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Abstract

Piecewise affine models provide a qualitative description of the dynamics of a system, and are often used
to study genetic regulatory networks. The state space of a piecewise affine system is partitioned into hyper-
rectangles which can be represented as nodes in a directed graph, so that the system’s trajectories follow a
path in a transition graph. This paper proposes and compares two definitions of transition probability between
two nodes A and B of the graph, based on the volume of the initial conditions on the hyperrectangle A whose
trajectories cross to B. The parameters of the system can thus be compared to the observed transitions between
two hyperrectangles. This property may become useful to identify sets of parameters for which the system
yields a desired periodic orbit with a high probability, or to predict the most likely periodic orbit given a set of
parameters, as illustrated by a gene regulatory system composed of two intertwined negative loops.

1 Introduction
The class of piecewise affine (PWA) differential models provides a qualitative description of the dynamical
behavior of a system [11, 17] in polytopes and is commonly used to describe biological regulatory networks,
where the data available is often of a qualitative form [13, 1]. The PWA systems to be considered here are
characterized by a set of piecewise linear differential equations with continuous solutions. The state space of the
PWA system is partitioned into finitely many hyperrectangles, also called domains, and its trajectories evolve by
switching between these domains [16, 3]. The dynamics of these systems can also be described by a discrete
transition graph: each domain is represented by a discrete state, and each trajectory is represented by a sequence
of transitions between discrete states, so that the full qualitative dynamical behaviour is represented by a directed
transition graph. In general, there may be multiple transitions from the same domain, and in this case the
transition graph provides no information on which transition is “more likely”.

In this study, we explore the idea of associating a probability of transition to each of the edges in the discrete
transition graph, in terms of the parameters of the PWA model (see also [15], for a first approach). A probabilistic
approach was also suggested in [20], but for a simpler class of PWA systems, those where each variable has one
single threshold value and the degradation rates are equal for all variables. In this case, the partition of the state
space consists of a grid with only two intervals for each variable, the trajectories are straight lines, and a simple
formula can be deduced. A different probabilistic approach has been developed in [21] to describe perturbations
in the transition graph of synchronous Boolean networks, in the form of Markov chains. Although our approach
can be ultimately also described by a Markov chain, our goal is not to study the properties of such systems, but
rather to introduce a framework that relates the discrete transition graph to the parameters and properties of the
differential PWA systems (with a view to parameter estimation, for instance). Other probabilistic approaches in
the literature use experimental data to construct a graph of interactions between families of related genes, and
thus obtain full networks of interactions [19, 10].

We propose and analyze two alternative definitions of transition probability based on the volume of initial
conditions whose trajectories will switch from domain A to domain B. One of the definitions depends only on the
current state while the other involves some memory of the trajectory of the system (Section 3). If the transition
probabilities between domains can be experimentally measured, this concept can be applied to estimate some
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of the model’s parameters. Another application is the analysis of the asymptotic behaviour of systems whose
directed transition graph exhibits several possible transition cycles. This raises the (typically difficult) question of
whether the corresponding piecewise continuous system admits a periodic orbit [6]. The definitions of transition
probability will be used to provide an approximative answer to this question (Section 5). Other problems to be
discussed include finding sets of parameters that lead to a given periodic trajectory (Section 4), and to control
the system from one periodic trajectory to another, by appropriately changing the inputs/parameters (Section 6).
These problems are illustrated by application to a reduced model of a regulatory network involving Nuclear
Factor κB and its own inhibitor, a system which has the potential to exhibit several forms of oscillatory behaviour.

2 Piecewise affine differential models
A class of piecewise affine (PWA) differential models was first introduced by Glass and co-authors [13], moti-
vated by genetic regulatory networks. Various mathematical aspects of these systems have recently been studied
in detail [16, 3], including the definition of solutions across thresholds, sliding mode solutions, and the stability
of steady states. The existence of periodic orbits for these systems has been studied, for instance, in [14, 6, 9], as
well as some control problems [1, 17, 8, 4]. We briefly recall useful facts for our problem.

2.1 The general model
Let x ∈Rn

≥0, f : Rn
≥0→Rn

≥0 a piecewise constant function ( f is constant over domains, as described below) and
Γ = diag(γ1, . . . ,γn) a diagonal matrix with γi > 0, and consider the n-dimensional system,

ẋ = f (x)−Γx. (1)

The function f represents the interactions between the various components of the system, for instance, the acti-
vation or inhibition effects between different proteins (see the example in Section 4), and is usually defined as
a combination (sum of products) of Heaviside (or step) functions. An activation (xi → x j) is represented by a
positive step function,

s+(xi,θi) =
{

0, x < θi
1, x > θi

and an inhibition (xi a x j) by a negative step function, s−(xi,θi) = 1− s+(xi,θi). The positive step function can
be interpreted as follows: protein xi will strongly influence the production of another protein x j once it reaches
an appropriate concentration θi; below this threshold concentration, xi does not influence x j. (Similary for s−.)
To characterize the function f , we will assume that each variable xi has pi thresholds:

0 < θ
1
i < · · ·< θ

pi
i < Mi := θ

pi+1
i , (2)

where Mi = max{ fi(x)
γi

: x ∈ Rn
≥0}. These thresholds partition the state space into regular domains in which the

vector fields are given by a linear function. To label these domains, we will use the notation:

Bk1 k2···kn : ki ∈ {0,1, . . . , pi}, θ
ki
i < xi < θ

ki+1
i ,

with θ 0
i := 0. So, for n = 3 and (p1, p2, p3) = (1,2,2), B102 denotes the cube x1 ∈ (θ 1

