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Multistability and oscillations in genetic control of metabolism
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Abstract

Genetic control of enzyme activity drives metabolic adaptations to environmental changes, and there-
fore the feedback interaction between gene expression and metabolism is essential to cell fitness. In this
paper we develop a new formalism to detect the equilibrium regimes of an unbranched metabolic network
under transcriptional feedback from one metabolite. Our results indicate that one-to-all transcriptional
feedback can induce a wide range of metabolic phenotypes, including mono-, multistability and oscil-
latory behavior. The analysis is based on the use of switch-like models for transcriptional control and
the exploitation of the time scale separation between metabolic and genetic dynamics. For any combi-
nation of activation and repression feedback loops, we derive conditions for the emergence of a specific
phenotype in terms of genetic parameters such as enzyme expression rates and regulatory thresholds.
We find that metabolic oscillations can emerge under uniform thresholds and, in the case of operon-
controlled networks, the analysis reveals how nutrient-induced bistability and oscillations can emerge as
a consequence of the transcriptional feedback.

1 Introduction

Metabolism and gene expression are two fundamental levels of cellular regulation. They are tightly inter-
connected, as gene expression can impact metabolic activity through changes in enzyme concentrations
and, conversely, metabolic species can control gene transcription and modulate enzyme expression. These
two levels have specific functions and properties, and it remains a challenge to identify the properties that
emerge from their interaction [1, 2]. Metabolic-genetic interactions can lead to a diverse range of dynamic
behaviors, each one of which defines a specific metabolic phenotype. Our understanding of natural regu-
latory circuits is important not only for revealing the design principles that underlie observed metabolic
dynamics, but also for our ability to design synthetic circuits that enable new phenotypes [3].

A number of recent studies have demonstrated the importance of crosstalk interactions between ge-
netic and metabolic systems. For example, the works in [4, 5] developed integrated metabolic-genetic
models for catabolite repression in E. coli and the central metabolism of B. subtilis, respectively, whereas
transcriptional regulatory principles were discussed in [1, 6]. These studies have focused on large scale
models that allow for useful simulation-based predictions, but their complexity hinders the analysis of the
mechanisms by which metabolic phenotypes emerge from the interconnection between the metabolic and
genetic domains.

A specific metabolic phenotype depends on the regulatory topology, which defines which metabolites
regulate which enzymes, and the regulatory logic, which specifies whether a metabolite activates or represses
gene expression. The main objective of this paper is to investigate the phenotypes generated by a one-to-all
regulatory topology under different configurations of activation and repression feedback loops.
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In a one-to-all topology, a single metabolic species modulates the activity of all enzymes via metabolite-
responsive transcription factors. One-to-all regulatory motifs are also referred to as “single input modules”
and were identified as one of the building blocks in genome-wide bacterial networks [7]. Metabolic networks
under one-to-all transcriptional regulation appear in uptake and utilization/biosynthesis systems, whereby
enzyme expression is controlled by intracellular metabolites, as in the case of the lactose operon [8, 9], and
amino acid biosynthesis, e.g. the tryptophan operon [10] and the arginine synthesis network [11].

We focus on a model that integrates classical kinetic equations for metabolite dynamics and piecewise
affine (PA) differential equations to describe switch-like transcriptional regulation exerted by the metabolite
(Section 2). The metabolic subsystem describes the evolution of n metabolites through a chain of (n +
1) enzymatic reactions with a generic class of enzyme kinetics that includes Michaelis-Menten and Hill
equation as special cases. The genetic circuit models enzyme concentrations in response to the back-fed
metabolite and can account for any combination of activation or repression regulatory loops.

The use of PA models for biochemical systems was pioneered by Glass and Kaufmman [12] and has
lead to a number of extensions [13, 14, 15, 16] and the development of dedicated simulation tools [17].
They provide a convenient way of encoding switch-like regulation with a small parameter set (i.e. only
expression rates and regulatory thresholds). The analysis of PA models, however, has been limited to
purely genetic networks and their impact on protein concentrations. In this paper we develop a new
framework to analyze a PA genetic system coupled with a metabolic network. Our specific goal is to
identify what types of metabolic phenotypes can appear and how they depend on the gene regulatory
circuit. The main contributions of this work are:

Model reduction and analysis We show that under a time scale separation the complete system
reduces to a planar PA system defined in three conic domains (Section 3). The conic geometry of the
reduced system contrasts with PA systems for purely genetic systems (which are defined on rectangular
grids [12, 14, 15]), and is a consequence of the metabolic-genetic crosstalk. The 3-cone model can be
studied as a pair of 2-cone ones, and therefore we provide a rigorous analysis of a PA system in a 2-cone
partition. To this end we use Filippov’s construction for discontinuous dynamical systems [18] and establish
geometric conditions for the existence multiple equilibria and limit cycles (Section 4).

Multistability and oscillatory behavior We use the derived conditions to detect multiple equilibria
and oscillations in the metabolic network subject to one-to-all transcriptional feedback (Section 5). The
analysis suggests that one-to-all regulation can generate a wide range of metabolic phenotypes: mono-,
multistability, and oscillatory behavior. For given metabolic network and regulatory logic, a particular
phenotype appears as a function of gene expression parameters and enzyme degradation rates. We ob-
serve that under different activation or repression thresholds, the regulatory circuit can exhibit multiple
equilibrium fluxes, whereas oscillatory behavior can emerge under identical thresholds.

Operon regulation We apply our methodology to the special case of bacterial operons, whereby a set of
genes are collectively controlled by a single transcription factor (Section 6). The analysis predicts nutrient-
induced bistability, which was experimentally observed in the lactose operon [19], and also suggests the
emergence of nutrient-induced oscillations.

2 Generic model for an unbranched metabolic network under tran-
scriptional regulation

We consider an unbranched metabolic network under one-to-all transcriptional regulation from a metabo-
lite. A schematic diagram of such class of networks is shown in Figure 1A, where si denotes the concentra-
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tion of the ith metabolite and vi is the rate of the ith reaction (catalyzed by an enzyme with concentration
ei).

s0 s1 s3s2

e1 e2 e3 e4

v1 v2 v3 v4

Extracellular
nutrient

Internal
metabolite

Product

e2e1

TF TF

A B

Figure 1: One-to-all gene regulation in an unbranched metabolic network. (A) Generic model. (B) Example
network where nutrient uptake and consumption are controlled by metabolite-responsive transcription
factors (TF).

As a way of accounting for the mass exchange between the network and its environment, we assume
that the metabolic substrate s0 is constant. For the sake of generality, in this paper we deal with networks
of n metabolites and n + 1 enzymes regulated by metabolite s`−1 (` > 1). The rate of change of both
metabolite and enzyme concentrations can be described by the differential equations

ṡi = vi(si−1, ei)− vi+1(si, ei+1), (1)

ėi = κ0
i + κ1

iσi(s`−1, θi)− γiei. (2)

where κ0
i , κ

1
i , θi, γi are positive parameters. The metabolic model (1) arises from the mass balance between

the reactions that produce and consume si, whereas the model for the enzyme concentrations (2) comes
from the balance between protein synthesis and degradation (modeled as a linear process with kinetic
constant γi). The constant κ0

i represents a basal expression level of protein ei, whereas κ1
i and the functions

σi model the effect of the regulator on the synthesis rates.
The regulatory function σi(s`−1, θi) represents the lumped effect of gene expression control by a tran-

scription factor, together with its interaction with the regulator s`−1. This kind of transcriptional reg-
ulation appears, for example, in bacterial uptake and utilization systems, whereby enzyme expression is
controlled by metabolite-responsive transcription factors (Figure 1B), e.g. the lactose operon [8, 9], and
also in aminoacid biosynthesis, e.g. the tryptophan operon [10] and arginine synthesis [11].

