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Abstract—Signal amplification and other input-to-output ~ for i = 2,...,n, wherea; = &;X,,;. For weakly activated
properties of signaling cascades are characterized by th#l.  pathways there is a low level of kinase phosphorylation,
gain in the case of linear systems, or by the? induced norm
in the nonlinear case. The effect of the length of the cascade

on the output signal is examined. In particular, for a fixed X;

gain, there is an optimal length that generates “sharp” outputs Xi < Xy = 1- X ~ 1. 3)
(signals that simultaneously exhibit short duration and high o

amplitude). In this case the equations (2) are simplified to a linear

| INTRODUCTION system of the form:
. . . . dX, dX;
The biochemical pathways known as mitogen-activated ——= = o, R — 5, X;, ——
protein kinase (MAPK) signaling cascades are fundamental dt
mechanisms of cellular signal transduction. Protein kinafer i = 2,...n. Section Il includes remarks regarding
cascades are involved in many regulatory processes, ite easily computed transfer function and gain for the
cluding cell cycle regulation, gene expression, and T celinear system, and then in Section Il we will define a
activation. For this reason, the control of kinase cascadest of measures for the output signal, which closely follow
by therapeutic intervention has become an attractive aréi@ose discussed in [8]. In Section IV we prove our main
for drug discovery, particularly in the areas of cancer ancesult, namely, that the most efficient cascade design, for
inflammation [6], [7], [10]. generating sharp signals, has equal on rates and a finite
The dynamics of MAPK cascades has been modeled afehgth depending only on the cascade’s gain. While our
analysed numerically in several approaches ([2], [3], [4]results are formulated for weakly activated pathways, they
[8], [9]). In this paper, based on the notion Bf,, gain of may be extended to the general (nonlinear) case (2). Indeed,
a system, we focus upon the dependence of MAPK cascaite Section V, we sketch a proof of the fact that tigé
signal amplification on the number of kinases in a cascadeduced norm for (2) coincides with th& ., gain for (3).
and the phosphorylation/dephosphorylation rates.
Let R denote the input signal; the inactive (nonphos- Il. TRANSFER FUNCTION ANDH ., GAIN
phorylated) form of kinasé and X; the active (phospho-
rylated) form of kinase. The rate constant (or “on” rate) . . ; : .
for the i-th kinase phosphorylation will be denoted &y, with aninput &, an_d aroutputwhich \.N'" be some fg_nct|on
and the dephosphorylation rate constants (or “off” rateﬁlc the conce_ntrat|on of“the Iqst"k.mas?én. Specmcal-ly,
e output will be the “effective” integral ofX,,, or in

will be denotedg;. The input signalR might represent,
for example, the concentration of activated receptors, ant éher words, the cascade will be extended one more step
10 include a “leaky” integrator:

the dynamics of the signal transduction pathway may b

—az i— 52 iy (4)

We will consider the signaling cascade (4) as a system

modeled as follows (see [8]): dX,
(see [8]): S o
Xm ~ nd d)(z - ~ dt
— = RX, — 51Xy, =0; X; 1 X — 3:Xs, (1) - :
dt dt where the output iX,,11. The variableX,,, ; expresses the

for i = 2,...,n. Assuming that the total amount of kinaseeffective concentration of the last kinase (minus losses due
i remains constant, that i&(; + X; = X, the differential to degradation or inactivation ok,,, for instance). Note

t
equations (1) can be rewritten as that the casé = 0 recoversX,,,1 = [~ X,,(t) dt'.
The model for a weakly activated signal transduction
% — R (1 _ )‘(Xl ) — B X4, cascade may then be written in the more compact form,
tot, 1
' dX
dX; X; () = =
LU (1 B ) _aX. @ o () =AX(1) + BR(t), Y(t)=CX(1),  (5)
tot,?
where X = (X1,Xs,...,Xn, Xnt+1) IS @ column vec-
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Note that, in the case where = 0, the gain |G|

o is infinite — meaning that, in at least one stepX(, —
XL - X,+1 ) there is no degradation term. Then the estimate (9)
P. contains no useful information. However, fér= 0, we
v T T x have Y (t) = X,41(¢) = fot X,(t') dt’, and we still
: ‘ have an estimate for the “strength” of the sigiig|, since

