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Bistable biological systems: a characterization
through local compact input-to-state stability

Madalena Chaves, Thomas Eissing, and Frankoigr, Member, IEEE

Abstract—Many biological systems have the capacity to operate  Bistable behavior has been experimentally detected at the
in two distinct modes, in a stable manner. Typically, the system single cell level (for example, thac operon inE. Coli[2] and
can switch from one stable mode to the other in response 10 a yne ¢ cycle oscillator irXenopus laevi§7]). These beautiful
specific external input. Mathematically, these bistable systems are . o .
usually described by models that exhibit (at least) two distinct ex-perllments show Fhf_it each individual cell .can |r.1deed_ only
stable Steady states. On the other hand, to Capture bio|ogica| exist in one of two dIStII’ICt StateS, and Upon St|mu|at|0n W|th an
variability, it seems more natural to associate to each stable mode appropriate input, a clear jump-like transition is observed, from
of operation an appropriate invariant set in the state space rather one state to another. To understand how each bistable system
than a single fixed point. A general formulation is proposed in this works, many mathematical models have been proposed, but a

paper, which allows freedom in the form of kinetic interactions, feat is th ist f iat it
and is suitable for establishing conditions on the existence of common feature 1S the exisience of an appropriate posiive

one or more disjoint forward-invariant sets for the given system. feedback loop (see, for instance, [6], [8] for analysis of a
Stability with respect to each set is studied in terms of a local caspase cascade at the heart of apoptosis). A general method
notion of input-to-state stability with respect to compact sets. for multistability in a large class of biological systems is
Two well known systems that exhibit bistability are analyzed in provided in [9], using the concept of monotone systems. On

this framework: the lac operon and an apoptosis network. For .
the first example, the question of designing an input that drives the other hand, at the population level, a graded response to

the system to switch between modes is also considered. increasing stimuli is typically observed [2], [10]. This means
that each cell has its own “threshold”, its own particular point

where it will jump from one steady state to the other. Since
this threshold varies from cell to cell, a population experiment
should reflect the fraction of cells in a given steady state for
) o each given stimulus concentration.

ISTABILITY is a recurrent motif in biology, and there  Thjs introduces a fundamental issue of concern when mod-

are many examples of systems which can operate, dfing and studying biological systems: the inherent variabil-
a stable manner, in two very distinct modes. For instanGg; encountered among different “realizations” of the same
the well knownlac operon in the bactenE;chenchm coli system. Various modeling techniques have been suggested
a group of genes which are repressed in the presence,glj ysed to deal with the problem of variability, and obtain
glucose but transcribed in the absence of glucose and preseqgg more realistic descriptions of the biological systems.
of lactose [1], [2]. Another striking example is the Pha@e Just to cite some examples, among many others: stochastic
virus, which may exist in either of two states. Under "normaly,qqels [11], [12], discrete/logical models which provide more
conditions, this virus can exist in a dormant (lysogentic) statgyitative descriptions [13]—[16], and more recently hybrid
and survive indefinitely within its host=. coli. However, mogels [17], and in particular piecewise linear models [18]-
under “adverse” conditions, for example after irradiation W|tt22]_ The system under study, its complexity, and the knowl-
ultra-violet light [3], the phage can switch to a reproduciblgyge and experimental data available, often determine the
(Iytic) mode, leading to bactgnal lysis (that is, the bacterignst suitable method for modeling a given system. In the
burst). Yet another example is the complex system of croggise of genetic regulatory networks, although exact forms
talking pathways that regulates the decision of cells to enter ¢ ihe interactions are often not known. the presence (or
process of program_me_d cell death, also known as apoPtO%‘)?pression) of a given protein or mRNA is typically due to
as opposed to continuing normal development [4]-[6]. FIrofe appropriate combination of presence or absence of another
a failure in the pro- and anti-apoptotic signaling pathwaygq,Oup of species [23].
various dise_ases may result, inclqding cancer (where damage@, ajternative approach is proposed here, which provides
cells that fail to undergo apoptosis, continue to reproduce).a intuitive bridge between continuous models and the class
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I. INTRODUCTION
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Fig. 1. A simplified schematic view of the interactions between theBIF III
pathway and the apoptosis network (see Section IV and also [29]). eN - ;.-'
(1-A¥  (1+A) x

in its state space: each invariant set representing one stable o _
mode of operation. An invariant set, as opposed to a singi- 2 An activation function(z).
fixed point, captures variability or small disturbances in the

system’s trajectories while maintaining the same qualitati\{eb

behavior. The system is able to switch from one invariant sebe (see [29] _and F'g‘ 2). The second §tep Is to consider that
each of the variables is produced according to the overall result

to another only in r nse to an ropriate external inpUf. L S .
o another only esponse 1o an appropniate external INbik- o several activation and inhibition links particular to that

An ideal framework to analyze such mathematical SyStemScﬁde and, in addition, is freely degraded. The resulting model

and characterize their stability with respect to inputs, is theiII depict the principal interconnetions among the system’s
velriables, but without specifying particular kinetic laws for

notion of input-to-state stability (ISS) with respect to compat‘:’Y
sets [24]. This can be viewed as a generalization of the origirllﬁ eractions
]ICSS conce_pt [25], [26]. A powerful and extremely useful too Definition 2.1: Let N € R,. A function » : [0,00) —
or analysis of control systems, ISS has been adapted (50N] is anactivation functionif:
deal with positive systems [27], [28], and in the present cage ) . . A
will be adapted to a “local” property, and thus allow for co- (i) ¥ is continuously differentiable;
existence of two disjoint forward-invariant sets. The originafl) 0 < < oc implies v(z) > 0 andv(0) = 0;
ISS notion is global and, for the zero-input case, 1SS impliél) There exists a threshold value< ¢ < oo and constants
global asymptotic stability (to the origin or, more generally, & & € (0,1) such that
the given compact set). The definition suggested here will z€[0,0(1—A)) = v(z)e0,eN),
make use of a local region (one for each forward-invariant € (6(1+A),00) = v(z) € (N(1 —¢),N]
set), containing the compact set, over which the input-to- . » 0 . B
state stability estimates hold. The definitions of “activation” Definition 2.2: Let M € R,. A function p : [0,00) —
and “inhibition” functions are introduced in Section Il. The0, M] is aninhibition functionif:
chal notion _of ISS with respect to compact sets is therij) , is continuously differentiable;
given in Section Ill, together with a characterization throughii) 0 < z < oo implies y(z) > 0 and u(0) = M;
ISS Lyapunov functions. These ideas are then illustrated wiilf) There exists a threshold value< 6 < co and constants
the examples of an apoptosis network and khe operon e,A € (0,1) such that
(Sections 1V, V, respectively), and results are compared and

x€]0,0(1—A)) = plz) e (M(1-¢),M],

discussed in Section VI.
x € (B(1+A),0) = p(x) €0,eM).