To account for the typical switch-like nature of transcriptional regulation, we take σi to be a step
function; depending on whether gene expression is activated or repressed by s`−1, we assign σi = σ+ or
σi = σ− = 1− σ+, respectively, with

σ+(s`−1, θ) =

{
0, s`−1 < θ

1, s`−1 > θ
. (3)

This class of regulatory functions is widely used in the analysis of genetic networks [20, 15] and was first
suggested in [12]. Under this regulatory model, genes can be switched ON or OFF depending on the
metabolic regulator: in the OFF state gene i is transcribed at a constitutive rate κ0

i and the protein
concentration will approach

Eoff
i = κ0

i /γi, (4)
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whereas in the ON state its transcription rate jumps to κ0
i + κ1

i and the concentration approaches

Eon
i = (κ0

i + κ1
i )/γi. (5)

The enzyme kinetics are comprised in the reaction rates vi(si−1, ei), and in the sequel we will not
presuppose a specific form for them. Instead, to keep the analysis as general as possible, we make the
following generic assumption on the enzyme kinetics.
Assumption 1 The metabolic reaction rates are linear in the enzyme concentrations and non-decreasing
functions of the metabolite concentrations. The enzyme kinetics can then be written as

vi(si−1, ei) = gi(si−1)ei, (6)

where gi is the enzyme turnover rate (i.e. the reaction rate per unit of enzyme concentration) and satisfies

∂gi(si−1)
∂si−1

≥ 0. (7)

The monotonicity condition in (7) accounts for a broad class of saturable enzyme kinetics that includes,
in particular, Michaelis-Menten and Hill kinetics [21]. The saturable form of the enzyme kinetics limits
the parameter space that yields a valid equilibrium. This is discussed in Appendix A. Our aim in the rest
of the paper is to characterize the dynamic properties of the regulatory circuit, including the detection of
multiple equilibria and oscillatory behavior.

3 Model reduction

3.1 Quasi steady state approximation

Metabolic dynamics operate in a much shorter time scale than their genetic counterpart [22]. This property
allows for the approximation of the nonlinear dynamics in (1) by an algebraic relationship between the
enzymes and metabolite concentrations. If the metabolites are assumed to be in quasi steady state (QSS)
with respect to the enzyme concentrations, then we set ṡi(t) = 0 for all t ≥ 0 to obtain

gi+1(si(t)) = gi(si−1(t))
ei(t)
ei+1(t)

, (8)

Equation (8) holds for every i = 1, 2, . . . , n and hence it is equivalent to

gi(si−1(t)) = g1(s0)
e1(t)
ei(t)

, (9)

for i = 2, 3, . . . , n. The above is an algebraic equation for the metabolites as a function of the enzyme
levels. The existence of a solution to (9) is discussed in Appendix A and depends on the initial conditions
and the saturation values of the enzyme kinetics. From the approximation in (9), we can compute the
trajectory of the regulator by solving the equation

g`(s`−1(t)) = g1(s0)
e1(t)
e`(t)

. (10)

A key aspect of this approximation is that the solution of (10) depends only on two enzymes. The
dynamics of the complete feedback system can thus be characterized with the 2-dimensional phase plane
of the differential equations

ė1 = κ0
1 + κ1

1σ1(s`−1, θ1)− γ1e1,

ė` = κ0
` + κ1

`σ`(s`−1, θ`)− γ`e`,
(11)

subject to s`−1 satisfying (10). Note that in the case of product feedback (s`−1 = sn), the above approxi-
mation also applies to reversible metabolic reactions.
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3.2 Reduction to a piecewise affine system in conic domains

The algebraic equation in (10) can be interpreted as a mapping from R≥0 to R2
≥0, whereby each value of the

regulator s`−1 maps into a half-line in the (e1, e`) plane. Moreover, as a consequence of the monotonicity
of g`, the partition of R≥0 induced by the thresholds can be mapped into a partition of R2

≥0: if s`−1 < θi
then

g`(s`−1) < g`(θi), (12)

which combined with (10) yields

e` > βie1, (13)

with βi = g1(s0)/g`(θi). The relation in (13) defines a cone in the x = (e1, e`) plane

Di =
{
x ∈ R2

≥0 : x2 > βix1

}
, (14)

and we define its complementary cone as D̄i = R2
≥0 \ (Di ∪ Si) with Si the half-line

Si =
{
x ∈ R2

≥0 : x2 = βix1

}
. (15)

The half-line Si is a subset of the (e1, e`) plane where the regulator reaches the switching threshold θi.
The dynamics of the reduced system in (11) depend on the value of s`−1 with respect to the thresholds θ1

and θ`. Assume, without loss of generality, that θ1 < θ` (the problem can be treated analogously in the
case θ1 > θ`, and the case θ1 = θ` can be treated as later in Section 4). With the previous definitions we
can establish the following relations

s`−1 < θ1 ⇐⇒ x ∈ R1,

θ1 < s`−1 < θ` ⇐⇒ x ∈ R1`,

s`−1 > θ` ⇐⇒ x ∈ R`,
(16)

where R1 = D1, R1` = D̄1 ∩D` and R` = D̄`. In the sequel we refer to Si as a switching domain, whereas
the cones Rj are called regular domains (see [15] for detailed definitions). The system in (11) is equivalent
to a piecewise affine (PA) system [23] in three conic domains

ẋ = h(x)− Γx, (17)

where

h(x) =


h1 x ∈ R1

h1` x ∈ R1`

h` x ∈ R`
, Γ =

[
γ1 0
0 γ`

]
. (18)

The vectors h1, h1` and h` are constant and their values depend on whether s`−1 activates or represses the
expression of enzymes e1 and e`. For example, in the case of repression of both enzymes (i.e. σ1 = σ− and
σ` = σ−) we have

h1 =
[
κ0

1 + κ1
1

κ0
` + κ1

`

]
, h1` =

[
κ0

1

κ0
` + κ1

`

]
, h` =

[
κ0

1

κ0
`

]
, (19)
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wheres in the case of activation (i.e. σ1 = σ+ and σ` = σ+):

h1 =
[
κ0

1

κ0
`

]
, h1` =

[
κ0

1 + κ1
1

κ0
`

]
, h` =

[
κ0

1 + κ1
1

κ0
` + κ1

`

]
, (20)

These vectors determine the location of the focal points of the PA system, defined as

φ1 = Γ−1h1, φ1` = Γ−1h1`, φ` = Γ−1h`. (21)

By definition the focal points are combinations of the ON and OFF enzyme concentrations in (4)–(5),
and their particular location depends exclusively on the type of feedback regulation. Figure 2 shows the
possible locations of the focal points for each combination of transcriptional regulation. In what follows
we will assume that the focal points do not lie in the switching domains. For any x(t0) in a regular
domain, e.g. x(t0) ∈ R1, the right-hand side of (17) is well defined and its solution satisfies a standard
affine differential equation, that is

x(t) = φ1 + eΓ(t0−t) (x(t0)− φ1
)
, t ≥ t0 (22)

so that x(t) monotonically approaches φ1, possibly reaching the switching domain S1, where the vector
field of (17) is not defined, and thus a specialized analysis is required. As we shall see in the next section,
the location of the focal points plays a major role in the dynamics of (17).
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Figure 2: Conic partition of the enzyme state space (for the case θ1 < θ`) and location of the focal points
for different combinations of activation and repression loops.

4 Identical regulatory thresholds: the two cone case

We first focus on the case when the regulatory thresholds of enzymes e1 and e` are identical. This case is
simpler because if θ1 = θ`, the cone R1` in Figure 4 vanishes and the system is defined only in two cones.
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In this section we state the fundamental properties of a 2-cone PA system, which we will use later (Section
5) for the more general 3-cone case that appears under different regulatory thresholds. Our analysis of the
2-cone problem has been partly reported in [24], and we have included the proofs in Appendix B.

Here we use a more general notation and consider the PA system:

ẋ =

{
f(x) x ∈ Df

g(x) x ∈ Dg

, (23)

with f(x) = [f1(x) f2(x)]T = hf − Γx, and g(x) = [g1(x) g2(x)]T = hg − Γx, respectively. The vectors hf

and hg are entrywise nonnegative and in terms of the notation of (17), we have hf = h1, hg = h` with focal
points φf = φ1, φg = φ`, and two cones Df = R1 and Dg = R` separated by the half-line S = S1 = S`
with slope β = β1 = β`. Previous studies of the 2-cone problem can be found in [25], but their results are
limited to the case where hg = −hf , and therefore they are not directly applicable to our case.

