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Abstract

The segment polarity gene family, and its gene regulatory network, is at the basis ofDrosophila
embryonic development. The network’s capacity for generating and robustly maintaining a specific gene
expression pattern has been investigated through mathematical modeling. The models have provided
several useful insights by suggesting essential network links, or uncovering the importance of the relative
timescales of different biological processes in the formation of the segment polarity genes’ expression
patterns. But the developmental pattern formation process raises many other questions. Two of these
questions are analyzed here: the dependence of the signaling protein sloppy paired on the segment
polarity genes, and the effect of cell division on the segment polarity genes’ expression patterns. This
study suggests that cell division increases the robustness of the segment polarity network with respect to
perturbations in biological processes.

1 Introduction

During the initial stages of development of the fruit flyDrosophila melanogaster, three families of genes are
successively activated [1]: the gap genes, the pair-rule genes and the segment polarity genes. The resulting
gene expression patterns contribute to gradually break the symmetry of the fertilized egg and accompany
its transformation into a segmented embryo. Around stages 6 and 7 of embryonic development (i.e., around
three hours after fertilization), the family of genes known as the segment polarity genes is activated: their
expression patterns will define the position of the parasegmental grooves, the boundaries of the segments
which form the body of the fruit fly. The segment polarity genes refine and maintain their expression
through the network of intra- and intercellular regulatory interactions shown in Fig. 1. The stable expression
pattern of these genes (specifically the expression ofwinglessand engrailed) defines and maintains the
borders between different parasegments and contributes to subsequent developmental processes, including
the formation of denticle patterns and of appendage primordia [2, 3].

To try to understand and study this network and its properties, a first mathematical model was proposed
by von Dassow et al. [4]. Some improvements to this model, including an alternative mathematical de-
scription [5], and analysis of its properties [6, 7] have recently been presented. A common conclusion from
these studies is that the network structure plays a fundamental role: that is, the interconnections among the
genes and proteins that constitute the segment polarity network are the crucial factor for the robustness of
the expression pattern with respect to biological (“small”) perturbations.

In [5], Albert and Othmer proposed a Boolean version of the continuous model described in [4]. Boolean
models provide a qualitative representation of a system, consisting of the nodes of the network (whose values
are either 0=“OFF” or 1=“ON”) and a set of logical rules to describe the regulatory links among them
(activation or inhibition interactions). The choice of Boolean modeling in this context is very natural, as
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many genetic regulatory functions are known, but hardly any kinetic or binding parameters are available for
the segment polarity network. Advantages of using Boolean rules include a clear modeling of the structure
of interactions (that is, the links among the system’s nodes) and very intuitive qualitative representation of
the system and its behavior. In addition, various analytical methods can be used to study Boolean models [8,
9, 10, 11].

The Boolean model proposed in [5] improves on [4] by adding an activating signal that initiates expres-
sion of the segment polarity genes. This is the protein sloppy paired (SLP) which is part of the pair-rule
gene family. (Actually, there are two different proteins encoded by two genessloppy paired, but they are
known to have similar roles, and thus are referred from now on as only one protein, SLP.) Further analysis
of this model has provided many useful insights and contributed to better understanding the segment polarity
network [11, 7], namely, it has shown the importance of considering different timescales for different biolog-
ical processes (for instance, transcription and translation are generally slower than protein conformational
changes [12]) in the correct formation of the segment polarity genes’ expression. It has also raised further
questions, so in the present work we have chosen to focus on two important issues: (i) the SLP activating
signal has been assumed constant; however, evidence shows [13] that it can also depend on the expression
of some segment polarity genes. One of our goals is to introduce a Boolean rule to describe SLP, and thus
obtain a more autonomous module; (ii) most cited models of the segment polarity network assume four cell
wide segments. However, evidence shows that there are rounds of cell division at stages 8 and 10 [3, 14].
We will investigate the effect of segment width on the robustness properties of the segment polarity network.
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Figure 1: The diagram of interactions for the segment polarity network. Squares represent proteins and
elipses represent mRNAs. Cell-to-cell communication is considered among nearest neighbours, through the
wingless and hedgehog proteins. Only neighbouring celli+1 is depicted, but both cellsi−1 andi+1 have
a similar effect on celli. This model was developed in [5], except for the activation and inhibition links on
protein SLP, which are introduced in the current work. See main text for more details.

2 Boolean models for genetic networks

In the model, each mRNA or protein is represented by a node of a network, and the interactions between
them are encoded as directed edges (see Figure 1). The state of each node is1 or 0, depending on whether
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the corresponding substance is present or not. The states of the nodes can change in time, and the next state
of node` is determined by a Boolean (logical) functionF` of its state and the states of those nodes that have
edges incident on it. In general, a Boolean or logical function is written as a statement acting on the inputs
using the logical operators “and”, “or” and “not” and its output is1 (0) if the statement is true (false).

The functions determining the state of each node are constructed from the interactions between nodes
(such as displayed in Fig. 1) according to the following rules:

(i) mRNAs/proteins are synthesized if their transcriptional activators/mRNAs are present;

(ii) the effect of transcriptional activators and inhibitors is never additive, but rather, inhibitors are domi-
nant;

(iii) mRNAs decay in the next updating step if not transcribed;

(iv) transcription factors and proteins undergoing post-translational modification decay if their mRNA is
not present.

Consider a regulatory network withN nodes,X1, . . . , XN . The expression of each node along time can
be computed by iterating the Boolean rules, to obtain a discrete sequence:

X`(0), X`(1), . . . , X`(k), . . . ,

whereX`(k) denotes the expression of node` at time instantkT , whereT represents a (fixed) time unit.
To computeX`(k), usingX at the previous instants, several algorithms are available to iterate the Boolean
rules. Some of these are briefly described next. The standard synchronous algorithm assumes that allN
nodes are simultaneously updated, that is:

X`(k + 1) = F`(X1(k), . . . , XN (k)), ` = 1, . . . , N.

Asynchronous algorithms allow different nodes to be updated at different times, for example according to a
random order. Assuming that all nodes are updated exactly once during each time unitT , an asynchronous
algorithm can be constructed by randomly assigning an updating order at each iteration. For example, if
P = (P1, . . . , PN ) is a permutation of{1, . . . , N}, let node` be theP`th node to be updated in thekth
iteration of the rules. Then

X`(k + 1) = F`(X1(τ1,k), . . . , XN (τN,k)), ` = 1, . . . , N.

whereτ1,k = k if P1 > P` andτ1,k = k + 1 if P1 < P`, that is, useX1(k) if node 1 should be updated
later that nodè , and useX1(k + 1) if node 1 was updated already. The order of node updating may be
different at each iterationk, since a new permutationPk can be randomly generated once all nodes have been
updated exactlyk−1 times. Other asynchronous algorithms can be developed, for example by choosing the
permutationPk according to some criteria. In [11], one of the criteria consisted of choosing permutations
where all protein nodes are updated first, and then all the mRNA nodes.

The steady states of a Boolean model (X̄) are fixed points of the vector functionF , and consist of
patterns which do not change with model updating. They can be found by solving the equations

X̄` = F`(X̄1, . . . , X̄N ), ` = 1, . . . , N.

It is not difficult to check that both synchronous and asynchronous updating schemes have the same steady
states. However, note that different asynchronous algorithms may lead the system from the same initial
condition to different steady states.
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2.1 Analysis of Boolean networks

Useful techniques are available for the analysis of discrete logical models. In particular, Glass [15] intro-
duced a class of piecewise linear differential equations that combine logical rules for the synthesis of gene
products with linear (free) decay by describing each node with two variables, one discrete (X`) and one
continuous (̂X`). For each node, a specific timescale (α` > 0) is also assigned. In a first approach, in equa-
tion (1),α` represents both a degradation and a synthesis rate – or a turnover rate. The model can be extended
to allow distinct synthesis and degradation rates. From the set of Boolean rulesF`(X), ` = 1, . . . , N a
piecewise linear model can be obtained in the form:

d X̂`

dt
= α`(−X̂` + F`(X1, X2, . . . , XN )), ` = 1, . . . , N, (1)

At each instantt, the discrete variableX` is defined as a function of the continuous variable according to a
threshold value:

X`(t) =
{

0, X̂`(t) ≤ θ`

1, X̂`(t) > θ` ,
(2)

whereθ` ∈ (0, 1) defines the fraction of “maximal concentration” necessary for a protein or mRNA to
regulate its successor nodes. As detailed in [7], the parametersα` represent different timescales for different
biological processes (transcription, translation or post-translational modifications). Note thatα` is also
a scaling factor of the differential equation for̂X`. In fact, since solutions are piecewise increasing or
decreasing exponentials, the evolution ofX̂` is governed by the termexp(−α`t). So, higher values ofα`

indicate that the variation rate of̂X` is higher. It is easy to see that the steady states of the piecewise linear
equations (1) are still those of the Boolean model, since:

d X̂`

dt
= 0 ⇔ X̂` = X` = F`(X1, X2, . . . , XN ), ` = 1, . . . , N,

independently ofθ`.
To study the effect of biological perturbations on the system, a natural way to proceed is to randomly

assign values to time scaling parametersα`, and numerically solve equations (1). Variations inα` represent
perturbations in the relative timescales of each process: for instance, ifαP1 > αP2, then the total rate of
production of protein P1 is faster than that of protein P2. Different combinations of{α1, . . . , αN} represent
different scenarios for the segment polarity genes. By allowingα` to take values in an intervalA`, it is
possible to explore the space of biological fluctuations.

