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Abstract: Models of biological systems are typically very complex and need to be
reduced before they are amenable to a thorough analysis. Also, they often possess
functionally important dynamic features like bistability. In model reduction, it is
sometimes more desirable to preserve the dynamic features only than to recover
a good quantitative approximation. We present an approach to reduce the order
of a bistable dynamical system significantly while preserving bistability and the
switching threshold. These properties are important for the operation of the system
in the context of a larger network. As an application example, a bistable model
for caspase activation in apoptosis is considered. Copyright c© 2007 IFAC.
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1. INTRODUCTION

The importance of switch–like decisions in biolog-
ical processes has been revealed in a wide range
of systems. Examples range from cell fate deci-
sions via the MAP kinase cascade (Ferrell and
Xiong, 2001) or apoptosis (Eißing et al., 2004) to
changes of metabolic parameters, as e.g. induced
by the lac operon (Yildirim et al., 2004). Switch–
like decisions are also a major feature of more
complex dynamics, as found for oscillations in the
cell cycle (Pomerening et al., 2003). Concerning
the mathematical modeling, switch–like decisions
are usually represented by bistable dynamical sys-
tems. These systems have two stable steady states,
and depending on initial conditions or external
stimuli, converge to one of these steady states.
Several theoretical approaches have been devel-
oped to study the existence of two stable steady
states in dynamical systems (Angeli and Sontag,
2004; Eißing et al., 2007).
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Another important issue in the modeling of bio-
logical systems is model reduction (Conzelmann
et al., 2004). Due to the complexity of biologi-
cal systems, typically only simplified models are
amenable to a thorough computational analysis.
Methods for model reduction which are theoret-
ically founded provide important means to ap-
proximate a detailed description of a system by
a simpler model.

Complex biological systems can often be viewed
as a set of interconnected modules, each playing
a specific role. In this case, two goals for model
reduction of single modules can be distinguished.
The first goal is to get a good quantitative approx-
imation of the original model, such that a solution
of the reduced model will differ as little as possible
from a solution of the full model in the relevant
variables (e.g. model outputs). For biochemical
systems, this is often achieved via a time scale
separation (e.g. Roussel and Fraser, 2001). The
second goal focusses on preserving the qualitative
dynamics of a module and its role in the network

Preprints Vol.2, June 4-6,  2007, Cancún, Mexico

327



(Dano et al., 2006). In large biological networks,
which typically are robust against fluctuations,
the exact trajectories of the module might not
be relevant, provided its qualitative behavior is
preserved such that it can maintain its role in the
network. When pursuing the latter goal, one can
anticipate a much larger reduction than for the
first one. For modules having the role of switches,
the goal is thus to reduce the model while pre-
serving bistability and the quantitative properties
that are important for the module’s operation, like
the switching threshold.

Based on a method introduced by Schmidt and Ja-
cobsen (2004), which allows to compute a measure
of the contribution of each state variable in the
model to bistability, we present an approach for
model reduction preserving bistability in switch–
like systems. The method is applied to a bistable
system involved in programmed cell death. We
show that the reduction preserves not only bista-
bility, but also quantitative properties like the
linear approximation to the manifold separating
the two regions of attraction of the stable steady
states, which is related to the switching threshold
of the system.

2. THE CASPASE ACTIVATION MODEL

We study a model for caspase activation, a ma-
jor part of apoptosis, developed by Eißing et al.

(2004). Apoptosis, also called programmed cell
death, is a signaling program that leads the cell to
commit suicide under appropriate internal and/or
external stimuli. It provides a living organism
with means to remove infected, malfunctioning or
simply unneeded cells to ensure its survival. Mal-
function of apoptotic signaling has been detected
in several diseases, including developmental de-
fects, neurodegeneration and cancer (Danial and
Korsmeyer, 2004). Therefore it is also of medi-
cal interest to understand the signaling network
which regulates apoptosis.

Cell death is a switch–like decision: based on the
input signal, the cell has to decide whether to
undergo apoptosis or to stay alive. There is no
gradual response. The role of the switching ele-
ment in apoptosis is taken by the caspase cas-
cade. One distinguishes initiator caspases which
receive the stimuli and effector caspases actually
carrying out apoptosis. Bistability in the model
arises from a positive feedback loop between the
effector caspases and the initiator caspases, in
connection with the specific inhibitors for each
type of caspases.

