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INPUT-TO-STATE STABILITY OF RATE-CONTROLLED
BIOCHEMICAL NETWORKS∗
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Abstract. In this paper, the study of the class of biochemical systems known as zero deficiency
networks is extended to the case of time-varying kinetic parameters. We show that the resulting
class of nonlinear systems with inputs satisfies a notion of input-to-state stability uniformly over a
set of parameters. In particular, the input-to-state stability estimates allow us to characterize the
robustness of zero deficiency networks with respect to perturbations in the parameters as well as
study their stability when the reaction rates are controlled by an independent process.
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1. Introduction. A biochemical network consists of the interactions among a
certain number of species, according to a set of specified reactions that induce a
dynamics for the species’ concentrations. The time evolution of the species’ concen-
trations is usually modeled by a system of differential equations together with a family
of parameters that characterize the reaction rates. These parameters may depend on
various external factors and stimuli such as temperature, the concentration of lig-
ands/substrates, or the concentration of an enzyme which may be regulated by an
independent dynamics.

Thus biological systems may, in many cases, be viewed as cascades of biochemical
networks, where the output of the ith level becomes the input to the (i + 1)th level
of the cascade. This is indeed the structure of many intracellular signal transduction
pathways, which are central to biological processes. For example, the binding of a lig-
and to a cell receptor triggers a sequence of biochemical reactions [12] that ultimately
lead to a cell response (such as contraction, motility, or proliferation).

Each level in the cascade may be studied independently as a system with inputs,
and in particular we will focus on the input-to-state stability properties of such sys-
tem. We are also interested in studying the effect of small parameter perturbations
(which may be due, for instance, to variations in the room temperature or other ex-
perimental setup problems) on the steady-state response of the system. The notion
of a parameter robust system should reflect the idea that these small perturbations
should not greatly affect the qualitative response and guarantee that the output error
will also be small. In addition, the input-to-state stability properties of a system
provide a framework for the analysis of the stability and convergence of cascades of
systems (see, for instance, [15, 2]).

A mathematical model for a certain family of biochemical networks, where the
reactions satisfy the mass action kinetics principle, was introduced by Horn and Jack-
son in 1972 [9] and followed up by the work of Feinberg [6, 7, 8]. These authors
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developed a rich and beautiful theory on these systems, also known in the literature
as zero deficiency networks. This model accommodates a wide variety of significant
biological systems, including many models for enzymatic mechanisms [14], a model
for T-cell receptor signal transduction [13], and receptor–ligand interactions and G-
protein coupled receptor activity in cyclic signaling pathways [3, 12, 19]. The models
of receptor–ligand interaction are of interest for biomedical applications as well as
for drug design: the concentration–response curves associated with some of the basic
models [3, 12] may also be analyzed in the context of these zero deficiency networks [5].

The zero deficiency networks may be characterized in terms of a strongly con-
nected graph and the corresponding irreducible matrix, while the mass action kinet-
ics property leads to nonlinear systems with polynomial vector fields. These are the
systems we consider in this paper: for these systems, which exhibit multiple steady
states, the state space may be viewed as a (disjoint) union of invariant manifolds
(which are parallel translates of a given subspace of R

n) so that to each of these in-
variant manifolds corresponds a distinct (globally) asymptotically stable steady state.
The idea of invariant sets of the state space and the existence of steady states, and
how these are affected by the external inputs or perturbations will be central to our
analysis.

Recently [17], this class of nonlinear systems was studied from a control theory
point of view, and the stability and other properties for the system with no inputs
were further analyzed. In [17] a formalism is developed for dealing with this type of
systems and several results are established which will be frequently referred to in the
present work.

We first introduce the class of systems to be studied and recall some basic results
(section 2). The definition and characterization of the notion of uniformly semiglobal
input-to-state stable systems as well as the statement of the main results are given in
section 3. The input-to-state stability estimates are established and the main theorems
are proved in sections 5 and 6. In section 4 we show the dependence of steady states
of the system on its parameters: the unique steady state in each invariant manifold is
an analytic function of the parameters. Section 7 summarizes the main contributions
in this paper.

2. Some notation and previous results. Let n ≥ m be integers and let
x ∈ R

n. Introduce the positive orthant

R
n
>0 = {(x1, . . . , xn) ∈ R

n : xi > 0 ∀ i}

and the closed positive orthant

R
n
≥0 = {(x1, . . . , xn) ∈ R

n : xi ≥ 0 ∀ i}.

Assume given two matrices A = (aij) ∈ R
m×m
≥0 and B ∈ N

n×m
0 , where the columns

of B are denoted by b1, . . . , bm. In our model of biochemical reactions there are n
distinct species whose concentrations are given by x = (x1, . . . , xn)′ and m complexes,
each complex denoting a set of reactants or products in a reaction. The complexes
are represented by the column vectors b1, . . . , bm with bj = (b1j , . . . , bnj)

′ and blj �= 0
if the species l appears in the complex j. The matrix A = (aij) is the matrix of the
kinetic constants, and an entry aij �= 0 means that complex i is being produced from
complex j.

The model for biochemical reaction networks of the Horn–Jackson–Feinberg zero
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deficiency type, with mass action kinetics, is as follows:

ẋ = fA(x) :=

m∑
i=1

m∑
j=1

aijx
b1j
1 x

b2j
2 · · ·xbnj

n (bi − bj).(2.1)

Since the vector x ∈ R
n represents the concentration of each species involved in the

reactions, we will be interested only in those trajectories that evolve in the positive
orthant. In fact, it is easy to see that the positive orthant R

n
>0 is a forward-invariant

set for the system (2.1) (see also section 5). We have the following assumptions on A
and B.

(a) The matrix B = (b1, . . . , bm) has nonnegative integer entries; it has full
column rank and none of its rows vanishes completely.

(b) The matrix A = (aij) has nonnegative entries (without loss of generality, we
assume that its diagonal entries are zero, since the corresponding terms would be of
the form aiix

b1i
1 · · ·xbni

n (bi − bi) ≡ 0) and is assumed to be irreducible.
This last property is equivalent to saying that the incidence graph of A is strongly
connected, and it describes the following property of the network: there is a chemical
pathway connecting every pair of complexes, but the pathway leading from bi to
bj may be different from the pathway leading from bj back to bi (in other words,
each individual chemical reaction is not necessarily reversible). Another equivalent
definition of irreducibility says that there is an integer k such that all the entries of
the matrix (A + I)k are strictly positive (see [10]).

Example. The simplest model for the interaction of a cell surface receptor with a
specific ligand is depicted as R+L � C. Here we have three species (n = 3): receptor
(R), ligand (L), and receptor–ligand product (C). There are only two complexes
(m = 2): R+L and C. Let x1, x2, and x3 denote the concentrations of R, L, and C,
respectively. Then the two columns of matrix B are b1 = (1, 1, 0)′ and b2 = (0, 0, 1)′.
The matrix A is of size 2 and its nonzero elements are a21 (the rate constant for
R + L → C) and a12 (the rate constant for C → R + L). It is easy to see that
ẋ1 = ẋ2 = −ẋ3 = −a21x1x2 + a12x3. A network involving two distinct receptor
conformations is shown in Figure 1.