1 ,M1), x2 ∈ (0,θ 1
2 ), and

x3 ∈ (θ 2
3 ,M3). The segments defining the borders of the regular domains are called switching domains, since a

group of variables is at a threshold value, and are denoted by:

Dl1··· ln : li = θ
ki
i , i ∈ Is, l j = k j, j /∈ Is,

where Is is the set of indices corresponding to those variables at a threshold. In this paper, the function f takes a
constant value in each regular domain:

f (x) = f k1 k2···kn ,∈ Rn
≥0

so that an expression for the system

ẋ = f k1 k2···kn −Γx (3)
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can be explicitly written for each regular domain. Observe that, in each regulatory domain, the system of equa-
tions is decoupled and each variable is governed by an equation of the form ẋi = ai− γixi, with ai = f k1 k2···kn

i
a non-negative constant. The solutions are thus increasing or decreasing exponentials. The point φ k1 k2···kn =
( f k1 k2···kn

1 /γ1, . . . , f k1 k2···kn
n /γn) is called the focal point of the domain Bk1 k2···kn . If φ k1 k2···kn ∈ Bk1 k2···kn , then the

focal point is an equilibrium of the system in the classical sense. The solutions of the system are thus continuous
functions, and can be formed by concatenating the segments from each domain. The crossing between two reg-
ular domains (the function f is not defined at switching domains) can be defined in a natural way if the vector
fields are not opposing on each side of the boundary [3]. Otherwise, solutions can still be defined, in the sense of
Filippov [16]. For simplicity, throughout this paper we will assume that no sliding mode solutions (i.e. xi(t)≡ θi
for some time interval) are present in the systems to be studied. In fact, we will consider systems that contain no
focal points on the switching domains, and have only “transparent” boundaries, that is, adjacent domains have
vector fields which can be naturally continued.

2.2 Transition graph
From (3), for a trajectory starting in a given domain Bk1···kn there are two generic possibilities: (i) if the domain
contains its focal point φ k1 k2···kn , then this is actually a locally asymptotically stable equilibrium point and the
trajectory will remain in Bk1···kn for all times; (ii) if the focal point φ k1 k2···kn /∈ Bk1···kn , then the trajectory will
leave Bk1···kn at some instant. In case (ii), the trajectory will exit from the domain as soon as one of the variables
reaches a threshold. Suppose that variable kl is the first to reach a threshold; then we say that there is a transition

Bk1···kn → Bk1··· k̃l ···kn , k̃l ∈ {kl−1,kl +1}. (4)

A third possibility is that of a trajectory passing through a vertex of the domain, in which case two or more
variables switch simultaneously. These are, however, non-generic situations as they correspond to a very specific
choice of initial conditions (often called a separatrix, see equation (6) below for an example). We will not
consider transitions that involve more than one switching variable. In this way, a discrete transition graph can
be associated to a PWA system (1), where the set of vertices is the family of domains Bk1···kn , for all ki, and the
edges are given by (4). Let

N (Bk1···kn) = {Bk1··· k̃l ···kn : ∃ trajectory evolving from Bk1···kn to Bk1··· k̃l ···kn}.

The elements of N (Bk1···kn) are called the successors of Bk1···kn .

Definition 2.1 Consider system (1) and let V = {Bk1···kn : ki ∈ {0,1, . . . , pi}} be a set of vertices and E =
{Bk1···kn → Bk1··· k̃l ···kn : Bk1··· k̃l ···kn ∈N (Bk1···kn)} a set of edges. The pair (V,E) is called the transition graph of
system (1).

To simplify notation, the elements in V will be denoted Ba, a ∈ {1, . . . , |V |}, where |V | is the number of elements
in V . Often, Br will denote a reference domain and Bi one of its adjacent domains, obtained by switching the
variable xi. Throughout this paper, we will consider that each edge in the transition graph can only connect two
vertices that differ on a single index kl , i.e., only one discrete variable is allowed to change at each transition.
Note that, in this graph, any domain B may have at most n successors. This graph was first suggested by L. Glass,
when he initially introduced piecewise linear models of gene networks [12], and later the notion was also used
in situations with multiple thresholds by E.H. Snoussi [22]. More details on its construction and main properties
can also be found in [7, 5]. For an example of a transition graph see Fig. 5.

In a transition graph (V,E), a path is a sequence of vertices in V which are connected by edges in E. A closed
path will be called a transition cycle (see also [6]):

Definition 2.2 A set of L distinct vertices in V which are connected by edges in E and visited in a sequence

B1→ ··· → BL→ B1

such that the last transition returns to the first vertex is called a transition cycle of length L.
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Note that any periodic solution of (1) will generate a transition cycle of the graph (V,E), but the existence of
a transition cycle does not imply the existence of a periodic orbit. More generally, every trajectory of a PWA
system (excluding those with simultaneous switching of several variables) follows a path in the transition graph,
but the converse is false: there can be paths in the transition graph that are not followed by any trajectory of
the underlying PWA system. As a stronger result, it can also happen that, given a state transition graph, for all
PWA systems whose parameters are leading to this graph there are paths that are not followed by any trajectory
[7]. In this sense, a PWA system can be seen as discrete, multi-valued system with additional constraints on the
allowed transitions, that are imposed by the underlying continuous state space of PWA systems. This connects
them with the much-studied asynchronous multivalued logical models [23], whose transition structure is identical
to a discrete transition graph of the form above, often with additional constraints which are expressed in terms
of relative speeds of the different elements in the system. This similarity only holds at the qualitative level of
the transition graph, and it can also happen that, even if a path is followed by continuous trajectories of a PWA
system the dynamical nature of the two systems differ. The most typical situation is when a transition cycle,
which is a periodic evolution, corresponds to damped oscillations in the PWA system, and thus to a stable steady
state. The general question of predicting the evolution of a PWA system based on its discrete transition graph and
its parameters is still largely open, although some particular cases have been considered [22, 7, 5]. The difficulty
of this problem is in fact one motivation of the approach undertaken in this paper: if one cannot predict exactly
the asymptotic dynamics, it can still be valuable to provide probabilistic estimates.

