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Abstract— Discrete dynamical systems, and in particular non-
deterministic Boolean automata, offer a convenient framework
to analyse complex regulatory networks motivated by biological
systems. In this paper, a method is proposed to analyse the
dynamics of Boolean networks under the realistic context-
sensitive asynchronous strategy. The main goal is to identify
the operational interactions responsible for a given dynamical
behaviour of the network. The application to a model of
programmed cell death (apoptosis) uncovers two families of
operational interactions, used by the cell to guide its decision
between the survival or death pathways.

I. INTRODUCTION

Boolean networks (and more generally discrete dynamical
systems) have been playing an increasingly important role in
the qualitative study of gene networks [1], [2], [6], [13]. The
components of a genetic network are typically messenger
RNAs and proteins, which are represented simply as ‘“‘ex-
pressed” (X = 1) or “not expressed” (X = 0). The evolution
of each variable X along a discrete time is given by a logical
rule which reflects the influence of all other variables on
X (typically, a combination of activation/repression effects).
The state space of a Boolean model is finite, and a transition
graph characterizes all the qualitative dynamical trajectories
of the network, based simply on the structure of interactions
and an updating strategy. Such a qualitative description does
not depend on specific kinetic parameters and so provides
a measure of the robustness of the network with respect to
fluctuations in the environment [1]. These general properties
and “easier” handling of the state space counterbalance the
loss of detailed information on time evolution and (more
realistic) continuous concentration changes. This is therefore
an appropriate framework to study complex networks and
gain intuition on the mechanisms responsible for a particu-
lar qualitative dynamical behaviour. For instance, a logical
model of the mammalian cell cycle developed in [6] was later
used to study possible strategies to control the cell cycle, so
that the cell spends less time in “undesirable states” [5].
In another study [13], a logical model of T cell receptor
signalling was used to find which interactions prevent a given
target biological function. These applications are useful from
the point of view of control and therapeutical interventions.

In this context, we propose a rigorous method to analyse
Boolean networks, combining the information contained on
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the asynchronous transition graph of the system (state space
dynamics) with the structure of the network (diagram of in-
teractions). This method may be viewed as a model reduction
technique, where a smaller network is identified to be re-
sponsible for the dynamics within a given region of the state
space. The first part of the method involves the simplification
and hierarchical organization of the asynchronous transition
graph (based on the well-known strongly connected com-
ponents decomposition). A new “reduced” transition graph
is then constructed which describes the transitions between
the strongly connected components (Section III). The second
part involves the identification of the operational network
(active interactions) within a given region of the state space
(Section IV). Finally, in Section V, probabilities of transition
are associated to each link in the transition graph (thus
generating a Markov chain), enabling to consider updating
strategies in a more quantitative manner. The probability
matrix may reflect different biological scenarios, such as
different relative degradation rates, or other experimental
situations that make one reaction more probable than an-
other. Relevant quantities, such as the expected times for
convergence to a given attractor, can then be computed.

The methods proposed above are illustrated by an ap-
plication to an apoptosis (or programmed cell death) net-
work [2], [14]. The dynamics of the network in response to
death-receptor stimulation is studied, and two core groups
of variables and pathways are identified. They correspond
to two mechanisms responsible for the decision between
programmed cell death or cell survival.

II. ASYNCHRONOUS BOOLEAN MODELS OF GENE
REGULATORY NETWORKS

A. Structure of a Boolean network

Discrete networks have often been proposed to represent
the dynamics of gene regulatory networks [10], [15]. The
mathematical basis of any discrete model consists of a finite
set of discrete variables that interact with one another through
discrete activation functions. Usually, these interactions are
comprised in a (finite) directed graph, called interaction
graph. This graph, together with the family of activation
functions, define the structure of a discrete system.

In this paper, we will consider Boolean networks, where
variables can take only two qualitative values: “0” represents
a basal level (inhibition -or weak activation- of the transcrip-
tion of a gene, absence of a protein) and “1” represents a high
level (activation of the transcription of a gene, presence of a
protein). As most of discrete models are based on the same
mathematical objects (with slightly different definitions), the



two following definitions only set the notations that will be
used in the rest of this paper (for a detailed explanation,
one can refer to the extensive literature on nondeterministic
automata).