4.1 Geometric definitions

For the forthcoming analysis it is convenient to define the sets

Ω−f = {x ∈ Df ∪ S : f2(x)− βf1(x) ≤ 0} ,
Ω−g = {x ∈ Dg ∪ S : g2(x)− βg1(x) ≤ 0} ,

(24)

and Ω+
f = (Df ∪ S) \ Ω−f , Ω+

g = (Dg ∪ S) \ Ω−g , respectively. Alternatively, we can construct these sets
by defining the normal vector of S as η⊥ = [−β 1]T , so that, for example, the set Ω−f contains all points
satisfying 〈f(x), η⊥〉 ≤ 0, or equivalently 〈Γ(x − φf ), η⊥〉 ≥ 0. Analogous definitions can be constructed
for the other sets in (24). The boundary between Ω−f and Ω+

f is the half-line

Cf =
{
x ∈ R2

≥0 : 〈Γ(x− φf ), η⊥〉 = 0
}
, (25)

whereas the boundary between Ω−g and Ω+
g is the half-line

Cg =
{
x ∈ R2

≥0 : 〈Γ(x− φg), η⊥〉 = 0
}
. (26)

The half-lines Cf and Cg are parallel with slope βγ1/γ`, and each one contains one of the focal points,
i.e. φf ∈ Cf and φg ∈ Cg. The intersection points xf = Cf ∩S and xg = Cg∩S have horizontal coordinates

xf1 =
〈hf , η⊥〉
β(γ` − γ1)

, xg1 =
〈hg, η⊥〉
β(γ` − γ1)

. (27)

4.2 Solutions in the switching domain

The vector field of PA system (23) is discontinuous at the switching domain S; intuitively, the behavior
of solutions at S will depend on the relative direction of the vector fields f and g in a vicinity of S.
Trajectories can: cross between cones if the vector fields point in a similar direction, slide along S if the
vector fields point in opposite directions towards S, and be repelled from S is the vector fields point in
opposite directions away from S. The last two cases are known as stable and unstable sliding motion
in the literature [15]. As shown in the next three results, each one of the aforementioned cases can be
characterized in terms of the Ω sets defined in (24).

Theorem 1 (Solutions in the switching domain) The solutions of (23):
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(a) cross from Dg to Df in the segment Lgf = Ω+
f ∩ Ω+

g ⊆ S,

(b) cross from Df to Dg in the segment Lfg = Ω−f ∩ Ω−g ⊆ S,

(c) exhibit stable sliding motion in the segment Ls = Ω−f ∩ Ω+
g ⊆ S,

(d) exhibit unstable sliding motion in the segment Ls̄ = Ω+
f ∩ Ω−g ⊆ S.

Moreover, define the angle ϑ1 = ∠
(
hf − hg, η⊥

)
, then

Ls̄ = ∅ ⇐⇒ ϑ1 ∈
[
−π,−π

2

)
∪
(π

2
, π
]
, (28)

Ls = ∅ ⇐⇒ ϑ1 ∈
(
−π

2
,
π

2

)
. (29)

According to Theorem 1 the behavior of solutions in the switching domain depends essentially on the
different intersections between the Ω sets; this can be seen in Figure 3, whereby the sets Ls and Ls̄ are
the intersection between S and the band generated by the half-lines Cf and Cg. A necessary condition
for sliding motion (stable or unstable) is therefore that the band between Cf and Cg intersects S in the
positive quadrant. Moreover, the geometry in Figure 3 shows that at least one of the sets Ls and Ls̄
must be empty, which precludes the existence of stable and unstable sliding motion in the same switching
domain. We can distinguish between these two scenarios with the condition for ϑ1 in (28)–(29). The
particular case when ϑ1 = ±π/2 is not covered by Theorem 1, and will be treated later in Section 4.4.

Figure 3: Partition of the enzyme state space for degradation rates γ1 > γ`. Case with stable (A) and
unstable (B) sliding motion.

4.3 Equilibria

The focal points are locally stable equilibria of the PA system provided that they belong to their respective
cone, i.e. φf ∈ Df or φg ∈ Dg (stability follows from γ1, γ` > 0). In this case the focal points are referred to
as regular equilibria. However, when using Filippov’s method (as we did in Theorem 1, see Appendix B.1),
it is possible that the trajectories reach equilibria that lie in the switching domain, which are sometimes
called singular equilibria [15].
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The existence of regular and/or singular equilibria in the PA system depend on two aspects: (a) the
existence of stable or unstable sliding motion along the switching surface, and (b) whether the focal points
belong to or lie outside their respective regular domain. Point (a) can be resolved with the simple angle
condition in Theorem 1, but the effect of (b) requires a more detailed analysis. Since there are two focal
points, two cones, and two kinds of possible sliding motion, there are eight possible configurations, all of
which are studied in the next sections.

4.3.1 Monostability with regular equilibrium.

Four configurations are such that only one focal point is a regular equilibrium, for example, when φf , φg ∈
Df or φf , φg ∈ Dg. In each of these four cases (and regardless of whether the sliding motion is stable or
unstable), the PA system is monostable with a regular equilibrium point.

4.3.2 Bistability with regular equilibria.

Two configurations are such that both focal points are regular equilibria, that is, φf ∈ Df and φg ∈ Dg

with a stable sliding motion (i.e. Ls 6= ∅ because the angle ϑ1 satisfies condition (28)), or an unstable
sliding motion (Ls̄ 6= ∅ because the angle ϑ1 satisfies condition (29)). In these two cases, the PA system is
bistable with two regular equilibria; see Figure 4A–B.
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Figure 4: Mono-, bistability and oscillations in PA system defined in two conic domains. The system
behavior depends on the location of the focal points and the existence of stable/unstable sliding motion.
(A,B) Bistability with two regular equilibria; (C) Monostability with singular equilibrium, (D) Oscillations.
Monostability with regular equilibrium not shown (see Section 4.3.1). The cases shown are for degradation
rates satisfying γ1 > γ`.

4.3.3 Monostability with singular equilibrium.

In the remaining two configurations both focal points lie outside their regular domains, i.e. φf ∈ Dg and
φg ∈ Df . In these cases the system has a subtler behavior that depends on the type of sliding motion in S.
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In the case of stable sliding motion (Figure 4C), the system has a singular equilibrium, the location and
stability of which are studied in the next result. On the contrary, when there exists an unstable sliding
motion (Figure 4D), solutions follow stable periodic orbits, which is a topic we leave for the next section.

Theorem 2 (Singular equilibrium) Assume that Ls 6= ∅ and let Lφ be the line containing φf and φg

and ϑ2 = ∠
(
φf − φg, η⊥

)
. The point

φs = Ls ∩ Lφ, (30)

is a singular equilibrium of (23). Moreover, if

ϑ2 ∈
[
−π,−π

2

)
∪
(π

2
, π
]
, (31)

then φs is locally stable, and if

ϑ2 ∈
(
−π

2
,
π

2

)
, (32)

then φs is unstable.

We can therefore check the existence of a singular equilibrium simply by locating the point φs, whereas
its local stability can be graphically checked with the condition for angle ϑ2. The stable case is shown
in Figure 5A, and the case of an unstable singular equilibrium, shown in Figure 5B, corresponds to the
bistable scenario described earlier in Section 4.3.2 and shown in Figure 4A. Moreover, in Figure 5C we
observe that Ls ∩ Lφ = ∅ only when φf , φg ∈ Df or φf , φg ∈ Dg, and therefore Theorem 2 also accounts
for the monostable case with regular equilibrium described earlier in Section 4.3.1. In the cases of Figures
5B–C, solutions may slide along Ls but eventually escape to one of the regular domains.

Figure 5: Existence and stability of a singular equilibrium for the PA system. (A) Stable singular equilib-
rium; (B) Unstable singular equilibrium; (C) No singular equilibrium. The cases shown are for degradation
rates γ1 > γ`.

4.4 Oscillations.

If both focal points lie outside their domain and there is unstable sliding motion (as in Figure 4D),
trajectories starting in Df can cross to Dg in the segment Lfg and can cross back to Df in Lgf . On
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the segment Ls̄ the vector fields on both Dg and Df point away from S and towards the interior of the
domains, and therefore are pulled away from the switching domain. These qualitative observations suggest
that trajectories can follow a periodic orbit around the segment Ls̄, see Figure 6. They also suggest that
a region for unstable sliding motion and two crossing regions are needed for oscillations to exist; we will
therefore make the following assumption.

Assumption 2 The switching domain S contains: (A) a region for unstable sliding motion (i.e. Ls̄ 6= ∅),
and (B) two crossing regions (i.e. Lgf 6= ∅ and Lfg 6= ∅).