Il. A GENERAL FRAMEWORK These definitions are more general than those given in [29],

We will presently focus on biological networks consistings the restriction for the functions to be strictly monotone has
only of activation or inhibition links, such as the network depibeen lifted. Instead, an extra assumption is added, as point
tect in Fig. 1 (see Section IV for a description of the systemji) in both Definitions 2.1, 2.2. This property means that
For these networks, the exact form of interactions is usuaky activation function is zero (an inhibition function equals
not known, and various options can be used in mathemati@sal maximal value) if and only ifx = 0. This property is
models. The interactions typically involve threshold concemot unnatural, and will be useful (together with continuity)
trations, above (or below) which the activation or inhibitiorin providing a strictly positive minimum value for a function
of one species by another is not significant. Such functiopsin any compact set withe > 0. Note that property (ii)
are often described mathematically by saturation functioafiows lim,_., #(z) = 0. Another difference regarding the
(e.g. Hill type), which involve estimating and choosing fixedlefinitions given in [29] is the fact that the value(resp.,
parameters that represent an average behaviour (for instadEgnow represents &action of the maximal activity (resp.,
in a group of cells of the same type). Such functions wilictivity threshold).
not satisfactorily capture the variability, but rather an averageln the networks depicted in Figs. 1 and 4, nodes inside the
behavior. The first step in setting up a general frameworttashed rectangle constitute the system’s variables, and nodes
is to associate to each activation (resp. inhibition) link aoutside the dashed rectangle form the system’s set of inputs.
activation (resp. inhibition) functiorthat is defined inside a The effect of an activating input on a given variable (link of
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the form —) will be represented as an additive term, and astrictly increasing, and zero at the origin. It is of clasSs, if,
inhibitory input (link of the form—) will be represented as in addition,lim, _,, y(r) = co. A function 5 : R>g X R>¢ —

a product with the other terms in the corresponding varialRe is said to be of clas& ., if 8(-,t) is aX. function for
dynamics. The dynamical system for the network in Fig. 1 carach fixed: > 0, andj3(r, -) is strictly decreasing and satisfies
then be written, using the notation = [NFxB], y = [IkB], lim;—, B(r,t) = 0 for each fixedr.

w = [C8a], z = [C3d, andu = [TNF]: Fact 2: Let v be an activation function. Then there exists
a classC function such thatv(z) < () for all z > 0.

% = Rty ps(z) To see this, le§(r) = max{v(z) : = € [0,7]}. Then¥(0) =

g = —kyy i) ve(z) ps(u) (@ 1(0) = 0. 4 is nondecreasing by construction and continuous
W = —kyw+ pa(x) 4+ v3(u) because is. Then, an appropriat€,, function with v(z) >
io= —kyz+ po(a)va(w). () > v(x) can be found.

i For simplicity, throughout this paper it will be assumed that
The termyu, (y)p3(2) should be interpreted as a total produce constants: and A are the same for all activation and
tion rate for NF+B, which depends only on how large thenpipition functions in the network (however, the results can

concentrations of HB and C3a are at each instant. Simila[)e easily extended to the case wherand A are distinct for
interpretation holds for the other production terms. TNF stins,-h activation or inhibition function).

ulation may be assumed constant, either zero or positive (see

Section V).
Definitions 2.1 and 2.2 |mp|y that there is a “tube” inside I1l. I NPUT-TO-STATE STABILITY WITH RESPECT TO
which the functions must lie. Examples of such functions COMPACT SETS

include not only Hill and other sigmoidal shaped functions

(Fig. 2), but also hyperbolic functions, such as Michaelis- As in example (1), consider the following model for genetic
Menten or Monod type kinetics. Numbers A can be found networks:

to construct a tube around a hyperbolic function (see next

paragraphy = 1); however, such a tube might not be sharp & = —Kiegz + F(z,u) (2)
enough for some applications. Observe that the limiting case
e = A = 0 reduces essentially to the piecewise lineawhere K., is ann x n diagonal matrix, containing in its

systems introduced first by Glass and Kauffman [18], and maireth entry, the degradation rate for specigs The function

recently used to study gene regulatory networks in [19]-[22F(z,u) : R%, x RZ, — RZ, is a sum of terms, each term
The advantage of such an approach is in its general fer-product of activation or inhibition functions. Since exact

mulation: consider a batch of cells of the same type, to lfienctions are not provided, fixed points cannot be computed.
used in single cell experiments. A model could be generatBdt the objective here is to carry out an equivalent analysis, by
from experiments with a few cells as “calibration”, and thefrdentifying forward invariant sets (as opposed to fixed points)

used to extract new information from each of the singli@ the state space. The existence of forward invariant sets for a

cell experiments. If a specific Hill function is chosen sayystem of the form (2), will depend on the relationships among

Vzt/(k* + z%), then the new results will not be as accuratthe various threshold and maximal rate constants. Using once

as they could be, if each cell will have slightly differerit &, more the analogy with the batch of same type cells, suppose

and /. Defining general functions as those in Definitions 2.that each cell has its own steady state point, which varies
and 2.2, allows the same model to be used for all celiwm individual cell to cell. But all these steady state points
in the batch, as intervals for parametdrs k, and ¢ can will belong to the same invariant set of system (2). Thus, even
be incorporated intq: and v functions. To write a Hill or if exhibiting slight variations, all cells can be expected to have

Michaelis-Menten type function/(> 1) as an activation the same qualitative behavior, characterized by a system of the

function, one may chooseVN = V, ¢ = k, and numbers form (2) and its forward invariant sets.

e,A so that!== < min{ﬁ, (1+ A)EL. A very natural concept from control theory to help char-
The next property is straightforward from the definitions: acterize existence (and stability) of invariant sets, is that of
Fact 1: A continuously differentiable functiom is an in- input-to-state stability (ISS) with respect to compact sets [24].

hibition function with constants\/, 60, ¢, A, if and only if This can be viewed as a generalization of the original ISS

v = M — p is an activation function with constanf§ = M, notion [25], in which case the compact set is simply the

¢ =0 ande, A. origin {0}. The concept of ISS has revealed itself an extremely

It is clear that property (iii) is equivalent in both cases sinc@owerful notion in many situations, for characterizing stability

xz € [0,(1 — A)f) implies u(xz) > M(1 — ¢), which in turn of systems, robustness with respect to state, and output dis-

impliesv(z) = M — pu(x) < M — M(1 —¢) = eM. (The turbances, cascaded systems, and other applications [26], [30],

converse implication is similar.) If properties (i) and (ii) of[31]. The definitions to be formulated next, adapt compact ISS

Definition 2.2 hold fory, then immediately (i) and (ii) of to a local property, in the sense that estimates are required

Definition 2.1 hold forv = M — p, and conversely. to hold only while the trajectories of the system remain
Before stating another simple property, recall some standavithin some appropriate set. Similar notions have already been

functions (e.g., [26]), which will be used later. A functionintroduced to deal with positive, biochemical networks (for

v : R>g — R>¢ is said to be of clask if it is continuous, instance [27], [28]).
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A. Local notions of compact ISS If R = X, then the functionV is a global ISS Lyapunov
In the definitions to follow next, for simplicity consider afunction with respect to the compact tfor the system.
system with inputsi = f(x, u), evolving in a sett ¢ R2, The local condition means that the ISS estimate will remain

where f(-,u) is continuously differentiable for each fixag Valid as long as the trajectory evolves within the given et
and define arinput to be a locally Lipschitz functions : AS I Fhe case of the original definition _of an ISS system,
R>o — R7,. Let |u| denote the usual Euclidean norm fothe existence of an I1SS-Lyapunov function with respect to

matrices and define also: a compact setQ implies that the system is input-to-state
stable with respect to that compact <@t The proof of this
lu|]| = esssup {|u(t)|: t € [0,+00)}. result is very similar to the original one, and follows closely
the argument given in [26], hence we do not include it (see

In the next definition, leth < T,.. < oo and assume that
Jeow = [0, Tha) is the interval where the maximal solution
of a systemi = f(x,u), for an initial condtionz, and input
w, is defined.

Definition 3.1: A set P is forward-invariant for the system
& = f(z,u) if, for each initial statex(0) = x¢ € P, and each
input w(-), the corresponding maximal solutiofn(t, zg, w),
which is defined on an intervaly, . = [O’Tm?*)’ satisfies Q, then this set is said to b@-invariant for the system, that
z(t,xg,w) € P for all t € J,, .. The system isP-forward . )

e TTou .is the solution of

complete if P is a forward invariant set for the system and, in

also [27]).