3 A Boolean model for the segment polarity network

As depicted in Fig. 1, the main segment polarity genes arewingless(wg), engrailed(en), hedgehog(hh),
patched(ptc), andcubitus interruptus(ci) (see, for instance, [1, 16, 17]). These code for their corresponding
proteins (which will be respectively represented by the symbols WG, EN, HH, PTC, and CI). The protein
cubitus interruptus may be converted into a transcriptional activator (CIA), or may be cleaved to form a
transcriptional repressor (CIR). The proteins EN, CIA and CIR are transcription factors, while WG and HH
are secreted proteins, and PTC is a transmembrane receptor protein.

The pair-rule gene product SLP activateswg transcription and repressesen transcription. The WG
protein is secreted from the cells that synthesize it [3, 18] and initiates a signaling cascade leading to the
transcription ofen [19]. EN promotes the transcription of thehh gene [20] and represses the transcription
of ci [21] and possiblyptc [22, 23]. The HH protein is also secreted, and binds to the HH receptor PTC on a
neighboring cell [24]. The intracellular domain of PTC forms a complex with SMO [25] in which SMO is
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inactivated by a post-translational conformation change [26]. Binding of HH to PTC removes the inhibition
of SMO, and activates a pathway that results in the modification of CI [26]. The CI protein can be converted
into one of two transcription factors, depending on the activity of SMO. When SMO is inactive, CI is cleaved
to form CIR, a transcriptional repressor that represseswg, ptc [27] andhh transcription [28, 29]. When SMO
is active, CI is converted to a transcriptional activator, CIA, that promotes the transcription ofwg andptc
[27, 29, 30, 31].

The expression pattern of these genes and proteins is repeated periodically along the embryo, and defines
the parasegmental grooves. In wild type embryos, the boundaries of the parasegments form between two
consecutive cells, with one cell expressingwinglessimmediately anterior (to the left) to a cell expressing
engrailed[3]. At stages 6-7 of embryonic development, the parasegments are about four cells wide, and
winglessmRNA is expressed in one of four cells,engrailedandhedgehogalso in one of four cells, immedi-
ately posterior (to the right) to the cells expressingwg. CubitusandpatchedmRNA are typically expressed
in all cells but those expressingen. The corresponding proteins will later follow these patterns. Typically,
CIA is present and CIR absent in cells expressingwg, and either CIA is absent or CIR is present in cells not
expressingwg.

3.1 Notation

Before proceeding, it is useful to introduce some notation conventions. Our model of the segment polarity
network (and others mentioned), describes the evolution of a family of mRNAs and proteins, in each cell of a
parasegment of the embryo. The length of each parasegment is denoted byM . At stages 6-7 of development
M = 4, but at later stages, parasegments withM ≥ 4 cells will be considered. The notations for the model’s
variables encode the node name, a spatial coordinate (cell number) and a time instant. For examplewgi(k),
i = 1, . . . ,M denotes thewinglessmRNA concentration at time instantk in theith cell of a parasegment; it
is also convenient to write in shortwg(k), to denote the vector(wg1(k), . . . , wgM (k)). Similar notation is
adopted for the all the other mRNAs and proteins that form the segment polarity network (as listed above).

Periodic boundary conditions are assumed, meaning that:nodeM+1 = node1 andnode1−1 = nodeM .

3.2 A new rule for SLP

The logical rule adopted for SLP in [5] summarizes, in a simple but effective way, experimental observations
on the regulatory activity of sloppy paired protein in the segment polarity network:

SLPi(k + 1) =
{

0 if i ∈ {1, 2}
1 if i ∈ {3, 4} (3)

One other possible rule for SLP was studied in [7], to include recent evidence of engrailed protein inhibiting
sloppy pairedtranscription [13]. Additional regulation (again in the form of a constant input, RX) was
represented by a combination of several possible effects from the pair-rule genes, namelyrunt, opa and
Factor X [32] and ofslpautoregulation:

RXi(k + 1) =
{

0, if i ∈ {1, 2}
1, if i ∈ {3, 4}

(4)

slpi(k + 1) = RXi(k) and not ENi(k)
SLPi(k + 1) = slpi(k) ,

for i = 1, . . . , 4. It is clear that both (3) and (4) impose somewhat strong conditions on the network, by
assuming constant values on SLP or RX. To alleviate this constraint, and incorporate the feedback of the
segment polarity network on the sloppy paired protein, a reasonable hypothesis seems to include activation
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by wingless, as well as the observed inhibition byengrailed. This hypothesis is supported by some of the
results reported in [33, 34]. A similar modeling approach was already considered in [35] and [6]. However,
solely assuming activation bywinglessand inhibition byengraileddoes not explain why the domain of
expression of SLP is wider than the domain ofwinglessand narrower than the domain whereengrailedis
absent, thus it is necessary to include the possibility of maintaining an initial prepattern. Thus the following
rule for SLP is proposed:

SLPi(k + 1) = (WGi(k) and not ENi(k)) or SLPi(k), i = 1, . . . ,M. (5)

To test feasibility of this rule, the resulting segment polarity model will be analyzed, and predictions for
several scenarios will be given, to be compared to biological observations. The Boolean rules for the other
nodes are unchanged from those in [5], and represent the network of interactions described above. A graph-
ical representation of the model is given in Fig. 1, and the equations are summarized in Table 1. Note that
SMO doesn’t appear in the equations. But its expression is given by [5]:

SMOi(k) = not PTCi(k) or HHi−1(k) or HHi+1(k) or hhi−1(k) or hhi+1(k),

and substituted directly into the Cubitus activator and repressor proteins:

CIAi(k + 1) = CIi(k) and SMOi(k), CIRi(k + 1) = CIi(k) and not SMOi(k).

The model now represents an autonomous network, with no external signals apart from the initial condition,
which represents the known expression pattern at initiation of the segment polarity genes. It is now possible
to investigate the mechanisms leading to the final segment polarity genes expression pattern (as observed
for stages 8-10).

Table 1: Regulatory functions governing the states of segment polarity gene products in the model. Each
node is labeled by its biochemical symbol and subscripts signify cell number in a segment. The dynamics
of the system is evaluated according toX(k + 1) = F (X(k)), for k = 0, 1, . . .. For a system withM cells
there are thusN = 13M variables, andX is a vector in{0, 1}N .

Node Boolean updating function

SLPi SLPi(k + 1) = (WGi(k) and not ENi(k)) or SLPi(k)
wgi wgi(k + 1) = (CIAi(k) and SLPi(k) and not CIRi(k))

or [wgi(k) and(CIAi(k) or SLPi(k)) and not CIRi(k)]
WGi WGi(k + 1) = wgi(k)
eni eni(k + 1) = (WGi−1(k) or WGi+1(k)) and not SLPi(k)
ENi ENi(k + 1) = eni(k)
hhi hhi(k + 1) = ENi(k) and not CIRi(k)
HHi HHi(k + 1) = hhi(k)
ptci ptci(k + 1) = CIAi(k) and not ENi(k) and not CIRi(k)
PTCi PTCi(k + 1) = ptci(k) or (PTCi(k) and not HHi−1(k)

and not HHi+1(k))
cii cii(k + 1) = not ENi(k)
CIi CIi(k + 1) = cii(k)
CIAi CIAi(k + 1) = CIi(k) and [not PTCi(k) or HHi−1(k)

or HHi+1(k) or hhi−1(k) or hhi+1(k)]
CIRi CIRi(k + 1) = CIi(k) and PTCi(k) and not HHi−1(k)

and not HHi+1(k) and nothhi−1(k) and nothhi+1(k)

The initial wild type pattern (stage 7) is shown in Table 2. Starting from this initial condition, the final
wild type pattern achieved by the segment polarity genes (stages 8-10) is of the form WT in Table 3, which
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is indeed a steady state of the Boolean model, that is, this pattern satisfiesX = F (X). The mathematical
model admits several other steady states, some of which can be identified with mutant patterns (these are
listed in Tables 7 to 10, and some patterns are illustrated in Fig. 6 of the Appendix; see also [5, 7]). For
instance, there is a non-segmented pattern (NS,enmutants), a state with a broadwgstripe (BS,ptcmutants),
or an ectopic state (EC), where the boundary of the parasegment is displaced and inverted.