Example. Another simple example is a dimer model, where the ligand binds to
two receptors, according to the diagram 2R + L � R + C1 � C2. In this case
n = 4 and m = 3. Setting x = (R,L,C1, C2), the matrix B consists of the vectors
b1 = (2, 1, 0, 0)′, b2 = (1, 0, 1, 0)′, and b3 = (0, 0, 0, 1)′. The nonnegative entries of the
matrix A are a21, a12, a32, and a23. Again, it is easy to see that properties (a) and
(b) are satisfied. At any given time, the concentration of receptors is given by the
equation Ṙ = −a21R

2L − (a32 − a12)RC1 + a23C2, and the concentration of ligand
is given by L̇ = −a21R

2L + a12RC1. The concentrations of C1 and C2 are given by
Ċ1 = −(a12 + a32)RC1 + a21R

2L+ a23C2 and Ċ2 = −a23C2 + a32RC1, respectively.
In this paper, we wish to study system (2.1) when the parameters aij are allowed

to be time variant. Values of the parameters should be such that, at each time instant,
the matrix A = (aij) is irreducible, so we consider the set of irreducible m×m matrices
whose entries are nonnegative:

A≥0 =
{
A ∈ R

m×m : A ≥ 0 and (A + I)k > 0 for some power k
}

(the inequality A ≥ 0 (resp., A > 0) means that every entry of the matrix on the
left-hand side is nonnegative (resp., positive)). Let |A|ecl denote the matrix norm
induced by the vector norm |·| (the Euclidean norm). Throughout this paper, we will
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define an input u(·) to be a piecewise locally Lipschitz function, with a finite number
of discontinuities, that is, there exist � ∈ N and numbers 0 = T0 < T1 < · · · < T� <
T�+1 = ∞ such that the function u is locally Lipschitz on each interval (Ti−1, Ti): for
each i = 1, . . . , �+1 and each compact interval J ⊂ (Ti−1, Ti), there exists κ > 0 such
that

|u(t) − u(s)| ≤ κ|t− s| ∀ s, t ∈ J.(2.2)

In addition, the mass action kinetics model may be generalized as in [17], so we
will consider the system with inputs

ẋ = f(x, u) :=

m∑
i=1

m∑
j=1

uijθ1(x1)
b1jθ2(x2)

b2j · · · θn(xn)bnj (bi − bj),(2.3)

where the same assumptions on B hold and each map θi : R → [0,+∞) has the
following properties:

(c) θi is real analytic;
(d) θi(0) = 0;

(e)
∫ 1

0
|ln θi(r)| dr < ∞;

(f) its restriction to R≥0 is strictly increasing and onto the set [0, σi), where
0 < σi ≤ +∞.

Before stating the last condition that the functions θi should satisfy, let us intro-
duce the following vector functions:

ρ[n](x) = (ln θ1(x1), . . . , ln θn(xn))′ and exp[n](v) = (ev1 , . . . , evn)′

defined on R
n
>0 and R

n, respectively. (From now on, we will drop the superscript n
of ρ[n] and exp[n], since its value is usually clear from the context.)

Each θi (restricted to R>0) is onto the set (0, σi), so each function ρi = ln θi (for
the restriction of θi to R>0) is onto (−∞, ρ̄i) with ρ̄i = lnσi. Since θi (restricted
to R≥0) is strictly increasing, ρi has an inverse function, which is onto R>0: ρ−1

i :
(−∞, ρ̄i) → R>0. Each function θi should also satisfy

(g) for any given constant p, limt→lnσi

∫ t

a
ρ−1
i (s) ds− pt = +∞ for any a < lnσi.

Note that, for any constant p, there exists t0 ∈ (−∞, ρ̄i) such that ρ−1
i (s) > p+ 1 for

all s ≥ t0. Therefore, when σi = +∞, condition (g) always holds. The case of mass
action kinetics corresponds to θi(r) = |r| ∀ i. Another example of interest is the case

θi(r) = |r|
k+|r| with k > 0. Even though condition (g) will not be used explicitly in

this paper, it is necessary to prove some auxiliary results such as Lemma IV.1 in [17],
which will be used in section 4.

For the case of a constant matrix A, system (2.3) has been extensively studied.
It takes the form

ẋ = f(x,A) := fA(x),(2.4)

and we next recall some results already established about this system, which are given
in [6, 7, 8, 9] (for the particular case of mass action kinetics), and can also be found
in [17] (for the general case).

For any two vectors a, b ∈ R
n, let 〈a, b〉 denote their dot product. Define the

stoichiometric space

D = span {bi − bj : i, j = 1, . . . ,m}
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and also consider its orthogonal space

D⊥ := {v ∈ R
n : 〈v, d〉 = 0 ∀ d ∈ D}.

Then, for any v ∈ D⊥, notice that

〈fA, v〉 =

m∑
i=1

m∑
j=1

aijx
b1j
1 · · ·xbnj

n 〈(bi − bj), v〉 ≡ 0(2.5)

by the definition of v. Hence 〈x(t), v〉 =constant= 〈x(0), v〉, and we have

〈x(t) − x(0), v〉 = 0 ∀ v ∈ D⊥ ⇔ x(t) − x(0) ∈ D ⇔ x(t) ∈ x(0) + D.

Therefore, the parallel translates of the stoichiometric space, p + D with p ∈ R
n
>0,

define invariant manifolds for the system ẋ = fA(x). For each p ∈ R
n
>0, we will define

a positive class of system (2.4) to be

S := (p + D) ∩ R
n
≥0 = {p + d : d ∈ D} ∩ R

n
≥0.

(If S ⊂ ∂R
n
≥0, then we do not consider such S as a positive class. In this work, we are

not concerned with trajectories that evolve on the boundary of the positive orthant.)
Note that the positive classes do not depend on the matrix A, only on B.

The equilibria of system (2.4) may be divided into boundary equilibria, E0 = {x ∈
∂R

n
≥0 : fA(x) = 0}, and positive equilibria, EA,+ = {x ∈ R

n
>0 : fA(x) = 0}.

From [17, Proposition VI.3] we know that E0 depends only on the matrix B and
not on A (however, the elements in EA,+ may depend on the matrix A). Throughout
this paper we will assume that no boundary equilibria exist in any positive class, i.e.,

S ∩ E0 = ∅ for each positive class S.(2.6)

Under these conditions we have the following result from [17] and also [6].
Theorem 2.1. Consider system (2.4) and assume that condition (2.6) holds.

Then, for each positive class S there exists a (unique) state x̄ = x̄S ∈ R
n
>0 which is a

globally asymptotically stable point relative to S, i.e., for each x0 ∈ S, the solution of
ẋ = fA(x), x(0) = x0, is defined ∀ t ≥ 0, and x(t) → x̄ as t → ∞, and ∀ ε > 0 there
exists δ > 0 such that if |x̄− x0| < δ, then |x̄− x(t)| < ε ∀ t > 0.

Throughout this paper, we will assume that the matrix B (which defines the
complexes that form the network) is fixed. Each matrix A ∈ A≥0 characterizes
a system of the form (2.4), and we will let x(t, x0, A) denote the solution of the
differential equation ẋ = fA(x) at time t, when the initial condition is x(0) = x0 ∈
R

n
>0. Then, from Theorem 2.1, it follows that each trajectory x(·, x0, A) converges

to the positive equilibrium in the same class as x0. So we define x̄(x0, A) to be the
unique equilibrium in the same class as x0, and thus we may also write

EA,+ =
{
x̄(x0, A) : x0 ∈ R

n
>0

}
and introduce the set of all such positive equilibrium points:

E =
⋃

A∈A≥0

EA,+.

In section 4 we will show that, as a map from R
n
>0×A≥0 to R

n, x̄(·, ·) is a real analytic
function.



RATE-CONTROLLED BIOCHEMICAL NETWORKS 709

C2

R  + L2R  + L1

C1

a42

a24

a21a12 a43

a13

a31

a34

Fig. 1. A receptor–ligand network.

2.1. An example. As a motivation for our theoretical results, we will discuss
a nominal example. The biochemical network depicted in Figure 1 is a basic model
for receptor–ligand interactions at the cell surface [3, 12]. The ligand is denoted by
L, two cell receptor conformations are denoted by R1 and R2, and the respective
receptor–ligand complexes are denoted by C1 and C2. These constitute the n = 5
individual species, X = (R1, R2, L, C1, C2)

′. There are m = 4 complexes, R1 +L, C1,
R2 + L, and C2. This model may be characterized by the matrices

A =

⎛
⎜⎝

0 a12 a13 0
a21 0 0 a24

a31 0 0 a34

0 a42 a43 0

⎞
⎟⎠ , B =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 1 0
1 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠ ,

where A is clearly irreducible. Under mass action kinetics, the dynamics of the system
is

Ṙ1 =−(a21 + a31)R1L + a12C1 + a13R2L,

Ṙ2 =−(a13 + a43)R2L + a31R1L + a34C2,

L̇=−a21R1L− a43R2L + a12C1 + a34C2,(2.7)

Ċ1 =−(a12 + a42)C1 + a21R1L + a24C2,

Ċ2 =−(a34 + a24)C2 + a42C1 + a43R2L.

