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lear Fa
tor �B (NF�B) is known to intera
t with the apoptosis signalingpathway, by promoting trans
ription of both pro- and anti-apoptoti
 genes. Tostudy the 
omplex dynami
s emerging from the stru
ture of inter
onne
tionsamong these two pathways, a dis
rete model of the full network is developed.A qualitative approa
h 
ombining a set of logi
al rules with a pie
ewise linearsystem is proposed and used to evaluate and test di�erent hypothesis on theregulation points between the NF�B and apoptosis pathways.1 Introdu
tionProgrammed 
ell death (or apoptosis) has an essential biologi
al fun
tion, en-abling su

essful embryoni
 development, as well as maintenan
e of a healthyliving organism [6℄. Apoptosis is a physiologi
al pro
ess whi
h enables anorganism to remove unwanted or damaged 
ells. Malfun
tioning apoptoti
pathways 
an lead to many diseases, in
luding 
an
er and in
ammatory orimmune system related problems. A family of proteins 
alled 
aspases areprimarily responsible for exe
ution of the apoptoti
 pro
ess: basi
ally, in re-sponse to appropriate stimuli, initiator 
aspases (for instan
e, 
aspases 8, 9)a
tivate e�e
tor 
aspases (for instan
e, 
aspases 3, 7), whi
h will then 
leavevarious 
ellular substrates to a

omplish the 
ell death pro
ess [22℄.Nu
lear fa
tor �B (NF�B) is a trans
ription fa
tor for a large group ofgenes, whi
h are involved in several di�erent pathways. For instan
e, NF�Ba
tivates its own inhibitor (I�B) [14℄ as well as groups of pro-apoptoti
 andanti-apoptoti
 genes [21℄. Among the latter, NF�B a
tivates trans
ription ofa gene en
oding for inhibitor of apoptosis protein (IAP). This protein in turn
ontributes to downregulate the a
tivity of the 
aspase 
as
ade whi
h formsthe 
ore of the apoptoti
 pathway [6, 8℄.



2 Madalena Chaves, Thomas Eissing, and Frank Allg�owerThe 
anoni
al NF�B pathway is indu
ed, among other stimuli, by the
ytokine Tumor Ne
rosis Fa
tor � (TNF�) [21℄. Binding of TNF� to deathre
eptor TNFR1, forms a �rst 
omplex whi
h eventually a
tivates NF�B. Ase
ond 
omplex is later formed, whi
h will a
tivate the initiator 
aspase 8 [6℄,and hen
e a
tivate the apoptoti
 pro
ess. The same signal (TNF� stimulation)thus triggers two parallel but 
ontrary pathways: the pro-apoptoti
 
aspase
as
ade and the anti-apoptoti
 NF�B-I�B-IAP pathway. These two pathways,together with the intera
tions among their 
omponents, form a 
omplex net-work whi
h shapes the de
ision on 
ell survival or initiation of programmed
ell death. To 
ontribute to a better understanding of the role of NF�B inthe regulation of apoptosis, we propose a qualitative study of this system andits dynami
s, based on a dis
rete (Boolean) model of the 
omplex network.This dis
rete model 
losely follows a 
ontinuous one, re
ently developed andstudied in [23, 24℄. The model integrates the well known model for the NF�Bpathway [17℄ and the 
aspase 
as
ade [8℄.Boolean models provide a 
onvenient formalism to des
ribe protein andgene networks [25℄. The states of the network 
omponents (e.g., proteins ormessenger RNAs) are 
hara
terized as \expressed" or \not expressed", andrepresented by logi
al variables (with values 0 or 1). The intera
tions amongthe various 
omponents are 
lassi�ed as \inhibition" or \a
tivation" links(these 
an generally be dedu
ed from gene/protein expression data). Booleanmodels thus des
ribe the network stru
ture of a system without involving anykineti
 details. The qualitative behaviour of a system 
an be seen as an emer-gent property of this stru
ture. Boolean models are espe
ially useful in the
ase of large networks [1, 9℄, for whi
h kineti
 parameters are often unknown,but qualitative properties su
h as generation of spe
i�
 gene expression pat-terns, stability or multistability, and os
illatory modes 
an be studied. Severalmethods have been developed for analysis of dis
rete and qualitative mod-els [13, 26, 7, 2, 5℄. Using an approa
h whi
h 
ombines dis
rete rules with
ontinuous degradation rates, our model reprodu
es many of the known prop-erties of the system, notably the os
illatory dynami
s that 
an be indu
ed bythe NF�B-I�B negative feedba
k loop [14, 19, 15℄. We explore di�erent 
on-�gurations for the network stru
ture, and predi
t its e�e
ts on the de
isionbetween 
ell survival or apoptosis.2 The modelThe network of intera
tions among the NF�B pathway and the apoptosissignaling 
as
ade to be studied in the present work is shown in Fig. 1. Thevarious 
omponents of the network (here messenger RNAs, proteins, or protein
omplexes) form the set of variables or nodes (Xi, i = 1; : : : ; n) of the Booleanmodel. The system will evolve a