&X [Xnll2 < G52 1R]2-
X C"‘ X [1l. SIGNALING TIME, SIGNAL DURATION, AND SIGNAL
B, AMPLITUDE

Some basic quantities which serve to characterize a
signal transduction system are: the overall amplification
Fig. 1. A model of a MAPK cascade. from the input to the ouput; the duration of the output
signal; and the time it takes the input signal to traverse the
cascade. There are several possible definitions and estimates

X

ntl

=outpu

matrices of these quantities: here we extend the definitions given
-3 0 - 0 0 0 by [8], embedding them in the context of frequency-domain
as  —[s 0 0 0 analysis, and generalizing them to arbitrary inputs.

0 as 0 0 0 To be concise, let us identify the cascade (5) by its
A = : . . ) parameters, and associate with it the followif®p + 1)-

0 0 o an B, 0 tuple:

O 0 O 1 —g C::(naah--~7anaﬁl7"'7ﬁn)a
B = (a1 0 -+ 0),

where it is assumed that € N and «;, 3; are positive
c = (0 --- 0 1). (6) real numbers, fot = 1,...,n. We will also introduce the
. . notation/ for denoting the set of inputs.

It is easy to see that the transfer function for the total system Definition 3.1: For system (5), with paramete€sand a

is the product of the transfer functions at each step: leak factor¢ > 0, for each inputR, the signaling time 7

N | o1 O and theoutput signal durationo, are given by
(s) = (7
sHls+B) (4 0) dInY
As usual, the 2-norms of the functiori and its Laplace T(C.LR) = - (S)J :
transformY” are given by||Y ||, := [ff;" Y (t)? dt} * and - S
1 d? lnY
V2= | [TV (jw)[2dw]|~ . (Note: from now on we o(C,tR) = 7z )

: . . ’ o
will assume that the signals are defined only for positivg, ngerstand the significance of these definitions, recall
times, that isY'(t) = 0 for ¢ < 0.) The gain of the system o yroperties of the Laplace transform and compute (with
is given by Y(t) = 0 for t < 0): V(0) = [FY(t)dt, dY /ds (0) =

~ ~ N Y 2V 2 _ [O° 42
1G e 2= ilé% Gl = %H (8) recfgvézféi)pitésii;/sda)(gzd_ (SIS) o:‘f r};f(él)rgac?en?B]thus e
and since o fooo 1Y (£)dt
Y ll2 < Gl |2 ) Jo Y@t 2
a necessary condition for amplification of the signal to o = foooootzy(t)dt _ (fitY(t)dt) ,
occur is that||G||. > 1. Moreover, since/ is essentially Jo Y (t)dt Jo Y(t)at

an independent parameter, introduced for the purpose @fere r can be regarded as the expected value (of the

defining a reasonable measure of the output, we can Sgie to traverse the pathway), andas the corresponding
that amplification of the input signal occurs only if variance.

ar--an > B Bn. (10) “An e_stimate _of the amplitude of the output signal, as
given in equation (6) of reference [8], is the valug
Recall thate; = &; X, Where X,,; is the total con- such thatS x 20 = fOOOY(t)dt. Again we propose a
centration of theith kinase andd; is the (true) rate of more generalized notion, suggested by the input-to-output
phosphorylation. Therefore, we still expect thigt < 5;, estimate (9), that takes advantage of the easily computed
i =1,...,n, as should be the case for a weakly activatedain of the system, and also incorporates the strength of
pathway. the signal.



Definition 3.2: For system (5), with paramete€sand a and high amplitude. Our model provides a definite answer
leak factor/ > 0, for each inputR, the signal amplitudas  to this question.

given by As a starting point, we may think of the family of
||@c|| cascades that have the same gain, sgyand examine
AC, 0, R) = — = |IR|2, (11) their length, the distribution of the “on/off” rates and signal
a(C.t R) amplitude and duration. The problem we would like to study
where G is the transfer function (7). is then:

A may also be regarded as the amplitude of a constaiiP) For each fixed gain|G|. = K, find the optimal
signal of durationo, but Definition 3.2 differs from the combination of the on/off rates and the length of the
definition of amplitude given in [8] in essentially three cascade that maximizes the signal amplitude,for
points: any inputR.