The stoichiometric space is given by

D = span {bi − bj : i, j = 1, . . . , 4}
= span {(1, 0, 1,−1, 0)′, (1,−1, 0, 0, 0)′, (1, 0, 1, 0,−1)′},

and the positive classes are thus characterized by a pair of positive constants (α1, α2),

L + C1 + C2 = α1, R1 + R2 + C1 + C2 = α2,

and, incidentally, note that the classes reflect the conservation of the total amount of
ligand and the total amount of cell receptors in the system. The boundary equilibria
set is given by

E0 = {(r1, r2, 0, 0, 0)′, (0, 0, l, 0, 0)′ : r1, r2, l ∈ [0,+∞)},

and it is easy to see that each of these equilibrium points implies either α1 = 0 or
α2 = 0, which do not define a positive class. Therefore, the “no boundary equilibria”
assumption (2.6) holds.
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In this receptor–ligand model, the kinetic parameters are assumed to be fixed.
A rough numerical estimate of the effect of perturbations on the steady-states shows
that, for a sufficiently large (and fixed) T ,

|x(T, x0, A) − x(T, x0, A0)| <∼ 0.15 |A−A0|ecl,(2.8)

suggesting that the system is indeed parameter-robust and that, moreover, the error
is not amplified. Figure 2 shows the effect on the trajectories of the system of random
perturbations in the kinetic constants, while Figure 3 justifies estimate (2.8). In
this figure, each point · corresponds to the mean square error at steady state for a
given error in the kinetic constant (|A−A0|ecl). To obtain Figure 3, for each p ∈
{10, 20, 30, 40, 50, 60}, system (2.7) was simulated 20 times for the same fixed initial
condition (x0), with its kinetic constants randomly perturbed within p%, i.e.,

aij = (1 + p̃ij)a
0
ij with p̃ij ∈ [−p/100, p/100].

For each simulation, the norms |A−A0|ecl and |x(T, x0, A) − x(T, x0, A0)|, for a suf-
ficiently large T , were computed, and a point · was plotted. An average of the values
|x(T, x0, A) − x(T, x0, A0)| over intervals |A−A0|ecl ∈ [d0, d1] of length 0.16 was also
computed, resulting in the open squares (�). The solid line represents the best linear
fit to these average points with a slope of 0.05. Finally, notice that mostly all points
are below the dash-dotted line, that is, they satisfy estimate (2.8).

For both figures, the initial condition was set to x0 = (7, 2, 15, 0.5, 0.5)′ corre-
sponding to a common situation where the amount of ligand is larger than the total
amount of receptors, and there are practically no receptor–ligand complexes formed
at the beginning of the reaction. The (ideal) values of the parameters were set to

A0 =

⎛
⎜⎝

0 0.25 0.8 0
2.7 0 0 0.45
0.9 0 0 0.25
0 0.55 2.5 0

⎞
⎟⎠.

3. Input-to-state stability and robustness. We wish to study the system
with inputs (2.3) and establish general estimates that reflect the stability result ob-
tained numerically for the example in (2.8). To do this, we start by defining ap-
propriate input-to-state stability notions. An important observation on the system
is that positive classes are invariant not only under constant inputs but also under
any time-variant input map with u(t) ∈ A≥0 ∀ t. This follows from the fact that the
matrix B (and hence also the stoichiometric space and its orthogonal space D⊥) is
fixed, and also from (2.5). Indeed, let Sx̄ be any class (recall that each class may
be characterized by a positive equilibrium x̄ ∈ E). Then, for each initial condition
x0 ∈ Sx̄ and input map u(·), the trajectory of system (2.3) evolves in this positive
class for all times. Thus, any input-to-state stability estimates only need to hold in
that class.

3.1. Definition of input-to-state stability in each invariant subspace.
The input-to-state stability notion introduced in Definition 3.2 follows the ideas and
the concept of input-to-state stability (ISS) first established in [15] (and see also the
notion of input-output-to-state stability introduced in [11]). With the goal of analyz-
ing positive systems, the main difference in our definition of ISS is the introduction
of a condition on the completeness of the system with respect to positive states (i.e.,
those states with all coordinates in the strictly positive half-line). This condition
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Fig. 2. The dotted lines represent the trajectory of the system ẋ = fA0 (x) (A0 as indicated in
the text), while the solid, dashed, and dash-dotted lines represent the trajectories of ẋ = fA(x) with
the entries of A randomly chosen within, respectively, 10%, 20%, and 30% of the (nonzero) entries
of A0. The error is computed as the norm |x(t, x0, A0) − x(t, x0, A)|.
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Fig. 3. The error in the steady states due to random perturbations in the kinetic constants A0

(see explanation in the text).

plays an important part in the subsequent characterization of the ISS property in
terms of an ISS-Lyapunov function: such a function need only be defined on R

n
≥0 and

differentiable on the strictly positive orthant, and it is not required to satisfy a de-
crease condition except at positive vectors, as stated in Definition 3.3 (in the original
characterization, the ISS-Lyapunov function was defined in R

n).
In addition, our notion of ISS is formulated as a semiglobal property, in the sense

that the input-to-state estimates only hold while the trajectories remain in some pre-
established compact set (see also [4]). And it is a uniform property, in the sense
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that the same functions provide input-to-state estimates for all trajectories evolving
in ∪x̄∈PSx̄, where P is a compact subset of E .

We first recall some standard notions that will be used in establishing estimates: a
function α : R≥0 → R≥0 is said to be of class K if it is continuous, strictly increasing,
and α(0) = 0. The function α is said to be of class K∞ if it is of class K and in
addition α(r) → +∞ as r → +∞. A function β : R≥0 × R≥0 → R≥0 is said to be of
class KL if, for each fixed t, β(·, t) is of class K and for each fixed r, β(r, ·) is strictly
decreasing with β(r, t) → 0 as t → +∞.

For the following definitions, let the system ẋ = f(x, u) evolve on a state space
X which is an open subset of R

n containing R
n
>0. Let U be a subset of A≥0, and

let A0 ∈ U. For any x̄0 ∈ R
n
>0, let Sx̄0 represent any invariant set for the system

ẋ = f(x, u) (with x̄0 ∈ Sx̄0). Let

‖u−A0‖ = ess. sup .{|u(t) −A0|ecl : t ∈ [0,+∞)}.

Definition 3.1. A system ẋ = f(x, u), with input-value set U, is R
n
>0-forward

invariant if, for each initial state x(0) ∈ R
n
>0 and each U-valued input u(·), the

corresponding maximal solution of ẋ = f(x, u) as a differential equation in X , which
is defined on an interval Jx(0),u = [0, tmax), has values x(t) ∈ R

n
>0 ∀ t ∈ Jx(0),u.

The system is R
n
>0-forward complete if it is R

n
>0-forward invariant and, for each

x(0) ∈ R
n
>0 and U-valued input u(·), Jx(0),u = [0,+∞).

Definition 3.2. A system ẋ = f(x, u) is uniformly semiglobal input-to-state
stable with input-value set U if

(i) the system is R
n
>0-forward complete, and

(ii) for every compact set P ⊂ E and every compact set F ⊂ R
n
≥0 containing P ,

there exist functions β = βP,F of class KL and ϕ = ϕP,F of class K∞ such that, for
every x̄0 ∈ P ∩ EA0,+ for some A0 ∈ U,

|x(t) − x̄0| ≤ β(|x0 − x̄0|, t) + ϕ(‖u−A0‖)(3.1)

for each U-valued input u(·) and every initial condition x0 ∈ F ∩ Sx̄0
1 and ∀ t ≥ 0

such that x(s) ∈ F ∀ s ∈ [0, t].
If the functions β, ϕ given in (ii) may be chosen independently of the compact F ,

then the system is uniformly input-to-state stable with input-value set U.
Definition 3.3. A continuous function V : R

n
≥0 → R≥0 is a uniformly semiglobal

ISS-Lyapunov function for the system ẋ = f(x, u) with input-value set U if
(i) the restriction of V to R

n
>0 is continuously differentiable;

(ii) for every compact P ⊂ E, there exist functions ν1 = ν1,P , ν2 = ν2,P ∈ K∞,
so that

ν1(|x− x̄0|) ≤ V (x) ≤ ν2(|x− x̄0|)

for each x̄0 ∈ P and ∀x ∈ R
n
≥0;

(iii) for every compact set P ⊂ E and every compact set F ⊂ R
n
≥0 containing P ,

there exist functions α = αP,F , γ = γP,F ∈ K∞ such that, for every x̄0 ∈ P ∩ EA0,+

for some A0 ∈ U,

∇V (x) f(x, u) ≤ −α(|x− x̄0|) + γ(|u−A0|)

for every u ∈ U and every x ∈ F ∩ Sx̄0 ∩ R
n
>0.