ording to a set of logi
al rules whi
h arededu
ed from the intera
tions or links depi
ted in the s
hemati
 diagramof Fig. 1. The intera
tions among nodes 
an be 
lassi�ed as \a
tivation" or



Regulation of apoptosis via the NF�B pathway: modeling and analysis 3\inhibition" links: a dire
ted arrow Xi ! Xj means that a high 
on
entrationof 
omponent Xi a
tivates 
omponent Xj , while the symbol Xi a Xj meansthat a high 
on
entration of 
omponent Xi inhibits Xj .

Fig. 1. S
hemati
 diagram of the NF�B pathway and the 
aspase 
as
ade (lightshaded regions). The oval dark grey shaded region represents the 
ellular nu
leus.Both pathways are a
tivated by binding of TNF� to death re
eptor TNFR1 (theresulting 
omplex is represented simply by the re
tangle TNF). Messenger RNAs arerepresented by elipses, while trans
riptions fa
tors, 
aspases and other proteins arerepresented by squares. To study the inter
onne
tions between the two pathways,four network variants, based on di�erent 
ombinations of the links A, L and C, willbe analyzed and 
ompared (see Table 2).The 
omponents in our model and the a
tivation or inhibition links amongthem are based on existing literature data. For general aspe
ts, the re-views [6, 21℄ were used. However, some pathways of regulation among theNF�B pathway and the 
aspase 
as
ade are not yet 
lear, and more work isneeded to understand how these two signaling pathways are inter
onne
ted.In this paper, we aim to investigate and test several possible hypothesis forthe 
ombined network stru
ture. We will 
onsider four model variants, andtry to dis
riminate between them by 
omparing our numeri
al analysis withexperimental data from the literature. The four network variants (see Table 2)are based on di�erent 
ombinations of three links (A, L, C in Fig. 1) whi
hhave been suggested but are not fully established in the apoptosis literature.The NF�B pathway follows very 
losely the model presented in [17℄. Stim-ulation of death re
eptors with TNF� leads (see for instan
e [6℄), �rst, to theformation of a 
omplex I (T1 in Fig. 1) whi
h will re
ruit and a
tivate inhibitor