Lemma 3.4:Consider anRZ,- forward complete system
# = f(x,u). Suppose that’ is a local (resp., global) 1SS
Lyapunov function with respect to the compact g:tC RZ,.
Then, the system is locally (resp., globally) input-to-state
stable with respect to the compact g2t |

If the system is globally ISS with respect to a compact set

addition, J,, ,, = [0,0), for eachz(0) = 2o € P and each i = f(z,0), 2(0) =29 € Q
input w(-). o ,
Following [24], let Q be a nonempty compact set Rt ,. remains inQ for all ¢ z 0, that |s,:_c(t, x0,0) € Q whenever
Then define the usual point-to-set distance: = o € Q. Furthermore, if a system is globally ISS with respect
to Q, then in the casei(t) = 0, the trajectories globally
|z|o = inf{|z —q|, ¢ € Q}. asymptotically converge t@. It is not difficult to check that

. . . . the definition of local compact ISS also implies O-invariance
In our exar_nples, as In many blolo_gl_cal sy§tems, theiset a of the setQ. One needs only to verify that, whetft) = 0 and
product of intervalI, [0, a;], for finite a;, s = 1,...,n. The | " Q, the trajectories do not leave the @t To see this,
compact sets to be considered will often touch the bounda;sr&nply note that (4) together with(t) = 0 andz € Q, in

Sf X, fo; I&S:ﬁigcct:aﬁte:)(t{\gljveewﬁs:til?si fﬁa@gisg?:;}r{t;;l::d fact imply |z (¢, zo, w)|o < 0 for all times. Using Lemma 3.4
D ' y the following result holds.

in the interior of &'. More generally we define: Lemma 3.5:If there exists a local ISS Lyapunov function
intyR:={rc€R: zcintR or 2 € JRNIX}. (3) with respect to the compact sétfor the systemi = f(x, u),
then Q is a O-invariant set for the system. |
Definition 3.2: Assume that the systeti= f(z,u), is X-  The definition in local terms is useful when there exist two
forward complete. Then the system lscally input-to-state (or more) disjoint O-invariant sets for the system (as is the
stable with respect to a compact s@tif there exists a set case with bistable systems). In this case, global asymptotic
R C X with Q C inty R, and functions = Sr of classKL  stapility to either set (in the case= 0) clearly does not make
andy = ¢r of classKo such that, for every initial condition sense, but it is still meaningful to characterize the regions of
zo € R and each inputu(-) : state space (the s&) from where it is possible to eventually
- converge to one of the sets. In addition, if starting inside one
(8, @0, w)le < Bllzol, ) + (llwl]), @ of the invariant sets, local ISS with respect to a compact set
for all ¢ > 0 such thatz(s) € R for all s € [0, ¢t]. quantifies the magnitude of disturbances allowed before the
If R = X then the system iglobally input-to-state stable system leaves that set.
with respect to the compact séx
Definition 3.3: A continuously differentiable functio” : g5 |gg Lyapunov functions with respect to cubes

RZ, — R>¢ is alocal ISS Lyapunov function with respect to .
a compact set for the systemi — F(z, ), if: For systems of the form (2) and for compact sets which

are products of closed intervals, it is possible to use “piece-
wise” quadratic functions to systematically construct an ISS
vi(|zlg) < V(z) < va(lz|o) Lyapunov function with respect to a given cube. Define the
scalar function:

(i) there exist functions,, v, € K, SO that

for all z € RY,,. 1 9 >0
(ii) there exists a seR c X with Q C inty R, and functions p(r) = { gr » T2 0
o = ag,v =7r € Ko such that o Ty,
This function is continuously differentiable and satisfies:
VV(z) f(z,u) < —a(lz|o) +¥(lul) p
ap _

for everyz € R. T =T V20(r) =2 p(r). (5)
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Now consider a set of the form becomes:
My M. Ny No M,
Q:[x‘f’xﬂx...x[xz’w?l}. Pap: 0, 13 X ; L 27s
ks ky
Then our candidate Lyapunov function will be: 0 My + N3 < o M>Ny
1 n ’ kw ’ kz ’
Vie) = glafo = plaf — i) + plzi —ai).  (6)
i—1 IV. LIFE AND DEATH DECISION IN AN APOPTOSIS

o . . NETWORK
This is the squared point-to-set distance to a cube-shaped

compact set, and hence one mayiget v, = V() = %ng_ The _apoptosis network is.resp.ons?ble for pro_grammed cell

Using thisV, and noticing that the functiof'(z, u) in (2) death' in response to certain stimuli. Apoptosis enables the
is bounded (as a finite sum of products of activation arfffganisms to _ehmmate unwanted cells and thus prevent, for
inhibition functions), it is easy to prove the following result.instance, replication of damaged cells (see for example [4]).

Lemma 3.6:Define F; = max,,, Fi(z,u) and consider the Cancer, as well as other diseases, may develop if the apoptosis

set network fails to respond in an appropriate manner. At the heart
_ _ of the apoptosis network is a family of proteins (caspases, each
p_ [07 Fl} o x [0’ Fn} _ (7) existing in a pro-form and an active form), which are activated
k1 kn, in a cascade (for more references see [4] and also [6]). Caspase

3 (C3) is a prominent downstream member of this cascade,
and it is responsible for the cleavage (and destruction) of
various and critical proteins in the cell: thus high abundance of
active C3 (C3a) typically leads to cell death. Other pathways
interact with the apoptosis network, in particular the well

Then system (2) i?-forward complete.

Proof: The function—Kgeqz + F(x,u) is continuously dif-

ferentiable oriR%, for each fixedu, and locally integrable on
R, for each fixedr € RZ . For each continuous input, and

|n|t|al_ condition o € P, let z(t,lo,w? denote the maximal known Nuclear FactonB (NFxB) pathway [4]. NF:B is
solution of the initial value problent(t) = —Kgeqz(t) + - . c :
. ; a transcription factor responsible for transcription of various
F(z(t),w(t)), z(0) = =z, and suppose it is defined on an . . ) L
interval [0, 7y,..). Consider now the distance function genes, including one for its own inhibitor<@), and another
T e for an inhibitor of C3a (IAP). Thus, the presence of db-(or,

1 2 more precisely, its transcription products) typically promotes
Vi(z) = §|x|§3 = Z P (iﬂz - kz> ) survival of the cell. While the NEB pathway can be generally
i=1 ! considered an anti-apoptotic pathway, it is often activated in
since the system is defined only for nonnegative coordinat®grallel with the pro-apoptotic caspase cascade. A common
Then (writingz; = (z; — F/k;) + F/k;) signal is stimulation of extrinsic death receptors, for example,
Tumor Necrosis Factor (TNF) activating its receptor TNFR1.
n I E TNFR1 activation leads to deactivation ofB. On the other
VV flzu) = Y 4|2 (If - ka> (I@(z, - kz)> hand, TNF activates caspase 8, which in turn activates caspase
=1 ) ’ 3, and NB also functions as an inhibitor of this step (through
n F; _ the activity of FLIP, an inhibitor of caspase 8 activation and
+ Z 2p (ll - k) (=Fi + Fi(z,u)) IAPs, inhibitors of C3a) [4]. The interaction among pro-

’n ' ~ and anti-apoptotic modules will influence and fine tune the
< Z k2 p (IZ _ E) cellular decision to survive or undergo apoptosis [32]. Thus, in
- model (1) a “living” response corresponds to low concentration
of C3a (and high concentration of NB), and conversely an
“apoptotic” response corresponds to high concentration of C3a
(and low concentration of NEB).