In this paper, we will assume that there are at most two successors for each region:

Hypothesis 1 (H1) For all Br ∈ V , card(N (Br))≤ 2, so there exist at most two coordinates xi,x j such that the
transitions Br→ Bi or Br→ B j (where Bi = Bk1··· k̃i···kn ) are contained in the set E.

In this case, a trajectory starting from any initial condition in Br will either cross to Bi or B j, dividing Br into
two subregions. This assumption is made in order to obtain manageable computations, but we are able to consider
interesting and nontrivial problems (see the examples below) when different transition cycles intersect. Remark
that, although only two transitions are allowed from each domain, there are no constraints on the dimension n of
the system.

3 Transition probabilities in the graph
The transition graph contains information on the possible pathways for a trajectory, but it provides no indication
on whether a given pathway is more likely than another. The goal of the present analysis is to relate dynamical
aspects determined by the systems’s parameters (here, activity thresholds, synthesis and degradation rates) to
probabilities of transition between two state space hyperrectangles, P(Br→ Bi).

Under hypothesis H1, the transition from Br to Bi or B j can be studied in the 2D plane (xi,x j). Following
Section 2, there are three cases to analyze:

(i) Br contains its focal point. Then, any trajectory starting in Br remains in Br so P(Br → Bi) = 0, for all
i 6= r;

(ii) Br does not contain its focal point and there is only one possible transition, to some Bi. Then, trivially,
P(Br→ Bi) = 1;

(iii) Br does not contain its focal point and there are two possible transitions, to Bi and B j. Two definitions for
P(Br→ Bi) will be suggested below.

In case (iii), assume that θ r
i and θ r

j are the thresholds that may be crossed, and consider also the two closest
thresholds for each variable:

θ
r−1
i < θ

r
i < θ

r+1
i , θ

r−1
j < θ

r
j < θ

r+1
j .

The locus of the initial points from which a trajectory ends in (θ r
i ,θ r

j ) is a separatrix curve dividing the region Br

into two subsets from which transitions are possible to Bi or B j. This separatrix can be exactly computed from
the equations of the system in Br:

ẋi = f r
i − γixi, (5)

4



whose solutions are of the form

xi(t) = (xi0−Mi)e−γit +Mi

with Mi = f r
i

γi
(similarly for x j). The separatrix is given by setting xi(t) = θ r

i and x j(t) = θ r
j , and solving both

equalities with respect to t, that is:(
θ r

i −Mi

xi0−Mi

)1/γi

= e−t =
(

θ r
j −M j

x j0−M j

)1/γ j

,

and now solving this equation for x j0 as a function of xi0:

σ(xi) = M j +(θ r
j −M j)

(
xi−Mi

θ r
i −Mi

) γ j
γi

. (6)

To relate kinetic parameters to probabilities of transition, one idea is to compare the volumes of the two subregions
of Br above and below the separatrix [15]: that is, the probability of crossing from Br to Bi would be given by the
fraction of the volume of Br corresponding to initial conditions that evolve to Bi. This has a natural biological
interpretation as follows. Suppose a given experiment is repeated N times, always with initial conditions in Br

(that is, initial concentrations in the intervals defined by Br) and one counts the number of times Ni that the
system evolves to Bi. Then the quotient Ni/N can be viewed as the probability that trajectories of system (5)
switch from Br to Bi.

However, a careful look at Fig. 1 shows that the history of the trajectory may lead to more precise values.
Indeed, in Fig. 1 a), if the trajectory enters the box Br from the region xi < θ

r+Hi
i , θ r

j < x j < θ
r+H j
j , then it will

always proceed to B j, by uniqueness of solutions inside Br. In the next subsections, we propose and compare
two possible definitions for transition probability, with or without memory of the previous transition.

Figure 1: General case: inside the initial box Br, there are two possibilities for the starting point of curve σ ,
depending on the parameters. The starting point is labeled by an open circle. The ending point (black square) is
always (θ r

i ,θ r
j ). a) the trajectories of the whole region Bz cross to region B j through Br; b) the trajectories can

cross from Bz to either Bi or B j.

3.1 One-step transition probabilities
We will first introduce a memoryless definition of transition probability which depends only on the starting (or
reference) box. For a general domain Br, let (θ r

i ,θ r
j ) denote the ending point of the separatrix, and define

Hi =
{

1, xi > θ r
i

−1, xi < θ r
i
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Figure 2: The four different configurations for two exits (black arrows) out of a domain Br. Horizontal (resp.,
vertical) coordinate is xi (resp., x j). The separatrix curves are represented in solid black if θ s

i = θ
r+Hi
i and

dashed if θ s
i = θ̃i. Their endpoints coincide at (θ r

i ,θ r
j ). In configurations a) and b), the area under the separatrix

represents a transition Br → B j while for configurations c) and d), the area under the separatrix represents a
transition Br→ Bi.
Then, one can see that a point (xi,x j) belongs to Br iff

min{θ r
i ,θ r+Hi

i }< xi < max{θ r
i ,θ r+Hi

i }, min{θ r
j ,θ

r+H j
j }< x j < max{θ r

j ,θ
r+H j
j }.

As illustrated by Fig. 1, there are two possibilities for the starting point of the separatrix in Br, depending on
whether the curve hits a vertical or horizontal threshold first. Let θ̃i denote the coordinate xi of the separatrix’s
starting point, which is defined by:

σ(θ̃i) = θ
r+H j
j ⇔ θ̃i = Mi +(θ r

i −Mi)

θ
r+H j
j −M j

θ r
j −M j


γi
γ j

.