1Since P ⊂ F , the intersection F ∩ Sx̄0 is nonempty, containing at least the point x̄0.
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If the functions α, γ given in (iii) may be chosen independently of the compact
F ⊂ R

n
≥0, then the function V is a uniformly ISS-Lyapunov function for the system.

We next state without proof that the existence of an ISS-Lyapunov function im-
plies that the system is input-to-state stable (in the sense of the previous definitions).
The proof of the lemma is very similar to what is done in the case of the usual defini-
tion of an ISS system and follows closely the argument given in [18]. One should keep
in mind that the Lyapunov function is differentiable only on the positive orthant, and
that the trajectories evolve in invariant classes. (For a similar adaptation of the proof
given in [18], see also [4].)

Lemma 3.4. Consider an R
n
>0-forward complete system ẋ = f(x, u) with input-

value set U. Suppose that there is a uniformly (semiglobal) ISS-Lyapunov function V
for the system. Then, the system is uniformly (semiglobal) input-to-state stable with
input-value set U.

3.2. Main results. As already mentioned, the work of Horn and Jackson, and
Feinberg [6, 7, 8, 9] on zero deficiency biochemical networks considers only constant
kinetic parameters. This is also the case in the recent work developed in [17, 4].
In other words, so far the focus has been on systems (2.3) with constant inputs,
uij(t) ≡ aij . In this paper, our goal is to study the stability and robustness of zero
deficiency networks under time-varying parameters. In order to establish our stability
results a “lower bound” on the parameters will be assumed, that is, given any ε > 0,
we consider the input-value set to be the following subset of A≥0:

Uε = {A ∈ A≥0 : aij ≥ ε or aij = 0}.(3.2)

Note, however, that no upper bound on the values of aij is required. In addition,
recall that the input maps satisfy the regularity condition (2.2). So, we define

W := {w : [0,+∞) → Uε| w is a piecewise locally Lipschitz function}.(3.3)

The main results state that, first, system (2.3) is uniformly semiglobal ISS, and second,
if (2.3) is mass-conservative, then it is also uniformly ISS. The proofs of the theorems
are presented in section 6: the ISS properties are established by showing that the
system admits a uniformly (semiglobal) ISS-Lyapunov function (section 5.1).

Theorem 3.5. System (2.3) with the state space X = R
n, restricted to taking

input maps w ∈ W, is uniformly semiglobal ISS with input-value set Uε.
Theorem 3.6. Suppose that system (2.3) with state space X = R

n satisfies

∃v ∈ R
n
>0, v · f(x, u) = 0 ∀x ∈ X ∀u ∈ A≥0.(3.4)

Then the system, when restricted to input maps w ∈ W, is uniformly ISS with input-
value set Uε.

We would like to point out that, in the particular case of the constant input
u(t) ≡ A0, Theorem 3.6 recovers the global stability result of Theorem 2.1 for mass-
conservative systems. In fact, establishing that a given system is uniformly input-
to-state stable with input-value set Uε (appropriately chosen) provides an alternative
proof of Theorem 2.1. Furthermore, in the case when the input consists of small
perturbations around a desired value A0, for instance, u(t) = A0 + δ(t), uniform
(global) ISS implies robustness of the system with respect to A0. In other words, if
‖δ‖ ≤ δ0, then we expect the difference between the desired and perturbed steady
states of the system to satisfy |x̄− x̄0| <∼ ϕ(‖δ‖) ≤ ϕ(δ0) (see also the example
discussed in section 2.1).
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Remark. Condition (3.4) is satisfied by many biochemical systems; in particular,
it is satisfied by mass-conservative systems, whose trajectories are a priori constrained
to move in a compact subset of R

n
≥0. A system of the form (2.3) is mass-conservative

if and only if

v =

n−m+1∑
i=1

vi ∈ R
n
>0,

where {v1, . . . , vn−m+1} is a basis of the space D⊥. Recall that, by definition of the
invariant classes, for each vi there exists a positive constant αi such that 〈vi, x(t)〉 =
αi, ∀ t ∈ J . Then 〈v, x(t)〉 =

∑
αi for every t, and in those cases where v has

all coordinates positive, we immediately have that x(t) evolves in a compact subset
of R

n
≥0 and hence a compact subset of the state space. The example discussed in

section 2.1 is mass-conservative with v = (1, 1, 1, 2, 2)′.
Remark. One of the main assumptions in the model (2.3) is that, for all times t,

the incidence graph of the matrix u(t) is strongly connected or, equivalently, u(t) is
irreducible; hence the input u is only allowed to take values in A≥0. However, in some
ways, the structure of the network may be modified, i.e., new reactions may be added
and existing reactions may be removed, provided that the irreducibility of the matrix
u(t) is not violated at any time t. This is guaranteed by requiring that u ∈ Uε.

As discussed above, Theorems 3.6 and 3.5 hold for input maps that are piecewise
locally Lipschitz. These include many of the typical biological inputs such as piecewise
constant, periodic, or exponentially decaying signals.

Example. As mentioned in the introduction, changes in the temperature induce
changes in the value of the reaction rate constants. These changes are given by the
Arrhenius law [1]:

k = k(T ) := Fa e−
Ea
RT ,

where Fa > 0 is the frequency factor, Ea is the activation energy, T is the temperature
(in K), and R is the universal gas constant (≈8.31 J K−1 mol−1). The values Fa

and Ea are fixed for each reaction (e.g., for water formation, OH+H2
k→ H2O+H,

Fa = 8 × 1010 L mol−1 s−1, and Ea = 42 × 103 J mol−1). For most reactions Ea > 0,
so that k increases with the temperature. Then we have (note that 4/c is a Lipschitz
constant for the function e−c/x)

|k(T1) − k(T0)| = Fa

∣∣∣e− Ea
RT1 − e−

Ea
RT0

∣∣∣ ≤ 4R
Fa

Ea
|T1 − T0| .

In general, changes in temperature will be reflected in the matrix of kinetic parameters
as ‖uT1 − uT0‖ ≤ c |T1 − T0| for some c > 0. Then, from Theorem 3.6, we expect that
a change in temperature from T0 to T1 will lead to a deviation in the steady state of
order |x̄1 − x̄0| <∼ ϕ(|T1 − T0|), where ϕ is some K∞ function.

Example. Consider the model in Figure 1 and assume that the concentration of
ligand is regulated from “outside.” For instance, L(t) may be experimentally designed
to be a piecewise constant function, in order to measure the response of the system
to different concentrations of ligand. Or L could be regulated by an independent
network. In either case, we would have the following system:

ẋ = f(x,w),(3.5)
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where x = (R1, R2, C1, C2)
′ and

w(t) =

⎛
⎜⎝

0 a12 a13L(t) 0
a21L(t) 0 0 a24

a31L(t) 0 0 a34

0 a42 a43L(t) 0

⎞
⎟⎠.

If L is determined by a dynamical system, say ż = g(z), also of the form (2.1), then we
know that z(t) → z̄ for some z̄ ∈ E , and therefore w(·) ∈ W. An interesting problem
for further analysis is whether the convergence of L(t) to some L̄ implies that the
trajectory x(t) will also converge to some x̄ ∈ E . Another interesting question, which
we leave for further research, is whether the cascade system ẋ = f(x, z), ż = g(z) is
again input-to-state stable, in the manner developed in [15].

4. Dependence of the steady states on the kinetic parameters. A typical
problem concerning cell receptor–ligand interactions, and many other biochemical
reactions, is to determine the “dose-response” curves, that is, determine the final
concentration of the products, C̄1 or C̄2, as a function of the initial concentration of
ligand, L0 (see [12, 19] and [5]). When translated into mathematical language, this
problem involves the characterization of the multiple steady states of system (2.4)
and their dependence on the matrix A and classes Sx0 .

We recall that, for the case of constant inputs, say u(t) ≡ A, the system ẋ =
f(x, u) with initial condition x(0) = x0 converges to the constant steady state x̄(x0, A).
In contrast, for a general input u(·) one certainly does not expect the system to
converge to a constant steady state. However, one may still consider the map x̄ :
R

n
>0 ×A≥0 → E , where x̄(x0, A) is defined as the unique positive steady state of the

system ẋ = f(x,A) = fA(x) in the class Sx0 . Then the following is true:

x̄(x0, u(t)) ∈ E ∀ t.