Definition 1 The interaction graph of a n-dimensional
Boolean network is denoted by G = (V,E), where V =
{v1,...,v,} is the set of nodes (each node being associated
with a biological species) and £ C VXV is the set of directed
edges (representing the interactions between these species).
The edge (v;,v;) exists if node v; influences node v; (e.g.
v; activates or inhibits v;).

Definition 2 The structure of a n-dimensional Boolean net-
work is defined by an interaction graph G = (V, £) together
with a collection F = {f;, i = 1,...,n} of Boolean func-
tions. For each i € {1,...,n}, f; designates the activation
function of node v;.

Let x; be the Boolean variable associated with node v;. The
updated value of z;, denoted by ) is given by:

/
mi = fl (xilw"?xiki) )
where {Um Ce Uy } is the set of nodes that influence v;.

Remark 1 In the study of discrete models of biochemical
networks, the arrows of the interaction graph are usually
signed, indicating whether the arrow represents an activation
or an inhibition. It is to be noted that, for a general network
given by Def. 2, it is not always possible to associate a sign
to each arrow in an unequivocal manner. Nevertheless, for
networks constructed from the description of a particular
biological system, most of the edges can actually be signed
unequivocally.

In order to illustrate these definitions, we describe in the
following a 12-dimensional Boolean network, modelling an
apoptosis signalling pathway. This example will be analysed
throughout the whole paper.

B. Working example: an apoptosis signalling pathway

Apoptosis, or programmed cell death, is a physiological
process which allows an organism to remove damaged or un-
wanted cells, thus maintaining normal cellular homeostasis.
Diseases such as cancer result from malfunctioning apoptotic
pathways. The apoptosis signalling pathway to be considered
in this paper is based on the model presented in [2], which
is, in fact, a discrete version of a continuous model of
apoptosis first developed in [14]. For details on the modelling
step, the reader is referred to [2], [4], [9], [12], [14] and
references therein. Fig. 1 shows the interaction graph of the
system. The activation functions can be found in Table I (the
notations used are classical in Boolean algebra: a bar over
a variable represents the logical negation, and the symbols
V and A represent respectively the logical disjunction and
conjunction).

( TNF )

Fig. 1. Interaction graph of the simplified model of regulation of apoptosis
via the NFxB pathway. As noted in Remark 1, some edges could not be
signed unequivocally (influence of TNF on IxB, IAP and CARP).

TABLE I
BOOLEAN RULES FOR THE APOPTOSIS NETWORK DEPICTED IN FIG. 1.
Node Boolean rule
TNF TNF (input of the whole system)

T2 TNF A FLIP

IKKa TNF A A20a A C3a
NFxB 1B
NFkBn. NFkB A IkB
1xB [TNF A (NF&By, A IKKa)] V
[TNF A (NFkBy V IKKa)]
A20a TNF A NF&B e
IAP [TNF A (NF&Bue A C3a)] V [TNF A (NF&By. V C3a)]
FLIP NF&Bwe
C3a IAP A C8a
C8a CARP A (C3a V T2)
CARP [TNF A (NF&Bue A C3a)] V [TNF A (NF&By, V C3a)]

Note that TNF stimulation triggers two opposite effects:
activation and inhibition (through NFxB) of caspases C3a,
C8a. An abundance of active caspases typically leads to cell
death, while a high concentration of IAP and a low level of
C3a, C8a typically characterizes a living cell. The dynamics
of the network will ultimately lead to a decision between
cell death or cell survival.

C. Synchronous vs asynchronous dynamics

Consider a n-dimensional network N = (V, &, F) (see
Def. 2). The state space of A is the set Q@ = {0,1}"
whose cardinality is 2". As the state space is finite, one can
represent the discrete dynamical behaviour of the network
with a finite directed graph, called transition graph. In order
to define it properly, one needs to assign an operating mode,
or updating strategy. There exist two main operating modes
studied in the literature. The first one is the synchronous
strategy, where all variables are simultaneously updated
at each discrete instant [10]. The dynamics implied by
the synchronous strategy presents some nice mathematical
properties (mainly, the transition graph is deterministic) that
allow one to simulate high-dimensional networks, randomly
generated, in order to find statistically relevant types of
dynamical behaviour. However, if one wants to model a given
biological system in a more realistic manner, the synchronous
updating strategy may be quite a strong assumption, poorly



related to the reality. This is why other approaches have
been proposed, by developing asynchronous strategies, where
discrete variables are updated in a heterogeneous (context-
sensitive) way over time. Known as “nondeterministic au-
tomata” in computer science, asynchronous networks as
models of biological regulatory networks are often called
Thomas’ networks [15].