The validity of Assumption 2A can be readily checked with the angle condition in Theorem 1, whereas
Assumption 2B requires more attention. In Figure 3B we observe that the crossing domains are simultane-
ously nonempty only when the lines Cf and Cg intersect the switching domain S in the positive quadrant.
This is equivalent to requiring that the horizontal coordinates of Cf ∩ S and Cf ∩ S satisfy xf1 > 0 and
xg1 > 0, respectively. These positivity conditions are met when (recall the expressions in (27)):

γ1 > γ`, 〈hf , η⊥〉 < 0, 〈hg, η⊥〉 < 0, or (33)

γ1 < γ`, 〈hf , η⊥〉 > 0, 〈hg, η⊥〉 > 0. (34)

Conditions (33)–(34) indicate that, depending on the balance between the degradation rates γ1 and γ`,
there are two different settings that can lead to oscillations. Later in Section 5.3 we will examine how
Assumption 2 constrains the class of transcriptional feedback that can induce oscillations.

It should be also pointed out that if Assumption 2 is not satisfied then there are three possibilities:
there is stable sliding motion (or no sliding motion), trajectories never cross the switching boundary (in
case both crossing domains are empty), or trajectories can cross only in one direction (in case one crossing
domain is nonempty). From the results in the previous section, in all these cases a periodic orbit is not
possible and trajectories will converge to a stable equilibrium.

From Figure 6 we observe that if the focal point φf1 lies outside its regular domain (i.e. φf ∈ Dg), then
φf2 < βφf1 and substituting the intersection point Cf ∩ S = (xf1 , βx

f
1) in the equation for Cf (25) we get

0 = −γ1β(xf1 − φ
f
1) + γ`(βx

f
1 − φ

f
2) > β(γ1 − γ`)(xf1 − φ

f
1) (35)

and therefore when γ1 > γ` we always have that xf1 > φf1 . A similar argument shows that φg ∈ Df and
γ1 > γ` imply xg1 < φg1. We thus define the line segments

Sf =
{
x ∈ S : x1 ∈

[
φf1 , x

f
1

]}
, (36)

Sg = {x ∈ S : x1 ∈ [xg1, φ
g
1]} , (37)

and their projections onto the x1 axis

Sf1 =
{
x ∈ R : x1 ∈

[
φf1 , x

f
1

]}
, (38)

Sg1 = {x ∈ R : x1 ∈ [xg1, φ
g
1]} , (39)

The segments Sf1 and Sg1 are shown in Figure 6; their definition is valid when γ1 > γ`, but analogous
versions can be defined in the converse case γ1 < γ` (the only difference is that their limits need to be
reversed). The region x1 ∈ [φf1 , φ

g
1], shown as shaded area in Figure 6, is an invariant set since at x1 < φf1

(resp., x1 > φg1) one always has ẋ1 > 0 (resp., ẋ1 < 0). Periodic solutions can therefore cross the switching
domain only in the segments Sf and Sg. This means that trajectories starting on x0 ∈ Sf will evolve in
Dg until they hit the segment Sg, re-enter Df and then return to the segment Sf . By constructing the
Poincaré map from Sf onto itself, we can prove the next result (details in Appendix B.3).
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SCf

Figure 6: Sample trajectory for the case in Figure 4D with γ1 > γ`; the shaded region is invariant under
the PA dynamics.

Theorem 3 (Stable periodic orbit) Under Assumption 2 and with the focal points satisfying φf ∈ Dg,
φg ∈ Df , the PA system has a unique stable limit cycle.

In all the previous results we have assumed that the region for sliding motion is a line segment, i.e. Ls
and Ls̄ are not isolated points. When the lines Cf and Cg coincide, these segments collapse to the point
Ls = Ls̄ = φs. Recalling (27), Cf and Cg match when 〈hf − hg, η⊥〉 = 0, which is equivalent to

ϑ1 = ±π
2
. (40)

This is a somewhat special case that is not covered by Theorems 1–3. If at least one of the focal points
lies in its regular domain, then the solutions behave as described in Sections 4.3.1–4.3.2. On the contrary,
if both focal points lie outside their regular domains, they will reach a singular equilibrium. This is stated
in the next result, which is a consequence of Theorem 3.

Corollary 1 (No sliding motion) If φf ∈ Dg, φg ∈ Df and the angle ϑ1 = ±π
2 , then the point φs in

(30) is a stable singular equilibrium of the PA system.

5 Detection of equilibria and oscillations

In the case of different regulatory thresholds (θ1 6= θ`), the metabolic-genetic circuit can be reduced to a
PA system defined in three cones (Section 3). Although this scenario is more complex than the 2-cone
case, it can be analyzed by splitting the 3-cone problem into a pair of 2-cone ones. In the notation of
Section 4, this approach translates into a 2-cone problem with:

S = S1 and focal points φf = φ1, φg = φ1`,

and another one with:

S = S` and focal points φf = φ1`, φg = φ`.

The location of the focal points
(
φ1, φ1`, φ`

)
depends on the regulatory logic and the protein degradation

rates. However, from the different cases in Figure 2 we see that, regardless of the feedback logic and
protein degradation, one pair of focal points will share the vertical coordinate and another pair will share
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the horizontal coordinate. With this simple observation and the two angle conditions in Theorems 1–
2 we can systematically detect all possible equilibria for any configuration of repression and activation
feedback loops. In what follows we illustrate our approach: in Sections 5.1–5.2 we study two cases that
exhibit monostability and bistability, respectively, whereas in Section 5.3 we examine which regulatory
configurations can generate metabolic oscillations.

5.1 Single stable steady state

Consider the case σ1 = σ− and σ` = σ+, θ1 < θ`. We will show that this configuration has a single
steady state regardless of the location of the focal points. The fact that the pair (φ1, φ1`) share the
horizontal coordinate, and (φ1`, φ`) share the vertical one (see Figure 2C), limits the possible configurations
of equilibria. There are five possible configurations:

(a) φ1 ∈ R1, φ1` /∈ R1` and φ` /∈ R`;

(b) φ1` ∈ R1`, φ1 /∈ R1 and φ` /∈ R`;

(c) φ` ∈ R`, φ1 /∈ R1 and φ1` /∈ R1`;

(d) φ1` ∈ R1, φ1 /∈ R1 and φ` ∈ R1;

(e) φ1` ∈ R`, φ` /∈ R` and φ1 ∈ R`.

In cases (a)–(c), the focal point that lies in its own regular domain (that is, φ1, φ1` and φ` for cases
(a), (b) and (c), respectively) is the only locally stable equilibrium (see discussion in Section 4.3.1). This
equilibrium is also globally stable because, from any initial condition in R2

≥0, trajectories will eventually
enter the cone that contains its own focal point, from where they cannot escape because each coordinate
is strictly monotone.

In configuration (d) no focal point belongs to its own regular domain, and therefore the only option
is to look for singular equilibria in S1 or S`. Denote the normal vectors to S1 and S` as η⊥1 and η⊥` ,
respectively. For the 2-cone problem defined by S1 we note that focal points φf = φ1 and φg = φ1` are
aligned horizontally; we also have that

∠
(
h1 − h1`, η⊥1

)
∈
[
−π,−π

2

)
, (41)

and therefore the angle condition (28) in Theorem 1 indicates that S1 can contain a region with stable
sliding motion. If we define Lφ as the line segment containing φ1 and φ1`, then from Theorem 2 we conclude
that the point

φ1
s = Lφ ∩ S1, (42)

is a singular equilibrium; it is stable because the angle condition (31) is satisfied:

∠
(
φ1 − φ1`, η⊥1

)
∈
[
−π,−π

2

)
. (43)

For the pair of cones defined by S`, the focal points φf = φ1` and φg = φ` are aligned vertically. Moreover

∠
(
h1` − h`, η⊥`

)
∈
(π

2
, π
]
, (44)

which by Theorem 1 implies that S` also contains a region for sliding motion. However, in this case the
line segment containing φ1` and φ` does not intersect the switching domain S`. Therefore, by Theorem
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2, S` does not contain a singular equilibrium. We therefore conclude that φ1
s is the only equilibrium of

the system. Configuration (e) can be analyzed similarly to show that it can only have one stable singular
equilibrium in S`.

Simulated trajectories of configuration (d) are shown in Figure 7 for a system with n = 2 metabolites
and regulation from the product (s`−1 = s2). We have deliberately used enzyme kinetics that are faster
than protein degradation. To validate the effectivity of the timescale separation, the protein trajectories
of the PA system (blue) are shown together with those of the original system in (1)–(2) (without the QSS
approximation, in green). We are able to predict the equilibrium of both the original system and its PA
reduction, located at φ1

s (marked with a square in Figure 7).