We will show that x̄ is in fact a real analytic function of x0 and A. This will help
us in the proof of the main results, namely, in section 5, to show that the system is
R

n
≥0-forward complete.

Theorem 4.1. Assume that the maps θi are real analytic functions. Then the
map x̄ : R

n
>0 ×A≥0 → E ⊂ R

n
>0 given by (x0, A) �→ x̄(x0, A) is real analytic.

To prove this theorem we will use the following alternative expression for fA

(see [17]):

fA(x) = BÃθB(x),(4.1)

where

θB(x) =

⎛
⎜⎜⎝

θ1(x1)
b11θ2(x2)

b21 · · · θn(xn)bn1

θ1(x1)
b12θ2(x2)

b22 · · · θn(xn)bn2

...
θ1(x1)

b1mθ2(x2)
b2m · · · θn(xn)bnm

⎞
⎟⎟⎠ = exp[B′ρ(x)]

and

Ã = A +

⎛
⎜⎜⎜⎝

−
∑m

i=1 ai1 0 · · · 0
0 −

∑m
i=1 ai2 · · · 0

...
...

...
0 0 · · · −

∑m
i=1 aim

⎞
⎟⎟⎟⎠ .



716 MADALENA CHAVES

(Recall that we assumed without loss of generality that all the diagonal entries of A
are zero.) Now, given any matrix G ∈ R

m×m, with entries gij , define

φ(G) =

(
1 +

m∑
i=1

g2
ii

)−1

and MG = (φ(G)G + I)m−1.

By construction, the diagonal entries of φ(G)G+I are positive. Introduce the following
subset of R

m×m:

G = {G ∈ R
m×m : MG > 0 and 1̄G = 0},

where the inequality means that every entry of the matrix on the left-hand side is
strictly positive, and 1̄ is the row vector (1 1 · · · 1). The set G may be seen as an
open subset of the (m2 − m)-dimensional linear subspace {G : 1̄G = 0} of R

m×m.
Define G≥0 to be the set of all irreducible matrices which have 1̄G = 0, nonnegative
off-diagonal entries and arbitrary diagonal entries. Note that

G≥0 = {G ∈ G : G has nonnegative off-diagonal entries}.

Then to each matrix A ∈ A≥0, we associate a matrix Ã ∈ G≥0: clearly, 1̄Ã = 0 and

so Ã ∈ G≥0.
For each G ∈ G observe that 1̄MG = 1̄(φ(G)G + I)m−1 = 1̄ because 1̄G = 0 and

1̄(φ(G)G+I) = 1̄. So, any nonnegative eigenvector, v ∈ R
n
≥0, of the matrix MG must

correspond to the eigenvalue μ = 1 since

MGv = μv ⇒ 1̄(MGv) = 1̄(μv) ⇔ 1̄v = μ1̄v

and 1̄v is a positive scalar (since v �= (0, . . . , 0)′ by the definition of eigenvector).
Since, by definition, MG is irreducible and has all entries positive, by the Perron–

Frobenius theorem we know that the spectral radius of MG, σ(MG), is an eigenvalue
of MG of algebraic (and hence geometric) multiplicity one. Moreover, an eigenvector
associated with σ(MG) can be chosen to have all entries strictly positive (this will be
a Perron eigenvector of MG, and any two such vectors are positive multiples of each
other). But, as we have just seen, any positive eigenvector of MG corresponds to the
eigenvalue μ = 1, so we have

σ(MG) ≡ 1 ∀G ∈ G.

Define vP : G → R
m
>0 to be the map that assigns to each G ∈ G the unique Perron

eigenvector of MG, which has its first coordinate equal to 1,

vP =

(
1
wP

)

for some wP ∈ R
m−1
>0 . Then the map vP is a rational function on G, as shown in the

appendix.
Proof of Theorem 4.1. A function f , defined on an open set V, is real analytic if

it admits a power series expansion on a neighborhood of each point of V. If, as in our
case, the set V is not open, then the function f is still called real analytic if it admits
an extension to a real analytic function on a neighborhood of V (see [16]). This is
what we will show for the map x̄(·, ·).
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For each A consider the matrix Ã ∈ G≥0, constructed from A as indicated above.

Then, from (A.1), ker Ã = span {vP(Ã)}. Because B has full column rank, it follows
that each equilibrium x̄ ∈ EA,+ is characterized by

θB(x̄) = c vP(Ã) ⇔ B′ρ(x̄) = ρ(c vP(Ã)),(4.2)

where c is a positive constant.

Claim. For each A, the element z̄(A) ∈ R
n
>0 given by

z̄(A) = exp
[
B(B′B)−1ρ(vP(Ã))

]
is an equilibrium point in EA,+.

To prove the claim, note that B has full column rank, so B′B is an invertible
matrix and the formula gives ρ(z̄(A)) = B(B′B)−1ρ(vP(Ã)) or, equivalently,

B′ρ(z̄(A)) = B′B(B′B)−1ρ(vP(Ã)) = ρ(vP(Ã)).

The claim is proved by letting c = 1 and x̄ = z̄(A) in (4.2).

Now, by Proposition A.1, the map vP is a rational function on G and, furthermore,
vP(G) ∈ R

m
>0. The functions exp(·) and ρ(·) are analytic on R

n and R
n
>0, respectively,

so it follows that the map Ã �→ A(Ã) �→ z̄(A) from G≥0 → E is analytic because

it admits an analytic extension to G → R
n
>0. (Denote by A(Ã) the matrix which

coincides with A on the off-diagonal entries and has zero in its diagonal.)

Next, from Lemma IV.1 (and proof of Theorem 2) in [17], there is a real analytic
map ϕ(q, w), defined on R

n
>0 × R

n
>0, such that, for each q ∈ R

n
>0, x = ϕ(q, z̄(A)) is

the unique positive equilibrium of the system ẋ = fA(x) in the same class of q. Let
q = x0 and w = z̄(A). We may now conclude that the map R

n
>0 × G≥0 → E given by

(x0, Ã) �→ ϕ(x0, z̄(A))

is again analytic because it admits an analytic extension to R
n
>0 × G. Therefore,

x̄(x0, A) ≡ ϕ(x0, z̄(A))

is the unique element that belongs to both the class of x0 and the equilibria set EA,+,
and we have just shown that the map x̄ : R

n
>0 ×A≥0 → E is real analytic.

5. Existence and completeness of solutions. We now turn our attention to
system (2.3) and will show that it is complete in the sense of Definition 3.1.

Proposition 5.1. Consider system (2.3), with state space X = R
n and input-

value set A≥0. Then the system is R
n
>0-forward invariant.

Proof. Given an initial condition x(0) = x0 ∈ R
n
>0 and an A≥0-valued input u(t),

define F (t, x) := f(x, u(t)). The existence and uniqueness of a maximal solution to
this initial-value problem follows from standard results (such as stated in [16]), by
noticing that, for each fixed t, F (t, x) is locally Lipschitz in x and, for each fixed x,
it is locally integrable as a function of time. Forward invariance also follows from
standard arguments based on the fact that, for x ∈ R

n
≥0, if xk = 0 for any k, then

Fk(t, x) ≥ 0. The actual proof is very similar to that of Proposition 3.13 in [4], so we
will not reproduce it here. In that proposition, simply take C = 0 and replace “aij”
by “uij” (we only use the fact that uij ≥ 0).
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5.1. A Lyapunov function. In order to prove R
n
>0-forward completeness of

system (2.3), we will need to introduce our candidate ISS-Lyapunov function. Fix
any point x̄ in E and recall the notation ρi = ln θi. Define

V (x, x̄) =
n∑

i=1

∫ xi

x̄i

( ρi(s) − ρi(x̄i) ) ds.(5.1)

This function is introduced and motivated in [17], where it is shown that V is always
nonnegative and zero if and only if x ≡ x̄. It is also easy to see that V (x, x̄) → +∞
as |x− x̄| → +∞. Also, the function V is proper in the following sense: for each
compact set P ⊂ E , one can show that there exist two class K∞ functions ν1 = ν1,P ,
ν2 = ν2,P such that

ν1(|x− x̄|) ≤ V (x, x̄) ≤ ν2(|x− x̄|)(5.2)

∀x ∈ R
n
≥0 and ∀ x̄ ∈ P . For instance, we may take

ν1(r) = inf{V (x, x̄) : |x− x̄| ≥ r, x ∈ R
n
≥0, x̄ ∈ P}

and

ν2(r) = r + max{V (x, x̄) : |x− x̄| ≤ r, x ∈ R
n
≥0, x̄ ∈ P}.

