P. & Hjorth, P.G.(2002). Construction of the simplest
model to explain complex receptor activation kinetics. J. theor. Biol. 218, 139-147.

[2] Berman, A & Plemmons, R.J.(1979). Nonnegative Matrices in the Mathematical Sciences.
Academic Press, New York.

[3] Chaves, M.(2003). Observer Design for a Class of Nonlinear Systems, with Applications to
Biochemical Networks. PhD. Thesis, Rutgers University.

[4] Devreotes, P. & Sherring, J.(1985). Kinetics and concentration dependence of reversible
cAMP-induced modification of the surface cAMP receptor in Dictyostelium. J. Biol. Chem.
260, 6378-6384.

[5] Feinberg, M.(1977). Mathematical aspects of mass action kinetics. In Chemical Reactor
Theory: A Review (L. Lapidus and N. Amundson, eds.), Prentice-Hall, Englewood Cliffs,
NJ.

[6] Feinberg, M.(1995). The existence and uniqueness of steady-states for a class of chemical
reaction networks. Arch. Rational Mechanics and Analysis 132, 311-370.

[7] Horn, F.J.M. & Jackson, R.(1972). General mass action kinetics. Arch. Rational Mechanics
and Analysis 49, 81-116.

[8] Kenakin, T.(2002). Efficacy at G-protein-coupled receptors. Nature Reviews Drug Discovery
1, 103-110.

[9] Lauffenburger, D.A. & Linderman, J.J.(1993). Receptors: Models for Binding, Trafficking,
and Signaling, Oxford Un. Press, New York.

[10] Leff, P. (1995). The two-state model of receptor activation. Trends Pharmacol. Sci. 16,
89-97.

[11] Leff, P., Scaramellini, C., Law, C. & McKechnie, K. (1997). A three-state receptor model
of agonist action. Trends Pharmacol. Sci. 18, 355-362.

[12] Segel, L.A.,Goldbeter, A., Devreotes, P.N.& Knox, B.E.(1986). A mechanism for exact
sensory adaptation based on receptor modification. J. theor. Biol. 120, 151-179.

[13] Shea, L.D., Neubig, R.R., & Linderman, J.J.(2000). Timing is everything: The role of
kinetics in G protein activation. Life Sciences 68, 647-658.

[14] Sontag, E.D.(2001). Structure and stability of certain chemical networks and applications to
the kinetic proofreading model of T-cell receptor signal transduction. IEEE Trans. Automat.
Contr. 46, 1028-1047. Errata in IEEE Trans. Automat. Contr. 47(2002), 705.

[15] van Rossum, J.M.(1977). in Kinetics of Drug Action, ed. J.M. van Rossum, Springer-Verlag,
New York. Page 414.

[16] Woolf, P.J., Kenakin, T.P. & Linderman, J.J.(2001). Uncovering biases in high throughput
screens of G-protein coupled receptors. J. theor. Biol. 208, 403-418.

34