Table 2: The initial wild type pattern (stage 7). Nodes not indicated are set to zero.
Node initial pattern
SLP(0) 0011
wg(0) 0001
en(0) 1000
hh(0) 1000
ptc(0) 0111
ci(0) 0111

The challenge is then to study robustness of the convergence of the systemX(k + 1) = F (X(k)) to
the desired wild type state pattern WT, in Table 3. For the system with the simpler SLP rule (3), Albert and
Othmer [5] verified that synchronous updating rules starting from the initial condition in Table 2, always
lead to convergence of the state of the system to WT (Table 3). However, introducing totally asynchronous
updating rules (which can be viewed as random perturbations to the timescales of the system) we have
shown in [11] that there is a significant probability (about 40%) that the final state of the system is one of the
“mutant” states depicted in Table 3. But if the asynchronous updating rules satisfy some ordering criteria,
for instance in each round of iterations all proteins are upated first and then the mRNAs (corresponding to
a separation of timescales of the various biological processes, with the protein binding and other kinetic
events happening faster than transcription or translation), the convergence to the correct wild type pattern
is always higher than87.5%. Therefore, the system robustly generates and maintains the segment polarity
pattern, for a large range of biological perturbations. In Sections 5 and 6, similar results are stated for the
new, extended network, with SLP rule (5).

Table 3: Mathematical steady state patterns for the Boolean model withM = 4.
Node WT NS BS EC
SLP(∞) 0011 0011 0011 0011
wg(∞) = WG(∞) 0001 0000 0011 0010
en(∞) = EN(∞) 1000 0000 1100 0100
hh(∞) = HH(∞) 1000 0000 1100 0100
ptc(∞) 0101 0000 0011 1010
PTC(∞) 0111 1111 0011 1011
ci(∞) = CI(∞) 0111 1111 0011 1011
CIA(∞) 0101 0000 0011 1010
CIR(∞) 0010 1111 0000 0001

4 Rounds of cell division

The four-cell initial condition in Table 2 is representative for up to the beginning of stage 8. There is
evidence showing that several rounds of cell divison occur during stages 8 to 10, summarized in Table 4 (for
more details, see [5] and references therein). During stage 8 (3h10m-3h40m after fertilization) there is an
asynchronous round of cell division, and a second round of cell division in stage 10 (4h20m-5h20m after
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fertilization), according to Hooper and Scott [3]. Slightly different observations by Gonzalez et al. [14],
indicate that the parasegment is about six cells wide in stage 8-9, and about eight cells wide at stage 10.

Table 4: Approximate timeframe for segment polarity genes’ activation.
Developmental Hours from Cells per Expression Refs.

stage fertilization parasegment pattern

7 3h00m 4 initial WT, Table 2 [3]
8 3h10m-3h40m 4-5 [3]
9 3h40m-4h20m 5-6 final WT, Table 6 [14]
10 4h20m-5h20m 6-8 final WT, Table 6 [3],[14]

These observations lead us to investigate the model in the case when the parasegment is not four, but
five, six or eight cells wide. We will not consider the case of a growing parasegment, which would require
the introduction of spatial variables in the model, and hence other mathematical tools. Instead, we will take
advantage of the fact that the rules governing the segment polarity model (depicted in Table 1) are valid
for any number of cells in a parasegment, as long as that number is fixed along time. Thus, we study time
trajectories, from an initial condition to a steady state, for a fixed number of cells. We explore different
initial conditions that represent the parasegment at different stages of cell division. Our goal is to check
whether an analogous pattern is generated, independently of the fixed number of cells in a parasegment. If
analogous patterns are generated, then one can check their robustness as a function of the number of cells.
For instance, we will try to answer the question of whether a parasegment with six or eight cells is more or
less vulnerable to environmental fluctuations than a parasegment with four cells.

The first question to be addressed is the initial condition: how to represent the initial stripes (the pattern
in Table 2) in a wider parasegment? As a first approach, either of the four cells may divide in the first round,
and it may be expected that the new daugther cell retains the expression levels of its mother cell. There are
thus four possible initial conditions to consider, depending on whether the first, second, third or fourth cell
divides from the state in Table 2. One should also consider that, when the first round of cell division starts,

Table 5: Possible initial conditions after first round of cell division.
Dividing cell 1 2 3 4

SLP(0) 00011 00011 00111 00111
wg(0) 00001 00001 00001 00011
en(0) 11000 10000 10000 10000
hh(0) 11000 10000 10000 10000
ptc(0) 00111 01111 01111 01111
ci(0) 00111 01111 01111 01111

the final pattern may be already (partly or fully) established (see Table 4). Thus, another possibility is to
start from pattern WT in Table 3, and again study the four cases arising from division of each cell. Using the
analysis method described in Section 2.1, the results for these two limiting situations are shown in Fig. 2.

For establishing the final pattern, some indications can be found in the literature. According to [36],
during stages 8-10, the SLP stripe is adjacent and anterior toen, overlappingwg and extending anterior. At
stage 10 (when the parasegment may be about 8 cells), the SLP stripe is 3-4 cells wide. This suggests that
SLP is expressed at least in the last two cells and at most in the last half of the parasegment. According to
the embryo stains shown in [13], at stage 11 (when presumably there are more than eight and up to 16 cells
per parasegment), the ratio of “expressing” to “not expressing” cells forslp is 1:1.5. Similar ratios for other
segment polarity genes includeenandhhat 1:4,wgat 1:6, andci at 3:1.
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Putting together all these observations, it is reasonable to consider (in a five cell segment) single cell
bands forwg, en andhh. For SLP one may consider two alternatives: either a two cell band or a three
cell band. Indeed, for both a two or a three cell SLP band, there are steady state solutions of the system
depicted in Table 1 withi = 1, . . . , 5 (that is, patterns satisfyingX = F (X)), which correspond to wild
type expression patterns. All the mathematical steady states for the Boolean model which are reachable
from initial conditions with SLP= 0 · · · 011 or SLP = 0 · · · 0111, for anyM ≥ 4 are given in Tables 7
to 10 of the Appendix. ForM = 5, the wild type patterns are depicted as WT (I) and (II) in Table 6.

Table 6: Some of the mathematical steady state patterns for the Boolean model withM = 5.
Node WT (I) NS (I) BS (I) WT (II) NS (II) BS (II)
SLP(∞) 00011 00011 00011 00111 00111 00111
wg(∞) = WG(∞) 00001 00000 00011 00001 00000 00101
en(∞) = EN(∞) 10000 00000 10100 10000 00000 11000
hh(∞) = HH(∞) 10000 00000 10100 10000 00000 11000
ptc(∞) 01001 00000 01011 01001 00000 00101
PTC(∞) 01111 11111 01011 01111 11111 00111
ci(∞) = CI(∞) 01111 11111 01011 01111 11111 00111
CIA(∞) 01001 00000 01011 01001 00000 00101
CIR(∞) 00110 11111 00000 00110 11111 00010

Other patterns compatible with the steady states of the five cell-wide model include five-cell versions of
the non-segmented state (NS), the state with a broadwg stripe (BS), or the ectopic state (EC) (not shown).
(Compare Tables 3 and 6.) Again, note that there are two alternative forms for each pattern, depending on
the width of the SLP band (marked I and II, respectively). Observe that, while the WT and NS patterns
differ only in the SLP expression, the effect on BS is more complex, with theenandwg bands forming in
different ways, and thus also affecting expression of the other genes and proteins.

It is interesting to note that comparison of the two (mathematical) BS steady state patterns with experi-
mental data suggests that the patterns with a shorter SLP band (two cells) are biologically more relevant. In
fact, the BS pattern is typically seen inptc mutant embryos, with the obvious difference thatptc and PTC
are not expressed inptc mutants, while they are in the BS pattern. As observed in the work of Martinez
Arias et al. [37], in theptcmutant embryoswinglessis expressed in a broad domain which occupies half the
parasegment. After cell division,engrailedis observed to form an extra stripe just anterior towingless. This
is further supported by work onptc mutants by Ingham et al. [38], who report that the expression domain
of wgbroadens after gastrulation, and thatentranscription is induced in the cells anterior to thewgdomain.
This experimental evidence points to the state of the form I as the more plausible BS pattern. Hence, more
generally, states with SLP= 00011 represent the biological system more faithfully.