The starting point of the separatrix is thus given by

(θ s
i ,σ(θ s

i )) with θ
s
i =

{
θ

r+Hi
i , θ̃i /∈ [min{θ r

i ,θ r+Hi
i },max{θ r

i ,θ r+Hi
i }]

θ̃i, θ̃i ∈ [min{θ r
i ,θ r+Hi

i },max{θ r
i ,θ r+Hi

i }].
(7)

In the panel (a) of Fig. 1 θ s
i = θ̃i, while in panel (b) θ s

i = θ
r+Hi
i .

Hypothesis H1 implies that there are only four configurations to be analyzed, which are depicted in Fig. 2.
The area corresponding to initial conditions in the box Br which are below the separatrix curve can be calculated
as follows.

Lemma 3.1 Given a domain Br from which transitions are possible to the domains Bi and B j, consider the
corresponding separatrix curve (6), with endpoint (θ r

i ,θ r
j ) and starting point (θ s

i ,σ(θ s
i )) as in (7). Define

α = min{θ r
i ,θ s

i }, β = max{θ r
i ,θ s

i }.

The area of the box Br under the curve (6) is given by:

Aσ =
∫

β

α

σ(x)dx−min{θ r
j ,θ

r+H j
j }(β −α)+

1
2
(1+H j)

∣∣∣θ r
j −θ

r+H j
j

∣∣∣ ∣∣∣θ s
i −θ

r+Hi
i

∣∣∣
where the integral

∫
β

α
σ(x)dx is given by

M j(β −α)+
γi

γi + γ j
(θ r

j −M j)(θ r
i −Mi)×

( β −Mi

θ r
i −Mi

)1+
γ j
γi
−
(

α−Mi

θ r
i −Mi

)1+
γ j
γi

 .
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The term min{θ r
j ,θ

r+H j
j }(β −α) represents the area of the boxes just below Br, which are counted in the inte-

gration (it is naturally zero if there is no box below Br, i.e. min{θ r
j ,θ

r+H j
j }= 0). If H j > 0 and θ s

i = θ̃r, the term∣∣∣θ r
j −θ

r+H j
j

∣∣∣ ∣∣∣θ s
i −θ

r+Hi
i

∣∣∣ reflects the area in Br which is not covered by the integral between α and β (see a) and
b) in Fig. 2).

Furthermore, the area Aσ reflects the basin of attraction of Br from where transitions are possible to Bi (if
H j > 0) or B j (if H j < 0), which leads to the following definition. From hypothesis H1, we have immediately
that the two probabilities of transition add up to one.

Definition 3.2 Consider a trajectory ϕ(t;x0) that starts in a domain Br, and assume that there are two possible
transitions from Br, to Bi (horizontal coordinate) or B j (vertical coordinate). The 1-step transition probability
from Br to B j is:

Pone
r j =


Aσ∣∣∣θ r

i −θ
r+Hi
i

∣∣∣∣∣∣∣θ r
j−θ

r+Hj
j

∣∣∣∣ , if H j > 0

1− Aσ∣∣∣θ r
i −θ

r+Hi
i

∣∣∣∣∣∣∣θ r
j−θ

r+Hj
j

∣∣∣∣ , if H j < 0.
(8)

3.2 Two-step transition probabilities
An alternative definition is now suggested, which involves some memory of the path followed by the trajectory
along the transition graph. This is motived by the case depicted in Fig. 1: in panel (a), it is clear that any
trajectory crossing from Bz to Br cannot cross over to Bi (by uniqueness of solutions in Br), so one may say that
the transition probability from Br to B j, knowing that the trajectory comes from Bz, is in fact 1.

To introduce this alternative definition, observe that the transition to the domain Br from some other domain
Bz corresponds to crossing a threshold of some variable xk. So, one of two cases must hold:

(i) k = i or k = j;

(ii) k 6= i, j.

In case (i), the two consecutive transitions take place in the 2-dimensional plane (xi,x j) (this is indeed the case
depicted in Fig. 1, where k = i), and the boundary between Bz and Br, ∂zr, is a segment. Assuming, without loss
of generality, that k = i, we will say that the probability of a path Bz→ Br → B j is proportional to the length of
∂zr that lies below the starting point of the separatrix x j0 = σ(xi0).

In case (ii), the transitions can be studied in the 3-dimensional space (xi,x j,xk) (see Fig. 3), and the boundary
between Bz and Br is a planar surface with xk = θ r

k . Since there are only two possible directions to exit Br,
the separatrix has the same expression for any value of the variable xk ∈ [min{θ r

k ,θ
r+Hk
k },max{θ r

k ,θ
r+Hk
k }] and

defines a surface that divides Br in two parts (bold lines in Fig. 3). In this case, the transition from Br to B j

depends on the point of the plane xk = θ r
k where the trajectory crosses from Bz to Br, and so the probability of

a path Bz → Br → B j is proportional to the surface of the boundary between Bz and Br that lies below σ(xi)
(shaded area in Fig. 3). This is the same as in Definition 3.2.

Recall the notation Br = Bk1···kn , and B j = Bk1···k̃ j ···kn , where k̃ j ∈ {k j−1,k j +1}.