For any state X € (2, we introduce the following notations:

e F(X) € Q designates the synchronous successor of X,
ie: fori =1...n, Fj(X) = 2].
o For each i € {1,...,n}, X* designates the Boolean
VECLOT: (X1, ..., Ti—1,Tq, Tit1,--->Tp) € L1
o U(X) ={v; €V]a; #x;} CV denote the (possibly
empty) set of nodes that can be updated in the state X.
Throughout this paper, simultaneous updates of several nodes
is forbidden (which is reasonable from the biological point
of view). Furthermore, every possible update is taken into
account (i.e. if at state X the node v; is liable to change,
then that update must be present in the transition graph).
These two conditions lead to the following:

Definition 3 The asynchronous transition graph of a network
N = (V,E,F) is the directed graph G = (V, E) where the
set of nodes V' is the state space Q = {0,1}" and the set of
directed edges E is given by:

E:{(X—J(i) \XeQ,vieU(X)}.

Contrary to the synchronous case, the asynchronous transi-
tion graph is non-deterministic (one state may have several
successors). One consequence is for instance that the notions
of attractor, or basin of attraction, are not straightforward
(they will be defined later). This non-determinism is a
fundamental property as the asynchronous transition graph
comprises all possible trajectories in a finite structure, which
allows to find general dynamical properties, valid whatever
the updating strategy.

Obviously, although finite, the size of this graph grows
exponentially with the dimension of the system (in the
boolean case, its size is exactly 2™). This limits the use
of general graph algorithms (see next section) to relatively
low dimensional systems (on the order of n = 10-20), with
respect to the synchronous case, where the dimension of the
system under study can be higher.

ITI. HIERARCHICAL ORGANIZATION OF THE
ASYNCHRONOUS TRANSITION GRAPH

In this section, a general methodology to analyse the asyn-
chronous transition graph of a Boolean network is presented.
This methodology is based on different algorithms that are
classical in the field of graph theory (mainly the strongly
connected components decomposition and the topological
sort). One can refer to [3] for a detailed analysis of these
algorithms. The method provides answers to many biological
issues tackled by Boolean models, such as the existence and
characterization of attractors, reachability or controllability
of a given state, etc. More generally, our main goal is to find

dynamical properties that are independent of the choice of
a particular updating strategy, and therefore robust with the
structure of the network. Some of the following results are
related to results of [6], [7].

A. SCC decomposition and hierarchical organization

The notion of hierarchical organization of a directed graph
(or digraph) relies on the well known strongly connected
components (SCC) decomposition algorithm. Let G =
(V, E) be a digraph. A strongly connected component of G
is a maximal set of vertices C' C V' such that for every pair
of vertices u,v € C, u and v are reachable from each other
(see [3] for a precise definition). The SCC decomposition
of G consists in computing its SCCs: C1,...,C), and then
in computing the digraph G*¢ = (V¢ E5°¢) defined as
follows:

o Ve ={C1,...Cp},

o given 1 < i,j < p, the directed edge (C;,C;) belongs

to ££°°¢ if and only if there are u € C; and v € C; such

that (u,v) € E.
It can be easily proved (see [3]) that the digraph G*¢°
contains no directed cycles. It is called a dag (for directed
acyclic graph). This is a key property of G*¢¢, because every
dag can be topologically sorted (see [3], section 22.4). A
topological sort of a dag can be viewed as a classification
of its vertices in several hierarchical levels Hq, Hs,... such
that the vertices of the first level H; are vertices with no
predecessors, and the predecessors of vertices of level H;,
1 > 0, are contained in inferior levels H; with j < 4.

The main interest of this hierarchical organization, applied
to the asynchronous transition graph of a Boolean network,
is that, whatever path we choose in the graph (i.e. whatever
updating order we choose for the variables), once it leaves a
hierarchical level H;, the system cannot return to this level.
So, any trajectory will travel “down” the hierarchical levels:
H,, - H, — ... (withi; <ig<...).

Definition 4 Let N be a Boolean network, a SCC c* € V¢
that has no successor in G*¢ is called an (asynchronous)
attractor of N.