The patterns in Table 6 extend (in an analogous form) as steady states of anM cell-wide parasegment
model (see Tables 7 to 10 in the Appendix). As in the five cell model, we only consider two or three cell
SLP bands.

5 Results

The method described in Section 2.1 was used to analyze the evolution of the segment polarity pattern, after
the first and second rounds of cell division during stages 8 to 10 of embryonic development. The model
described in Table 1 was solved numerically withM cells (andi = 1, . . . ,M ), for M = 4, 5, 6, 8. For
each biological case studied, a given initial condition was chosen (as indicated in the figure captions). To
answer robustness questions, the timescale constantsα` were randomly chosen from a uniform distribution
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in intervals of the form:

α` ∈
[

1
n

, n

]
,

where the casen = 1 is equivalent to the synchronous Boolean algorithm, and larger valuesn =2,3,4,6,10,20
(as indicated in thex-axis of Figs. 2, 3, 4) represent different orders of magnitude of the perturbations. There-
fore,n = 2 represents a system where the relative timescales of different processes all have values between
half and twice a normalized time unit (here 1), leading to small fluctuations. In contrast,n = 10 represent a
system where very large fluctuations are allowed, between one tenth and ten times the normalized unit.

For each case studied (that is for eachM and eachn), j = 1, . . . , 1000 numerical experiments were
performed. For each numerical experimentj, a set of timescales{αj

` , ` = 1, . . . , N} was chosen from
a uniform distribution on the interval[1/n, n], the threshold values were set toθ` = 0.5 for all `, and
system (1) was numerically solved. The solution was observed to reach a steady stateX̄(j) (from those
indicated in Tables 7 to 10 of the Appendix), and this steady state was registered (either of the form WT,
BS, NS, EC). Each experimentj represents a certain biological “scenario”: the values ofαj

` indicate which
nodes evolve at faster rates than others (see discussion in Section 2.1). The distribution ofαj

` can be viewed
as the result of biological perturbations due to, for instance, temperature changes or other stresses, which
may induce delays in expression of some genes, or prompt faster signaling processes. Since the valuesαj

`

are randomly chosen, no specific scenario is modeled, but instead all possible relative changes are explored.
The goal is to measure the response of the system to “worst case” disruptions, by verifying how frequently
the final steady state deviates from the correct wild type pattern.

Results shown in the figures represent the probability of the system reaching a given steady state, that is
the frequency of each steady state over the 1000 replicate experiments:

PWT =
1

1000

1000∑
j=1

H(X̄(j), WT)

whereH(X̄(j), WT) = 1 if X̄(j) = WT, andH(X̄(j), WT) = 0 otherwise (here WT is either of form I or
II). Similar expressions were used to compute the probabilities of the other patterns.

The results for the first round of cell division are shown in Fig. 2. As described in Section 4, two
limiting cases were studied: either cell division occurs early, and system starts from one of initial conditions
in Table 5; or the final pattern is already established, and the system starts from one of the four possible
conditions arising by doubling each cell in the pattern WT (Table 3).

It is clear that the expression pattern is not greatly disrupted by cell division, if it was already established
with only four cells. It is interesting to observe that no broad striped (BS) pattern is formed at this stage,
that is, any perturbation either has no effect on groove formation (with probability higher than 90%), or it
completely prevents groove formation (probability less than 10%). In contrast, if the pattern was not yet
established with four cells, then there is still a significant possibility that strong perturbations to the system
cause pattern disruption. In particular, division of the SLP-expressing cells (the two last) is more vulnerable,
as the outcome may be the broad striped pattern (corresponding toptc mutants) with probability of about
10%, or the non-segmented pattern (corresponding toenmutants) with probability between 10% and 20%.

The second round of cell division most likely occurs at stages 9-10 of embryonic development, when the
wild type pattern of the segment polarity network is already fully established in segments composed of five
cells (Table 4). Thus, as a starting condition for the six cell parasegment model, we take the WT (I) pattern
in Table 6 and double each cell in turn – thus generating five possible initial conditions. Fig. 3 shows that
the network appears quite robust at this stage, in the sense that the pattern extends correctly into six cells
with a probability higher than 95%. Moreover, no cell position is more vulnerable than another (in contrast
to the extension from four to five cells).
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Figure 2: Rate of convergence to wild type (WT) and “mutant” patterns, broad striped (BS) or non-
segmented (NS), after one round of cell division. The parasegment is now five cells wide, resulting from
division of the first (solid line), second (dashed), third (dash-dotted), or fourth (dotted) cell. Thex-axis lists
the magnitude of the timescale perturbations, such thatα` ∈ [1/n, n]. The left column (E) corresponds
to cell division at an early time during stage 8 (initial conditions are as in Table 5), while results on the
right column (F) correspond to cell division after the full pattern is established. For cases (E), the curves
corresponding to division of third and fourth cells have very similar values, for both WT and BS, and thus
overlap (dash-dotted and dotted). For cases (F), all curves are very similar.

Finally, to compare the robustness of four, five, six or eight cell wide parasegments, under similar
conditions, we have analyzed the evolution of the system starting from a minimal pre-pattern:

en1(0) = 1, wgM (0) = 1, SLPM−1,M (0) = 1, (6)

that is onlyen (first cell), wg (last cell), and SLP (last two cells) are expressed. Taking these initial condi-
tions, the capacity ofM cell-wide parasegments to generate the segment polarity pattern was verified, again
considering several magnitudes of timescale perturbations. Results are shown in Fig. 4. Interestingly, ro-
bustness to perturbations increases with the length of the parasegment, with a very significant increase from
four to five cells. This indicates that a first round of cell division during stage 8 of embryonic development
could be a very desirable event. Moreover, if the dividing cell is either the first or second in the parasegment
(see the discussion of Fig. 2), cell division contributes to an increased robustness of the segment polarity
network.

To further understand the mechanism responsible for higher robustness in wider parasegments, we ex-
plored the relative timescales for patched and cubitus interruptus proteins in the first cell expressing SLP,
i.e., αPTCFS andαCIFS. It was shown in [7] thatαPTCFS > αCIFS (M = 4, FS = 3) is a necessary condition to
obtain 100% convergence to the wild type pattern (this result is now generalized in Section 6). Indeed, we
verify that, among all{αj

X} parameter combinations leading to the BS pattern (sayNBS), more than65%
break that condition, satisfying insteadαPTCFS < αCIFS (Fig. 5).

In addition, computing the average

qFS =
1

NBS

NBS∑
k=1

αk
CIFS

αk
PTCFS

,
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Figure 3: Rate of convergence to wild type (WT) and broad striped (BS) or non-segmented (NS) patterns,
after two rounds of cell division. The parasegment is six cells wide, resulting from division of one of the
five cells in the previous stage. Thex-axis lists the magnitude of the timescale perturbations, such that
α` ∈ [1/n, n]. The initial condition for the six cell model is WT (I), as in Table 6, with either of the five
cells doubled (corresponding to cell division after full pattern is established). The results are very similar
for all the five possible initial conditions, all curves overlapping. Shown here are the curves for doubling the
first (solid) and fourth (dotted) cells.

we see thatqFS > 1 (Fig. 5), and is clearly lower for parasegments with four cells. In other words, a sharper
difference betweenαPTCFS andαCIFS is needed to disrupt normal pattern development in wider parasegments
(presumably a less likely situation).

6 Generating the wild type pattern with timescale separation

As in [7], we will analyze the behaviors of trajectories of systems of the form (1), assuming that trajectories
are well-defined. Since the right-hand sides of equations of this type are discontinuous, it is very difficult
to give general existence and uniqueness theorems for solutions of inital-value problems. One must impose
additional assumptions, insuring that only a finite number of switches can take place on any finite time
interval, and often tools from the theory of differential inclusions must be applied, see for instance [39]
and [40] for more discussion.