4 Madalena Chaves, Thomas Eissing, and Frank Allg�owerof I�B kinases (IKK). Inhibitor of NF�B, or I�B, a
ts by binding to NF�Bmole
ules and preventing their trans
riptional fun
tion. A
tive IKK (IKKa)phosphorylates I�B whi
h releases NF�B, thus enabling its translo
ation tothe nu
leus and trans
ription of NF�B-dependent genes, in
luding genes forinhibitor of apoptosis protein (iap), inhibitor of NFkB (i�B), a protein as-so
iated with inhibition of 
omplex T2 (
ip), and a protein regulating IKKa
tivity (a20) [21℄. Trans
ription of I�B mRNA generates a negative feedba
kloop in the NF�B pathway [14, 20℄, whi
h may lead to os
illatory behaviourin NF�B and I�B 
on
entrations [19℄. In a se
ond step, after disso
iation of
omponents of 
omplex I from the death re
eptor, a se
ond 
omplex is formed(T2 in Fig. 1) whi
h will re
ruit and a
tivate initiator 
aspase 8 (C8a). Asa result of the signaling 
as
ade [22, 8℄, e�e
tor 
aspase 3 is also a
tivated(C3a). Thus 
omplex T1 a
tivates the anti-apoptoti
 pathway and, after a
ertain delay, 
omplex T2 a
tivates the pro-apoptoti
 pathway.Two well do
umented points of regulation of the apoptoti
 pathway byNF�B are inhibition of C3a by IAP and regulation of 
omplex T2 by FLIP [6℄).A
tive 
aspase 8 was found to be negatively regulated by so 
alled 
aspase-8 and -10-asso
iated RING proteins (CARPs) [18℄, whi
h seem to play ananalogous role to IAPs, but are less well studied. It was found that CARPsare overexpressed in tumors, and that its suppression leads to restoration ofthe apoptoti
 pathway, with CARP being rapidly 
leaved. In addition, it wasobserved that inhibitors of 
aspase 3 blo
k CARP 
leavage. In our model,we introdu
ed CARP and a pre-
omplex CARP0 whi
h is inhibited by C3a.Inhibition by C3a is, however, not suÆ
ient to 
ontrol CARP and there areprobably other regulators. Sin
e CARP plays a similar role to 
aspases 8 and10, as IAP plays to 
aspases 3 and 9 (and in the absen
e of further details),we assume that the pre-
omplex CARP0 is also regulated by a produ
t of theNF�B pathway (link C).The points where the 
aspase 
as
ade in
uen
es the NF�B pathway areless well do
umented. We will use our model to test di�erent hypotheses bystudying and 
omparing the network dynami
s for the following 
ases (seealso Table 2): inhibition of IKKa (link L) and/or NF�B (link A) by C3a, orneither of these links present.To obtain the logi
al rules shown in Table 1, some simpli�
ations of thebiologi
al pro
esses was inevitably introdu
ed. For instan
e, the bound 
om-plex NF�B�I�B (either in the 
ytoplasm or in the nu
leus) was not expli
itly
onsidered in the system, but was simply treated as an inhibition e�e
t: therule for NF�B says that it vanishes whenever I�B is expressed. Thus any statewith NF�B = 0 and I�B = 1 represents in fa
t a high 
on
entration of bound
omplex NF�B � I�B, while any state with NF�B = 1 and I�B = 0 repre-sents a high 
on
entration of free NF�B and low 
on
entration of free I�B.To translate our diagram into a set of logi
al rules, the 
onvergen
e of twoor more arrows (either a
tivation or inhibition) at the same node was alwaystreated as a logi
al AND, ex
ept in three 
ases: I�B, IAP, and CARP0. Forthese proteins, the overall e�e
t was treated as an AND in the presen
e of



Regulation of apoptosis via the NF�B pathway: modeling and analysis 5TNF stimulation, but treated as an OR in the absen
e of TNF. These threeproteins represent inhibitors whose levels should be stable in the absen
e ofany stimulus [8℄: IAP and CARP0 (or CARP) should be e�e
tive inhibitors ofthe 
aspases, and I�B should be at approximately 
onstant levels to 
ontrolNF�B trans
riptional a
tivity. In 
ontrast, with TNF stimulation, the degra-dation rates of these proteins 
an vary and lead to rapid 
hanges in their
on
entrations (di�erent degradation rates in the presen
e or absen
e of TNFhave been observed, notably for bound I�B [20℄). For instan
e, under TNFtreatment, the rule for inhibitor of NF�B is simpli�ed to: I�B+=[i�B and notIKKa℄. Suppose that IKK be
omes a
tivated at time t1, that is IKKa(t1) = 1.Then, in the next itera
tion of the model, the I�B rule implies that I�B willdegrade very fast, with I�B(t1 +�) = 0. In 
ontrast, in the absen
e of TNFstimulus, the rule is I�B+=[i�B or not IKKa℄. If IKK be
omes a
tive at timet1, one has I�B(t1+�) = i�B(t1), meaning that I�B is only rapidly degradedif no more of its messenger RNA is available. A similar reasoning justi�es therules for IAP and CARP0. The rules for these three proteins with inhibitingroles re
e
t the fa
t that their degradation rates, and hen
e turnover, 
an bemu
h faster in response to TNF stimulation.3 Analysis of Boolean modelsBoolean networks are a representation of a system, 
onsisting of a set of nvariables or nodes X = (X1; : : : ; Xn), together with a set of logi
al rules(Fi(X), i = 1; : : : ; n) des
ribing the evolution of the system from the 
urrentstate (Xi at time t) to the next state (Xi at time t+�). The variables or nodestake values in the dis
rete set f0; 1g, where 1 (resp., 0) denote the \expressed"(resp., \not expressed") state of the node. The asso
iated rules are typi
ally a
omposition of logi
al OR and AND fun
tions, whi
h 
an be determined fromgene/protein expression patterns (from Western blots or mi
roarray data,for instan
e). The set of rules Fi given in Table 1 for the NF�B pathwayand the 
aspase 
as
ade is a translation of the diagram shown in Fig. 1.The temporal evolution of the system, X(t), t 2 (0;1), is determined bysu