In graph theory, such SCCs are often called terminal SCCs.
In other words, the asynchronous attractors of a Boolean net-
work are the strongly connected components of the transition
graph that cannot be escaped by the system, whatever the
updating strategy. It should be noted that it is still possible to
construct specific asynchronous updating strategies such that
the system gets “stuck” in a non terminal SCC. Nevertheless,
such intermediate SCCs will not be considered as attractors,
as we seek general dynamical properties that are valid for all
the choices of updating rules. Also note that in a probabilistic
approach (see last part), given any probability distribution for
the transitions (provided that any asynchronous successor of
a state has a non-zero probability), the transition graph can
be seen as an absorbing Markov chain, and its attractors are
actually its absorbing classes.



Definition 5 Letr ¢ be a SCC of the asynchronous transition
graph. A(c) (resp. R(c)) designates the attraction set (resp.
the reachability set) of c, that is, the set of all SCCs that
can lead to c (resp., the set of all SCCs that can be reached
Sfrom ¢). If ¢ is an attractor of the network, the set A(c) is
its basin of attraction.

As G*°° has no cycles, the sets A(c) and R(c) can be easily
computed by straightforward recursive procedures.

B. Application to the apoptosis network

The results presented here were obtained with codes im-
plemented in Mat 1ab. Following the mat 1ab_bgl! library
specifications, graphs were represented with sparse matrices,
allowing a quite efficient implementation.

Recall that the system under study is of dimension n =
12. The state space is Q = {0,1}'2, and the size of the
asynchronous transition graph G is 2'2 = 4096. The number
of strongly connected components is p = 1472, therefore the
size of G*¢¢ is only 40% of the size of G. The hierarchical
organization of this graph has only 38 hierarchical levels and
3 attractors. As TNF is an input, its value remains constant,
whatever the path in the graph. Therefore G (and also G*°°)
has two regions that are completely separated (i.e., there exist
no directed edges between them). They will be denoted 7°
(where TNF = 0) and 7' (where TNF = 1).

The attractors of the system (corresponding to three termi-
nal SCCs) will be denoted a1, as and as. Attractors a; and
as both contain only one state (they are therefore equilibrium
points) whereas a3 contains 56 states. Table II indicates the
boolean values taken by the variables within each attractor
(symbol * indicates variables that oscillate within the attrac-
tor). As can be seen in Table II, a; and ay belong to 70

TABLE II
BOOLEAN PATTERNS OF THE THREE ATTRACTORS.

TNF T2 IKKa NFkB NF&B e 1B
al 0 0 0 0 0 1
as 0 0 0 0 0 1
as 1 * 0 % * *

A20a IAP FLIP C3a C8a CARP
a1l 0 1 0 0 0 1
a2 0 0 0 1 1 0
as * 0 * 1 1 0

(TNF= 0), the first one corresponding to the survival of the
cell (caspases C3a and C8a are absent) and the second one
corresponding to the triggering of apoptosis (with activation
of the caspases). Attractor az belongs to 7' (TNF= 1),
within this attractor the caspases are activated while NFxB,
IxB and other factors oscillate. At first, the presence of
caspases might seem to indicate that apoptosis will be the
final outcome. Of course, this “phenotypic” interpretation is
only valid provided the input TNF is effectively sustained
for a sufficiently long time (long enough for the caspases
to initiate the effective steps of apoptosis, not represented
in our model). However, for “pulse”-like stimulation, with

Isee http://www.stanford.edu/"dgleich/programs/matlab_bgl/

removal of TNF after a certain time interval, trajectories
starting from a3 (and then switching to the corresponding
state with TNF=0) may still converge to the survival state
(see Section V). Therefore, considering the model as a
decision process, we can conclude that attractor a3 is not
really “apoptotic”, in the sense that survival outcome is still
possible upon TNF removal.

Remark 2 In attractor as, six variables oscillate, which
accounts for 2° = 64 states. So the concise description of a3
in Table I is not enough to completely describe the attractor
(which contains only 56 states). Actually, if we consider the
projection of as onto the 3-dimensional subspace composed
of NFkB, NFKB, .., and IkB (the other variables A20a,
FLIP, and T2 being only outputs, as can be seen in Fig. 2,
top), we obtain a SCC lying in {0,1}> composed of seven
states. This explains why as contains only 7x 23 = 56 states.