1. the meaningful quantity for measuring the amplitude To formulate this problem, first define the family of
is the area under the curvg {'(¢) dt), but rather the cascades that have the same g&in
2-norm,/ [ |Y (t)|?dt, which computes the strength of
the signal;

2. the amplitude is proportional to the product of thq:
gain of the system, and the 2-norm of the input. This
simplifies calculations since, for each cascade|th#
is computed only once anfR||» is computed for each

a1 Qp
Ci,={C: ——— =K},
=1 g, =
or each inputRk, and each leak factat, define the set of
optimal” cascades, that is, those cascades which exhibit

maximal signal amplitude:

input signal; Coall,R):={CE€Cx,: A(C,LR)>AC (R),
3. the product||G|||/R[]2 is used as an estimate for for all C' € Cy,}.
IIY'||l2, but we know that|G|| is the least factor that ’
satisfies the inequalityY |2 < k|| R||2- Then define the function
We remark that these definitions are valid not only for the "o
special case whenl, B and C are of the form specified oo(n, B, Bn) = Z 7
in equations (6), but in fact they are valid for any linear i=1 7

system of the form (5). (For example, the case when there isd observe that it satisfies
positive feedback from the last to the first kinase is analyzed
in [5].) We next explicitly compute these quantities for the ;¢ ¢ R) = \/1 +00(n, B1, .-, Bn) + q(R).
special case whenl, B and C are of the form (6), and e

L#0: Finally, define the set of cascades that minimizgeover

n ~ the family C ,:
1 1 dInR '
= - — 12
T(Ca€7 R) / + ; ﬁZ + ds J » ( ) C*(E,R) = {C c CK,({ .
1 n 1 UO(n7615"'aﬂn) SUO(n/aﬁiw"?ﬁ;)a vc/ GCK‘E}-
o(C.LR) = \lﬁ +Zﬂ_f +a(R), (13)  Our first result states that in fact the sdfs (¢, R) and
=1 C..(¢,R) are equal, or in other words, that an optimal
whereq(R) = d? In R/ds? |,_o, and cascade wilsimultaneously maximize the signal amplitude
and minimize the signal duration
AC, 0, R) = L% I1R]]2 . (14) Lemma 4.1:In the notation defined abov€,,..(¢, R) =
0831 B \/%2 +3n, % +q(R) C. (¢, R), for all inputs R € U and leak factorg > 0.
N ' Proof: Fix any ¢ > 0, and anyR € U. Recall
In the case/ = 0, the quantitiesr, o and A may be ine notationc — (R, 01y .., B, .., By). Given any
computed forY = X,,. The expressions are very similar,c’cl € C, ,, the following equivalences are immediate
except that all the terms iA vanish. from the definitions ofr and A:
IV. CASCADE DESIGN OPTIMIZATION ao(n, By Ba) & o(C.6,R) < o(C', 0, R) (15)

From the analysis of the quantities o and A, defined
in Section lll, we can explore the signaling efficiency of / /
kinase cascades. The de?inition of a% “effi%ient” resgonsg(C’E’R) So(C6R) & ACLR) = AC, L R). (16)
may depend on the particular biological context, but iCombining (15) and (16) proves the Lemma. [ |
typically involves the relationship between the length of An immediate conclusion from Lemma 4.1 is that,
the cascade, the amplitude of the signal and its duration. o
A question posed in [8] is whether cascades can respond maximize A(C, ¢, R) over Cy,,
with sharp signals, i.e., simultaneously of short duration < minimizeog(n, By, ..., 0,) over Cy



so that, for any fixed gain, maximal amplitude is achieved Theorem 1:Let K > 0 and/ > 0 be fixed real numbers.
simultaneously with minimal signal duration. This is conLet C, , be the set of all cascades (5) with galif, as
sistent with the notion that the most efficient cascade wouldefined above. Then

respond with sharp (high-peaked and fast) output signals. In 1. For each fixed» = N € N, the element’ =

the limit, this notion can be regarded as an “instantaneous (N, a4,...,an,B1,...,0x) € C.(¢, R) satisfy 3; =
response” € ~ 0) coupled with “infinite signal amplitude” 3,foralli=1,... N, where

(A =~ o0), which is, of course, not biologically viable. A ar-any b

realistic solution to problem (P) does exist, and is stated in 8= <T£> :

Theorem 1.