essively iterating the logi
al rules Fi, for whi
h several algorithms areavailable. Syn
hronous algorithms assume that all nodes are simultaneouslyupdated: X+i = Fi(X1; : : : ; Xn); i = 1; : : : ; n; (1)where Xi 2 f0; 1g, X = (X1; : : : ; Xn) denotes the state of the system at timet, and X+ = (X+1 ; : : : ; X+n ) denotes the next state (at t +�). Alternatively,with asyn
hronous algorithms, at ea
h iteration the nodes are sequentiallyupdated, a

ording to a given order (whi
h 
an be pre-spe
i�ed or randomly
hosen).Dis
rete models fo
us on the stru
ture of the network (links), thus o�eringa more qualitative des
ription of the system's dynami
s. Continuous models



6 Madalena Chaves, Thomas Eissing, and Frank Allg�owerTable 1. Boolean rules for the model of regulation of apoptosis via the NF�Bpathway. TNF is a 
onstant input. Identi�
ation of the nodes is given in the text.The letter \a" juxtaposed to a variable name denotes the a
tive form of mole
ule.The subs
ript \nu
" denotes the given 
omponent in the 
ellular nu
leus. Alternativerules are given for the presen
e/absen
e of links A,C,L.Node Boolean ruleT1+ TNFT2+ T1 and not FLIPIKKa+ fLg T1 and not A20a and not C3a fno Lg T1 and not A20aNF�B+ fAg not I�B and not C3a fno Ag not I�BNF�B+nu
 NF�B and not I�Bnu
i�B+ NF�Bnu
I�B+ [T1 and (i�B and not IKKa)℄ or [not T1 and (i�B or not IKKa)℄I�B+nu
 I�Ba20+ NF�Bnu
A20+ a20A20a+ T1 and A20iap+ NF�Bnu
IAP+ [T1 and (iap and not C3a)℄ or [not T1 and (iap or not C3a)℄
ip+ NF�Bnu
FLIP+ 
ipC3a+ not IAP and C8aC8a+ fCg not CARP and (C3a or T2 ) fno Cg C3a or T2CARP+0 [T1 and (NF�Bnu
 and not C3a)℄ or [not T1 and (NF�Bnu
 or not C3a)℄CARP+ CARP0may o�er more detailed des
riptions of a system, but they also have the dis-advantage of involving a large set of kineti
 parameters, of whi
h many areunknown. A method for analysis of Boolean models was introdu
ed in [12, 13℄,whi
h provides a bridge between dis
rete and 
ontinuous approa
hes. In thismethod, ea
h node Xi of the network is represented by one 
ontinuous vari-able (xi) and one dis
rete variable (Xi, as before). The 
ontinous variables aregoverned by ordinary di�erential equations, whi
h 
ombine a synthesis rate(based on its Boolean rule), and a linear degradation rate:d xidt = �aixi + biFi(X1; X2; : : : ; XN ); i = 1; : : : ; N: (2)At ea
h instant t, the dis
rete variable Xi is de�ned as a fun
tion of the 
on-tinuous variable a

ording to a threshold value of its maximal 
on
entration:Xi(t) = (0; xi(t) � �i biai1; xi(t) > �i biai ; (3)where �i 2 (0; 1) represents the fra
tion of maximal 
on
entration whi
h isne
essary for 
omponent Xi to be
ome \a
tive" and perform its biologi
al
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tions. Initial 
onditions are equal for dis
rete and 
ontinuous variables:Xi(0) = xi(0). It is easy to see that the hyper
ube [0; b1=a1℄� � � � � [0; bn=an℄is an invariant set for system (2). The 
ontinuous variables denote 
on
entra-tions of mole
ules; they are translated into a Boolean 0/1 response, a