Figure 7: Enzyme phase plane, trajectory of the regulator (s2(t)), and resulting flux (v3(t)) for a monostable
system with regulation (σ1 = σ−, σ` = σ+). The substrate is s0 = 1, protein degradation rates γi =
{0.25, 0.9, 0.8}, and the enzyme kinetics are of Michaelis-Menten type (gi = kcat isi−1/(Km i + si−1)) with
parameters chosen so that metabolic reactions are much faster than protein expression, kcat i = 2 · 102

and Km i = 5, i = 1, 2, 3. The regulatory parameters are θi = {0.5, 1, 1.5}, κ0
i = {0.01, 0.15, 0.1}, and

κ1
i = 10κ0

i .

5.2 Bistability

Consider the case of positive regulation (σ1 = σ+ and σ` = σ+) with θ1 < θ`, and the focal points located
as in Figure 8. In the 2-cone problem for R1 and R1`, we note that φf = φ1 ∈ R1 and φg = φ1` /∈ R1∪R1`,
and therefore φ1 is the only locally stable equilibrium. In the 2-cone problem for R1` and R`, both φf = φ1`

and φg = φ` lie outside their regular domains, and they are aligned vertically. The angle condition (28):

−π ≤ ∠
(
h1` − h`, η⊥`

)
≤ −π

2
, (45)

holds, and so by Theorem 1 the switching domain S1 can contain a region with stable sliding motion. If
we define Lφ as the line segment containing φ1` and φ`, then from Theorem 2 we conclude that the point

φ`s = Lφ ∩ S`, (46)

is a singular equilibrium; it is stable because the angle condition (31) is satisfied:

∠
(
φ1` − φ`, η⊥`

)
∈
[
−π,−π

2

)
. (47)
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We therefore conclude that the system has two locally stable equilibria located at φ1 and φ`s. The simulation
results in Figure 8 verify our predictions, showing two sample trajectories that converge to the different
equilibrium points (marked with squares).
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Figure 8: Enzyme phase plane, trajectory of the regulator (s2(t)), and resulting flux (v3(t)) for a bistable
system with positive regulation (σ1 = σ+, σ` = σ+). The regulatory parameters are θi = {1, 0.75, 1.5},
κ0
i = {0.04, 0.3, 0.3}, κ1

i = {0.4, 2, 3}. All the remaining model parameters are identical to those used in
Figure 7.

5.3 Oscillations

A special feature of the 3-cone problem is that its focal points are pairwise aligned vertically or horizontally
(see Figure 2). In view of the analysis in Section 4.4, two of the necessary conditions for oscillations in the
2-cone system are that: (i) there exists unstable sliding motion in the switching domain, and (ii) the focal
points are located outside their regular domains. Once we split the 3-cone problem into a pair 2-cone ones,
from Figure 3 we see that if (ii) is satisfied and a pair of focal points are aligned vertically or horizontally,
the the angle ϑ1 ∈ [−π,−π/2] ∪ [π/2, π] and so (i) cannot be satisfied because Ls̄ = ∅ (by Theorem 1).

The above discussion indicates that because the focal points in the 3-cone case are geometrically
constrained, conditions (i)–(ii) cannot be simultaneously satisfied in any of the feedback configurations
of Figure 2. However, under equal regulatory thresholds (θ1 = θ`) the 3-cone problem reduces a 2-cone
one with focal points (φ1 and φ`) that can be located anywhere in the positive quadrant, and hence
oscillations are possible. The regulatory logic plays in critical role on the location of these two focal points.
This is reflected in the next result, which identifies which regulatory configurations can lead to metabolic
oscillations for different balances between enzyme degradation rates.

Corollary 2 (Metabolic oscillations) Consider the 3-cone system in (17) with θ1 = θ` and the focal
points outside their regular domains (φ1 ∈ R` and φ` ∈ R1). The system exhibits a unique stable limit
cycle if:

A. σ1 = σ−, σ` = σ−, γ1 < γ`, or

B. σ1 = σ+, σ` = σ+, γ1 > γ`.
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The proof of the above result has been omitted for brevity, but it follows directly from the conditions in
Section 4.4. In terms of regulatory logic, Corollary 2 indicates that there are only two scenarios where
oscillations can appear (these are the ones shown in Figures 2A and 2D), and mixed logic configurations
(shown Figures 2B and 2C) do not allow for oscillatory behavior. In Figure 9 we show two sample oscillatory
responses of a system with n = 2 metabolites and negative regulation from the product (s`−1 = s2).
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Figure 9: Enzyme phase plane, trajectory of the regulator (s2(t)), and resulting flux (v3(t)) for an oscillatory
system with negative regulation (σ1 = σ−, σ` = σ−). The regulatory parameters are θi = {0.8, 1, 0.8},
κ0
i = {0.5, 1.5, 1.5}, κ1

i = {2.5, 1.5, 5}, and degradation rates γi = {0.25, 0.8, 0.5}. All the remaining model
parameters are identical to those used in Figure 7.

6 Regulation via an operon: substrate-induced bifurcations

A common regulatory structure in bacteria are gene operons, whereby several genes are controlled by the
same promoter and thus transcribed in response to the same activity threshold (examples are the lac and
trp operons [9, 10]). The previous case studies (Section 5) demonstrate that the ordering of the activity
thresholds (θ1, θ`) defines fundamental properties of the system dynamics. In particular, distinct threshold
values always lead to (multi-)stability, whereas the case of equal thresholds introduces the possibility of
oscillatory behavior.

In this section we focus on the behavior of metabolic networks controlled via an operon, and how this
affects the bifurcation diagram of the metabolic flux as a function of the substrate. A widely studied
instance of this type of regulatory structure is the lac operon, with a range of mathematical models
developed in the literature (see [8, 9] and the references therein). For our purposes, a simplified description
of the lac operon in the form of the generic model in (1)–(2) can be constructed by (see Figure 10) setting
s0 =lactose (extracellular), s1 =lactose (internal), and s2 =allolactose, with the enzymes defined by
e0 =permease (coded by lacY ), and e1 = β-galactosidase (coded by lacZ ). The regulator is s2 (allolatose),
which binds the transcription factor (TF) and prevents it from blocking operon transcription, which in
terms of our model translates into setting σi = σ+ with thresholds θi = θ for i = 1, 2, 3.

In the previous sections we have shown how to detect the equilibria and limit cycles of the regulatory
system. We now use the strategy to determine the bifurcation diagram of the feedback system as a function
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of the external substrate. In the case of equal thresholds (Section 5.3), the slope of the only switching
domain is

β =
g1(s0)
g3(θ)

. (48)

The nutrient concentration scales the slope β through turnover rate of the first enzyme g1(s0). For a
given combination of protein expression and degradation rates (i.e. fixed focal points), changes in the
extracellular substrate can modify the relative location of the focal points and regular domains. This
phenomenon therefore induces bifurcations in the dynamics as a function of the nutrient availability.

In Figure 11A we observe the case of nutrient-induced bistability for a bounded range of nutrient
concentrations. In this scenario, the nutrient availability can drive the system between monostable and
bistable regions. The monostable regions exhibit a metabolic flux that increases with the nutrient avail-
ability, and the bistable region can display low and high flux regimes. The bistable behavior in Figure 11A
is consistent with experimental observations in E. coli populations [19]. In that work it was shown that
under low (resp. high) external lactose concentration, the lac operon genes were expressed at low (resp.
high) levels. For an intermediate range of external lactose, the response of the population was shown to
be bimodal, as two types of cells were observed: those that do and those that do not transcribed the lac
genes - without an “intermediate level transcription”. (See Figures 2 and 4 in [19].)

The analysis in Section 5.3 showed that oscillatory behavior can appear under positive or negative
regulation. As shown in Figure 11B, operon regulation can induce metabolic oscillations, but this depends
on the balance between protein half lives (see the conditions in Corollary 2). Oscillatory flux may only
appear when the half-life of the nutrient-uptake enzyme is shorter than that of the proteins that breakdown
or consume it (blue line in Figure 11B). Otherwise the system exhibits a unique metabolic flux.

Extracellular
Lactose

Internal
Lactose

Allolactose Glucose

lacZlacYlacA
TF

Figure 10: Representation of the lac operon in terms of the generic model in Figure 1A.