IV. IDENTIFICATION OF OPERATIONAL INTERACTIONS

The set of SCCs can be seen as a new state space, reduced
from 2™ to p states. Thus, the graph G*°¢ describes the
(asynchronous) dynamics of a new, reduced, system. As a
second step of our model reduction technique, we propose
in this section to identify a subset of rules that govern the
dynamics in a given region of the new state space.

This method makes use of the algorithm REVEAL, devel-
oped in [11]. The primary goal of this algorithm is to identify,
given a set of discrete transitions {X — X' : X, X' € Q},
the set of Boolean networks (Def. 2) that are consistent
with these data. Initially, this algorithm was proposed as
an inference algorithm, identifying Boolean networks from
(qualitative) experimental data, such as time series issued
from DNA microarrays. With respect to that goal, its main
limitation is that these time series are supposed to obey the
synchronous update of the variables, which is, as already
said, quite a strong assumption from a biological point of
view. Nevertheless, we show in the following that adapt-
ing this algorithm to the asynchronous framework provides
interesting results, that improve the understanding of the
underlying biological system. For details about REVEAL
(correctness, complexity analysis etc.), the reader is referred
to [11], [16].

A. Algorithmic search for operational interactions

Let N = (G, F) be a n-dimensional Boolean network, and
let G,G®° denote respectively its asynchronous transition
graph and its SCC decomposition. The principle of the
method relies on the following observations.

1) Suppose the system is in an initial state X°. This state
belongs to a unique SCC, denoted by c.

2) Compute the reachability set R(c) (Def. 5). This set
contains all the states that are reachable by the system
from ¢, whatever the updating strategy.

3) Reconstruct the partial synchronous successor function
on R(c).

4) Applying REVEAL to this partial synchronous suc-
cessor function identifies the Boolean rules (and the



corresponding interaction graph) that are operational
in the system, starting from c.

A detailed description of this algorithmic procedure can be
found in [17]. It is to be noted that the structure identified by
REVEAL is not a priori unique (see [17] for more details).

B. Application to the apoptosis network

The previous procedure has been applied to the asymptotic
behaviours in the two separated regions 7° and 7!. As
seen previously, region 7' contains a unique oscillatory
attractor as (see Table II). The operational graph of this
attractor is depicted in Fig. 2 (top). In the region 7°, we
applied the method to a SCC c¢* situated just before the fork
between the two equilibria. The corresponding operational
graph is depicted in Fig. 2 (bottom). The first graph rep-

( TNF )

( TNF )
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FkBhue

Fig. 2. Top: operational graph within attractor a3 (oscillatory behaviour,
TNF= 1). Bottom: operational graph prior the choice between equilibria a1
and a2 (survival of the cell/apoptosis). The isolated variables have a fixed
value, that can be found in Table II.

resents the interactions that stay ultimately active as long
as TNF stimulation is sustained. The second one represents
the interactions that are eventually responsible for the choice
between apoptotic and anti-apoptotic pathways upon TNF
removal. The interesting fact about these two graphs is
that the first one contains only two feedback loops (both
negative), and the second one contains only one positive
loop. They actually illustrate a very general result in systems
biology (see for instance [8]) that links multistationarity with
positive feedback loops and the presence of oscillations with
negative feedback loops. Indeed, what our method shows on
this example is that it is algorithmically possible, within the
asynchronous boolean framework, to isolate in a complex
interaction graph (Fig. 1), comprising multiple feedback
loops, which loops are eventually responsible for two global
dynamical behaviours: oscillations and multistationarity.

V. PROBABILISTIC ANALYSIS OF ASYNCHRONOUS
DYNAMICS

The previous sections dealed with a systematic qualitative
study of the trajectories of an asynchronous Boolean model.
The transition graph G provides all possible successors
without indicating which is more probable at a given time.
A more quantitative model may be obtained by associating
a transition probability with each edge of G. In other words,
one can construct a discrete time Markov chain from the
dynamics on G.

The graph G can be characterized by its adjacency matrix,
A(G) = (aij)i<ijcon. Where a;; = 1 if state j is a
successor of state 7, and a;; = 0 otherwise. If a given state ¢
has only one successor 7, then any trajectory going through
1 moves to j with probability p;; = 1. If successor 7 has
N (i) > 2 successors, then different probabilities, p;; < 1,
may be assigned to each transition, with Z;V:(? pij = L.