ordingto �i. The dis
rete variables Xi represent expression (1) or not expression (0)of spe
ies i, a

ording to whether its 
ontinuous 
on
entration xi is above orbelow the threshold �ibi=ai. Letting the parameters ai, bi and �i be spe
i�
for ea
h node i, allows us to study di�erent times
ales for di�erent biologi
alpro
esses (for instan
e, trans
ription, translation, or post-translational pro-
esses, as in [5℄), or investigate the relative turn-over rates of two mole
ules.Similar pie
ewise linear systems have also been studied in [26, 7℄.3.1 Steady statesThe steady states of a Boolean model are given by all the possible solutionsX� of the equations:X�i = Fi(X�1 ; : : : ; X�n); i = 1; : : : ; n:It is easy to see that any steady state of the Boolean model yields a steadystate of the pie
ewise linear equations (2), sin
e:d xidt = 0 , xi = biaiFi(X1; X2; : : : ; XN ); i = 1; : : : ; N;independently of �i. Be
ause the right hand side of this equation is dis
ontin-uous, it is diÆ
ult to provide general results on existen
e and uniqueness ofsolutions. In parti
ular, there may exist other steady states than those of theBoolean model based on, for example, spe
ial solutions of di�erential in
lu-sions (see for instan
e [3℄ and [11℄). In view of this diÆ
ulty, in the presentstudy we will assume that traje
tories are well de�ned, and analyze theirdynami
al behavior.For the model of Table 1, the steady states depend on the value of TNF(see Table 2). It is not diÆ
ult to 
he
k that (both with and without link A)there are exa
tly two distin
t steady states when TNF = 0, 
hara
terized bythe presen
e or absen
e of 
aspase 3 and 8, and hen
e 
orresponding to thesurvival or apoptoti
 responses (nodes not indi
ated below are zero):(Ap0) T1 = T2 = 0; C3a = C8a = 1; I�B = I�Bnu
 = 1; (4)(Lf0) T1 = T2 = 0; I�B = I�Bnu
 = 1; CARP0 = CARP = IAP = 1:This is in agreement with the idea that, under typi
al 
onditions, the 
ellshould be 
apable of stably maintaining either an apoptoti
 or a survivalstate [8, 4℄. If TNF = 1, there is only one possible steady state for modelswith link A: (Ap1) T1 = T2 = 1; C3a = C8a = 1: (5)



8 Madalena Chaves, Thomas Eissing, and Frank Allg�owerTable 2. Steady states of the Boolean model, for ea
h model variant, in the presen
eand absen
e of TNF.Model links TNF=0 TNF=1 os
illations?I A, C, no L Ap0, Lf0 Ap1 YesII L, C, no A Ap0, Lf0 | YesIII C, no A, no L Ap0, Lf0 | YesIV L, no A, no C Ap0, Lf0 | YesFor models with no link A, there is no possible steady state when TNF = 1,and there are only periodi
 orbits of period higher than 1.Therefore, during TNF treatment, models with link A may at any timemake a de
ision towards the apoptoti
 pathway, while models with no linkA will exhibit os
illatory behaviour and 
an only make a de
ision when TNFtreatment 
eases. Upon removal of TNF stimulation, traje
tories of system (2)may be expe
ted to 
onverge to either the apoptoti
 or survival states. The
hoi
e of one or the other states will depend on the initial 
ondition and theset of parameters ai, bi, and �i. Sin
e these parameters are very likely tovary from 
ell to 
ell, it is reasonable to 
onsider several (randomly 
hosen)sets of parameters and then 
ompute the probability of 
onvergen
e to ea
hsteady state. To examine the dynami
s of system (2), and its dependen
e onparameters and the stru
ture of the network of intera
tions, several numeri
alstudies were performed, as des
ribed next.3.2 Numeri
al experimentsTo test the model and analyse the e�e
ts of links A and L (Fig. 1), system (2)was simulated several times, with randomly 
hosen sets of parameters. Forsimpli
ity, the synthesis rates and threshold 
onstants were �xed (bi = 1 and�i = 0:5 for all i), and only parameters ai were allowed to vary, 
hosen from auniform distribution in the interval [1=3; 3℄ (h�1). This seems reasonable, asdegradation rates used in [17℄ are roughly between 0.5 and 4 h�1. Observe thatai plays a double role: it represents a degradation rate, but also de�nes the0/1 threshold 
on
entration (0:5=ai). Hen
e, high degradation rates also implythat a lower 
on
entration is needed to a
hieve the 0/1 transition. Di�erentdurations of TNF stimulation were 
onsidered, namely: 2, 6, 11, 16, and 21hours. For these simulations, one initial 
ondition was 
hosen: I�B(0) = 1 andall other nodes set to zero. This is based on a natural physiologi
al startingpoint of the system: previous to stimulation, IKK is in its ina
tive form, whileI�B is bound to NF�B, preventing trans
riptional a
tivity. Caspases reside inthe 
ytosol in dormant forms [22℄.To understand the importan
e of the links A, C and L (the least welldo
umented), four variants of the model depi
ted in Fig. 1 are 
ompared: (I)links A and C present, (II) link L and C present, (III) only link C present and