So, it is easy to see that V satisfies both properties (i) and (ii) of Definition 3.3. In
the case of maps θi(r) = |r|, the function has the form

V (x, x̄) =

n∑
i=1

xi (lnxi − ln x̄i) + (x̄i − xi).(5.3)

Some more notation will be useful. For any x̄ = (x̄1, . . . , x̄n)′ ∈ E and ∀x ∈ R
n
>0

define

qj(x, x̄) = qj := 〈bj , ρ(x) − ρ(x̄)〉.(5.4)

Introduce also the scalar function ω : R → R≥0 given by

ω(r) = er − 1 − r .(5.5)

Furthermore, note that

∇x V (x, x̄) = ρ(x) − ρ(x̄) = (ln θ1(x1) − ln θ1(x̄1), . . . , ln θn(xn) − ln θn(x̄n)),

∇x̄ V (x, x̄) =

(
(x̄1 − x1)

θ′1(x̄1)

θ1(x̄1)
, . . . , (x̄n − xn)

θ′n(x̄n)

θn(x̄n)

)
.

Now, given any A ∈ A≥0 and any x̄ ∈ EA,+, consider

(5.6) ∇V (x, x̄) fA(x) = 〈ρ(x) − ρ(x̄), fA(x)〉

=

m∑
i=1

m∑
j=1

aije
〈bj ,ρ(x̄)〉eqj (qi − qj)

= −
m∑
i=1

m∑
j=1

aije
〈bj ,ρ(x̄)〉eqjω(qi − qj)

=: −W (x, x̄).
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The third inequality holds because

eqj (qi − qj) = eqj (qi − qj) − eqj (eqi−qj − 1) + eqj (eqi−qj − 1)

= −eqjω(qi − qj) + (eqi − eqj )

and

(5.7) m∑
i=1

m∑
j=1

aije
〈bj ,ρ(x̄)〉(eqi − eqj )

= (eq1 , . . . , eqm)′AθB(x̄) − (eq1 , . . . , eqm)′ diag

(∑
i

ai1, . . . ,
∑
i

aim

)
θB(x̄)

= (eq1 , . . . , eqm)′ÃθB(x̄) = 0,

since at steady state, recalling (4.1) and that B has full rank,

f(x̄, A) = fA(x̄) = BÃθB(x̄) = 0.

An important point to notice is that −W (x, x̄) (hence ∇V (x, x̄)fA(x)) is always non-
positive, because ω(r) ≥ 0 ∀ r (with ω(r) = 0 if and only if r = 0).

To prove R
n
>0-forward completeness, we consider the function V (x(t), x̄(x0, u(t)))

along a trajectory x(·, x0, u(·)), which is the solution of (2.3), when the input is u(·)
and the initial condition x(0) = x0. For the next lemma recall that the maps θi are
onto an interval of the form [0, σi), where 0 < σi ≤ +∞.

Lemma 5.2. Given any compact set P ⊂ E, let �1, �2 > 0 be any numbers so that

e
1
�1 <

σi

θi(x̄i)
∀ x̄ ∈ P, ∀ i = 1, . . . , n(5.8)

and

�2x̄i > |x̄i − r±| ∀ x̄ ∈ P, ∀ i = 1, . . . , n,(5.9)

where the numbers r± are defined by the equations ln θi(r±) = ln θi(x̄i) ± 1/�1.
Then

|x̄i − xi| ≤ �1 V (x, x̄) + �2x̄i

∀x ∈ R
n
≥0 and ∀ x̄ ∈ P .

Remark. If θi(r) = |r| ∀ i = 1, . . . , n, then r± = e±
1
�1 x̄i, and we may choose �1

and �2 independently of P : indeed, condition (5.8) becomes e
1
�1 < ∞ (satisfied by

any �1 > 0), and condition (5.9) becomes �2 > |1 − e±
1
�1 |. For instance, we may pick

�1 = 1 and �2 = 2.
Proof. Pick any compact set P ⊂ E and pick any numbers �1 and �2 according

to (5.8) and (5.9). First, note that the definition of V implies (see (5.1))∫ xi

x̄i

ρi(s) − ρi(x̄i) ds ≤ V (x, x̄), i = 1, . . . , n

(recall that ρi(s) = ln θi(s)). Now fix any i ∈ {1, . . . , n} and put a = x̄i. For r ≥ 0,
a > 0, define

h(r) = �1

∫ r

a

ρi(s) − ρi(a) ds− |a− r| + �2a.
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We will show that h(r) ≥ 0 ∀ r ≥ 0. The first derivative of h is piecewise continuous

dh

dr
=

{
�1(ρi(r) − ρi(a)) + 1 if 0 ≤ r < a,
�1(ρi(r) − ρi(a)) − 1 if r > a

and the second derivative is

d2h

dr2
= �1

θ′i(r)

θi(r)
> 0 for r �= a,

where θ′i(r) = dθi/dr > 0, because θi is strictly increasing. Each continuous piece of
the derivative has a zero, at the points r±,

dh

dr
= 0 ⇔

{
ρi(r−) = − 1

�1
+ ρi(a) if 0 < r < a,

ρi(r+) = 1
�1

+ ρi(a) if r > a.

Note that, because ρi is an increasing function, indeed r− < a and r+ > a. In
addition, from (5.8) it follows that both r− and r+ are well defined, since they belong
to the domain of θi. Since the second derivative of h is always positive for r �= a, h
has local minima at the points r = r±. By definition of �2, it follows that the value
of h at r± is positive:

h(r±) = �1

∫ r±

a

ρi(s) − ρi(a) ds− |a− r±| + �2a,

since the first term is positive by construction of V and the two other terms sat-
isfy (5.9)

−|a− r±| + �2a > 0.

To summarize,

dh

dr
=

⎧⎪⎪⎨
⎪⎪⎩
< 0, 0 ≤ r < r−,
> 0, r− < r < a,
< 0, a < r < r+,
> 0, r+ < r

so that h decreases down to a local positive minimum at r−, then increases up to
h(a) > 0, and decreases again to another local positive minimum at r+, and increases
∀r > r+. Therefore,

h(r) > 0 ∀ r ∈ [0,+∞).

This finishes the proof, since for each a = x̄i,

h(r) > 0 ⇔ |x̄i − xi| ≤ �1

∫ xi

x̄i

ρi(s) − ρi(x̄i) ds + �2x̄i

≤ �1V (x, x̄i) + �2x̄i.

5.2. Completeness.
Proposition 5.3. Consider system (2.3) with state space X = R

n. Then the
system is R

n
>0-forward complete, whenever the input map u(·) is in W.

Proof. Pick any input map u(·) in W. Let x(t) be the issuing solution of (2.3), with
the initial condition x(0) = x0 ∈ R

n
>0, and let it be defined on the maximal interval
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[0, T ). From Proposition 5.1, we already know that x(t) := x(t, x0, u(·)) ∈ R
n
>0 ∀ t

in the interval [0, T ). Assuming that T < +∞, we will show that x(·) evolves on a
compact subset of X ∀ t ∈ [0, T ), which is a contradiction. To do this, we consider
the function

g(t) = V (x(t), x̄(x0, u(t)))

whose derivative is

ġ(t) = ∇x V (x(t), x̄(x0, u(t)))
d

dt
[x(t)] + ∇x̄ V (x(t), x̄(x0, u(t)))

d

dt
[x̄(x0, u(t))]

= 〈ρ(x) − ρ(x̄), f(x, u)〉 +
n∑

i=1

(x̄i − xi) ˙̄xi
θ′i(x̄i)

θi(x̄i)
,

where, for simplicity, we used x ≡ x(t) and x̄ ≡ x̄(x0, u(t)), and ˙̄xi := d
dt [x̄i(x0, u(t))].

Now, for almost all t ∈ [0, T ), u(t) takes values in a compact set. So there exist
constants c, c > 0 such that

c ≤ |x̄i(x0, u(t))| ≤ c for almost all t ∈ [0, T ).