The model as developed by Eißing et al. (2004)
already contains several simplifications, in partic-
ular several types of initiator and effector caspases
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Fig. 1. Representation of the caspase activa-
tion model. All species undergo constitutive
degradation, which is not displayed in the
figure.

are combined in one species each, and the same
applies to several types of inhibitors of the effector
caspases. Furthermore, the external stimulus is
not explicitly included as an input, but instead
the initial amount of activated initiator caspases
resulting from the stimulation is considered as
input to the model.

The species present in the model are the initiator
caspase 8 and the effector caspase 3, both in active
(C8a, C3a) and inactive (C8, C3) forms, and the
inhibitors IAP and CARP as well as their complexes
with active caspase 3 and 8, respectively. Figure 1
displays the species involved in the model and
the reactions among them. The variables in the
mathematical model denote the molecule numbers
per cell of the various species (Table 1).

x1 = [C8]

x2 = [C8a]

x3 = [C3]

x4 = [C3a]

x5 = [IAP]

x6 = [C3a IAP]

x7 = [CARP]

x8 = [C8a CARP]

Table 1. Model state variables.

The equations for the caspase activation model are
given in Table 2 with parameter values as shown
in Table 3 (Eißing et al., 2004). These parameter
values have been collected from literature. For
simplicity, we consider state variables (given in
molecules per cell) as dimensionless.

The model yields two stable steady states, which
can be identified with the living state, where
the concentrations of all active caspases—both

ẋ1 = −k2x1x4 − k9x1 + k
−9

ẋ2 = k2x4x1 − k5x2 − k11x2x7 + k
−11x8

ẋ3 = −k1x2x3 − k10x3 + k
−10

ẋ4 = k1x2x3 − k3x4x5 + k
−3x6 − k6x4

ẋ5 = −k3x4x5 + k
−3x6 − k4x4x5 − k8x5 + k

−8

ẋ6 = k3x4x5 − k
−3x6 − k7x6

ẋ7 = −k11x2x7 + k
−11x8 − k12x7 + k

−12

ẋ8 = k11x2x7 − k
−11x8 − k13x8

(1)

Table 2. Model equations
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k1 5.8 · 10−5
k11 5 · 10−4

k2 1 · 10−5
k12 1 · 10−3

k3 5 · 10−4
k13 1.16 · 10−2

k4 3 · 10−4
k
−3 0.21

k5 5.8 · 10−3
k
−8 464

k6 5.8 · 10−3
k
−9 507

k7 1.73 · 10−2
k
−10 81.9

k8 1.16 · 10−2
k
−11 0.21

k9 3.9 · 10−3
k
−12 540

k10 3.9 · 10−3

Table 3. Parameter values [min−1]

free and bound—are equal to zero, and with
the apoptotic state where an almost complete
activation of the caspases determines the cell
to undergo apoptosis. The model captures the
switch–like behavior occurring during apoptosis
very well and is thus suitable to our needs.

Furthermore, we have a threshold manifold sep-
arating the regions of attraction, as well as an
unstable steady state on the threshold manifold
which we refer to as the decision state, as it is
relevant in the decision about the fate of the cell.

3. DETERMINATION OF RELEVANCE

When determining the relevance of each state
variable in the system to bistability, the unstable
steady state, or decision state, plays a crucial
role. The boundaries of the bistability region
in parameter space are marked by bifurcations
of the unstable steady state and thus can in
principle be detected by a classical bifurcation
analysis. Although bifurcation analysis reveals the
influence of parameters on the bistability, it does
not give the relevance of each variable and how
these are interconnected to generate bistability.

Based on a linear approximation of the model
around the decision state, Schmidt and Jacobsen
(2004) perturb the influence of one state vari-
able on the other variables of the system. In
the unperturbed case, the linear approximation
is unstable, since the decision state is unstable.
One now searches for a perturbation that renders
the decision state stable, which would roughly
correspond to reaching a bifurcation point in the
original nonlinear system. The magnitude of a
perturbation found in this way is then a measure
of the relevance to bistability of the perturbed
variable with its connections to other variables.