7 Discussion

In this paper we have investigated how genetic regulation of enzyme activity can generate different phe-
notypes in an unbranched metabolic network. The two key elements in our analysis are: (i) the use of
a piecewise affine (PA) model for gene regulation, and (ii) the time scale separation between metabolism
and gene expression. The PA model describes how gene expression is switched ON or OFF in response to
a metabolite that acts as a global regulator, whereas the time scale separation allows the reduction of the
PA model to a 2-dimensional system.

The chosen formalism allowed for a complete theoretical analysis of the mechanisms by which one-to-all
gene regulatory circuits can generate different metabolic phenotypes. In the reduced model we found that
only two enzymes are needed to characterize the system: the one catalyzing the first reaction step, and the
one catalyzing the reaction that consumes the regulator. Since the regulator can either activate or repress
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Figure 11: Bifurcation diagrams for operon-controlled unbranched metabolic network. (A) Positive reg-
ulation can lead to bistability; regulatory parameters are θ = 0.5, κ0

i = {0.3, 1}, κ1
i = {3, 2}, and equal

protein degradation γi = 1, i = 1, 2. (B) Positive regulation can also lead to oscillatory behavior, but
this depends on the balance between protein half-lives; regulatory parameters are θ = 0.5, κ0

i = {0.4, 0.3},
κ1
i = {1.6, 4.2}; protein degradation rates are γi = {1, 2} (black line), and γi = {2, 1} (blue line), respec-

tively. Both bifurcation diagrams were generated using the results for PA systems for a network with one
metabolite and n = 2 enzymes. The enzyme kinetics have been chosen much faster than protein half-lives
(Michaelis-Menten kinetics with parameters kcat i = 100 and Km i = 10, i = 1, 2.).

each enzyme, there are four different combinations of regulatory logic. For each of these configurations,
the enzyme phase plane can be partitioned into three conic regions (see Figure 2). The location of the
focal points relative to these regions determine the existence of stable equilibria and periodic oscillations
in the complete system.

In general, we observe that multistable behavior can appear for specific combinations of enzyme expres-
sion rates and regulatory thresholds. Among the four possible feedback configurations, only one (namely,
σ1 = σ−, σ` = σ+) leads to the existence of a single steady state independently of the parameter values
(see Section 5.1). All other combinations allow mono- or multistability for specific parameter values; in
particular, the logic σ1 = σ+, σ` = σ− can display up to three equilibria (see Figure 2B, whereby each
of the three focal points belongs to its own regular domain). This observation suggests that a feedback
logic of the form (σ1 = σ−, σ` = σ+) is optimal to guarantee a unique phenotype that is robust to pa-
rameter values and environmental conditions (encoded in the substrate concentration s0). Intuitively, the
(σ1 = σ−, σ` = σ+) logic causes the regulator to self-repress, in the sense that it blocks its own production
and accelerates its transformation, and therefore leads to only one possible phenotype.

Our analysis also reveals fundamental differences between the regulation of gene expression through
operons and individual genes. Individual gene regulation translates into a 3-cone partition of the enzyme
state space, and therefore the metabolic flux can exhibit complex bifurcations as a function of the regulatory
parameters (these in turn affect the location of the focal points). In contrast, an operon architecture
translates into a 2-cone partition that displays a simpler bifurcation structure: parameters can change in
broader regions without necessarily changing the location of the focal points with respect to the cones. As a
consequence, an operon structure can provide sharp metabolic regulation by allowing specific phenotypes
(mono-, multistability, or oscillatory behavior) to be conserved across a larger parameter range than
individual gene regulation.

The conclusions drawn from our formalism exploit the switch-like form of the model for gene expression.
Because of the discontinuous nature of this class of models, solutions may not depend continuously on
model parameters (in contrast with classical continuous systems). As a consequence, our theory predicts
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that metabolic oscillations emerge only under identical thresholds. A continuous version of (1)-(2) can
indeed display oscillations even when the thresholds are slightly different; this phenomenon was observed
in simulations with Hill-type [16] regulatory functions σi and high Hill coefficients (not shown here).

Our results also rely on the timescale separation between the metabolic and genetic subsystems. This
assumption is based on the fact that metabolic reactions typically operate in the order of seconds or faster,
whereas genetic adaptations last from minutes up to several hours. The reduced model will be a good
approximation of the complete system provided that the time constants of the enzyme kinetics are much
smaller than protein half-lives, which in turn are inversely proportional to their degradation rates. If we do
not impose the QSS approximation, the downstream pathway dynamics introduce a lag between changes
in enzyme concentrations and changes in metabolite trajectories. The enzyme trajectories may therefore
display a small “inertia” effect at the switching boundaries between the cones. This inertia will be larger
for those enzymes that are regulated by a metabolite far downstream the pathway, but it does not change
our conclusions regarding the existence, location, and stability of equilibria.

The analysis presented in this paper contributes to understanding the interactions between genetic
and metabolic networks. Unbranched networks under one-to-all transcriptional control (also called “single
input modules”) are a common building block of more complex metabolic systems [7]. We have shown
that a hybrid formalism, which combines continuous metabolic dynamics with switch-like gene expression,
can be effectively used to detect mechanisms that generate complex behavior in relatively simple motifs.
In addition, the analysis provides novel insights into the design of metabolic-genetic systems for prescribed
behaviors such as multistability and periodic oscillations.
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Appendix

A Valid equilibria and quasi steady state approximation

Existence of metabolic equilibria If the enzymatic and metabolic equilibria are denoted as ēi and s̄i
respectively, then the mass balance model (1) under Assumption 1 leads to

gi+1(s̄i)ēi+1 = g1(s0)ē1, (49)

for i = 1, 2, . . . , n. The above is an implicit equation for the equilibrium s̄i as a function of the enzymatic
equilibria. The existence of a valid (i.e. nonnegative) solution of (49) depends on the saturation value
of the enzyme kinetics, denoted as ĝi = max gi(si−1). For given enzymatic equilibrium, a nonnegative
solution of (49) exists only when

ēi ≥
g1(s0)
ĝi

ē1, (50)

for each i = 2, 3, . . . , n. Geometrically, condition (50) means that the enzyme equilibrium vector must
belong to the (n+ 1)-dimensional cone

R̂ =
{
x ∈ Rn+1

≥0 : xi ≥
g1(s0)
ĝi

x1, i ≥ 2
}
. (51)

Since we do not know a priori the location of the enzymatic equilibria, we cannot give tight conditions
under which (50) holds. However, we can obtain bounds for the parameter space by looking at the limit
case of (50). In a worst-case scenario, the OFF levels Eoff

i , i ≥ 2, must satisfy (50) against the ON level of
the first enzyme, Eon

1 . This condition becomes

Eoff
i ≥

g1(s0)
ĝi

Eon
1 . (52)

for i = 2, 3, . . . n + 1, and provides bounds (albeit conservative) for the synthesis and degradation rates
that ensure the existence of a metabolic equilibrium. As a consequence of the feedback interaction between
the genetic and metabolic subsystems, the bounds in (52) relate purely genetic parameters with metabolic
properties such as enzyme kinetics and substrate concentration.

Solvability of the quasi steady state approximation For the same reasons discussed above, a
positive solution si−1(t) of (9) exists only when

e(t) ∈ R̂, for all t ≥ 0. (53)
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The cone R̂ therefore defines a region in the enzyme state space that guarantees the solvability of the QSS
approximation. This constraint is stronger than condition (50), which is required to hold in equilibrium
only. Nevertheless, if the protein trajectories start in R̂ (i.e. e(0) ∈ R̂), as si−1 grows the pair (e1, ei) in
(9) will approach the boundary of R̂, but by continuity they cannot leave R̂. Moreover, e(0) ∈ R̂ can be
ensured by picking any initial equilibrium flux V = vi(0) for all i, together with consistent initial enzyme
concentrations:

ei(0) =
V

gi(si−1(0))
=

g1(s0)
gi(si−1(0))

e1(0). (54)

Since gi(si−1(0)) < ĝi for any finite si−1(0), we see that initial enzyme concentrations that are consistent
with an equilibrium flux are enough to guarantee that e(0) ∈ R̂ and therefore ensure solvability of the QSS
approximation.

B Piecewise affine systems in cones

B.1 Proof of Theorem 1.