Next we will establish conditions on the degradation and
production rates, that guarantee existence of both the “living”
(set £, Proposition 4.1) and “apoptotic” (sefl, Proposi-

|2(t, zo, w)|5 < |0l tion 4.2) responses, or only one of them (Propositions 4.3

and 4.4). The set§ and.A are both contained in the larger

implying that the trajectory remains bounded for all timeset P,, (Fig. 3). Note that conditions (L1)-(L2) and (A1)-
and henceT,,, = oo. By a comparison principle, it also (A3) can indeed be simultaneously satisfied (see more details
holds that: V (z(t, zo,w)) < exp(—clz(t,zo,w)|%:) (Where below). These sets are disjoint M Mse < myMs(1 — ¢).
¢ = 2min, k;). Therefore, the trajectories of system (2) ar&his is guaranteed, for instance, for alkk my/(my + M)
asymptotically convergent to the compact get Finally, if ande +/c < 1.
the initial condition iszo € P, then|z(t, zo, w)|% = 0 for all As a remark, we would like to point out that the sétsnd
t, meaning that system (2) is indeétforward complete. B A (or £, and.A,) are not necessarily unique, nor the largest

From now on, without loss of generality, we will consideinvariant sets with the “living” and “apoptotic” qualitative
only trajectories of (2) evolving iP. For system (1) this set properties. In fact, bistable behavior could be established by

n

S

1

g

< —2mink; |2/
K2

because (by definition of’) —F; + Fj(x,u) < 0 for all 4
and allz, u. It is clear thatV (x(t, zg,w)) is @ nonincreasing
function so, for allt > 0,
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[C3a] arguments show that alsgz — 2°), p(w® —w) andp(z® — 2)
identically vanish in the state spa¢&,. Therefore consider

the function:
MM,

X V(E) = Slefh = plat — o)+ p (w— ) +p (s~ )
(l—afI"—'I-“I_L P, Now choose a numbe¥ € (0,1) such that
1+ 5)% < 63(1 —A) and
grgls S 5% > max{fs, 0 }(1 + A)
Ly B gy (SIS e L) e st s
k. X i g set which contaisin its interior:

i o ) o ) ) R =R; UR,,
Fig. 3. The “living” (£) and “apoptosis” ) O-invariant sets, projected into
the planex = [NFxB], z = [C34d. Also shown (shaded) is the local sBt

for the “living set”. = {f €P,:w< w® and (xa <z<zlorz< zb)}
={{€Py 62" <x< 2¥ andz < (1 —|—5)zb}

finding any other suitable pair of disjoint O-invariant compac(tsee also Fig. 3). Then

sets, sayL and A, W|th the properties “highz / low w’

and “low z / high w”, under different assumptions on the VV f({,u) = —+v/2p(x® —x)(—kzx + p1(y)ps(2))
parameters of the network. The goal here is to show that +1/2p (w — W) (—kpw + pa(x))
the network has the capacity for bistability, by identifying v

conditions for which at least one pair of séts.A co-exist. Or, [2p (2 — 28) (k.2 2w (w
alternatively, conditions on the parameters for which bistability el . *ue(z)raw))
is lost and only one of the sets is invariant. +rs(u) /20 (w — wb).
Recall that system (1) is P,,-forward complete )
(Lemma 3.6). Define Noting that:
my = min {m (y): y € {0’ NIZZQMs] } ’ (8) ~hat b i (W)is(z) = ~helw = %) — Kat® + i {whus 2)
Y and that
which is a stricly positive constant, becaysgis continuous,
and by property (ii) of Definition 2.2. To simplify notation, let —V 2p (2% — @)(—ke(z — 1)) = —2kap (z* — 7)),

€ = (z,y,w,2), and leté = f(&,u) denote system (1).

e and similar expressions for the terms 4n and z, one can
Proposition 4.1: Assume that (L1)=Y2% < 05(1 — A), P :

write:
and (L2) ™M20=2) > max{6,,60,}(1+ A). Then system (1)
is locally ISS with respect to the compact set: VV (& u)
. |:m1M3(1—€) M1M3:| y |:O N1N2M5:| < =2k, p(m‘l_m)—2k‘wp(w—wb>—2kzp(z—zb)
ko 7 ks Lk +02(€) + g (€) + (&) + va(u) /20 (w — w?),
0 €M4 < o €M2N4
" e L . where
9:(§) = 2p (2% — ) (—kz 2" + p1(y)ps(2)) (9)
Proof: By Lemma 3.4, it is enough to show that there exists B b b
a local ISS Lyapunov function with respect£o We will next gu(®) = /20 (w—w")(—kuw” + pa()) (10)
construct such a function, following (6). Set g.(8) = 20 (2 — 22)(—k,2° + po(x)va(w)). (11)
Ms(1 — M,y M.
% = W, zb = %, We will next show that property (ii) of Definition 3.3 holds
IN No M. v for the setR. To do this, we only need to show that(¢) +
Y =0, yb = %, 9w(€) + g2(€) < 0 for all £ € R. Choose first any point
Y ¢ € R;. The inequalityw < w® implies p(w—w®) = 0 and the
w® =0, w = 5M4’ 20 =0, 2t = 5M2N4. term (10) is zero. Suppose first thet < z < x°. Thenp(z®—
K k- z) = 0 and the term (9) is also zero. By assumption (L2)

Since we only consider trajectories evolving in the Bgg, it = > 62(1 + A), which impliesuq(x) < M, (by definition
always holds thay < y°, which impliesp(y — 4?) = 0. In  of an inhibition function), and so-k.z" + s (2)vs(w) <
addition,p(y® —y) = p(—y) = 0. Therefore, the terms apto  —k, (2°—eM;yN,4/k,) = 0. Thus, the term (11) is nonpositive.
be included in the Lyapunov function always vanish. SimiléBuppose now thab < z < 2. Thenp(z — z*) = 0 and
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hence (11) is zero. By assumption (Lt)< 63(1—A), which  (suché exists, since (Al1)-(A3) are strict inequalities), and the

implies us(z) > Ms(1 — €) (by definition of u3). Thus following large set that strictly containd:
kex® — p1(y)us(z) < kg <$a - imlMg(l - 8)) =0, R =R UR,,
ka with

and so the term (9) is nonpositive. Therefore, for all points in
Ry, the terms (9), (10) and (11), are majorated by zero. Ry ={{ € Pop : w = w* and

Choose next any poinf € R,. By definition of § we (0<z<azbora<z<2)}
have: z > 2% > max{f,0,}(1 + A), which implies and
(condition (L2)) bothus(z) < eMy and pg(x) < eMy.
Hence —k, 2" + pa(x)va(w) < —k,2° + eMaN, = 0 and Ry={(€ Py 0<z<(1+6)z’and
—kypw® + pa(z) < —kyw® + My = 0, and both terms (10) Sw” <wanddz® < z < 2P},

and (11) are nonpositive. Finally, < (1 + 6)z" implies (by
assumption (L1)ys(z) > Ms(1 — ). And this again implies Then

that term (9) is nonpositive. Using Fact 2 to getu) < v3(u) YV f(€,u) = \/2p (z — 2b)(—kpz + p1 (y) pi5(2))

and lettingcs = maxp,, \/2p(w —w’) we have, for all
¢ER, —V2p (W — w)(—kyw + pa(z))
VV f(§u) < —2kgp (2 — ) = 2kyp (w — w”) +1/20 (0 — w*)(=kww + pa())
~2k.p (2 = 2") + 373 (u) V29 (2% = 2)(—kaz + pa(x)va(w))

< —2min{ky, by, k:}EIE +y(w), us(u) ( S (" — ) + \/2p(w — wb)> ,
wherev(r) = c3v3(r) andes = (My(1 —¢) + Ns3)/ky. ® _ N
Proposition 4.2: Assume: (Al) M2N4 1-)? 05(1 + A), Simplifying as in the proof of Proposition 4.1:

(A2) MiMae < min{f,,0,}(1 — A), and (A3) Mall=9) gy fgu) < —2min{ke, b, k2 }ER
féntr;(ﬁl;;hen system (1) is locally ISS with respect to the +925(E) + Gu.a(€) + Guws (&) + g25(E)
+c3 V3(u)7

wherecs = maxp, {\/Qp(wa —w) + \/2p(w _ wb)} and

My M. N No M,
A — {0713€]X{7125}

Ky k

Y

M, N,
X Lo lx S -9t 9(&) = /2 (@ — a") (~kaa® + i (y)is(2) (12)
gw,a(g) = - 2/) (wa - w)(_kwwa + /44(1')) (13)
Proof: By Lemma 3.4, it is enough to show that there exists ) b

a local ISS Lyapunov function with respect.tb We will next Guwb(8) =1/ 2p (w — w®)(—kww” + pa(z)) (14)
construct such a function, following (6). Define G2.a(€) = —/2p (2% — 2)(—k.2" + pa(2)v4(w))15)
2% =0, 2° = M, Mse .yt =0, %7 We will next show thatV satisfies property (ii) of Defini-

ke ky tion 3.3 for all¢ € R. We verify this only foré € Ry, since

w® — My(1 —¢) wb — My the verification for¢ € R, is analogous. Assume thate Rs

ky 7 kyw '’ and recall the definition of. Thenz > 63(1 + A) implies

a M2N4(1 75)2 b M>sNy Mg(z) < eMs. Henceszl'b + ul(y)pg(z)) < 7kxl’b +

= k. AT T M;M3ze = 0 and g, , < 0. Next, note thatw > ¢4(1 + A)

Since we only consider trajectories evolving in the Bgg, it MPlies va(w) > Ny(l —¢). And z < min{fs,04}(1 — A)
always holds thay < 4*, which impliesp(y — 4*) = 0. In ImPlies pz(x) > My(1 - <) and “4(30)2 > My(1 —¢€). Then
addition, p(y® —y) = p(—y) = 0. Therefore, the terms opto ~ *==" Fr2(2)va(w) > —k.2%+(1—¢) M2 Ny = 0, implying
be included in the Lyapunov function always vanish. Simildf@tdz.a < 0. AlSO —kyw+pua(z) > —kyw* +M4(1 €)>0
arguments show that alsgz® — ) and p(z — z*) vanish in |mpIy|ng thatg,. < 0. Finally, note that—k,w" + pa(x) <

P,,,. Therefore consider the functiof¢|?, : —kyw” + My =0, S0g, < 0.
g ofiel We conclude that, for af € R, the terms (12), (13), (14),

V) =p(z—2")+pw*—w)+p(w—uw")+p(z*—2). and (15) can all be majorated by zero in the expression

Now choose a numbef € (0, 1) such that VV f(&, u). Using Fact 2 obtains(u) < v3(u), one can say
) that, for all¢ € R,
MsNy(1—¢
2 4; S 03(1+A), VV f(&w) < —2min{ke, kuw, k. }E% + (),
M M3(1 —¢) where~y(r) = c3y3(r), with ¢ = 2((1 — )My + N3/ky,). B
(1+9) ky < max{fy, 0a}(1 - 4) The next two Propositions provide stricter conditions, which

and ¢2fel=¢) da(1+A)

kw ultimately happen.

guarantee that only one of the two possible responses may
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Proposition 4.3: Assume: (L1) 228 < g5(1 — A). Then
system (1) is globally ISS with respect to the compactset
E _ m1M3(1—5> MIZ\/IB % 0 N1N2]\15
- ky Tk T ky

M. M N,
X [0,4}x[0, 2 4].

_______________________________________________________ ]
external

lactose

k'll) k'Z

Proof Define Fig. 4 A sin_1p|ified Igc operon regulatory network (similar to the model
used in [2]), with two inputs: external lactose and glucose.
m1M3(1 - 5) b Mlj\/[g

a __

- k ) z k Y
b ’ Ny Ny Ms ’ Provided that
Yy =0,y = ———, 2
Ry ctVE<landa< LT8¢ (16)
w® =0 wb:% 40— Zb:M2N4. (1—5)2+€»
kw k. many choices of parameters will satisfy these four conditions.

As in the proof of Proposition 4.1, consider the function  Bistability will obtain from a balance between the maximal
1 expression levels of NdB and C3a, and their mutual inhibi-

V(e =5l¢ Z.=p@"—2)+p(w—w’)+p(z-2"). tion thresholds (see [29]). In the bistable region of parameters,
We will show that, under condition (L1’), this function satisfie§'ther£ or.A can be reached depending on the initial Cond,"
Definition 3.3, with R = P,,, and so is indeed a globalt'ons_?nd input. Our results_ also show tha_t, under alternative
Lyapunov function with respect to the compact Set (Recall conditions, the network of Fig. 1 can exhibit only monostable
that only trajectories evolving otP,, are considered.) By behawor. Indeed, if condition (L1’) is satisfied, th_en any
definition s () < Mo for all z andw(w) < N, for all w, so trajectory of_ system Q) (corresppndlng to a zero input, or
the term (11) is always nonpositive. Similarlya(z) < M, after TNF stimulus is turned qff) will asymptotlcally converge
for all z implies that the term (10) is always nonpositivel® the compact set, (Proposition 4.3). This means that the
By assumption (L1),z < MyNy/k, < (1 — A), so ceII,W|II n,ot go to apoptosis. In a _S|m|Iar manner, conqmons
that (using (8) and property (iii) of Definition 2.2}k, z + (A2)-(A3’) guarantee thgt any trajectqry will as_ymptotlpally
1 ()ps(z) > —kpz® + myMs(1 — €) = 0. It follows that converge (eV (Proposmor_1 4.4), that is, _C3a will remain at
term (9) is always nonpositive. Therefore, for alk P, high levels, and the cell will eventually die.

VV f(&u) < —2kep(a® — ) — 2kyp (w— ) V. THE lac OPERON

—2k.p (Z—zb) + c3v3(u) An operon is a group of genes which are adjacent to
< —2min{ky, ku, ks HENZ, +7(u), one another in the chromosome, and are transcribed into a
unigue mMRNA molecule. Ift. coli, thelac operon genes code
where c; = maxp,, /2p(w —w?) = Ng/kw andy(r) = for three proteins{-galactosidase or LacZ, lactose permease
czy3(r). We conclude that, under assumption (LI),is @ oy | acY, andg-galactoside transacetylase or LacA) that are
global ISS Lyapunov function with respect to the compact sglquired for the transport of lactose into the cell and its
L.. By Lemma 3.4, system (1) is globally ISS with respect tg,psequent breakdown. Thac operon has been a widely
the same compact set, as we wanted to show. B studied system, since Jacob and Monod [1] first proposed a
_ A very similar proof shows that under some other condjyogel and analyzed this regulatory mechanig.coli wil
tions, the apoptosis set will be an attractor for the system. preferably use glucose as a source of carbon but will also

e . . n My M. :

Proposn;v?n 4.4:Assume: (A2) = < min{f, 04}(1 —  yse lactose, if glucose is not available. Binding of the lac
A). (A3) 72 > ¢a(1+ A). Then system (1) is globally ISS repressor protein (Lacl) to the operator site of ka@operon,
with respect to the compact seft,. prevents transcription of tHac genes. The presence of lactose

M, M, Ny Ny M (or, more precisely, some of its derivatives) in the interior

A = 0, k. 0, k, of the cell, contributes to the inhibition of the protein Lacl,
M, M, N, ) .th'u.s de-repressing the operon and allowing transcription to be