Regulation of apoptosis via the NF�B pathway: modeling and analysis 9(IV) only link L present (as listed in Table 2). The �rst three aim at 
omparingthe e�e
ts of links A and L, and the last aims at evaluating the e�e
t oflink C. Other alternatives gave similar results to these (for example, modelwith all three links gave results very similar to I), and thus are not detailedhere. For ea
h variant, the response of the system to ea
h of the �ve TNFdurations was simulated 500 times. Sin
e di�erent sets of parameters faigintrodu
e di�erent time s
ales, variations in the dynami
s from one simulationto another are expe
ted. These variations may also be interpreted as a resultof natural variability in biologi
al systems. The average response over the 500simulations will then yield the probability of the system 
onverging towardsea
h of the steady states.Other open questions that may be studied with our model, in
lude 
om-petition between the pro- and anti-apoptoti
 pathways and the point ofirreversibility of the apoptoti
 de
ision. For instan
e, how long after 
as-pase a
tivation is re
overy from the apoptoti
 pathway still possible [22℄.To address these questions, numeri
al experiments were 
ondu
ted by let-ting NF�B(0) = 1, all others set to zero, and maintaining C3a(t) = 1 fordurations of 10, 30, 60 and 360 minutes.For analysis of the numeri
al results, a \peak" in the traje
tory of node Xjwill be de�ned as a time interval [T0; T1℄, during whi
h Xj(t) = 1, and su
hthat Xj(T0 ��) = Xj(T1 +�) = 0. The period of os
illations is 
al
ulatedas the average time interval between the onset of two 
onse
utive peaks, i.e.,Period = 1Np � 1 NpXi=2 T0;i � T0;i�1;where Np is the number of peaks observed during the simulation time.4 Results and Dis
ussionIn the numeri
al simulations, it is observed that, on
e TNF stimulation 
eases,a steady state pattern is always a
hieved, 
orresponding to either the apop-tosis or survival states (4), (5). In the former 
ase I�B is bound to NF�B,so that mRNAs and proteins downstream of NF�B are not expressed, andthe 
ell has 
hosen the apoptoti
 pathway. The latter 
ase represents survivalof the 
ell, with IAP stably expressed preventing C3a a
tivation, and CARPpreventing C8a a
tivation (see Fig. 2). In the presen
e of TNF stimulation,I�B, NF�B and its dependent mRNAs/proteins may exhibit os
illatory dy-nami
s, as observed experimentally in [14, 19℄. In fa
t, 
omputation of steadystates shows that the model with no link A has no alternative but to exhibitos
illatory behaviour in the presen
e of TNF, sin
e no possible steady statesexist (ex
epting possible spe
ial solutions of the asso
iated di�erential in
lu-sion, as mentioned above). The os
illatory behaviour (see analysis below) isin very good agreement to the experimental data reported in [19℄.
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reases, more 
ells 
hoose the apoptoti
pathway. Testing the four model variants shows that link A is very strong:not surprisingly, models with link A favour the aptopti
 pathway, with 80%of 
ells rea
hing the apoptoti
 state, as opposed to around 50% or 40% inmodels II and IV, or 30% in the model with only link C (whi
h favours theanti-apoptoti
 pathway) (Fig. 3). These values appear to be in agreement withexperimental data: Rehm et. al. [22℄ report that, for 8 hour treatments withhigh and low 
on
entrations of TNF�, the per
entage of 
ells undergoing a
-tivation of e�e
tor 
aspases was, respe
tively, 86% and 24%. The numeri
alexperiments with our model 
apture the response to high (or signi�
ant) 
on-
entrations of TNF�, so variants I (followed by II and IV) are 
loser to thereal system.Quantitative analysis of the os
illatory behaviour reveals some interestingfa
ts (Fig. 4). To 
hara
terize the os
illatory dynami
s, the following quan-tities were 
omputed for nu
lear I�B: period of os
illations (approximated),number of peaks and relative timing between peaks. First, in all 
ells os
il-lations 
ease when TNF stimulation 
eases, in agreement with observations.Se
ond, the timing of su
essive peaks is also in remarkable quantitative agree-ment with experimental data [19℄, see Fig. 4 (bottom row). The �rst peak innu
lear I�B 
on
entration was observed about 72 minutes from start of TNFstimulation, and the se
ond peak appears about 4 hours later, very 
lose tothe 75 minutes and 4.5 hours reported in [19℄. It is striking that the time spanof the �rst peak is typi
ally longer than that of the following peaks, and thatthe time lapse between 
onse
utive peaks de
reases (see Figs. 2, 4). Third,
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Fig. 3. Per
entage of surviving 
ells for the four model variants.the average period of os
illations is fairly 
onstant, but \depends" on theapoptosis/survival de
ision. Statisti
al analysis of the period of os
illations(
al
ulated as indi
ated in Se
tion 3.2) in nu
lear I�B indi
ates that thereis a natural period (for TNF treatment longer than 3 hours) for 
ells thateventually survived. This period is about 3:5 � 1 hours for models I, II andIV, and slightly higher at 4� 1 hours for model III. In 
ontrast, for 
ells that
hose the apoptoti
 pathway, the period of os
illations 
an be mu
h smaller.For models with link A, essentially no os
illations are observed in apoptoti