Definition 3.3 Consider a trajectory ϕ(t;x0) that crosses from a domain Bz to Br, corresponding to a threshold
of variable xk, and assume that there are two possible transitions from Br, to Bi or B j. The two-step transition
probability between Br and B j, given Bz is defined as:

Ptwo
r j (z) =


Pone

r j , if k /∈ {i, j}

min
{∣∣∣θ r

j−σ(θ r+Hi
i )

∣∣∣,∣∣∣∣θ r
j−θ

r+Hj
j

∣∣∣∣}∣∣∣∣θ r
j−θ

r+Hj
j

∣∣∣∣ , if k = i
(9)

If k /∈ {i, j}, assume that the space is oriented according to (xi,x j,xk), and if k = i it is oriented (xi,x j). In either
case: Ptwo

ri (z)+Ptwo
r j (z) = 1.
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Figure 3: Transition from Bz to Br, and then to Bi or B j in a 3-dimensional plane. The bold lines represent the
surface generated by σ(xi). The shaded area represents the transition probability from Br to B j, knowing that the
trajectory comes from Bz.

4 Application: periodic orbits in biological regulatory networks
To illustrate the usefulness of the concept of transition probability, we will study the dynamics of a 3-dimensional
system composed of two intertwined negative feedback loops (Fig. 4). It is inspired by a reduced model of the

Figure 4: Network consisting of two negative loops.

NF-κB /IκB system (see [24] for more details), where a =[NF-κB]cytoplasm, b =[IκB], and c =[NF-κB]nucleus.
Oscillatory behaviour has been experimentally observed for this system [18]. The variables a and c have one
threshold each (resp., θa and θc) while b has two thresholds since it influences two other variables (θba and θbc).
Variable c has two incoming arrows which combine to generate two distinct activity levels: Mca and Mcb.

The model can be written in the piecewise constant framework as:

ȧ = γa(s−(b,θba)−a)
ḃ = γb(s+(c,θc)−b) (10)
ċ = γc(Mcas+(a,θa)+Mcbs−(b,θbc)− c),

where we have assumed, to reduce the number of parameters, that the maximal values of a and b have been
normalized to 1, and that c has been normalized to θc, so θc = 1. We will assume that the parameters satisfy the
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inequalities

0 < θa < 1, 0 < θba < θbc < 1,

0 < Mcb < 1 < Mca. (11)

Under these conditions, variable a has two regions (corresponding to one threshold quantity) and b,c both have
three regions. So the state space can be divided into 18 regions, which can be labelled Bi jk, where i ∈ {0,1} and
j,k ∈ {0,1,2}.

We have chosen parameters satisfying conditions (11) because they imply that system (10) has only simple
transitions and no equilibria in either the classical or Filippov senses. The corresponding transition graph has
several transition cycles, as shown in Fig. 5. Observe that B002, B110, B111, B120, and B121 are transient domains,
that is, once a trajectory leaves one of these domains, it will never return to it. The asymptotic behaviour is thus
represented by the bold arrows in Fig. 5. The transition diagram has five distinct transition cycles in the sense of
Definition 2.2: one cycle of length 6 (c6) and two cycles each of length 8 (c8a, c8b) and 10 (c10a, c10b). These
are characterized below in Definition 5.1. In particular, note that each of the non-transient domains represented
in Fig. 5 has at most two successors, the only domains that admit two successors being B112, B012, and B021. The
method described in Section 3 can thus be applied to the asymptotic dynamics of system (10), since hypothesis
H1 is satisfied.

Figure 5: Transition diagram for system (10). The bold edges represent the asymptotic behaviour of the system,
where five distinct cycles (of lengths 6, 8 or 10 transitions) are possible.

The dynamics of system (10) under conditions (11) is thus expected to exhibit oscillatory solutions following
one of the five transition cycles. However, there is no general method to predict whether every transition cycle
gives rise to a periodic orbit (for some specific set of parameters) or, conversely, which sets of parameters lead to
a given periodic orbit. In the remainder of this paper, we will propose a method that gives a probabilistic answer
to these two questions.

4.1 Computing transition probabilities
The probabilities of transition associated with each arrow in the graph of Fig. 5 can be computed according to
Definitions 3.2 and 3.3. For the states where only one transition is possible the probability is, of course, equal to

9



1. Define the following new parameters, in terms of relative distances between thresholds:

A =
1
θa

, B =
1−θba

1−θbc
, C =

Mca

1−Mcb
, D =

1
θbc

, E =
1

Mcb
, (12)

and the ratios between degradation rates:

gab =
γa

γb
, gbc =

γb

γc
.

Note that all A,B,C,D,E > 1, by assumption on the parameters. For simplicity of notation, we will abbreviate:
P112 ≡ P112→012, P012 ≡ P012→011, and P021 ≡ P021→020.

Computation of the probabilities of transition yields:

Proposition 4.1 The one-step probabilities of transition associated with the graph of Fig. 5 are given by:

Pone
112 =


B

B−1 + 1
1+ 1

gab

1−A
1+ 1

gab
(A−1)(B−1) , if θ s

a = 1

1
(A−1)(B−1)

[
B(Bgab −1)− Bgab+1−1

1+ 1
gab

]
, if θ s

a = Bgab
A

Pone
021 =


1

E−1

[
1

1+ 1
gbc

D
1+ 1

gbc −1
D−1 −1

]
, if θ s

b = 1

1− 1
(D−1)(E−1)

[
E(Egbc −1)− Egbc+1−1

1+ 1
gbc

]
, if θ s

b = Egbc
D

Pone
012 =


1

C−1

[
1

1+ 1
gbc

B
1+ 1

gbc −1
B−1 −1

]
, if θ s

b = θba

1− 1
(C−1)(B−1)

[
C(Cgbc −1)− Cgbc+1−1

1+ 1
gbc

]
, if θ s

b = 1+Cgbc
( 1

D −1
)
.