[1—¢,1] x [(1—e)1]. initiated. In the absence of glucose, the cyclic AMP receptor

protein (CRP) is activated, and strongly promotes transcription

. of the threelac operon geneslacz, lacY, and lacA. The

The network depicted in Fig. 1 is capable of bistable behav'?frotein LacY facilitates the uptake of lactose from the exterior

when the_ c_onditions (L1), (L2) and_ (A1)-(A3) are simultanez, o interior of the cell, while the enzyme-galactosidase
ously satisfied. These can be rewritten as:

is responsible for lactose breakdown. Thus, the absence of

1+ A myM; 1-A glucose triggers a positive feedback cycle, which drives the
1—¢ = k,min{0s,6,} e cell to increase its lactose uptake and the corresponding
1+ A MyNy, 1-A 1+A My metabolism. Here again there is a system exhibiting bistability:

(1—¢)2 k.05 < e l1—¢ < bakw the lac operon is repressed in the presence of glucose, but
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transcribed in the absence of glucose and presence of lactgsech ad exists, since (L1)-(L3) are strict inequalities), and
In [2], this regulatory system and its response to glucoskefine the following set :
and a lactose analog was explored: there are two inputs to )

the system. A schematic view of the system is shown {r% {€ € Plac: 2= (149)
Fig. 4, where “lactose” stands for intracellular lactose. Lettinghis setR clearly containsCi,. in its interior (in the sense
r = [lactosé, y = [LacY], w = [Lacl], z = [CRHA, defined by (3)). Then

u; = [extracellular lactogeand us = [glucosé, a model for

2,y < (14 6)yb, dw® < w}.

the system depicted in Fig. 4 is: VV [(&u) = y/2p(x = 2®) (ke + 11 (y))
T = —kgx+uvi(y)+va(ur) +1/2p (Y — y") (—kyy + p1(w)va(2))
g = —kyy+p(w)ra(z) @an —/2p (W — w)(—kypw + po(z))
W = —kyw+ pe(x) +vg(ur)r/2p (z — zb).
2 = —kyz+ ps(ug)

Noticing that—k,z + v1(y) = —ky(z — 2°) — ko2’ + v1(y),
To simplify notation, let¢ = (z,y,w,z)’ and leté = f(¢,u) andthaty/2p(x — Jcb)(x.—xb) = 2k, p(x—2"), the expression
denote system (17). By Lemma 3.6, system (17)Hs.- VVf(§,u) can be rewritten as

forward complete. where: VV f(€u) = —2k, p(z— :Eb) — 2k, p(y — yb)
N- N, M N. M. M. *ka ¢ — x w,a
P = |0, 1+ Ny « o, 14V2 072 « 0’73 . p(w* —w) + gap + gyb + Gu,
kg ky kw k.

+v4(u1)y/2p (z — 2P),
As in the apoptosis example, conditions can be given ﬂ\}%ere
guarantee the capacity for bistable behavior. It is convenient

to rewrite the equation fot, using Fact 1: Gup = 1/ 2p (x — 20) (—kyz” + 11 (y)) (19)
i o= —kyz+ Ms+ (us(u) — Ms) Gy.b 20 (y — y°) (—kyy’ + 1 (w)ra(2)) (20)
= —koz+ Mz - vs(u), (18) Gwa = —V/2p (W — w)(=kyw + pa(z)).  (21)

where N3 = Ms. In Proposition 5.1 below, the sef;,,. Now, let{ € R. Recall the definition ob. Theny < ¢, (1 —
represents the response of tlae operon in the presence of A) implies (definition of activation functiony;(y) < Ny,
glucose: Lacl ) represses transcription of thec genes, and and hencey, ;, < 0. The fact thatw > 6,(1 + A) implies
only a residual concentration of lactose) (s present inside p1(w) < eM; (by definition of an inhibition function), and so
the cell. —kyyb+u1 (w)va(2) < —ky,(y*—eMiNo/k,) = 0, andg, , <
Proposition 5.1: Assume that (Ll)fMlN2 < ¢1(1 — A), 0. Sincex < 05(1 — A) it follows that ps(z) > Ma(1 — €),
(L2) M2(1 £ > 0,(1+A), and (L3): < 6,(1— A). Then and —k,w® + po(z) > —kyw®* + Ma(1 —¢) = 0, so also
system (17) is locally ISS with respect to the compact set: Jw.a < 0. Thus, the terms (19)-(21) are nonpositive. For the
input term, use Fact 2 to obtainka,, function~y,(r) > v4(r).
61\’1] " {O €M1N2} M Mg] In conclusion, for all points of? one can write:
k. Tk Ko '

i VV (6, u) < —2minfky, ky, ko e, +y(lul),

wherevy(r) = (N1(1 —¢€) + Na)vya(r) /kz is a Ko function.m
Proof: By Lemma 3.4, it is enough to show that there eX'StS In the next Proposition, the set;,. represents the state of

a local ISS Lyapunov function with respect f,.. Define the operon in the absence of glucose and presence of external

Elac = l:O7 [1 — g, 1] X |:0,

a by N1 5M1N2 lactose. In this mode, both internal lactose and the Lac proteins
zt =0, 2" = K =0, k, are present, while the repressor Lacl is at a low level.
Mp(1—e) , M ‘ Proposition 5.2: Assume: (Al)w > ¢1(1+ A),
T ke Y T Ry (A2) Mz < g,(1 - A), (A3) 21029 05(1+A), and (Ad)
Following (6), consider the function: %12—5) > ¢2(1+ A). Then system (17) is locally ISS with
) respect to the compact set:
— Z1e]2 — ) ] a N- M N.
V(€ =5z, =p(z—2") +p(y—v") +p (" —w). A = Mo 20 ey
This function satisfies property (i) of Definition 3.3, and we ’ M, M Y
will show that it also satisfies property (ii). Finde (0,1) so {0, ’ } : [1-—¢,1].
that: :
Proof. The argument is very similar to that used in Propo-
(149) eMy N, < (1 —A), sition 5.1. Following (6), consider the functigf¢|%,
Y
V() =pa®—2) + pla—2")+py" -y
M2<1 — 5) ENl
5T>91(1+A), (1+(5) = <92(1—A) + p(w—w)+p(z —Z).
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This function satisfies property (i) of Definition 3.3, andvhere we used; < |u| =
we will show that it also satisfies property (ii). To simplifyM3(1 — &)y3(r)/k. + (N1(1 — &) + Ny)va(r)/ks

notation, let = (z,y, w, z)’ and define

a7N1(17€) biNl
T TR 0 TRy
a _ M No(1 —¢)? p  MiNo
- ky 7y ky )
Mose M3(1 —¢) M,
a __ b __ 2 a 3 b 3
w—O,w—kw, o , L
Find 6 € (0,1) so that:
1 —¢€)2M, N.
5(6)712>¢1(1—A),
ky
M. 1—¢)N
(1+5)k—25 <6011+ A), 5% > 0,(1 — A),
Ma(1 —
S0 S a4 a),

k.
and define the following set:

R:{SEPZCLC: 5ma§$7 6ya§y7

w < (1+0)wb, §2% <z}, (22)

This setR clearly contains4,,. in its interior (in the sense

defined by (3)). Then computing and simplifyifRgl” f (&, u):
\44 f(fvu) = 2k, P (xa - Q]‘) — 2k, 1% (.13 — J}b)

—2ky p(y* —y) — 2ky p (w— wb)
=2k, p(2% —2)
+9z,0a + 9z,b + 9y,a + Guw,b + Gz.a

Fva(u1) ( 2p (z0 —x) +1/2p (z — xb))

+v3(u2)v/2p (2% — 2)
where
Gra = —V/2p (2% — ) (—kzz® + 11(y)) (23)
up = /20 (& — 2¥) (= kez® + 11(y)) (24)
Iya = —V2p (y* — y)(—kyy" + p1(w)ra(z)) (25)
Gup = /29 (W — wP)(=kyw” + p2()) (26)
Gza = —V/2p (2% — 2)(—k.2* + M3). (27)