For a segment ofM cells, SLP is typically expressed in the posterior part of the parasegment, in a group
of adjacent cells (for instance in the last two or three cells of a five cell-wide parasegment). Thenwinglessis
expressed in the last cell expressing SLP, whileengrailedandhedgehogare expressed in the first cell of the
parasegment. Thus we will adopt the notationFS (resp.,LS) to denote the first cell (resp., last cell) expressing
SLP, and consider the following “generic” initial condition:

SLPFS,...,LS(0) = 1; wgLS(0) = 1; en1(0) = 1; hh1(0) = 1; ptc2,...,LS(0) = 1; ci2,...,LS(0) = 1, (7)

where, typically, one expects to seeLS = M andFS > M/2.
It was shown in [7] that a timescale separation assumption guaranteed convergence of the piecewise

linear system (1) to the wild type pattern WT (Table 3), for a four cell-wide parasegment. We next state that
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Figure 4: Rate of convergence to wild type (WT) and “mutant” patterns, broad striped (BS) or non-
segmented (NS), starting from minimal patterning (6). Thex-axis lists the magnitude of the timescale
perturbations, such thatα` ∈ [1/n, n]. Each of the four cases corresponds to four (solid), five (dashed), six
(dash-dotted), or eight (dotted) cells-wide parasegments.

Figure 5: The average ratiosαCIFS/αPTCFS, and percentage of (BS) parasegments satisfyingαCIFS > αPTCFS, as
a function of the magnitude of the timescale perturbations,n (such thatα` ∈ [1/n, n]). Curves correspond
to four (solid), five (dashed), six (dash-dotted), or eight (dotted) cells-wide parasegments.
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a similar result holds for wider parasegments. LetAmRNAandAProt denote intervals for the scaling factors (α`)
of the system’s mRNAs or proteins (respectively). Assume thatAmRNA andAProt do not overlap, and satisfy:

(A1) For alla ∈ AmRNA andb ∈ AProt: 0 < 2a < b.

Assume also that

(A2) θi = θ, for all i, andθ ≤ 1/2;

(A3) αPTCFS > αCIFS.

Such hypotheses seem quite reasonable from the biological point of view, as (A1) reflects the fact that post-
translational modifications (such as protein conformational changes, which happen on a scale of thousandths
of a second) are usually faster than transcription or translation (which happen on a scale of hundreds of
seconds) (see, for instance, [12] and references therein). Hypothesis (A2) states that concentrations of
protein (or mRNA) corresponding to less than 50% of its maximal value are sufficient to initiate an activation
or inhibition by that protein. Hypothesis (A3) stems from observation of the numerical simulations (see
discussion of ratioqFS > 1 and Fig. 5), but the following theoretical results show that indeed it guarantees
convergence to the wild type steady state. It is thus a prediction of our model. Note that the next theorems
are stated for any lengthM ≥ 4 of the parasegment.

Theorem 1. Consider system (1) with initial condition (7). Suppose that assumptions (A1) to (A3) are
satisfied. ThenwgFS(t) = 0 for all t.

This shows that the steady state representing the broad stripes pattern (BS I or II) cannot ever be reached
in system (1) from the initial condition (7), under assumptions (A1) to (A3).

Theorem 2. Consider system (1) with initial condition (7). Suppose that assumptions (A1) to (A3) are
satisfied. ThenwgLS(t) = 1 and PTC1(t) = 0 for all t.

This shows that the steady states represented by the no segmentation, or ectopic patterns (see Tables 3
and 6) cannot ever be reached in system (1) from the initial condition (7).

From Theorems 1 and 2 we conclude that, under the timescale separation assumption (and for appropri-
ateθ values), the piecewise linear model (1) can never converge to its steady states corresponding to mutant
patterns such as BS (I or II), NS or EC, forany length of the parasegment. Thus, since the only steady states
reachable from initial condition (7) are WT, BS, NS, or EC (see Appendix) the wild type pattern can be
expected when starting from the initial condition (7).

The proofs are very similar to those in [7]. One needs to consider first the modifications due to the
dynamic rule for SLP, but then the arguments are analogous. For the four cell-wide parasegment model, the
proofs are based on the initial conditions and Boolean rules for the third and fourth cells, that is the “first
and last cells expressing SLP”. The results can be easily adapted to deal more generally with SLP expressed
in a group of adjacent cells, labeledFS to LS: indeed, to prove Theorem 1, follow the proof given in [7], but
substituting “node3” by “ nodeFS” and “node2” by “ nodeFS−1”; to prove Theorem 2, simply replace “node4”
by “nodeLS”. For completeness, the proofs are included in the Supplementary material.

We will now analyze the effect of the SLP rule on the evolution of the network.

Proposition 6.1. Consider system (1) with initial condition (7). Then:

SLPi(t) = 0, wgi(t) = WGi(t) = 0, ∀t > 0, i = 1, . . . , FS− 1, (8)

and also

SLPi(t) = 1, eni(t) = ENi(t) = 0, hhi(t) = HHi(t) = 0,

cii(t) = CIi(t) = 1, ∀t > 0, i = FS, . . . , LS. (9)
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Proof: Since (att = 0) SLPi(0) = wgi(0) = WGi(0) = 0, for all i = 1, . . . , FS− 1, to argue by
contradiction, suppose thatt1 > 0 is thefirst instant for which SLPi(t1) = 1. First, observe that (sincewgi

starts at zero)wgi can only get activated after SLPi becomes 1. So, it holds thatwgi(t) = 0 for all t ≤ t1,
for all i = 1, . . . , FS− 1. For anyi = 1, . . . , FS− 1, note that SLPi(t1) = 1 implies (looking at the initial
conditions and the SLP rule):

there existsta ∈ (0, t1) : WGi(ta) = 1 and ENi(ta) = 0.

And then WGi(ta) = 1 implies:

there existstb ∈ (0, ta) : wgi(tb) = 1.

Now this implies (looking at thewgi rule):

there existstc ∈ (0, tb) : wgi(tc) = 1 or SLPi(tc) = 1.

But, finally, observe that this is impossible, a contradiction to our assumption, since both SLPi andwgi must
be zero attc < t1. This proves statement (8). The proof of (9) follows by direct application of the Boolean
rules for SLP,en, EN,hh, and HH.

Note that this result holds for every trajectory, even when none of the hypotheses (A1) to (A3) are satis-
fied. In fact, this Proposition guarantees that the anterior/posterior polarity in the parasegment is maintained
throughout time, one of the first and crucial steps towards generating the wild type pattern. Indeed, note
that the absence of SLP strictly preventswinglessexpression, while the presence of SLP strictly prevents
engrailedexpression. It is known that parasegment boundaries are defined between a cell expressingen-
grailed and another expressingwingless. In adition, SLP is expressed in bands of 2 or more cells (for
instance,0 · · · 011 or 0 · · · 0111). Therefore, parasegment boundaries can only form on the first (FS) or last
(LS) cells expressing sloppy paired. This result is interesting for several reasons. First, it indicates that not
all cells of the parasegment are important, and incorrect expression in several of the cells can be corrected
during development. Second, if given the information that two cells are essential, most Drosophila scien-
tists would expect that those two key cells are the first and last cell of the parasegment, or the (first) cell
expressingengrailedand the (last) cell expressingwingless. Only one of the two cells that we find coincides
with this expectation: the last cell of sloppy paired, that is also the (last) cell expressingwingless. The first
cell expressing sloppy paired does not coincide withengrailedexpression, on the contrary, it determines
the boundary ofengrailedexpression. This result suggests that the pattern of the segment polarity genes,
and specifically thewingless-engrailedboundary, depends critically on the sloppy paired expression. As
we can see from Tables 7 to 10 in the Appendix, wild type or mutant expression patterns evolve essentially
around cellsFS andLS. In wild type, sloppy paired protein counteracts the symmetry of theen→ wgpositive
feedback loop to generate a single asymmetricwingless - engrailedboundary aroundLS. In mutants, an extra
wingless - engrailedboundary may also form aroundFS.

7 Conclusion

Two questions were discussed in this paper, and possible answers proposed, leading to improvements in
modeling and understanding the properties of Drosophila segment polarity network. The new dynamical
rule for regulation of sloppy paired is composed of activation by wingless and inhibition by engrailed pro-
teins, together with a maintenance term. Thus the network operates as an autonomous module with no
“strong” external inputs. Starting from an initial expression pattern corresponding to development stage
7, the network can robustly generate and maintain an expression pattern which faithfully reproduces the
segment polarity genes pattern at stages 9-10. Moreover, with the natural hypothesis of timescale separa-
tion, it is shown that the system cannot converge to any of the model’s steady states corresponding to some

15



“mutant” patterns. This result further shows that generating the wild type segment polarity expression pat-
tern depends essentially on the dynamics of the network at the first and last cells expressing sloppy paired
protein. Rounds of cell division (and hence wider parasegments) will not disrupt the pattern: in fact, our
results suggest that, as the number of cells in each parasegment increases, the system becomes more ro-
bust to perturbations in biological processes. One possible interpretation is that new cells in a parasegment
strengthen the regulatory conditions definining the boundaries between parasegments, in such a way that
those boundaries become much more difficult to break. The boundaries between parasegments are defined
mainly by the relative positions ofenandwg. According to the model,encan only be expressed in a cell
immediately posterior or anterior to a cell expressing SLP. The results show that adding new cells between
the first cell of the parasegment and the first cell expressing SLP leads to lower probability of formation of
an extraenstripe just anterior to SLP. Hence a system with higher number of cells per parasegment is more
likely to generate the desired wild type pattern.
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Appendix

A Steady states of the mathematical model

The steady states of the Boolean model depicted in Table 1 can be computed by solving the equations:
X = F (X). It was shown that these steady states are also those of the piecewise continuous model (1).