To make this approach precise, consider a system
given by the differential equation

d

dt
x = f(x), (2)

with x ∈ R
n. We assume that the system is

bistable and has an unstable steady state xd, the
decision state for the bistable behavior. Setting

L

1 + εi

x

xi

Fig. 2. Closed feedback loop with one feedback
path perturbed

∆x = x−xd, the linearization around the decision
state is given by

d

dt
(∆x) = A∆x, (3)

with A = ∂f
∂x

(xd). Note that, by our assumption,
the system (3) is unstable.

The linearized system is then considered as a
closed feedback loop, in the sense that all intercon-
nections between the state variables are put into
a virtual feedback path. Breaking this feedback
path yields the control system

L :
d

dt
(∆x) = Ã∆x + (A − Ã)u,

with u ∈ R
n and

Ã =







a11 0
. . .

0 ann






,

i.e. Ã contains only the elements on the diagonal
of A. By setting u = ∆x, the feedback path is
closed again and one obtains the original linear
system (3).

Following Schmidt and Jacobsen, we assume that
the matrix Ã is stable, i.e. aii < 0 for i = 1, . . . , n.
This implies that the instability of the closed
loop system (3) is due to interconnections among
variables.

The computation is then done as follows: for each
state variable xi, a perturbation εi is introduced
into the feedback path of this variable (Fig. 2).
This yields the system

Li(εi) :
d

dt
(∆x) = A∆x + (Ai − Ãi)εi∆xi,

where Ai and Ãi are the i-th column of A and Ã,
respectively.

We are now searching for the minimal perturba-
tion that will stabilize the system Li and define
the value ε̄i as

ε̄i = min{εi > 0 | Li(εi) or Li(−εi) is stable}.
(4)

If the minimum does not exist, set ε̄i = ∞. The
higher the value of ε̄i, the more difficult it becomes
to perturb the connections among the considered
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Fig. 3. Relevance of components to bistability in
the caspase activation model

state variable xi and the remaining variables such
that instability is lost, and the less relevant the
variable xi is to bistability. Formally, we use the
following definition of relevance.

Definition 1. The relevance Ri of the state vari-
able xi to the bistability of the system (2) is

Ri =
1

ε̄i

,

where ε̄i is given by equation (4).

This computation has been implemented numer-
ically in the Systems Biology toolbox for Matlab
(Schmidt and Jirstrand, 2006) and has been ap-
plied to the model of caspase activation described
in Section 2. The result is shown in Fig. 3, and
one distinguishes easily the relevant components
C8a, C3a, C3a IAP and C8a CARP from the oth-
ers, which are much less relevant to bistability.

It might be possible to develop a formal ap-
proach to compute ε̄ in equation (4) based on
the Kharitonov theorem and its extensions (Bhat-
tacharyya et al., 1995). However, the cost of com-
puting a stabilizing perturbation would be similar
to the one of a direct numerical search, since we
consider only one perturbation at a time. Thus
this idea is not pursued here.

4. BISTABILITY PRESERVING MODEL
REDUCTION

Based on the measure of relevance presented in
the previous section, we now develop a method
of model reduction which preserves bistability in
the reduced model. This reduction method is then
applied to the caspase activation model (1).

4.1 Method of model reduction

The basic idea of the model reduction already
used by Schmidt and Jacobsen (2004) is to retain

only the state variables which have been identified
as relevant to the bistability, and to neglect the
dynamics of the other variables. In contrast to
Schmidt and Jacobsen, who replace the neglected
state variables in the remaining equations with
their steady state values, we use their steady state
map which is computed from the full model. Our
approach will be justified in Section 4.2.

The relevant state variables can be identified by
choosing appropriate thresholds r > 0 for the
relevance and α > 1 which determines the gap
size.

Definition 2. The state variable xi, i = 1, . . . , n,
is said to be relevant (resp., irrelevant) to bista-
bility, if there exist r > 0 and α > 1 such that
Ri > αr (resp., Ri < 1

α
r).

Using this definition, the state x of the system (2)
is subdivided as

x → (xR, xI)
T,

where xR contains the relevant variables and xI

the irrelevant ones.