By differentiability of x̄(·, ·) (Theorem 4.1), and because u is piecewise locally Lipschitz
with finitely many points of discontinuity, there exist positive constants κ and c1 such
that

˙̄xi =

m∑
i,j=1

dx̄i

duij

duij

dt
≤

m∑
i,j=1

κ

∣∣∣∣ dx̄i

duij

∣∣∣∣ ≤ c1 for almost all t ∈ [0, T ).

The function θi is positive and strictly increasing, so θ′i(r) is also positive. Since
x̄i(·, ·) takes values in a compact set, there exists c2 > 0 such that

θ′i(x̄i)

θi(x̄i)
≤ c2 for almost all t ∈ [0, T ).

From (5.6), 〈ρ(x) − ρ(x̄(x0, u)), f(x, u)〉 ≤ 0 ∀x ∈ R
n
>0, u ∈ A≥0. Then, applying

Lemma 5.2, with P = [c, c]n ∩ E , to the second term on ġ, we obtain

ġ ≤
n∑

i=1

| ˙̄xi|
θ′i(x̄i)

θi(x̄i)
(�1 V (x, x̄) + �2x̄i),

which implies

ġ(t) ≤ �1c1c2 g(t) + �2c1c2c for almost all t ∈ [0, T ).

Taking c3 = �2c1c2c and c4 = �1c1c2 and applying Gronwall’s lemma, yield

g(t) ≤ c3e
c4T ∀ t ∈ [0, T ).

For the compact set P = [c, c]n ∩ E , let ν1 = ν1,P be the class K∞ function such that
ν1(|x− x̄|) ≤ V (x, x̄) ∀x ∈ R

n
≥0 and x̄ ∈ P . Thus,

ν1(|x(t) − x̄(x0, u(t))|) ≤ g(t) ∀ t ∈ [0, T )

and, therefore,

|x(t)| ≤ c + ν−1
1

(
c3e

c4T
)

implying that x evolves in a compact subset of the state space, which contradicts
T < +∞.
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6. ISS estimates. To establish the main results, we now show that the function
V is a uniformly semiglobal ISS-Lyapunov function. In section 5.1 it was shown that
V satisfies properties (i) and (ii) of Definition 3.3. We next show that it also satisfies
property (iii).

For any x̄ = (x̄1, . . . , x̄n)′ ∈ E and any x ∈ R
n
≥0 define

πj(x, x̄) = πj :=

[
θ1(x1)

θ1(x̄1)

]b1j [θ2(x2)

θ2(x̄2)

]b2j
. . .

[
θn(xn)

θn(x̄n)

]bnj

(6.1)

and observe that, if x ∈ R
n
>0, from (5.4)

πj = eqj .

Using this notation, define the function Ψ : R
n
≥0 × E → R≥0,

Ψ(x, x̄) :=
m∑
i=1

m∑
j=1

(
e−πi − e−πj

)2
,

which, from Lemma 3.8 in [4], satisfies

Ψ(x, x̄) = 0 ⇔ x ∈ E0 ∪ EA,+,(6.2)

where E0 is the set of boundary equilibria and A ∈ A≥0 is such that x̄ ∈ EA,+. Recall
the function W defined in (5.6): a useful estimate (see Lemma 3.10 in [4]) establishes
that, for each fixed x̄,

W (x, x̄) ≥ 1

2

m∑
i=1

m∑
j=1

aij e
〈bj ,ρ(x̄)〉 (e−πi − e−πj

)2 ∀x ∈ R
n
>0.(6.3)

Moreover, since x ∈ R
n
>0, it follows from (6.2) that the expression on the right-hand

side is zero if and only if x ≡ x̄.
Next, given any A ∈ A≥0, suppose that A1 is a matrix with entries a1

ij = 1 if

aij > 0 and a1
ij = 0 if aij = 0. Then, for expression (6.3), we can write

W (x, x̄) ≥ 1

2
min
aij>0

{aij} min
j

e〈bj ,ρ(x̄)〉
m∑
i=1

m∑
j=1

a1
ij

(
e−πi − e−πj

)2
.

Since A1 is irreducible, we may apply Lemma VIII.1 from [17] to conclude that there
exists a positive constant κ(A1) such that

m∑
i=1

m∑
j=1

a1
ij

(
e−πi − e−πj

)2 ≥ κ(A1)

m∑
i=1

m∑
j=1

(
e−πi − e−πj

)2
.

Now, define the following subset of A≥0,

A1
≥0 := {A ∈ A≥0 : aij = 1 or aij = 0},

and note that its cardinality is finite (in fact, the number of elements in A1
≥0 is equal

to the number of distinct strongly connected graphs with m vertexes). Then let

κ1 := min
{
κ(A) : A ∈ A1

≥0

}
.
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Additionally observe that, given any ε > 0,

A ∈ Uε satisfies min
aij>0

{aij} = ε

(where Uε is the set defined in (3.2)).
From this discussion, it is easy to establish the following lemmas.
Lemma 6.1. For each compact P ⊂E and each ε> 0, there exists a constant

c(P, ε) given by

c(P, ε) =
1

2
εκ1 min

x̄∈P
min
j

e〈bj ,ρ(x̄)〉

such that

W (x, x̄) ≥ c(P, ε) Ψ(x, x̄)(6.4)

∀x ∈ R
n
>0 and any element x̄ ∈ P .

Lemma 6.2. Let P ⊂ E be any compact set. Given any compact subset F ⊂ R
n
≥0

containing the set P , there exists a class K∞ function, α = αP,F , such that

Ψ(x, x̄) ≥ α(|x− x̄|)

∀ x̄ ∈ P , x ∈ F ∩ Sx̄.
Proof. Pick any compact set P ⊂ E . Let F ⊂ R

n
≥0 be any compact set which

contains P , and let R0 be such that the closed ball |x| ≤ R0 contains the set F . Define
R = R0 + maxx̄∈P x̄. Note that, for every x̄ ∈ P , the ball |x− x̄| ≤ R also contains
the set F . Consider the function R

n
≥0 → R

n
≥0 given by

α(r) :=

⎧⎨
⎩

r
r+1 min{Ψ(x, x̄) : x̄ ∈ P, x ∈ Sx̄, r ≤ |x− x̄| ≤ R} ∀ 0 ≤ r ≤ R,

α(R) r
R ∀ r > R.

As discussed above, for x ∈ Sx̄, Ψ(x, x̄) = 0 if and only if x = x̄. Since the minimum
is taken over a compact set, the function α satisfies α(0) = 0 and α(r) > 0 for r > 0.
Also clearly, for R ≤ r, α is strictly increasing and satisfies α(r) → +∞ as r → +∞.
For 0 ≤ r ≤ R, α(r) is also strictly increasing, as a product of a strictly increasing
function and a nondecreasing function. By construction, Ψ(x, x̄) ≥ α(|x− x̄|) for all
x̄ ∈ P , x ∈ F ∩ Sx̄. Finally, without loss of generality we may assume that α is
continuous on R≥0 (otherwise, it is possible to construct a continuous α̃, α̃(0) = 0,
with α(r) ≥ α̃(r), and α̃(r) → +∞ as r → +∞).

Pick any ε> 0 and consider the sets Uε and W as defined in (3.2) and (3.3),
respectively. For any point x̄0 ∈ E , set V0(x) ≡ V (x, x̄0), where V is the function
defined in (5.1). As in section 2, let Sx̄0 be the class that contains x̄0.

Proposition 6.3. Given any compact sets P ⊂E and F ⊂R
n
≥0 containing P ,

there exist class K∞ functions α = αP,F and γ = γP,F such that, for every x̄0 ∈
P ∩ EA0,+ for some A0 ∈ Uε,

∇V0(x) f(x, u) ≤ −α(|x− x̄0|) + γ(|u−A0|ecl)

for every u ∈ Uε and every x ∈ F ∩ Sx̄0 ∩ R
n
>0.