In our analysis we focused on initial conditions of the form (7), withFS = M − 1 or FS = M − 2.
Initial conditions of this form imply certain restrictions on the dynamics of both the Boolean and piecewise
continuous model, namely that expression of SLP will not vary throughout time. This is established in
Proposition 6.1, and follows roughly from the fact that, in each celli, SLPi can only become expressed if
wgi has been expressed at some previous instant but, conversely,wgi can only become expressed if SLPi

was expressed at some previous time. Thus, if both SLPi andwgi are absent at time 0, neither can become
expressed at later times.

Thus we compute only the steady states that can possibly be reached if the system starts from initial
condition (7) (recall that different asynchronous updating strategies may lead the system from the same
initial condition to different steady states). These are given in Tables 7, 8 (caseFS = M−1), and Tables 9, 10
(caseFS = M − 2). All steady states can be derived from the expression ofwinglessin the first and last
cells expressing SLP. Thus there are four possible distinct steady states, associated with the four distinct
combinations of the wingless values in the cellsFS andLS, respectively,Wa andWb.

The steady state corresponding to the case(Wa,Wb) = (0, 1) represents the wild type (WT) expression
pattern of the segment polarity genes. There are two (very similar) variants for this pattern, differing only
on the value of PTC1, which can be either1− 0 ∗ 1 = 1 or 1− 1 ∗ 1 = 0.

The steady state corresponding to the case(Wa,Wb) = (1, 1) represents the broad striped (BS) expres-
sion pattern, observed inptcmutants [20]. These mutants expresswinglessin a stripe which is broader than
that observed in wild type. For the caseFS = M − 1, the BS pattern expresseswg in two consecutive cells.
For the caseFS = M − 2, wg is expressed in the first and last cells expressing SLP, but not in the middle
cell. For this reason, we believe that initial conditions with SLP= 0 · · · 011 represent the biological system
more faithfully.

The steady state corresponding to the case(Wa,Wb) = (0, 0) represents the non-segmented (NS) ex-
pression pattern, observed inenmutants [20]. Here, patched and cubitus repressor proteins are ubiquituously
expressed, and neither wingless nor engrailed are expressed.

Finally, the steady state corresponding to the case(Wa,Wb) = (1, 0) represents an ectopic (EC) expres-
sion pattern which, to our knowledge, has not been observed experimentally. The relative positions ofen
andwg are inverted, that is a segment could be formed, but with the boundary defined by a cell expressing
engrailed to the left of a cell expressing wingless. In previous studies [11, 7], only a very small fraction of
perturbations (< 1%) to the mathematical model lead the system to this ectopic steady state. Here again
there are two possible variants, differing only on the value of PTCFS−1, which can be either1− 0 ∗ 1 = 1 or
1− 1 ∗ 1 = 0.

Some of these patterns are illustrated in Fig. 6 (this figure can also be found in [11]). The wild type,
broad striped and no-segmentation mathematical patterns are shown for a four-cell wide parasegment, and
compared to the corresponding wild type or mutant embryos.

19



Table 7: Steady states for initial conditions of the form (7),FS = M − 1 for M = 4, 5. The patterns for
M = 5 are represented in the five consecutive cells labeled 1,2,3,M -1,M , while the patterns forM = 4 are
represented in the four consecutive cellsM -1,M ,1,2. The symbolsWa, Wb, andd represent digits in{0, 1}.
Wa andWb denotewinglessexpression in theFS andLS = M cells, respectively. The functionsf andg are
defined asf(Wa,Wb, d) = 1− (d + (1− d)Wa)Wb andg(Wa,Wb) = (1−Wa)(1−Wb).

Node\ cell 1 2 3 M − 1 M 1 2

SLP 0 0 0 1 1 0 0
WG = wg 0 0 0 Wa Wb 0 0
EN = en Wb 0 Wa 0 0 Wb Wa

HH = hh Wb 0 Wa 0 0 Wb Wa

ptc 0 1-g(Wa,Wb) 0 Wa Wb (1-Wb)Wa (1-Wa)Wb

PTC 1-dWb 1 1-dWa 1 1 f(Wa,Wb, d) f(Wb,Wa, d)
CI = ci 1-Wb 1 1-Wa 1 1 1-Wb 1-Wa

CIA 0 1-g(Wa,Wb) 0 Wa Wb (1-Wb)Wa (1-Wa)Wb

CIR 1-Wb g(Wa,Wb) 1-Wa 1-Wa 1-Wb g(Wa,Wb) g(Wa,Wb)

Table 8: Steady states for initial conditions of the form (7),FS = M − 1 for M ≥ 6 (the patterns forM = 6
are obtained from the columns 1,2,M -3,M -2,M -1,M ). The symbolsWa, Wb, andd represent digits in
{0, 1}. Wa andWb denotewinglessexpression in theFS andLS = M cells, respectively.

Node\ cell 1 2 3 · · · M-5 M-4 M-3 M-2 M-1 M

SLP 0 0 0 · · · 0 0 0 0 1 1
WG = wg 0 0 0 · · · 0 0 0 0 Wa Wb

EN = en Wb 0 0 · · · 0 0 0 Wa 0 0
HH = hh Wb 0 0 · · · 0 0 0 Wa 0 0
ptc 0 Wb 0 · · · 0 0 Wa 0 Wa Wb

PTC 1-dWb 1 1 · · · 1 1 1 1-dWa 1 1
CI = ci 1-Wb 1 1 · · · 1 1 1 1-Wa 1 1
CIA 0 Wb 0 · · · 0 0 Wa 0 Wa Wb

CIR 1-Wb 1-Wb 1 · · · 1 1 1-Wa 1-Wa 1-Wa 1-Wb

Table 9: Steady states for initial conditions of the form (7),FS = M − 2 for M = 5, 6. The patterns for
M = 6 are represented in the six consecutive cells labeled 1,2,3,M -2,M -1,M , while the patterns forM = 5
are represented in the five consecutive cellsM -2,M -1,M ,1,2. The symbolsWa, Wb, andd represent digits
in {0, 1}. Wa andWb denotewinglessexpression in theFS andLS = M cells, respectively. The functionsf
andg are defined asf(Wa,Wb, d) = 1− (d + (1− d)Wa)Wb andg(Wa,Wb) = (1−Wa)(1−Wb).

Node\ cell 1 2 3 M-2 M-1 M 1 2

SLP 0 0 0 1 1 1 0 0
WG = wg 0 0 0 Wa 0 Wb 0 0
EN = en Wb 0 Wa 0 0 0 Wb Wa

HH = hh Wb 0 Wa 0 0 0 Wb Wa

ptc 0 1-g(Wa,Wb) 0 Wa 0 Wb (1-Wb)Wa (1-Wa)Wb

PTC 1-dWb 1 1-dWa 1 1 1 f(Wa,Wb, d) f(Wa,Wb, d)
CI = ci 1-Wb 1 1-Wa 1 1 1 1-Wb 1-Wa

CIA 0 1-g(Wa,Wb) 0 Wa 0 Wb (1-Wb)Wa (1-Wa)Wb

CIR 1-Wb g(Wa,Wb) 1-Wa 1-Wa 1 1-Wb g(Wa,Wb) g(Wa,Wb)
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Table 10: Steady states for initial conditions of the form (7),FS = M −2 for M ≥ 7 (the patterns forM = 7
are obtained from the columns 1,2,M -4,M -3,M -2,M -1,M ). The symbolsWa, Wb, andd represent digits
in {0, 1}. Wa andWb denotewinglessexpression in theFS andLS = M cells, respectively.