We then proceed as follows:

(1) For each variable which is not relevant to
bistability, compute its steady state map
from the full model, i.e. solve the equation

0 = f(xR, xI ) (5)

for xI to find the steady state map

xI = g(xR). (6)

(2) Drop the differential equations for xI from
the system and replace the components of xI

in fR by their steady state map g(xR).
The reduced model is thus given by

ẋR = fR(xR, g(xR)).

Computationally, this is the same procedure as di-
viding a system in fast and slow subsystems using
a quasi-steady-state approximation (Schauer and
Heinrich, 1983), though we do not consider fast
and slow subsystems here, but rather subsystems
that are relevant or irrelevant to bistability. The
map f has to be invertible with respect to xI ,
which is the case in our example. Local invert-
ibility can be checked via the implicit function
theorem, but easily checkable conditions for global
invertibility are not available in general.

To apply the described method to the model of
caspase activation (1), we choose r = 10 and
α = 10. This yields the separation

xR = (x2, x4, x6, x8)
T and xI = (x1, x3, x5, x7)

T.

For models where the separation is not that obvi-
ous, one would need to use an iterative algorithm
which checks different values of r and α.

330



For the first step in the reduction, one gets the
steady state map for xI as

x1 =
k
−9

k9 + k2x4

x3 =
k
−10

k10 + k1x2

x5 =
k
−8 + k

−3x6

(k3 + k4)x4 + k8

x7 =
k
−12 + k

−11x8

k12 + k11x2

(7)
and the dynamics for the reduced model are thus
given by

ẋ2 =
k
−9k2x4

k9 + k2x4

− k5x2 −

(k
−12 + k

−11x8)k11x2

k12 + k11x2

+ k
−11x8

ẋ4 =
k
−10k1x2

k10 + k1x2

−

(k
−8 + k

−3x6)k3x4

(k3 + k4)x4 + k8

+ k
−3x6 − k6x4

ẋ6 =
(k

−8 + k
−3x6)k3x4

(k3 + k4)x4 + k8

− k
−3x6 − k7x6

ẋ8 =
(k

−12 + k
−11x8)k11x2

k12 + k11x2

− k
−11x8 − k13x8.

(8)

Note that, in addition to the reduction in system
dimension, also the dimension of the parameter
space can be reduced: setting k̃9 = k9/k2 and
k̃10 = k10/k1, the number of independent param-
eters in the model is reduced by two.

4.2 Results of reduction and interpretation

Analyzing the dynamics of the reduced model, one
gets the following important results:

• All steady states of the full model are repro-
duced as a projection in the reduced model.

• The steady states of the reduced model have
the same local stability behavior, in particu-
lar the same number of eigenvalues with pos-
itive real parts as their corresponding steady
states in the full model after linearization.

• The linear approximation to the stable man-
ifold at the decision state is the same up to
projection for both the full and the reduced
model.

The first property is obtained automatically by
keeping the steady state map (7) of the ne-
glected variables, under the assumption that no
two steady states are projected to the same state
by the reduction. Then one directly achieves the
preservation of all steady states, which is a nec-
essary condition for preservation of bistability. At
this point, the change we made to the original
approach of Schmidt and Jacobsen (2004) is im-
portant. Replacing the neglected variables with
their constant steady state values does in general
not preserve steady states other than the unstable
decision state, in particular it does not preserve
the two stable steady states in the caspase ac-
tivation model. But to preserve bistability, it is
not only necessary to preserve instability of the
decision state, but one also needs to preserve the
two stable steady states. The use of the steady

state map provides a general way to preserve all
steady states in the reduced model, which can-
not be achieved by using constant values for the
irrelevant variables.

Whether the second property is a general conse-
quence of keeping the steady state map of the
dropped variables or not is an important open
problem. The third property is not general, but
seems to depend on a clear separation in relevant
and irrelevant state variables and thus on the
choice of the parameters r and α. Preservation of
bistability is actually due to the second property:
it guarantees that the living steady state and the
apoptotic steady state are stable in the reduced
model, while the third steady state, which is part
of the threshold manifold, remains unstable.