A transition from ¢ to j occurs due to a change in
one of the variables so, to assign the different transition
probabilities, biological knowledge can be used to decide
which variables change more frequently than others (based,
for instance, on relative turn-over rates). Following the notion
of priority classes [6], the idea is to divide the variables into
several groups and assign a weight to each of these groups:
higher weights denote a more probable transition. A similar
idea was used in [1], where two classes were considered,
one for proteins and another for mRNAs. More generally,
consider p classes Ci, ..., C, and their respective weights,
Wi > Wy > ---> W,, and associate with each transition
(i,7) the value w;; = W,., where r is the index of the class
containing the variable that has been updated between ¢ and
Jj. Then define the transition matrix, P(G) = (p;,;)
as follows:

1<ij<an

VL<0,j <2, pij = —g (1)
D k=1 Wik
To compute the transition probabilities between two SCCs ¢
and ¢/, in the reduced graph G*°, it then suffices to apply
the following formula:

scc __ 1 ..
pc,c’ - |S(C)| Z Z Dij- (2)

1€S(c) je€S(c’)

(where S(c) denotes the set of states that are contained in
the SCC ¢).

For the apoptosis network, four priority classes were cho-
sen (Table III) based on the parameters reported in [4], [14]
and references therein. The first class of proteins (wy = 7)
corresponds to variables with higher degradation rates. The
matrix P*““ was then constructed following (2).

We used this matrix to analyse the response of the cell to
a shutdown of TNF stimulation. Technically, we considered
any state X € 7! (i.e. where TNF is present), and for all
such states, we computed the corresponding state Y in 77°
(where TNF is absent). Denoting by ¢ the SCC that contains
Y, we can then compute the probability to reach attractor
a1 (survival) and attractor ao (apoptosis) from c. We then



TABLE III
PRIORITY CLASSES AND RESPECTIVE WEIGHTS.

Class  Weights  Variables

C1 w1 =7 NFkB, NFkByyc, IkB, CARP
Ca we =5 Th, IKKa

C3 w3 =3 C3a, C8a

Cy wyg =1  A20a, IAP, FLIP

averaged these probabilities with respect to the hierarchical
levels of initial states X. The result is given in Fig. 3.
This figure shows that cell survival is always more probable

E—

Hierarchical level where TNF is inhibited

Fig. 3. System’s response to TNF switch off at level H; (z-axis). The two
curves represent the average probability of “cell survival” (dashed) or “cell
death” (solid), as the system starts from a state in hierarchical level H;.

(around 85%) than apoptosis, except when TNF is switched
off once the trajectory has reached the last hierarchical level
of T!. This suggests that, to promote apoptosis, TNF should
be sustained long enough for the system to reach attractor
as. This observation is also in agreement with experimental
results, which indicate that longer exposure to TNF leads to
higher cell death rates (see [4] and references therein).

VI. CONCLUSION AND FUTURE WORK

The qualitative dynamics of genetic networks were stud-
ied by analysing the asynchronous transition graph of the
Boolean model associated with the network’s diagram of
interactions. The notion of a family of operational inter-
actions was introduced, defined with respect to a given
(self-contained) region of the transition graph, as a set of
interactions which generate the transition dynamics in that
particular region of the graph.

A method for identifying operational interactions was
developed, based on the decomposition of the asynchronous
transition graph (or a sub-graph) into its strongly connected
components, followed by the reconstruction of the Boolean
rules that represent the graph of transitions among the SCCs.
The identification algorithm known as REVEAL was adapted
and used to determine a family of Boolean rules that describe
the dynamics represented by a (sub-)graph of transitions.

As illustrated with the apoptosis example, identifying
operational interactions allows to uncover which mechanisms

are mainly responsible for a given asymptotic behaviour
of the system, for instance, the existence of oscillatory
dynamics or (multi-)stability.

Altogether, these are useful tools to test hypotheses and
generate predictions concerning the structure of interconnec-
tions and the importance of each variable to the overall
dynamics. Future work will focus on the control of the
system, towards either the apoptotic or the survival states.
Possible approaches include finding and implementing a

suitable matrix Py, or re-wiring the diagram of interactions

in an appropriate way.
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