Node\ cell 1 2 3 · · · M-5 M-4 M-3 M-2 M-1 M

SLP 0 0 0 · · · 0 0 0 1 1 1
WG = wg 0 0 0 · · · 0 0 0 Wa 0 Wb

EN = en Wb 0 0 · · · 0 0 Wa 0 0 0
HH = hh Wb 0 0 · · · 0 0 Wa 0 0 0
ptc 0 Wb 0 · · · 0 Wa 0 Wa 0 Wb

PTC 1-dWb 1 1 · · · 1 1 1-dWa 1 1 1
CI = ci 1-Wb 1 1 · · · 1 1 1-Wa 1 1 1
CIA 0 Wb 0 · · · 0 Wa 0 Wa 0 Wb

CIR 1-Wb 1-Wb 1 · · · 1 1-Wa 1-Wa 1-Wa 1 1-Wb

Figure 6: a) Top: Illustration of the gene expression pattern ofwinglesson a gastrulating (stage 9) embryo.
The parasegmental furrows form at the posterior border of thewg-expressing cells [2]. Bottom: Wild
type expression pattern of the Boolean model. Left corresponds to anterior and right to posterior in each
parasegment. Horizontal rows correspond to the pattern of individual nodes - specified at the left side of the
row - over two full and two partial parasegments. Each parasegment is assumed to be four cells wide. A
black (gray) box denotes a node that is (is not) expressed. b) Top:winglessexpression pattern in apatched
knock-out mutant embryo at stage 11 [20]. Thewinglessstripes broaden, and secondary furrows appear at
the middle of the parasegment, indicating a newen-wgboundary. Bottom: Broad striped steady state of the
Boolean model. This state is obtained whenwg, enor hh are initiated in every cell. A variant of this state
is obtained whenpatchedis kept off; the difference is in the fact thatptc and PTC are not expressed in the
mutant state. This steady state agrees with all experimental observations onptc mutants and heat-shocked
genes [20, 41, 37, 42, 43, 38, 44]. c) Top:winglessexpression pattern in anengrailedknock-out mutant
embryo at stage 11 [20]. The initial periodic pattern is disappearing, and gives rise to a non-segmented,
embryonic lethal phenotype. Bottom: Non-segmented steady state of the Boolean model. This steady state
agrees with all experimental observations onwg, en, hhmutants [20, 43, 42, 22, 41]. Gene expression
images obtained from http://www.fruitfly.org (a) and [20] (b,c).
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Supplementary material
Studying the effect of cell division on

expression patterns of the segment polarity genes

M. Chaves and R. Albert

Proof of Theorems 1 and 2

As mentioned in the main text, the proofs are similar to those given in [7], with appropriate index changes.
For easier reference and completeness, we provide the proofs next.

First, some observations regarding the solutions of system (1). LetX denote any of the nodes in the
network, andα its time rate. Since equations (1) are either of the formdX̂/dt = α(−X̂ + 1) or dX̂/dt =
−αX̂, their solutions are continous functions, piecewise combinations of:

X̂1(t) = 1− (1− X̂1(t0)) e−α(t−t0) (1)

X̂0(t) = X̂0(t0) e−α(t−t0) (2)

X̂1(t) (resp.X̂0(t)) is monotonically increasing (resp. decreasing). In addition, note that discrete variables
X can only switch between 0 and 1 at those instants whenX̂(tswitch) = θ, that is:

t1switch = t0 +
1
α

ln
(1− X̂(t0))

1− θ
(3)

t0switch = t0 +
1
α

ln
X̂(t0)

θ
(4)

From Proposition 6.1 we can immediately conclude:

ŵg1,...,FS−1(t) = ŴG1,2(t) = 0, (5)

ênFS,...,LS(t) = ÊNFS,...,LS(t) = 0,

ĥhFS,...,LS(t) = ĤHFS,...,LS(t) = 0, (6)

ĉiFS,...,LS(t) = 1 and ĈIFS,...,LS(t) = 1− e
−αCIFS,...,LS

t
. (7)

Lemma A.1. Let 0 ≤ t0 < t3 ≤ t1 and 0 ≤ t2 < t3. Defineδ = ln 1
1−θ/ max1,...,N αi. Assume

CIAFS(t) = 0 for t ∈ (t2, t3), andwgFS(t) = 0 for t ∈ [0, t3). Then

(a) wgFS(t) = 0 for t ∈ [0, t3 + δ);

(b) WGFS(t) = 0 for t ∈ [0, t3 + δ);

(c) enFS−1(t) = ENFS−1(t) = 0 for t ∈ [0, t3 + δ);

(d) hhFS−1(t) = HHFS−1(t) = 0 for t ∈ [0, t3 + δ).

Assume further that PTCFS(t) = 1 for t ∈ (t0, t1). Then

(e) PTCFS(t) = 1 for all t ∈ (t0, t3 + δ).

(f) CIA FS(t) = 0 for all t ∈ (t2, t3 + δ).
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Proof: Part (a) follows directly from the fact thatFwgFS
(t) = 0 on [0, t3), and from (3).

To prove parts (b), (c), and (d), first note that initial conditions together withwgFS(t) = 0 for t ∈ [0, t3)
imply

ŴGFS(t) = 0, ênFS−1(t) = ÊNFS−1(t) = 0, ĥhFS−1(t) = ĤHFS−1(t) = 0,

for t ∈ [0, t3]. Then, from equations (1) to (4) we conclude that the corresponding discrete variables cannot
switch from 0 to 1 during an interval of the form[0, t3 + 1

αj
ln 1

1−θ ). Taking the largest common interval
yields the desired results.

To prove parts (e) and (f), assume also that PTCFS(t) = 1 for t ∈ (t0, t1). From (6) and part (d), it
follows that functionFPTCFS does not switch in the interval(t0, t3 + δ) and in fact PTCFS(t) = 1 for all t in
this interval. This, together with (6) and part (d) yieldFCIAFS(t) = 0 for (t0, t3 + δ), so thatĈIAFS cannot
increase in this interval and the discrete level satisfies CIAFS(t) = 0 for all t ∈ (t2, t3 + δ), as we wanted to
show.

Corollary A.2. Let 0 ≤ t0 < t3 ≤ t1 and0 ≤ t2 < t3. If PTCFS(t) = 1 for t ∈ (t0, t1), CIAFS(t) = 0 for
t ∈ (t2, t3), andwgFS(t) = 0 for t ∈ [0, t3), thenwgFS(t) = 0 for all t.

Proof: Applying Lemma A.1 we conclude that, given anyk ≥ 0:

CIAFS(t) = 0, for t ∈ (t2, t3 + kδ)
wgFS(t) = 0, for t ∈ [0, t3 + kδ)
PTCFS(t) = 1 for t ∈ (t0, t3 + kδ)

imply

CIAFS(t) = 0, for t ∈ (t2, t3 + (k + 1)δ)
wgFS(t) = 0, for t ∈ [0, t3 + (k + 1)δ)
PTCFS(t) = 1 for t ∈ (t0, t3 + (k + 1)δ).

Sinceδ is finite, we conclude by induction onk thatwgFS(t) = 0 for all t.
Proof of Theorem 1:The rule for CIAFS may be simplified to (by (6))

FCIAFS = CIFS and[notPTCFS or hhFS−1 or HHFS−1].

From equation (7), we have that

CIFS(t) = 1, for all t >
1

αCIFS

ln
1

1− θ
. (8)

On the other hand, sinceptcFS(0) = 1, by continuity of solutionsptcFS(t) = 1 for all t < 1
αptcFS

ln 1
θ . This

implies that the Patched protein satisfies

P̂TCFS(t) = 1− e−αPTCFS
t, 0 ≤ t ≤ 1

αptcFS

ln
1
θ

and therefore

PTCFS(t) =

{
0, 0 ≤ t ≤ 1

αPTCFS
ln 1

1−θ

1, 1
αPTCFS

ln 1
1−θ < t < 1

αptcFS
ln 1

θ .
(9)
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By assumption,αPTCFS > αptcFS
and alsoln 1

1−θ ≤ ln 1
θ , defining a nonempty interval where PTCFS is ex-

pressed. Now lettc = 1
αCIFS

ln 1
1−θ andtp = 1

αPTCFS
ln 1

1−θ . ĈIAFS(t) starts at zero and must remain so while

CIFS = 0, so that

CIAFS(t) = 0 for 0 < t < tc.

In the casetc > tp, lettingt0 = tp, t1 = 1
αptcFS

ln 1
θ , t2 = 0, andt3 = tc in Corollary A.2, obtainswgFS(t) = 0

for all t. This proves item (b) of the theorem, and part of (a).
To finish the proof of item (a), we assume that(1 − θ)2 < θ and must now consider the casetc ≤ tp.

Then

ĈIAFS(t) =


0, 0 ≤ t ≤ tc
1− e−αCIAFS

(t−tc), tc < t ≤ tp
ĈIAFS(tp) e−αCIAFS

(t−tp), tp < t ≤ 1
αptcFS

ln 1
θ ,

Following equation (3) witht0 = tc andĈIAFS(t0) = 0, CIAFS might become expressed at timetc < ta < tp:

ta = tc +
1

αCIAFS

ln
1

1− θ
,

but it would then become zero again at (equation (4) witht0 = tp)

tb = tp +
1

αCIAFS

ln
ĈIAFS(tp)

θ
.