The third property gives some quantitative mea-
sures that are reproduced exactly in the reduced
model. The stable manifold of the decision state
represents the switching threshold surface for the
bistable system. Their linear approximations are
equivalent in the original and the reduced model.
This implies that we have not only recovered the
qualitative trait of the system being bistable, but
also quantitative measures like threshold values
have been preserved when staying close to the de-
cision state. It has to be expected though that the
models will differ more when further away from
the decision state, since the stable and unstable
manifolds will differ from their linear approxima-
tion.

Biologically, it is interesting that the method re-
vealed the active forms of the caspases as the
relevant elements in generating bistability, and
dropped all inactive forms and free inhibitors.
Using the steady state maps for these allows the
reduced system to retain its role as a biological
switch in the apoptotic network. In contrast to
a time–scale separation, the removed elements do
not show a much faster dynamics here. Yet their
dynamics are not contributing to bistability, and
thus can safely be discarded. The removed vari-
ables are then considered as a pool of substances
being in quasi steady state.

A comparison of the full and the reduced model by
numerical simulation yields the results displayed
in Fig. 4, obtained by starting with different
initial conditions of free C8a. This figure illustrates
that the linear approximation to the threshold
manifold (LATM) is the same up to projection
for both models, as well as the unstable direction
of the decision state. Furthermore, the trajectories
are very similar when starting close to any of the
steady states.

However, we also observe that the reduced system
has different dynamics when considered further
away from the steady state. In particular the
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Fig. 4. Trajectories of the full and the reduced
model projected to a plane spanned by vec-
tors p1 and p2. These were chosen such that
(a) the LATM gets projected to a line and (b)
they represent approximately the amount of
total C3a and C8a, respectively.

threshold in initial C8a required to undergo apop-
tosis is lower in the reduced model. Note that
for the full model, the linear threshold displayed
in Fig. 4 is a very good approximation of the
threshold manifold, while the approximation is
not that good for the reduced model. This is likely
due to the higher nonlinearities in the reduced
model introduced via the steady state maps of the
neglected components.

Although the trajectories of the full and the
reduced model are different when not starting
close to one of the steady states, the results are
still meeting our goals, since the focus of our study
is more on preserving bistability than recovering a
quantitatively similar model. In this way, we have
identified a reduced set of components responsible
for switch–like behavior.

5. CONCLUSIONS

We have studied a mathematical model of a cas-
pase activation system involved in the initiation

of apoptosis. The model is bistable to incorpo-
rate the switch–like behavior observed in the real
system. We have computed the relevance of each
state variable to bistability and observed that
only four out of eight variables have a high rele-
vance. Using this result, the model can be reduced
significantly by retaining only the relevant state
variables in the model equations plus the steady
state map of the irrelevant variables. The reduced
model retains the bistability of the original model
and also quantitative features such as trajecto-
ries close to the steady states and the linear ap-
proximation to the threshold manifold separating
the regions of attraction of the two stable steady
states.

REFERENCES

Angeli, D. and E. D. Sontag (2004). Multi-stability in
monotone input/output systems. Syst. Contr. Lett.

51, 185–202.
Bhattacharyya, S. P., H. Chapellat and L. H. Keel (1995).

Robust Control. The parametric approach. Prentice
Hall.

Conzelmann, H., J. Saez-Rodriguez, T. Sauter,

E. Bullinger, F. Allgöwer and E. D. Gilles (2004).
Reduction of mathematical models of signal
transduction networks: Simulation-based approach
applied to egf receptor signaling. IEE Proc. Syst. Biol.

1, 159–169.
Danial, N. N. and S. J. Korsmeyer (2004). Cell death:

critical control points.. Cell 116(2), 205–219.
Dano, S., M. F. Madsen, H. Schmidt and G. Cedersund

(2006). Reduction of a biochemical model with preser-
vation of its basic dynamic properties. FEBS Journal

273(21), 4862–4877.
Eißing, T., H. Conzelmann, E. D. Gilles, F. Allgöwer,

E. Bullinger and P. Scheurich (2004). Bistability anal-
yses of a caspase activation model for receptor-induced
apoptosis. J. Biol. Chem. 279(35), 36892–36897.

Eißing, T., S. Waldherr, F. Allgöwer, P. Scheurich and
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