ells (Fig. 4, top, left): this is be
ause 
ell death is de
ided very early on, withlink A imediately preventing any further NF�B a
tivity. For model II (linksC and L only), os
illations are observed in apoptoti
 
ells with a natural pe-riod whi
h is lower (about 3 � 1 hours) than that for surviving 
ells (Fig. 4,top, middle). Results for model IV (not shown) are quite similar to those ofmodel II. For model variant III, there is no di�eren
e between observed pe-riods (Fig. 4, top, right). These results provide indi
ations for dis
riminatingbetween the four model variants, and also suggest that the period of os
illa-tions may play a role in the survival/apoptosis de
ision: lower periods/higherfrequen
ies would lead towards the apoptoti
 pathway. Signaling through fre-quen
y has been reported, for instan
e, in the p53-Mdm2 system [16℄, wheremore peaks (higher frequen
y) were dete
ted in response to higher (and moredamaging) 
-irradiation doses. The p53-Mdm2 system also 
ontains a negativefeedba
k loop similar to the NF�B-I�B loop.To address the question of irreversibility of the apoptoti
 de
ision, we
he
ked the 
apa
ity of the network to re
over from overexpression of a
tive
aspase 3. Fixing node C3a at its maximal value for intervals of 10, 30, 60 and360 minutes (that is setting dis
rete C3a(t) = 1, for t <10, 30, 60 or 360), we
al
ulated the per
entage of surviving 
ells. With model I there are no surviv-ing 
ells after one hour of C3a overexpression but, with model II or IV, thisper
entage drops very fast from 45% to 30% survival at 1 hour overexpression,and remains at this value for 
ontinued C3a overexpression (see Fig. 5). Thissuggests that a signi�
ant per
entage of 
ells 
an still invert the apoptoti
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Fig. 4. Top row: Average period of nu
lear I�B os
illations for apoptoti
 or surviv-ing 
ells, as a fun
tion of TNF stimulus duration. Verti
al lines represent standarddeviation, over the 500 numeri
al experiments. Bottom row: Relative timing of su-
essive peaks in I�B os
illations, for apoptoti
 (light blue) or surviving (dark blue)
ells. The \+" signs mark the experimental peak timing in [19℄.de
ision, while for the most part (70% of all 
ells) the apoptoti
 pathway is
hosen early on, within an hour of TNF stimulation. Not surprisingly, exam-ination of the relative values of the parameters ai shows that two thirds of
ells that were able to re
over from the apoptoti
 pathway had degradationrates for C3a higher than that for NF�B or I�B.Based on our study of regulation of apoptosis and the NF�B pathway, itseems 
lear that the links A and L play quite important roles, and at leastone of these should de�nitely be in
luded for faithful modeling of apoptosisvia TNF re
eptors. This eliminates model III. Both links 
ontribute to thesame physiologi
al fun
tion: down-regulation of NF�B trans
riptional a
tivity.However, link A (dire
t inhibition of NF�B by C3a) a
hieves this obje
tivein a mu
h faster way than link L (\indire
t" inhibition of NF�B by C3a,through 
omplex IKK). The essential di�eren
e between models I and II isthus the length of the pathway representing inhibition of NF�B by C3a. Theshorter path (model I, with link A) leads to mu
h higher apoptosis rates thanthe longer path (models II or IV, with link L). The shorter path also rendersre
overy from the apoptosis pathway pra
ti
ally impossible, with apoptosisrates higher than 95% after only half an hour with C3a overexpression (Fig. 5).The longer path allows a higher re
overy rate from the apoptoti
 pathway,