Proposition 4.2 The two-step probabilities of transition associated with the graph of Fig. 5 are given by:

Ptwo
112 =

Aθ s
a−1

A−1
, θ

s
a = min

{
1,

Bgab

A

}
;

Ptwo
021 =

D(1−θ s
b)

D−1
, θ

s
b = min

{
1,

Egbc

D

}
;

Ptwo
012 = Pone

012.

Proof: For the case 102 → 112 → 122,012 (configuration as in Fig. 2 c): the domain B112 corresponds to
a ∈ (θa,1), b ∈ (θba,θbc) and c ∈ (1,Mca +Mcb). The coordinate c is constant throughout these regions, and the
coordinate b strictly decreases along 102→ 112→ 012, so we will take xk = a, xi = a, and x j = b, with θ r

i = θa,
Hi = 1 and θ r

j = θbc, H j = −1. The result follows from (9), with k = i. The values of the constants can be

obtained by looking at the equations in box B112: Mi = 0, M j = 1, θ
r+Hi
i = 1, θ

r+H j
j = θba.

For the case 022→ 021→ 011,020 (configuration as in Fig. 2 a): the domain B021 corresponds to a∈ (0,θa),
b∈ (θbc,1) and c∈ (Mcb,1). The coordinate a is constant throughout these regions, so we will take xk = b, xi = b,
and x j = c, with θ r

i = θbc, Hi = 1 and θ r
j = Mbc, H j =−1. The result follows from (9), with k = i. The values of

the constants can be obtained by looking at the equations in box B021: Mi = 0, M j = 1, θ
r+Hi
i = 1, θ

r+H j
j = 1.

Finally, the case 112→ 012→ 022,011 (configuration as in Fig. 2 b): the domain B012 corresponds to
a∈ (0,θa), b∈ (θba,θbc) and c∈ (1,Mca +Mcb). In the two transitions from B012 coordinates b or c may change,
and in the previous transition coordinate a changes. This means that we are in the case k /∈ {i, j}, with xk = a,
xi = b, and x j = c. By Definition 3.3, we have Ptwo

012 = Pone
012.
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4.2 Parameter identifiability and estimation
Propositions 4.1 and 4.2 show how the transition probabilities can be expressed in terms of the parameters of
the system. This suggests a first application of the probabilities, for parameter estimation given experimental
measurements of Pone

r j or Ptwo
r j .

In the present framework, the working hypothesis is that the transition probabilities are an output of the sys-
tem, that is, they can be experimentally measured. In this example, there are only three independent probabilities:
P112, P012, and P021, so one may expect to be able to estimate at most three quantities/functions on the parameters
of the system, including some of the thresholds. The independent parameters of the system are: θa, θba, θbc, Mca,
Mcb, gab, and gbc.

By re-arranging the expressions in Propositions 4.1 or 4.2, one may obtain expressions for the parameters
that satisfy any given triple of probabilities. To simplify, we will do this only for Proposition 4.2. It will be useful
to note that the transition from B012 satisfies the configuration depicted in Fig. 2 b), which means that:

if θ̃b < θba then θ
s
b = θba and if θ̃b > θba then θ

s
b = θ̃b.

In particular, θ s
b = max{θba, θ̃b} and

θ
s
b = θba ⇔ Cgbc > B.

Using this observation, we can obtain the following characterization.

Proposition 4.3 Consider a triple of probabilities Ptwo
112 ∈ (0,1], Ptwo

021,P
two
012 ∈ (0,1). A family of parameters that

satisfies Proposition 4.2 can be expressed in terms of B,C > 1, as given by (12), and either

F1(B) > max

B
1

gbc −1,
1(

B−Ptwo
021

B−1

) 1
gbc −1

 (13)

with

C−1 = F1(B) =
1

Ptwo
012

 1
1+ 1

gbc

B1+ 1
gbc −1

B−1
−1


or

Cgbc −1≤ F2(C) <
1−Ptwo

021( C
C−1

)gbc −1
(14)

with

B−1 = F2(C) =
1

1−Ptwo
012

1
C−1

[
C(Cgbc −1)− Cgbc+1−1

1+ 1
gbc

]
For both cases (13) and (14), the other parameters satisfy:(

B−1
B−Ptwo

021

) 1
gbc

< Mcb <
C−1

C
, Mca = C(1−Mcb), (15)

and

θa

{
= Ptwo

112
Ptwo

112+Bgab−1 , Ptwo
112 < 1

> 1/Bgab , Ptwo
112 = 1

(16)

θbc

{
= 1−Ptwo

021
1/M

gbc
cb −Ptwo

021
, Ptwo

021 > 0

> Mgbc
cb , Ptwo

021 = 0
(17)

θba = 1−B(1−θbc). (18)
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Proof: First, we establish some bounds for Mcb in terms of B,C, and Ptwo
021. Inequalities (15) hold because:

C−1
C

= 1− 1
Mca

+
Mcb

Mca
> Mcb

for all Mcb ∈ (0,1) (comparison of the functions x and 1+(x−1)/Mca). And also

1
B−1

=
1−θbc

θbc−θba
>

1−θbc

θbc
=

1
θbc
−1 ⇔ 1

B−1
+1 >

1
θbc

which implies

1−Ptwo
021 =

1
θbc

θ s
b−1

1
θbc
−1

>

1
θbc

θ s
b−1
1

B−1

Evaluate this expression at θ s
b = θbc

M
gbc
cb

to obtain the left hand side inequality in (15):

1−Ptwo
021

B−1
+1 >

1
Mgbc

cb
⇔

(
B−1

B−Ptwo
021

) 1
gbc

< Mcb.