2(a). Any elementC € C.(¢, R) of the formC =

Since the signal duration depends only on the cascade N
9 b y (n,a,...,a, B1,...,0,) satisfies

length and the “off” rategs; (besides the input term), we
expect the “on” ratesy;, to play a small role in maximizing 1
the efficiency of the output response. So, for addressing the 7 =¥(2InK{) and §;=f=a <m)
problem (P), we will consider two different assumptions
on the available knowledge on the: either (a) all they;
have an equal, fixed valuey; or (b) the product of the
«; is known, at some fixedrp. We will also assume that s
the “leak” factor/ is fixed, since this parameter was added K/? ap\n
artificially and may be adjusted independently. =v 2ln ap and f = = (Ké)

Before stating the main Theorem, we need to mtroduc@efore presentmg the proof of the Theorem, some remarks
some notation. Define the functigh: (1, 00) — (0,00) by 0N the interpretation of points 1 and 2(a), 2(b). The first

part of the result is consistent with the observation that

F) = &2 Kl N 1) In <1 N 1> 1} ' 17) the ordering of the amplification or dampening single steps

n

2(b). Any elementC € C.(¢,R) of the form
C = (nyay,...,an,B1,...,0,) € Ci(¢,R) with
oy -+ o, = ap satisfies

k) k within the cascade does not influence the final output signal
(also observed in [8]).
It is easy to check that this function is strictly increasing The second part of the Theorem shows that indefinitely
and bounded (namelgIn2 — 1 < f(k) < 1/2). increasing the cascade’s length will not increase amplifi-
For any real numben/ > 1, define the “floor” and cation. In fact, there is an optimal length for the cascade
“ceiling” functions: | M| = largest integer less than or equalhat provides both maximum signal amplitude and dura-
to M, and[M] = least integer greater thall. Observing tjon. A similar observation was mentioned in [8], and our
that any real numbe#/ > 1, can be written as the sum of | emma 4.1 and Theorem 1 characterize the conditions for
its integral and fractional partsi/ = [M | + dn, Where  achijeving this optimization. For each gdinand leak factor
du € [0,1), define the functionl : (—o00,00) — N (see ¢, this optimal length is easily read out from Figure 2. For
Figure 2) by instance, a cascade with a 6 to 9-fold gain (@nd 1), is
seen to have an optimal length of 4 steps.
L M=1 Theorem 1 can be proved by successively solving the two
U(M)=4q |[M], M>1, andéy < f([M]) optimization problems:
[M], M>1, anddy > f(|[M]). . R .
(P1) For each fixedn, minimize oo, over all possible
This is a step function where the “jump” discontinuity choices off3y, ..., 3, € (0,00), subject to[|G||l =

depends on the fractional part of the numbér K.
(P2) Minimize o, over all possible choices of € N and

Bi,y...,Bn € (0,00), subject t0]| (o0 = K.
Recall that we are assuming that either (a) alldhdave an
equal, fixed valueg; or (b) the product of they; is known,
at some fixedop. The solution of (P1) is equal for both
cases, but the solution of (P2) is slightly different for (a) or
(b). Thus, problem (P1) is part 1 and (P2) is the part 2 of
the Theorem. As we will see, the solution of (P1) greatly
simplifies the proof of (P2).

W2 InKL)
o m N w & @ 9 3 @ o

A. Solving (P1): proof of part 1 of Theorem 1
10 20 30 40 50 60 70
KL Given a cascade of length, this problem consists of

Fig. 2. The function¥(21n K¥). Note that, for a given gaif and leak finding a set ofn parametersd,, ..., 3, for which the

factor ¢, the optimal length is given by the integer platform correspondingjtunc'[ion oo attains a minimun value, i.e.,

to the producti’s. 1 1 1 1 1 1
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for every 31, ..., 3, such that||C¥||OO =K: V. THE L2?-INDUCED NORM