Now, let ¢ € R. Recall the definition ofd. Note first that

—k.2* + M3 > 0, and sog., < 0. Theny > ¢1(1 + A)
implies v1(y) > (1 — ¢)Ny, and hence—k,z* + v1(y) >

—kyz® + Ni(1 —¢) = 0, so thatg, , < 0. Note also that

—ke2® + 11(y) < —kya® + Ny = 0, so thatg,;, < 0.
The fact thatz > 62(1 + A) implies thatg,,;, < 0. Now
note thatw < 6:(1 — A) implies pi(w) > (1 — )M,
and z > ¢o(1 + A) implies v5(2) > (1 — &)N,. Thus
—kyy® + 1 (w)ra(z) > —kyy® + MiNa2(1 — €)? = 0 and

gy,a < 0. Thus, the terms (23)-(27) are nonpositive. For the

input term, use Fact 2 to obtainka,, function-;(r) > v;(r),
1 = 3,4. In conclusion, for all points ol one can write:

VV f(&u) < —2min{ky, ky, kuw, k= HE%,,. +7(Jul),

10

Vu? +uifori=1,2, andy(r) =
is aleo
function. |
More restrictive conditions can be given, for a monostable
system. The next Proposition describes conditions under which
the system is prevented from expressing high levels of the Lac
proteins (and consequently cannot increase its lactose levels),
whether or not glucose is available.
Proposition 5.3:Assume: (L1') Y2 < ¢,(1 — A) and
(L2) 22 > ¢,(1+ A). Then system (17) is globally ISS with
respect to the compact set:

Liaers = {0, EN} x {o, EMlNﬂ x {o, M] < [o, Mﬂ

ko ky kw k,
Proof: Set
a __ b €N1 a b 6M1N2
x - 07 x - kr ) 07 y ky
Consider the function:
1
V() = 5lElz.,.. =p(@=2") +p(y—1").

It is easy to see that Lemma 3.4 can be applied Witk Pj,..
Indeed, note that

VV f(&w)
—2k, p (a: — :rb) +

IN

20 (z — 2%) (—kpz® + 11 (y))
~2ky p (y—9") + /20 (y = ¥*)(—hyy” + Nopur (w))

+va(ur)y/2p (& — ab).

Assumption (L1") (and recalling the definition of an activation
function v) implies that—k,z% + v (y) < —k,a® + &Ny = 0.
Assumption (L2’) implies that-k,y” + N (w) < —kyy® +
eNoM; = 0. Therefore, using Fact 2, one can findka,
function v such that

VV f(&u) < —2minfke, ky} [8]Z,,. . +7(lul)

and Property (ii) of Lemma 3.4 is satisfied. |

A similar argument shows that, under alternative condi-
tions, the Lac proteins will always be expressed and lactose
metabolism “switched on”, independently of glucose concen-
tration. Not surprisingly, the conditions are opposite to those
given in Proposition 5.3.

Proposmon 5.4: Assume: (Al)MlNZ > ¢1(1+A), (A2)

k < 6:(1 — A), and Then system (17) is globally ISS with
respect to the compact set:
N My N
Ager = Ll—g1]x =21 —¢,1]
’ ke k,

Mo M;
X [O, kw] X {O, /fz}
O

Just as in the example of the apoptosis network, |dte
operon system clearly has the capacity for bistable response.
This happens when the conditions from Propositions 5.1
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and 5.2 are simultaneously satisfied. Putting conditions (LIgtable mode to another. In many cases, while possible inputs or

(L3) and (A1)-(A4) together, one has: stimuli are known (for instance, TNF in the apoptosis network;
N, M, 1+4A 1—A or extracellular lactose or glucose in tiec operon), it is
kols’ Fub: < 11— = ) not always clear how to “design” the control that will drive

MiN L+A 1-A the system to the desired state. Following our idea that each
1772 ( , ) (28) desired state is represented by a set (as opposed to a single
kyd1 (1-¢)?" ¢ stationary point), our results suggest one method to control the
M; c (1 +A OO) system towards a desired S8t first, “turn on” the stimulus

k.o 1—¢’ ' until the system is in a sufficiently small neighborhood of

Note that assumption (A4) (condition dn) simply reflects <. and then “turn off” stimulus._This is a reqsonab]e protocol
the fact that the input functiop; should have a sufficiently from the experimental point of view, as cell stimulation is often
high maximal production rate: for low levels of glucose, thachieved through piecewise constant inputs: for instance, the
protein CRP should become activated. It is necessanethat Cells are maintained in a medium with fixed external lactose
1/2 for L£iq. and Ay, to be disjoint sets. In addition, both and glucose concentrations (sAyand ), for a certain time

and A should satisfy the condition (16) (as for the apoptosi§terval (sayt € [to,to +T1). _
network). For instance, to switclE. coli to the lactose metabolism

If glucose is available ang;(u) ~ 0, then thelac operon mode ;..), glucose and external lactose should, respectively,
activator (CRP) is not activated. The system will be evolving iR removed from and added to the system, and maintained
the setl,,.. Suppose now that glucose is all used up: then ti#é respectively, low and high levels, far suitable period
activator CPR enables and amplifies transcription of the operghtime To switch off lactose metabolism and go back to
genes. A nonzero input of extracellular lactose, together wigicose metabolism{,.), it suffices to add an appropriate
the positive feedback loop, will repress Lacl and induc@mount of glucose to the medium and again wait for a
sucessful transcription of thiac operon. The system will Sufficiently long interval. Thus, the question of choosing an
eventually be driven to the set,,.. (see Section V-B below). appropriate stimulation intervalarises or, more generally,
The conditions listed in Propositions 5.3 or 5.4 represent t§$00sing appropriate combinations bf G andT'. The next
situations where bistability is not possible. In the absence Bfoposition provides an answer to this question, by fixing a
inputs, the trajectoriealwaysconverge to the s, . (resp., minimum time interval needed to start lactose metabolism.

Alac *)! which COFI‘eSpond to the mode of repressed (resp_,ASSUme that the b|Stab|l|ty conditions (28) are satisfied.
induéed)lac operon. Assume further that

. . Ny > N, (29)

A. Comparison to experimental results _

The result of Proposition 5.4 can be compared to &ift Fo < ¢a(1+A) and QO < 03(1 — A), and consider
experiment reported in [2]. In this paper, the authors detect afg*Stant inputs of the form:
measure the bistable response of_Iﬁtreoperon. In one of t_he uy(t) = Ey, ug(t) =Gy, tel0,7], (30)
experiments, a new strain &. coli was constructed, which
has extra Lacl binding sites introduced. Adding new La@Ndui(t) =usa(t) =0fort>T. Letd € (0,1) and iz be the
binding sites is equivalent to increasing the activity threshof@t constructed in the proof of Proposition 5.2, and define:

61, because a larger number of Lacl molecules will be needed 1 ko051 + A
to produce the same level of repression of the operon. This 11 = T In (1 TN, 1o 5)
new strain ofE. coli was then exposed to increasing levels 1 N,
of extracellular TMG (a non-metabolizable lactose analogue). T, = ——In (1 — >
Increasing the levels of extracellular lactose corresponds to iz Na
decreasing the activity thresholgl, since it becomes easier T3 = T, — 1 | (kw‘gl 1-4 _ 1)
for permease LacY to recruit lactose. Thus it holds that kw 1—e\ My e
« increasing the levels of extracellular lactose (/¢1) T, = T,— iln € (1 +0 1)
leads to validation of condition (A1’); kw 1—c¢ €
« a large increase in Lacl binding sites (9;) validates T o 1 (1 k.o 1+ A
condition (A2)). 5T L n( T Ms 1— 6)
According to Proposition 5.4, the mode “represtedoperon” 1
is not stable for this new strain. And indeed, the experiment Ts = Tk, In(1-9)