Now, one can easily obtain inequalities (13) and (14), after some simple algebra, using (15) together with the
expressions of Ptwo

012 for θ s
b = θba or θ s

b = 1 +Cgbc
( 1

D −1
)
. Finally, expressions (16) follow directly from the

definitions of Ptwo
112, Ptwo

021, and B.
Thus, by measuring probabilities of transition, one may first recover an interval for the ratio B and then the

ratio C follows from the value of B. The values B and C define an interval for the parameter Mcb. The threshold
θa can be calculated directly from Ptwo

112 and B; the thresholds θba and θbc can be calculated from Ptwo
021, B, and Mbc.

To visualize these conditions, we will consider in more detail the case of equal degradation rates: gab = gbc =
1. In this case, the interval defined by (14) is nonempty. The sets of possible parameters are depicted in Fig. 6.

Corollary 4.4 Assume gab = gbc = 1 and consider a triple of probabilities Ptwo
021,P

two
112 ∈ (0,1], Ptwo

012 ∈ (0,1). If
Ptwo

021 = 0, then the parameters satisfy

B > C > 1, Mcb <
B−1

2Ptwo
012 +B−1

, θbc > Mcb.

If 0 < Ptwo
021 < 1, then there is a nonemtpy set of parameters only if 1−Ptwo

021 > 2Ptwo
012 and

B >
1

Ptwo
021

, with C = 1+
B−1
2Ptwo

012

and

B−1
B−Ptwo

021
< Mcb <

B−1
2Ptwo

012 +B−1
.

In both cases, Mca = C(1−Mcb) and θa, θbc, θba are given by (16)-(18).

5 Predicting the transition cycle
The transition diagram on Fig. 5 has five distinct transition cycles, as indicated at the beginning of Section 4. In
this context, Propositions 4.2 and 4.3 can be used as a guide for choosing parameters that yield a system with a
periodic orbit of a given length, or passing through desired domains. For instance, it is clear that setting P021 = 0
prevents a cycle of length 10. Similarly, setting P112 = 1 and choosing a large P012 leads to a high probability of
obtaining a length 6 cycle.

To formalize the idea that the orbit of system (10) follows a given transition cycle with a certain probability,
we will now assume that the system has a unique stable periodic orbit and, for each set of parameters, define a
predicted transition cycle.

12



Figure 6: Range of values admitted for B and Mcb in terms of Ptwo
021, in the case of equal degradation constants.

The case Ptwo
012 = 0.1 is shown.

Definition 5.1 Given any set of parameters, the probability that a periodic orbit of system (10) follows each one
of the transition cycles is:

P(c6) = P112P012,

P(c8a) = P112(1−P012)(1−P021),
P(c8b) = (1−P112)(1−P021),

P(c10a) = P112(1−P012)P021,

P(c10b) = (1−P112)P021.

The predicted transition cycle to be followed by the periodic orbit is cpred such that:

P(cpred) = max{P(c6),P(c8a),P(c8b),P(c10a),P(c10b)}.

Note that the five probabilities add up to 1. An immediate question is whether the predicted transition cycle is
a reasonable indication of the actual observed cycle. We have answered this question by performing L = 5000
numerical experiments as follows:

1. randomly generate a set of parameters and simulate system (10);

2. compute the probabilities P(c) (c ∈ {c6, . . . ,c10b}) and P(cpred) directly from the parameters;

3. observe which periodic orbit is attained by the simulated system, cobs ;

4. compare cobs with cpred .

Similar numerical experiments were run for both the one-step and two-step models for the transition probabilities,
and the results are summarized in the histogram of Fig. 7. We observed that the one-step probability model
predicted the correct transition cycle on around 60% of the simulations, while the two-step model is correct up
to 70%.

These simulations also show that length 8 transition cycles are the most frequent, and correspond to the cycles
where the one-step transition probabilities have a poorer predictive performance (namely, for cycle c8a). For the
other cycles, the one- and two- step probabilities appear to perform in a similar way. Recall that the probability
of obtaining a c8a cycle is given by P112(1−P012)(1−P021). The value of P012 is the same for both definitions
of transition probability, but P112 and 1−P021 often take the value 1 for the two-step definition, something which
can never occur for the one-step definition. This may be an explanation of the better accuracy of the two-step
definition. In other words, the fact that memory can be used to rule out some exit directions appears to improve
the predictive power.
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Figure 7: Histograms of the distribution of transition cycles over 5000 simulations. Black bars represent all
observed cycles. Dark-grey (resp., light-grey) bars represent the correctly predicted cycles using the two-step
(resp., one-step) transition probability.

6 Controlling the system to a given cycle
Another application of the previous results is to control or guide system (10) to a desired cycle, by changing only
a small set of parameters. We will use Definition 5.1 in conjunction with Propositions 4.2 and 4.3 to construct
a control (in the sense of finding a suitable set of parameters) that drives the system to follow a target cycle.
Throughout this section, it will be assumed that the production rates Mca and Mcb can be controlled. These can
be interpreted as the “weights” of each of the negative feedback loops in the dynamics of the system: note that the
system with Mcb = 0 is a single 3-dimensional negative feedback loop. This system has a unique stable periodic
orbit, following cycle c6, as shown in [9].

Thus, in Propositions 6.1 to 6.3 below it will be assumed that θa, θba, and θbc are given, and that gab = gbc = 1,
for simplicity. Under this assumption, the parameter B and the probability Ptwo

112 are also given.

Proposition 6.1 The predicted transition cycle is of length 10 if

Mcb >
2θbc

1+θbc
, Mca > (1−Mcb)

(
1+

B−1
2

G(Mcb)
1

θbc
− 1

Mcb

)

where

G(Mcb) =

{
max

{
2

θbc
− 1

Mcb
−1,

Ptwo
112

1−Ptwo
112

(
1

θbc
−1
)}

, if Ptwo
112 < 1

2
θbc
− 1

Mcb
−1, if Ptwo

112 = 1.