Finally, we show that, even if CIAFS(t) = 1 for t ∈ (ta, tb), wgFS cannot become expressed in this interval.
In this interval,ŵgFS evolves according tôwgFS(t) = 1− e−αwgFS (t−ta), andwgFS can switch to 1 at time

tw = ta +
1

αwgFS

ln
1

1− θ
.

We will show thattw > tb, sowgFS(t) = 0 in the interval[0, tb). Writing

ln
ĈIAFS(tp)

θ
= ln

ĈIAFS(tp)
1− θ

1− θ

θ
= ln

ĈIAFS(tp)
1− θ

+ ln
1− θ

θ
≤ ln

1
1− θ

+ ln
1

1− θ

where we have used̂CIAFS(tp) ≤ 1 and the assumption onθ: 1−θ
θ ≤ 1

1−θ . Therefore

tb ≤ tp +
2

αCIAFS

ln
1

1− θ
<

1
αwgFS

ln
1

1− θ
+

1
αCIAFS

ln
1

1− θ
< tw

where we have used the timescale separation assumption (A1). Lettingt0 = tp, t2 = 0, andt1 = t3 =
min{tb, α−1

ptcFS
ln 1

θ} in the Corollary, obtainswgFS(t) = 0 for all t.
We will next show that ifwgLS(t) = 1 in a given interval[0, T ), then in factwgLS(t) remains expressed

for a longer time, up toT + δ, with δ > 0. This is mainly due to assumption (A1), which says that mRNAs
take longer than proteins to update their discrete values, because they have longer half-lives:α−1

mRNA > α−1
Prot.

This allows the initial signal “wgLS = 1” to travel down the network, sequencially affecting the wingless
protein,engrailed, hedgehogand CIA, and feed back intowinglessallowingwgLS to remain expressed for a
further time interval.

Lemma A.3. Let T ≥ 1
αwgLS

ln 1
θ and define

δ =
1

αWGLS

ln
(1− e

−
αWGLS
αwgLS

ln 1
θ )

θ
. (10)

If wgLS(t) = 1 for 0 ≤ t < T , then
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(a) WGLS(t) = 1 for t ∈ ( 1
αWGLS

ln 1
1−θ , T + δ);

(b) en1(t) = 1 for t ∈ [0, T + δ);

(c) ÊN1(t) = 1− e−αEN1
t for t ∈ [0, T + δ), and EN1(t) = 1 for ( 1

αEN1
ln 1

1−θ , T + δ);

(d) ci1(t) = 0, CI1(t) = 0, CIA1(t) = 0, and CIR1(t) = 0 for t ∈ [0, T + δ);

(e) hh1(t) = 1, for t ∈ [0, T + δ);

(f) CIA LS(t) = 1, for t ∈ ( 1
αCILS

ln 1
1−θ + 1

αCIALS
ln 1

1−θ , T + δ), and CIRLS(t) = 0, for t ∈ [0, T + δ);

(g) wgLS(t) = 1 for t ∈ [0, T + δ).

Proof: Let T ≥ 1
αwgLS

ln 1
θ , and assume thatwgLS(t) = 1 for 0 ≤ t < T . To prove part (a), note that

ŴGLS(t) is of the form (1) (witht0 = 0, andŴGLS(0) = 0) and the corresponding discrete variable is
WGLS(t) = 1, for t ∈ ( 1

αWGLS
ln 1

1−θ , T ). Moreover, suppose thatwgLS(t) = 0 for t > T , then

ŴGLS(t) = (1− e−αWGLS
T )e−αWGLS

(t−T ), t > T.

But WGLS remains 1 until the switching threshold is attained, that is up to time

T +
1

αWGLS

ln
(1− e−αWGLS

T )
θ

≥ T +
1

αWGLS

ln
(1− e

−αWGLS
1

αwgLS
ln 1

θ )
θ

≡ T + δ.

Thus we conclude that WGLS(t) = 1 in the desired interval.
To prove part (b), observe thatFen1(t) = WGLS(t) for all t, from (5), and recall thaten1(0) = 1. From

part (a),Fen1(t) = 1 for t ∈ ( 1
αWGLS

ln 1
1−θ , T + δ). On the other hand,en1 can only switch from 1 to 0 at

t = α−1
en1

ln 1
θ which is larger thanα−1

WGLS
ln 1

1−θ . So, in fact,en1(t) = 1 for all 0 ≤ t < T + δ.

Part (c) follows immediately by integration of thêEN1 equation.
To prove part (d), first recallFci1 = not EN1 and the initial conditionsci1(0) = 0 = CI1(0) =

CIA1(0) = CIR1(0). Thereforeĉi1(t) increases up tot = 1
αEN1

ln 1
1−θ and then decreases inα−1

EN1
ln 1

1−θ <

t < T + δ. Now note that the discrete variableci1(t) remains 0 in the whole interval[0, T + δ). This
is becausêci1 never reaches theθ threshold: this would be attained at somet ≥ α−1

ci1
ln 1

1−θ but, since

α−1
ci1

ln 1
1−θ > α−1

EN1
ln 1

1−θ , the functionĉi1 starts decreasing before it could reach the valueθ. Finally,
from the rules of the Cubitus proteins it is immediate to see that CI1(t) = CIA1(t) = CIR1(t) = 0 for
t ∈ [0, T + δ).

To prove part (e), recall thatFhh1 = EN1 and not CIR1. From part (a), it follows thatFhh1(t) = 0
in the interval[0, α−1

EN1
ln 1

1−θ ) andFhh1(t) = 1 in the interval(α−1
EN1

ln 1
1−θ , T + δ). Sincehh1(0) = 1,

ĥh1(t) decreases in the interval[0, α−1
EN1

ln 1
1−θ ) but increases in(α−1

EN1
ln 1

1−θ , T + δ). The discrete value is

hh1(t) = 1 in the whole interval, sincêhh1(t) remains above theθ threshold. (The justification is similar to
the case ofci1(t) in part (d).)

To prove part (f), note that part (e) and then the use of (7), allows us to simplifyFCIALS:

FCIALS(t) = CILS(t) and hh1(t) = 1, t ∈
(

1
αCILS

ln
1

1− θ
, T + δ

)
.

Thus

ĈIALS(t) =


0, 0 ≤ t ≤ 1

αCILS
ln 1

1−θ

1− e
−αCIALS

(
t− 1

αCILS
ln 1

1−θ

)
, 1

αCILS
ln 1

1−θ < t ≤ T + δ,
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and CIALS(t) = 1 for t ∈ [ 1
αCILS

ln 1
1−θ + 1

αCIALS
ln 1

1−θ , T +δ). Observe that this interval is indeed nonempty,

by assumption (A1). Finally,FCIRLS(t) = CILS(t) and nothh1(t) = 0, and hence CIRLS(t) = 0 for t ∈
[0, T + δ).

To prove part (g), we note that (from part (f))

FwgLS
(t) = 1, t ∈

(
1

αCILS

ln
1

1− θ
+

1
αCIALS

ln
1

1− θ
, T + δ

)
,

implying thatŵgLS(t) increases in this interval. On the other hand, we know thatŵgLS(t) ≥ θ andwgLS(t) =
1 up to at leastt = 1

αwgLS
ln 1

θ > 1
αCILS

ln 1
1−θ + 1

αCIALS
ln 1

1−θ . This shows that in factwgLS(t) = 1 for all

t ∈ [0, T + δ).
Proof of Theorem 2:SincewgLS(0) = 1, from equations (3), (4), we know that the earliest possible

switching time from 1 to 0 isα−1
wgLS

ln 1
θ . Applying Lemma A.3 withT = α−1

wgLS
ln 1

θ establishes thatwgLS(t) =
1 for t ∈ [0, T + δ), with δ given by (10). Next, applying Lemma A.3 withT = α−1

wgLS
ln 1

θ + kδ, k ∈ N,
shows thatwgLS(t) = 1 for t ∈ [0, T + (k + 1)δ). Sinceδ is finite, we can conclude by induction that
wgLS(t) = 1 for all t ≥ 0.

To prove that PTC1(t) ≡ 0, note that CIA1(t) ≡ 0 (Lemma A.3, withT = +∞) impliesptc1(t) ≡ 0.
Since PTC1(0) = 0 and PTC1 cannot become expressed unlessptc1 is first expressed, the desired result
follows.
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