Regulation of apoptosis via the NF�B pathway: modeling and analysis 13
0 50 100 150 200 250 300 350 400

0  

10

20

30

40

50

60

C3a overexpression interval (mins.)

S
ur

vi
va

l r
at

e 
(%

)

IV

I 

III 

II

Fig. 5. Per
entage of surviving 
ells under in
reasing intervals of C3a overexpres-sion, for the four model variants and TNF treatment for 16 hours.although the probability of apoptosis does not in
rease above 70%, even aftersix hours of C3a overexpression. Re
ent experimental eviden
e [10℄ points tothe existen
e of a link L, that is, 
aspases are responsible for 
leavage ordegradation of (parts of) 
omplex IKK. To further dis
riminate between ashort or long pathway for the in
uen
e of 
aspases on the NF�B pathway, theresults shown in Fig. 4 suggest the following experiment. First, measure theperiod of os
illations during TNF stimulation and then monitor 
ells for sometime after TNF removal. Next, 
ompare the frequen
y of os
illations in 
ellsthat survive and in 
ells that eventually go through the apoptoti
 program.If the frequen
y of os
illations is similar for both groups of 
ells, or slightlyhigher in apoptoti
 
ells, then model II (longer pathway) provides a betterdes
ription of the system; if os
illations stopped after a short time interval (as
ompared to TNF duration) in apoptoti
 
ells, then model I (shorter pathway)should be 
hosen.5 Con
lusionThe present study illustrates the usefulness of Boolean and pie
ewise linearmodels in the analysis of large 
omplex networks. The qualitative dynami
sthat emerges from the network stru
ture was studied, leading to predi
tions onthe response to in
reasing duration of stimulation, response to overexpressionof a given protein, or indi
ating whi
h links/intera
tions play 
ru
ial roles inthe regulation of apoptosis. Some quantitative aspe
ts were also analyzed, su
has the probabilities of survival or apoptosis, frequen
y/period of os
illations,and shown to be in remarkable agreement with experimental data. Many otherquestions 
an be posed and examined in this hybrid framework: for instan
e,extending the set of parameters (degradation and synthesis rates, threshold
on
entrations) and varying the relative strengths of anti- and pro-apoptoti
links will lead to more re�ned models, 
apturing a wider range of kineti




14 Madalena Chaves, Thomas Eissing, and Frank Allg�owervariability. Although writing the logi
al rules requires some simpli�
ationsof the biologi
al pro
esses, dis
rete and hybrid models retain the essentialqualitative properties of the network. The e�e
t of the network stru
tureon the qualitative dynami
s of the system 
an be easily studied, even whenkineti
 details are not well known. This 
lass of models 
an thus be a powerfulmethod to generate predi
tions and test new hypothesis for 
omplex biologi
alnetworks.A
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