Solutions of differential equations with discontinuous vector fields are typically characterized with a con-
struction due to Filippov [18]. This method proceeds by extending (23) to a differential inclusion

ẋ ∈ H(x),∀x ∈ S, (55)

where H(x) is a set-valued function defined as the closed convex hull of f(x) and g(x), i.e.

H(x) =
{
z ∈ R2 : z = αf(x) + (1− α)g(x), 0 ≤ α ≤ 1

}
.

The solutions of (55) are understood in the following sense (see also [14, 15] for more details).

Definition 1 For a given ρ0, a solution of (55) in [0, T ] is an absolutely continuous function ρ : [0, T ]→
R2
≥0 such that ρ(0) = ρ0 and ρ̇(t) ∈ H(ρ(t)) for almost all t ∈ [0, T ].

Depending on the directions of the vector fields f(x) and g(x), Filippov’s construction may not allow
for uniqueness of solutions in the switching domains [18]. When uniqueness can be guaranteed, then
solutions can: (a) cross to a regular domain or, (b) slide along the switching surface S. Roughly speaking,
case (a) occurs when f(x) and g(x) point in similar directions in a vicinity of S, so that the vectors in
H(x) point toward a regular domain irrespective of α. In case (b) both vector fields point towards the
switching domain, so that one can find a unique value of α such that H(x) points in the direction of S (in
this case we say that the solution exhibits stable sliding motion in S). Uniqueness of solutions is lost when
both vector fields point away from the switching domain, in which case solutions starting at S cannot be
uniquely defined and any small perturbation will drive x away from S (referred to as an unstable sliding
motion).

Part (a) From Filippov’s construction, the vector field in S has the form

ẋ =
[
αf1(x) + (1− α)g1(x)
αf2(x) + (1− α)g2(x)

]
, (56)

with 0 ≤ α ≤ 1. By the definition of Ω+
f and Ω+

g , for any point x ∈ Lgf we have that

αf2(x) + (1− α)g2(x) > αβf1(x) + (1− α)βg1(x), (57)
> β (αf1(x) + (1− α)g1(x)) ,

which implies that the vector field points to Df for any 0 ≤ α ≤ 1. In other words, the set H(x) in (55)
is fully contained in the regular domain Df and hence the trajectory crosses the switching domain.
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Part (b) Analogous to part (a).

Part (c) We first prove by contradiction that for all x(t0) ∈ Ls the vector fields are such that x(t) cannot
leave the switching domain in an interval (t0, t0 + ∆] . Define the absolutely continuous function

z : [t0, t0 + ∆]→ R,
z(t) = x2(t)− βx1(t).

(58)

Suppose that there exists ∆ > 0 such that z(t) > 0 for t ∈ ( t0, t0 + ∆]. If x(t0) ∈ S we have that z(t0) = 0,
so by continuity it must be that ż > 0 for t ∈ ( t0, t0 + ∆0 ] and some 0 < ∆0 ≤ ∆. In addition, from the
definition of the PA system in (23), if z(t) > 0 then ẋ = f(x) for t ∈ ( t0, t0 + ∆0 ] and so

ż = f2(x)− βf1(x), for t ∈ ( t0, t0 + ∆0 ] . (59)

However, the right-hand side of (59) is continuous in t, and when x(t0) ∈ Ls it follows that ż ≤ 0 for
t ∈ ( t0, t0 + ∆0 ], which is a contradiction. The converse argument can be used to show that z(t) < 0
for t ∈ ( t0, t0 + ∆] leads to a contradiction. We thus conclude that z(t) = 0 for t ∈ [t0, t0 + ∆], and so
x(t) ∈ Ls for t ∈ [t0, t0 + ∆].

The proof follows by checking that the vector fields for x ∈ Ls are compatible with Filippov’s construc-
tion, see [14]. If there is sliding motion in Ls, then there exists ∆ > 0 such that

ż = 0, for t ∈ [t0, t0 + ∆] . (60)

Since x(t) must be a solution in Filippov’s sense for t ∈ [t0, t0 + ∆], then there must exist 0 ≤ α ≤ 1 such
that

ẋ = αf(x) + (1− α)g(x), for t ∈ [t0, t0 + ∆] (61)

Combining (60) and (61) we get

0 = ẋ2 − βẋ1,

= αf2 + (1− α)g2 − β (αf1 + (1− α)g1) ,
= α(f2 − βf1) + (1− α)(g2 − βg1), for t ∈ [t0, t0 + ∆] . (62)

Solving for α in (62) gives

α(x) =
g2(x)− βg1(x)

(g2(x)− βg1(x))− (f2(x)− βf1(x))
, (63)

For x ∈ Ls it holds that (f2 − βf1) ≤ 0 and (g2 − βg1) > 0, therefore α(x) is unique for all x ∈ Ls and
satisfies 0 ≤ α(x) ≤ 1.

Part (d) Consider the function z(t) defined in (58). As opposed to the proof of part (c), in this case it
can be shown that for x(t0) ∈ Ls̄ both z(t) > 0 and z(t) < 0 for t ∈ ( t0, t0 + ∆] are possible solutions.
Note that another possible solution can be defined by picking α as in (63) so that x(t) slides along S.

The angle conditions in (28)–(29) can be obtained as follows. The lines Cf and Cg intercept the vertical
axis of R2

≥0 at pf = γ`
−1〈hf , η⊥〉 and pg = γ`

−1〈hg, η⊥〉, respectively. From Figure 3 we see that whether
Ls = ∅ or Ls̄ = ∅ depends on sgn

(
pf − pg

)
= sgn〈hf − hg, η⊥〉, which leads to the conditions in (28)–(29).

���
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B.2 Proof of Theorem 2.

A singular equilibrium must be understood in Filippov’s sense, i.e. at a singular equilibrium the convex
hull H(x) in (55) contains the origin. The proof follows by looking at the form of the vector field along S
when solutions are defined with Filippov’s method. When x ∈ Ls the solution satisfies

ẋ = αf(x) + (1− α)g(x), (64)

with α = α(x) given in (63). Substituting α(x) in (64) we get

ẋ =
Afg(x)η

(g2(x)− βg1(x))− (f2(x)− βf1(x))
, (65)

where Afg(x) is given by

Afg(x) = γ1γ`

{
xTP

(
φf − φg

)
+ φf

T
Pφg

}
, (66)

with P =
[

0 1
−1 0

]
so that xTPx = 0 for all x ∈ R2. A point φs ∈ Ls is a singular equilibrium of (23) if it

satisfies Afg(φs) = 0. The equation Afg(x) = 0 is satisfied by both focal points, i.e. Afg
(
φf
)

= Afg (φg) =
0, and so the curve

Lφ =
{
x ∈ R2

≥0 : Afg(x) = 0
}
, (67)

is the line containing both focal points. We thus conclude that any singular equilibrium must be located
at φs = Lφ ∩ Ls. The stability of φs follows by examining the direction of the vector field in (65). We
know that

(g2(x)− βg1(x))− (f2(x)− βf1(x)) > 0, (68)

for all x ∈ Ls, and hence the direction of the right-hand side of (65) depends only on the sign of Afg(x)
along Ls. The function Afg(x) evaluated along Ls (i.e. when x = x1 · η) defines a line

Afg(x)|x∈Ls
= γ1γ`

{
〈φf − φg, η⊥〉x1 + φf

T
Pφg

}
, (69)

with slope

∂

∂x1
Afg(x)|x∈Ls

= γ1γ`〈φf − φg, η⊥〉. (70)

Note that the line in (69) is transversal to the line Lφ and they intersect at φs (because Afg(φs) = 0 and
φs ∈ Ls). Therefore Afg(x) changes sign at x = φs, so the local stability of φs depends on the sign of the
slope in (70); namely

φs is

{
stable if 〈φf − φg, η⊥〉 < 0
unstable if 〈φf − φg, η⊥〉 > 0

, (71)

which are equivalent to the angle conditions in (31)–(32) (note that 〈φf − φg, η⊥〉 6= 0 since φf , φg /∈ S by
assumption).

���
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B.3 Proof of Theorem 3.

In what follows we restrict the proof to the case where γ1 > γ` (shown in Figure 6), but the converse case
can be treated analogously. To construct the Poincaré map from Sf onto itself, we first note that every
point on Sf satisfies x2 = βx1, and so it is enough to analyze a one-dimensional Poincaré map that maps
the segment Sf1 onto itself. We write this map, P , as the composition of two scalar functions:

P : Sf1 → Sf1 , (72)
r 7→ PB ◦ PA(r), (73)

where

PA : Sf1 → Sg1
r 7→ PA(r),

PB : Sg1 → Sf1
r 7→ PB(r).