Proof. Pick any compact sets P ⊂E and F ⊂R
n
≥0 containing P . Let c(P, ε) be

the constant given by Lemma 6.1, and let α̃ = α̃P,F be the K∞ function given by
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Lemma 6.2. Now, pick any x̄0 ∈ P ∩ EA0,+ for some A0 = (a0
ij) ∈ Uε. Using the

notation qi ≡ qi(x, x̄0) (defined in (5.4)), we have

∇V0(x) f(x, u) =

m∑
i=1

m∑
j=1

uije
〈bj ,ρ(x̄0)〉eqj (qi − qj)

=

m∑
i=1

m∑
j=1

uije
〈bj ,ρ(x̄0)〉eqj (qi − qj − (eqi−qj − 1))

+

m∑
i=1

m∑
j=1

uije
〈bj ,ρ(x̄0)〉eqj (eqi−qj − 1)

= −
m∑
i=1

m∑
j=1

uije
〈bj ,ρ(x̄0)〉eqj ω(qi − qj)

+

m∑
i=1

m∑
j=1

(uij − a0
ij)e

〈bj ,ρ(x̄0)〉(eqi − eqj ),

where ω(r) is the function defined in (5.5). The last equality is justified because
ω(r) ≥ 0 ∀ r ∈ R and, by (5.7),

m∑
i=1

m∑
j=1

a0
ije

〈bj ,ρ(x̄0)〉(eqi − eqj ) = (eq1 , . . . , eqm)′Ã0θB(x̄0) = 0.

Applying Lemmas 6.1 and 6.2, there is a K∞ function α̃ such that

∇V0(x) f(x, u) ≤ −c(P, ε) α̃(|x− x̄0|)

+|u−A0|ecl
m∑
i=1

m∑
j=1

e〈bj ,ρ(x̄0)〉 |eqi − eqj | .

Next, let

c2(P, F ) = (m2 −m) max
j

max
x̄0∈P

e〈bj ,ρ(x̄0)〉 max
j

max
x∈F

eqj

and observe that

|u−A0|ecl
m∑
i=1

m∑
j=1

e〈bj ,ρ(x̄0)〉 |eqi − eqj | ≤ 2 c2(P, F ) |u−A0|ecl

∀x ∈ F .
Finally, choose α = αP,F to be α(r) = c(P, ε)α̃(r) and γ = γP,F to be γ(r) =

2 c2(P, F ) r.

6.1. Proof of Theorem 3.5. Let ε > 0 be any constant and consider the input-
value set Uε defined in (3.2) and the set W defined in (3.3). Proposition 5.3 shows
that system (2.3) is R

n
>0-forward complete with respect to input maps in W.

Choose any compact sets P ⊂ E and F ⊂ R
n
≥0 with P ⊂ F . Pick any element

x̄0 ∈ P and any matrix A0 ∈ Uε so that x̄0 = x̄(x0, A0) for some x0 ∈ F ∩R
n
>0.

2 Using

2If no such A0 exists, that is, if P ∩EA0,+ = ∅ ∀A0 ∈ Uε, then there is nothing to prove, because
the statement of Definition 3.2 is vacuous. But if A0 exists, then x0 always exists, for instance, x̄0.
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this element x̄0, construct the function V0(x) := V (x, x̄0). This function V0 satisfies
properties (i) and (ii) of Definition 3.3 and Proposition 6.3 establishes property (iii).
Hence V0 is a uniformly semiglobal ISS-Lyapunov function for system (2.3).

By Lemma 3.4, it follows that system (2.3) is uniformly semiglobal ISS with the
input-value set Uε, as we wanted to show.

6.2. Proof of Theorem 3.6. Let ε > 0 be any constant and consider the input
value set Uε defined in (3.2) and the set W defined in (3.3). Proposition 5.3 shows
that system (2.3) is R

n
>0-forward complete with respect to input maps in W. Assume

that system (2.3) is mass conservative, i.e., there exists v = (v1, . . . , vn)′ ∈ R
n
>0 so

that 〈v, f(x, u)〉 = 0 for every x ∈ R
n and every u ∈ Uε.

Choose any compact subset P ⊂ E and put

F (P ) := closure
{
q ∈ R

n
>0 : x̄(q,A) ∈ P for some A ∈ Uε

}
.

Then F (P ) is a compact subset of R
n
≥0 because it is closed and also bounded, since

q ∈ F (P ) ⇒ ∃ x̄ ∈ P such that viqi ≤ 〈v, q〉 = 〈v, x̄〉 ⇒ qi ≤
1

vi
|v||x̄| ≤ c

|v|
vi

∀ i, where c = max{|x̄| : x̄ ∈ P}. Moreover, given any x̄ ∈ P , F (P ) contains the
whole class Sx̄.

Now, pick any element x̄0 ∈ P and any matrix A0 ∈ Uε so that x̄0 = x̄(x0, A0)
for some x0 ∈ F (P ) ∩ R

n
>0.

2 Using this element x̄0, construct the function V0(x) :=
V (x, x̄0). This function V0 satisfies properties (i) and (ii) of Definition 3.3. Moreover,
the two K∞ functions provided by Proposition 6.3 depend only on P :

α = αP,F (P ) ≡ αP and γ = γP,F (P ) ≡ γP .

So, V0 is in fact a uniformly ISS-Lyapunov function for system (2.3).
By Lemma 3.4, it follows that system (2.3) (when constrained to take input maps

in W) is uniformly ISS with the input-value set Uε.

7. Conclusions. We have extended the analysis of zero deficiency biochemical
networks to the case where the kinetic parameters associated with each reaction rate
are assumed to be time-varying inputs. We have shown that these rate controlled
biochemical systems are input-to-state stable with respect to an appropriate input
set. Thus one may analyze the stability of the biochemical network when the reac-
tion rates are controlled by some independent process; for instance, some reactions
may be inhibited or activated through enzymatic activity. Also as a consequence of
the ISS property, we conclude that such systems of biochemical networks are robust
with respect to small perturbations in the kinetic parameters such as temperature
fluctuations.

By definition, the zero deficiency biochemical networks are assumed to be closed
systems in the sense that there are no inflows or outflows (such as additive inputs).
While the systems we have studied also do not allow any inflows or outflows, we have
nevertheless incorporated outside effects, in the form of “multiplicative” inputs, by
allowing an independent system to control the reaction rates.

Appendix. The Perron eigenvector vP. By a rational function everywhere
defined on G we mean a function ψ : G → R

m for which every coordinate is a quotient
ψi = pnump

−1
den of two polynomial functions (on the entries of G) pnum, pden : R

m×m → R

such that pden(G) �= 0 ∀G ∈ G.
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Proposition A.1. The map vP is a rational function on G.
Proof. For each G ∈ G, by an abuse of notation, we write vP for vP(G). We

will also drop the subscript and we let M = MG for simplicity. We have MvP =
σ(M)vP ⇔ (M − I)vP = 0. The matrix M − I has rank m− 1 because σ(M) = 1 is
a simple root of the characteristic polynomial of M . Put M − I = (N1 N), where N1

is the first column of M − I and N is the remaining m× (m− 1) matrix, and notice
that

(N1 N)

(
1
wP

)
= 0 ⇔ NwP = −N1.

Claim. The matrix N has full rank.
Suppose the claim is false. Then there exists an element u in the kernel of N ,

and one can write N(wP + u) = −N1. But if this is true, then it also holds that

(M − I)

(
1

wP + u

)
= 0

which implies wP+u = wP, because vP is in fact the unique vector with first coordinate
equal to 1 in the kernel of M − I. So u ≡ 0, which proves the claim.

It follows that det(N ′N) �= 0 for every G, and applying the Moore–Penrose
pseudo-inverse of N yields

vP =

(
1
wP

)
=

(
1

−(N ′N)−1N ′N1

)
,

where N and N1 are defined from M = MG, as above. This shows that vP is a rational
function on G.

For every G ∈ G, the Perron eigenvector of MG, vP, is also an eigenvector of the
matrix G, corresponding to the 0 eigenvalue, and has multiplicity 1. This fact follows
from two observations.

1. ker (G) �= ∅, so ∃v ∈ R
m \ {0} such that Gv = 0.

This is because 1̄G = 0, which means that the rows of G are linearly dependent and
thus have rank G ≤ m− 1.

2. Any v such that Gv = 0 satisfies v ∈ span {vP}.
This follows from

(φ(G)G + I)v = v ⇒ (φ(G)G + I)m−1v = MG v = v,

and hence v ∈ span {vP}, since σ(MG) = 1 is an eigenvalue of MG, of multiplicity 1.
Therefore, the kernel of G has dimension 1 and is given by

ker (G) = span {vP(G)}.(A.1)
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