HG‘HOO =K & Kib---Bp—ay--a,=0. We analyzed the linearized (“weakly activated”) form (4)
For simplicity, rescale the values 8, — 1/42, and of the original system (2). We now sketch a proof of the fact
' 12’ that theprecise value of thef,, gain is obtained in this
_ 1 _ By Ba)? = (u) manner.In other words, the original nonlinear system (2)
By --- By Kt has finite inducedC? gain, and this gain coincides with
Then, the problem consists of minimizing the function: that of (4), provided that input® are not allowed to take
Q negative values. (This is the case in biological applications,
F(By,...,Bn1) =Bi+- -+ Bn1+ BB, (18) and under such a constraint, nor can staésever be
over all possible choices a8, > 0,7 = 1,...,n—1, where negative when starting fronkX (0) = 0.) This rather sur-

Ko \2 ] _ prising equality of gains follows from arguments involving
Q= (—al---a”) - In [5] we show that the solution to this the concept of monotone ifo system as well as comparison

optimization problem iB; = Q=,i=1,...,n—1, which theorems. We state a general theorem for a class of systems
also impliesB,, = Q= . So, finally, the choice of the “off” which contains our models.

rate constants that minimizes is tolhaveﬁl =0y == Using “u” instead of R for inputs, andz; for state

Bn = [, with 3 = \/% = (%) n m coordinates, we deal with systems of the following form:

B. Solving (P2): proof of part 2 of Theorem 1 #(t) = A(z(t) z(t) + B(z(t))u(t), x(0)=0 (21)

To solve the more general problem, we first show how " m
its statement can be simplified. Given the value cof wherex(f) € RZ, andu(t) € RY, for all ¢ > 0, and A :

n nxn R .PN nxm
(respectively,ap), suppose that we have found a solutionRZO — R, B:RS —R : VXe also have_ an output
of (P2), i.e., an integem* and a set of constants; y(t) = h(a(t)) = Cla(t))x(t) € RP, for some integep,
B ‘" whereC : R%, — RP*". We make several assumptions

i=1,...,n" satistying concerning the matrix functiond, B, andC, as follows.
oo(n®, By, Bp+) < oo(n, B1, ..., Bn) (19)  stability. The matrix A(0) is Hurwitz, that is, all eigenval-
for any other cascad@ = (n, a1, . .., an, B1, . .., 3,) with ~ ues of4(0) have negative real parts.
ai=a,i=1,...,n (respectivelya; - - an = ap). Maximization at¢ = 0: For eaché € RZ, A(£) < A(0),
We have already showed that B(§) < B(0), andC(¢§) < C(0), meaning thatA(¢); <
R _ . . A(0);; for eachs, j and similarly forB, C'.
oo(n”, §%,..., B7) < oo(n”, B, ..., Bre) (20) Positivity of systemFor each¢ € RZ, and eachi ¢

with 3* = (ay -+ - /(K£))7 and we know this choice {1,...,n} such that¢; = 0, it holds that: A(¢);; > 0 for
yields the unique minimum of, for a fixed lengthe. So, it~ all j # i andB(¢);; = 0 for all j. Also, for everys € R%,,
follows that the solution of (P2) must also satigfy = 3*, Ci;(§) >0 for all i, ;.

i=1,...,n" Local Lipschitz assumptionThe matrix functionsA(¢),
This observation allows us to simplify the statement of3(¢), andC(§) are locally Lipschitz ing.

problem (P2), and look only for solutions where @jis are The special “state dependent linear form” form is in itself

equal. Now, from the constraifi||.. = K we have not very restrictive, as for any affine in controls system

& = F(z)+ B(xz)u we can writeF'(z) = A(x)z, provided
only thatF' be a continuously differentiable vector field and
Ko\ 2 F(0) = 0. Of course, the difficulty is in satisfying the above
case 2(b): oo(n, B(n)) =n (_> i assumptions, but the systems considered in this paper do
ap satisfy them. It is also worth pointing out that the assumed
In either case, to solve the problem, it is enough to minimizetructure is preserved under cascading (serial connections),
the functionln[oo(n, 3(n))]: which allows building up larger systems which satisfy our
1 hypotheses, by interconnecting smaller subsystems which
Fn,M)=Ilnn+ - M do. In addition, an even more general class may be obtained

over n € N, where M is a positive constant with value by considering other orders in the state space different from
either M = 2In K/, for case 2(a); ot = 2In £L, for the coordinatewise order, similarly to what is done in [1].