The proof follows from Corollary 4.4 by requiring that P(c10i) > P(c8i) and P(c10i) > P(c6) (i = a,b).

Proposition 6.2 Assume Ptwo
112 < 1. The predicted transition cycle is of length 8 if

θbc < Mcb <
2θbc

1+θbc
, Mca > (1−Mcb)

(
1+

B−1
2

Ptwo
112

1−Ptwo
112

1
θbc
−1

1
Mcb
−1

)
or

Mcb < θbc, Mca > (1−Mcb)
(

1+
B−1

2
max

{
1
2
,

Ptwo
112

1−Ptwo
112

})
.
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Table 1: Transition probabilities, computed according to Prop. 4.2 and Def. 5.1. The column “Nominal value”
contains the data relative to the set of randomly generated parameters shown in (19). The columns “Prop. 6.3”
and “Prop. 6.1” contain the new data, corresponding to parameter sets that satisfy the respective propositions.

Parameter Nominal value Prop. 6.3 Prop. 6.1

Mcb 0.6991 0.1937 0.9324
Mca 3.6727 1.0064 3.6727

Ptwo
112 1.0 1.0 1.0

Ptwo
021 0.2608 0.0 0.8754

Ptwo
012 0.0457 0.8789 0.0096

P(c6) 0.0457 0.8789 0.0096
P(c8a) 0.7054 0.1211 0.1234
P(c8b) 0.0 0.0 0.0
P(c10a) 0.2489 0.0 0.8670
P(c10b) 0.0 0.0 0.0

If Ptwo
112 = 1, then the predicted transition cycle is of length 8 if

θbc < Mcb <
2θbc

1+θbc
, Mca > 1

or

Mcb < θbc, Mca > (1−Mcb)
(

1+
1
2

B−1
2

)
.

The proof is similar to that of Proposition 6.1.

Proposition 6.3 Assume Ptwo
112 ≤ 1. The predicted transition cycle is of length 6 if

Mcb < θbc, Mca < (1−Mcb)
(

1+
B−1

2
min

{
1
2
,

Ptwo
112

1−Ptwo
112

})
.

The proof is again similar to the previous ones, using the fact that the inequality P(c6) > P(c8a) can only be
satisfied if Ptwo

021 = 0.
As a numerical example, one of the randomly generated sets of parameters was:

θa = 0.7513, θba = 0.2551, θbc = 0.6320, Mcb = 0.6991, Mca = 3.6727. (19)

The corresponding transition probabilities and each cycle probability are shown in Table 1 (nominal value col-
umn). The predicted transition cycle is c8a, which indeed corresponds to the observed periodic orbit.

To control the system towards a length 6 cycle, we have used Proposition 6.3. Since Ptwo
112 = 1, and to guarantee

that Mca > 1, we choose Mcb < min{θbc,0.95(1−1/(1+(B−1)/4)}, and next set Mca = 0.5+0.5(1−Mcb)(1+
(B− 1)/4). To control the system towards a length 10 cycle, we have used Proposition 6.1, choosing Mcb =
0.7 + 0.3× 2θbc/(1 + θbc) This consists of increasing the contribution from the short negative feedback loop.
Computing the new lower bound for Mca shows that the nominal value for Mca can be used. The new parameters
and transition probabilities are given in Table 1. For both cases, the predicted transition cycle coincides with the
observed periodic orbit, as can be seen by comparison of Table 1 and Fig. 8.
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(a) (b)

Figure 8: Controlling the system to a periodic orbit (solid line) that follows length 6 or length 10 transition
cycles. Dashed lines represent separatrix curves. The figure shows the projection on the plane bc of the trajectory
of system (10) with parameters (19), except: (a) Mcb = 0.1937 and Mca = 1.0064, or (b) Mcb = 0.9324, Mca =
3.6727.
7 Conclusions
Two definitions of transition probability have been introduced, that relate the parameters of piecewise affine
systems with the qualitative dynamics in the corresponding transition graph. Among other applications, this
approach can be used to estimate some of the parameters of the PWA system or predict which orbit is more
likely to occur for a given set of parameters, in the case of systems with several possible transition cycles.
The two definitions both depend on the volume of initial conditions that cross from the current domain to a
neighbouring domain, but one of them also uses some memory of the trajectory: this memory provides an
indication of impossible two-step transitions, which improves the prediction of the observed periodic orbit.

This study deals only with systems where there are at most two possible transitions from each hyperrect-
angle, which is a very limiting constraint. However, the generalization of the probabilities for multiple (> 2)
transitions from a given domain will be hard for general PWA systems with distinct degradation rates and multi-
ple thresholds for each variable. One possible step towards a generalization is to consider first the case of equal
degradation rates, which highly simplifies the expressions of the probabilities (see Propositions 4.1 and 4.2 with
gab = gbc = 1). More generally, with equal degradation rates these probabilities are the volumes of polytopes.
These polytopes have been explicitly described in terms of affine inequalities, for all possible configurations [7].
Even though the exact calculation of the volume of a general polytope is hard [2], it can be much easier for partic-
ular polytopes, like hypercubes, or simplices. Further work might thus extend the results of this paper to higher
dimensions. Alternatively, if the parameters of the system are known, Monte-Carlo approaches using samples of
points in a regular domain could be used to estimate the transition probabilities of a higher-dimensional system,
see [25] for an example in a different context.

Nevertheless, an interesting outcome of this study is a method for finding sets of parameters that will lead the
system to a given periodic orbit or, conversely, predicting which periodic orbit the system will most likely follow
given a set of parameters. Even if this method gives only probabilistic answers, it is still valuable, as there are
very few methods for studying the existence of periodic orbits in a general nonlinear system.
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