(see [2], Fig. 4c) shows that only one qualitative type of 1
response can be obtained from this strain, corresponding to Ty = max{TsT5} - ?1n(1 —9).

the inducedac operon — as characterized b, .. ) Y )
By assumptions (28), (29), and < 1/2, it follows that all

B. Controlling the system towards lactose metabolism arguments inside the logarithms are positive and less than 2.

. . . . . Put
A fundamental problem in the analysis of bistable biological
systems is that of controlling or switching the system from one T, = max{Ty, Ty, T, T7}.
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The next result shows that stimulus should be on for at ledbe capacity of the network to exhibit bistable behavior is
T = T., in order to drive théac operon to switch from lactose characterized by the co-existence of two disjoint (compact
to glucose metabolism modes. and nonempty) invariant subsets of the state space (naned
Proposition 5.5:Let £(¢,&,,u) be the solution of sys- and.4 in the examples), with low versus high concentrations
tem (17) with initial condition¢y € L;.., and input (30). of some species. Each of these invariant subsets is described
Then £(t, &, u) evolves in the sef? (containing.A,,.), for by conditions on the parameters (relating maximal activities,
T, <t<T. activity thresholds and degradation constants), and represents
Proof. We will show that, forT, < ¢ < T, the trajectory a distinct response of the network: life or cell death in
evolves inside the seR. Fort € [0,7], for an input of the network (1), andlac operon repression or transcription in
form (30), it is clear thatt > —k,z + (1 — )N, andz > network (17). In all examples, it is shown that the system is
—k.z + (1 — €)Ms3, so that (one may assume, in the wordbcally ISS with respect to botlf and.A. This ISS property

case, thatry = zo = 0): leads to O-invariance, that is in the absence of an input, if
(1- )Ny e the system starts in one of the sets, then _it Wi!| remain in
z(t) > 2 (1—e™ ") that set. Since there are at least two such invariant sets, the
"’ system is indeed capable of operating in two distinct modes,
(L—)Ms ., . . .
z(t) > —————(1—e ") in a stable manner. Furthermore, inputs or perturbations of
k. small magnitude (as given by the corresponding £tdo not
It is straigthforward to check that: drive the system far out from the O-invariant set. Therefore, the
Ty <t<T = z(t)>6(1+A) (31) ;ystem exhibits robustne_ss with_re;pect to small _fluctuqtions
in the environment, as its qualitative response is basically
Tho<t<T = z(t)>(1—e)Ni/k, (32) unchanged.
Ts <t<T = =z(t)>¢2(l+A) (33) In contrast, conditions on the parameters that guarantee
Te<t<T = 2z(t)>06(1—e)Ms/k,. (34) monostability are also given. Monostability is characterized

. , , by the existence of a O-invariant set (denoted by eitder
Coordinatew starts decreasing asincreases abov&(1+A): o 4 in the examples), with respect to which the system is

< My _yoemyy | €M ke (t—T1) globally ISS. Global ISS with respect to a given compact set
w(t) < Fe © e (1-e ), L. guarantees that, in the absence of an input, the trajectories
and hence: of the system asymptotically convergedq, independently of
the initial condition, which rules out the capacity for a bistable
T3 <t<T = w(t)< 6(1-A) (35) response of the network.
eMs In both biological systems discussed, the wild type healthy
Ti<t<T = wt)< 1+ 5)H' (36) cell has the capacity for bistability, that is, it can respond in

two distinct ways, in a stable manner. However, damaged or
malfunctioning cells often loose the capacity for bistability.
This happens in the apoptosis network [33], where damaged
(1 —¢)>M1Ny (1 — e Fult=Tss)) cells seem to loose the capacity to undergo apoptosis, causing
ky ' various diseases. It has also been verified folabh@peron on
) o (1—2)2 M, Na specially constructed strains Bf coli, as in [2] (Section V-A).

It is clear now thatly < ¢ < T"impliesy(t) > °—==*.  The conditions developed in Propositions 4.1, 4.3, and 4.2, 4.4,
This together with (32), (34), and (36) finishes the prodl  ,,\ide a means to classify cells, according to whether they are
As |r_1d|cated by this Proposition, external lactose is nee_dﬁga“hy (both (L1)-(L3) and (A1)-(A4) satisfied), or not (either

to “switch” the system from glucose to lactose metabohsr@_l,)_(Lz,) or (A1)-(A2)). For example, Proposition 4.4

(Liac 10 Ajqc). Indeed, glucose should be absent and extem@lscrines a malfunctioning cell, such as a cancerous cell
lactose available, during a minimum length of tin¥¢, The (condition (L"), low levels of C3a). And we have seen in

inverse switch #;,. to £i,.) would be obtained by inverting gaction V that Proposition 5.4 correctly describesEarcoli
the input conditions (i.e., high glucose, low external lactos& 4in with extra Lacl binding sites.

Our analysis can thus be applied to the detection of malfunc-
VI. DISCUSSION tioning or damaged cells. (Note that, if none of the conditions
The examples discussed in Sections IV and V illustrate satisfied, then our analysis is not conclusive). By measuring
a general formalism for modeling genetic networks, usingthe maximal production rates, as well as degradation rates
class of inhibition and activation functions. These functiorend activation/inhibition thresholds for a given network, one
are defined by appropriate physiological bounds, and alla&n then check which of the conditions (L1)-(L3), (L1)-(L2")
the mathematical model to capture the variability often emand (Al)-(A4), (A1l)-(A2') are satisfied. Once the system is
countered in biological systems. Using this formalism, thiaus classified, an appropriate input can be constructed, to
possible responses of the network to various stimuli caontrol the system to a desired compact set. Observe that if
be characterized by identifying invariant sets of the modehe system (1) is in the living statg, then by sufficiently
The goal is to identify invariant sets that represent distingicreasing TNF (and appropriate conditions pg, vs) it
gualitative modes of operation of the system. For instands, possible to drive the system towards apoptosis. Once the

Expression (35) and (33) imply thgt> —k,y + M; No(1 —
€)?, for max{T3,T5} <t < T and so, in this time interval,

y(t) =
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trajectory reaches the sdt(or sufficiently close), the stimulus [9]
can be “turned off” and the trajectory will remain in the
set A (or expected to converge towards, if in its basin

of attraction). On the other hand, if the system starts in tim]
apoptosis set4, then no input will drive the system back
towards the “living” state — which of course makes sendt!
from the biogical point of view. In thdac operon network
(Proposition 5.5), it is interesting to note thato independent [12]
inputs are needed to allow the system to switch between the
two stable modes, in both directions. [13]

(14]

VIl. CONCLUSION
[15]

A general framework has been discussed for modeling
genetic regulatory networks, where interactions among gengs
and proteins are described in terms of a class of free-form
activation and inhibition functions. The formalism presenteqﬂ
in this paper intuitively relates the class of piecewise linear
hybrid models to a class of continuous models: one possible
extension of the formalism is to explore this connection ?8]
further study and analyze piecewise linear models. Other
possible extensions of the current work include introducing
more general degradation functions. (19]

The capacity for mono- or bi-stable behavior in a genetic
regulatory network can be fully characterized by identifyin{o]
appropriate O-invariant compact sets for the system (with
respect to which the system is, respectively, globally or localjy)
input-to-state stable). Conditions relating the degradation rates,
maximal activities and threshold constants are provided, whitg!
guarantee that the system will be capable of bistable or only
monostable behavior. Our analysis allows a classification [68]
systems (or cells) according to their capacity for monostatikgl]
or bistable responses. This classification helps to distinguish
among “healthy” and “damaged” or “malfunctioning” cells.
An application of this knowledge is the construction of suitablé®
inputs (stimuli) that will drive the system to a desired compagis)
set — and drive the biological network to a desired qualitative
response. (27]
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