ap

case 2(a):  oo(n,B(n)) = % n (K.

case 2(b). Redefining constants, the systems considered in this paper
For a fixedM, the minimizer of F(n, M) overn € Nis are as follows, withn arbitrary andm = 1: @ =
aru(er — z1) — fxy, & = qwia(c — w3) — B,

n (M) :={neN: F(n,M) < F(n', M), ¥ n' €N}, i =2,...,n, and outputy = z,,, and thea;, 3;,¢; > 0

In [5] it is shown thatn* (M) = ¥(M). Thus, for part 2(a) for all 7 (Adding a leaky integrator at the output does not
of the Theorem we have = n*(2In K¥¢) = ¥(2ln K¥¢), change the conclusions.) We represent this system in the
and for part 2(b) we have = ¥(2Iln K¢/ap). The value above form usingA(§)11 = —B1, A(§)ii—1 = a,c¢; for

£ is given according to part 1. B i=2....n A i = —a&—1 — B fori = 2,...,n,



B(&)1,1 = aic; — o1&y, and the other entries zero. All
properties hold for this example. Note thaf¢) < A(0)
and B(§) < B(0), for all § € RL,, because-a;{; < 0

VI. CONCLUSIONS

The concepts of signal duration, signaling time and signal
amplitude may be defined in an intuitive and general form,

for all i. The matrixA(0) is lower triangular with negative for any input signal, based on the transfer function ahgd
diagonals, and hence is Hurwitz. Positivity holds as We"gain of the (linear) weakly activated system. The concept

if ¢ =1 and¢ is such that{; = 0, then A(¢),; = 0 for
all j # 1 and B(€)11 = aic; > 0; if insteadi > 1 and ¢
is such that; = 0, then A(§);; =0 for all j & {i — 1,1},
A(f)i,i—l = q;c; > 0, andB(f)il =0.

Let us write £2 = £2%([0,00),R%,) for any positive
integerk. For any system (21), and any inputc ﬁg, we
definex = Tu as the unique solution of the initial value
problem (21). In principle, this solution is only defined
on some maximal intervgl0,7), where7 > 0 depends
on u, but it turns out thatl’ = +oo and thatz is again
square integrable (and nonnegative), SO we may vieas
an element of£2 and T as an (nonlinear) operator

T: L2 — 2.

We will write |~2J for Euclidean norm, and ugg|| to denote
£2 norm: |jul|® = [, |u[*dt. For the operatorT, we
consider the usual induced operator norm:

T
7)) <= sup 174
wzo |l

We also consider the linear system

A0)z+ B(0)u, 2(0)=0 (22)
with outputv = ¢(z) = C(0)z, and its associated operator
L: L2 — L2 :uw— 2 SinceA(0) is a Hurwitz matrix,
z(t) is defined for allt > 0, and L indeed mapsC? into

L£2. Furthermore, its induced norfil.||, the H,, gain of the
system with outpup = z, is finite. Moreover, the? — £>

z

of signal amplitude may be further extended to general
nonlinear MAPK cascades of the form (2), since th&
induced norm of this system coincides with thig, gain.

Our analysis shows that signal amplitude and duration
are, respectively, maximized and minimized simultaneously.
So, a cascade can respond with signals that are both
fast and exhibit high amplification. To achieve the highest
amplification and the shortest duration response, the cascade
should have all off rates equal to some valiie

We also show that, for each fixed galifi there ardinite
valuesfor the length of the cascade and the off constants
that simultaneously maximize (resp., minimize) the signal
amplitude (resp., signal duration). To achieve these optimal
conditions, the optimal length should be given by the step
function ¥. The off constants should all have the same
optimal values, which depends on the gain and the length
of the system.

Finally, other issues, such as delay at each phosphory-
lation step, the effect of a positive feedback term on the
cascade (that enhances the optimal design, as shown in [5])
and the stability of the signaling pathway when there is a
high degree of non-specificity among the kinases, are also
naturally examined within this framework.
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