The function PA maps a point in Sf1 onto a “hit-point” in the segment Sg1 , whereas the function PB maps
points in Sg1 back onto a hit-point in Sf1 . In the cones Df and Dg the trajectories follow standard linear
dynamics, and therefore PA and PB can be written as

PA(r) = re−γ1TA(r) + φg1(1− e−γ1TA(r)) (74)

PB(r) = re−γ1TB(r) + φf1(1− e−γ1TB(r)), (75)

whereby the functions TA(r) and TB(r) are the time it takes a trajectory starting in r ∈ Sf (resp. r ∈ Sg)
to hit the segment Sg (resp. Sf ). Next we proceed by parts showing that:

i. the set Sf1 is invariant under the Poincaré map,

ii. the map is continuous in Sf1 ,

iii. the map is non-decreasing in Sf1 , and

iv. the map is convex in Sf1 .

We will then show that these four statements imply that the Poincaré map has a unique stable fixed-point
and hence, our statement holds.

B.3.1 Invariance.

From the qualitative analysis of Figure 6 we see that

PA(Sf1 ) ∈ Sg1 , and PB(Sg1) ∈ Sf1 , (76)

which together imply that Sf1 is invariant under the map P = PB ◦ PA.
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B.3.2 Continuity.

From the definitions in (74)–(75), the maps PA and PB are continuous in the time-to-hit, TA and TB, and
therefore it suffices to show that both TA(r) and TB(r) are continuous for r ∈ Sf1 and r ∈ Sg1 , respectively.
Starting from x(0) = x0 ∈ Sf , at time t = TA the state is

x1(TA) = x0
1e
−γ1TA + φg1(1− e−γ1TA),

x2(TA) = x0
2e
−γ`TA + φg2(1− e−γ`TA).

If we impose the condition that x(TA) ∈ Sg (i.e. x2(TA) = βx1(TA)), then we get an implicit equation for
the time-to-hit TA(r):

FA(TA, r) = (φg2 − βr)(1− e
−γ`TA)− β(φg1 − r)(1− e

−γ1TA) ≡ 0, (77)

with r ∈ Sf1 . Likewise, we can obtain an implicit equation for the time-to-hit TB:

FB(TB, r) = (φf2 − βr)(1− e
−γ`TB )− β(φf1 − r)(1− e

−γ1TB ) ≡ 0,

with r ∈ Sg1 . Both equations, FA(TA, r) ≡ 0 and FA(TA, r) ≡ 0, have a unique non-trivial solution
TA = TA(r) and TB = TB(r) (see Figure 6), and therefore we need to show that these are continuous for
r ∈ Sf1 and r ∈ Sg1 , respectively. We will prove this only for TA(r) (the case of TB(r) can be shown with
symmetrical arguments). Rewrite the implicit equation in (77) as

G̃A(r) = G(TA(r)), (78)

with the functions

G̃A(r) =
φg2 − βr
β(φg1 − r)

, r ∈ Sf1 , (79)

G(TA) =
1− e−γ1TA

1− e−γ`TA
, TA > 0. (80)

It is easy to see that G̃A(r) is continuous in Sf1 (because (φg1 − r) > 0 for r ∈ Sf1 , see Figure 6) and G(TA)
is continuous for TA > 0. Moreover, the derivative of G is

dG
dTA

=
N(TA)
D(TA)

=
γ1e
−γ1TA(1− e−γ`TA)− γ`e−γ`TA(1− e−γ1TA)

(1− e−γ`TA)2
,

where

N(TA) = γ1γ`e
−γ1TAe−γ`TA(N2(TA)−N1(TA)), (81)

with N1(TA) = (eγ1TA−1)/γ1 and N2(TA) = (eγ`TA−1)/γ`. Since γ1 > γ`, we have that N1(TA) > N2(TA)
for all TA > 0, and consequently dG/dTA < 0 for all TA > 0. The function G(TA) is then continuous
and strictly decreasing for TA > 0 and, therefore, admits a well-defined, continuous and strictly decreasing
inverse function H ◦G(TA) = TA. From the implicit equation in (78) we then get the time-to-hit as

TA(r) = H ◦ G̃A(r), (82)

which is a composition of two continuous functions, and hence continuous. This implies that the Poincaré
map is continuous for r ∈ Sf1 .
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B.3.3 Monotonicity.

By the chain rule the derivative of P = PB ◦ PA is

P ′(r) = P ′B(PA(r)) · P ′A(r). (83)

A sufficient condition for P (r) to be non-decreasing is that both PA and PB are non-increasing, i.e. dPA/dr ≤
0 for r ∈ Sf1 and dPB/dr ≤ 0 for r ∈ Sg1 . These two statements can be proven by contradiction. If
dPA/dr > 0 for r ∈ R ⊆ Sf1 , two trajectories starting at different points in the projection of R onto Sf

would intersect in the cone Dg, which is a contradiction because in Dg the vector field is uniquely defined.
With the same argument, one concludes that dPB/dr ≤ 0 for r ∈ Sg1 , and hence P ′(r) ≥ 0 for r ∈ Sf1 .

B.3.4 Convexity.

By the chain rule we get

P ′′(r) = P ′′B(PA(r))
(
P ′A(r)

)2 + P ′B(PA(r))P ′′A(r), (84)

so that P (r) is convex in Sf1 if three conditions hold: (a) PB(r) is non-increasing in Sg1 , (b) PA(r) is concave
in Sf1 , and (c) PB(r) is convex in Sg1 . From the previous part of the proof we already know that condition
(a) holds. Next we show that conditions (b)–(c) are also satisfied.

From the definition of PA in (74), its first and second derivatives can be written as

P ′A(r) = e−γ1TA(r)
(
1 + γ1T

′
A(r) (φg1 − r)

)
, (85)

P ′′A(r) = −γ1T
′
A(r)P ′A(r) + γ1e

−γ1TA(r)
{

(φg1 − r)T
′′
A(r)− T ′A(r)

}
, (86)

whereas the derivative of TA can be obtained using the chain rule in the relation (78):

T ′A(r) =
(

1
G′(TA(r))

)
φg2 − βφ

g
1

β (φg1 − r)
2 , (87)

with G(TA) defined in (80). After some manipulations the second derivative of TA can be written as

T ′′A(r) = T ′A(r)
(

2
φg1 − r

− T ′A(r)F (TA(r))
)
, (88)

where we have defined the function F (TA) = G′′(TA)/G′(TA). Substitution of P ′A and T ′′A in the expression
for P ′′A (eq. (86)) yields

P ′′A(r) = −γ1

(
T ′A(r)

)2
e−γ1TA(r) (φg1 − r) · (γ1 + F (TA(r))) . (89)

Using G(TA) in (80) we can show that

γ1 + F = γ1 +
γ`N1 − γ1N2

N2 −N1
− 2
N2

, (90)

with N1 and N2 defined previously in (81). Now define the function

Q = (γ1 + F )N2(N1 −N2), (91)

which has the same sign as (γ1 +F ) because N2 > 0 for TA > 0, and N1 > N2 for r > 0 and γ1 > γ`. After
substituting N1 and N2, Q becomes

Q(TA) = (γ1 − γ`)(e(γ1+γ`)TA − 1)− (γ1 + γ`)(eγ1TA − eγ`TA). (92)
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From (92) we see that Q satisfies

Q(0) = 0, and lim
TA→∞

Q(TA) =∞, (93)

and is strictly increasing when γ1 > γ`:

dQ
dTA

= (γ1 + γ`)γ1γ`e
(γ1+γ`)TA

(
1− e−γ`TA

γ`
− 1− e−γ1TA

γ1

)
> 0, TA > 0. (94)

We thus conclude that Q(TA) > 0 for TA > 0, and so (γ1 + F (TA(r))) > 0 for all TA > 0. In addition we
know that (φg1 − r) > 0 for r ∈ Sf1 (Figure 6), which from the expression for P ′′A in (89) implies that PA(r)
is concave for r ∈ Sf1 (i.e. P ′′A(r) < 0 for r ∈ Sf ).

The proof that PB(r) is convex for r ∈ Sg1 is to a large extent symmetrical to the one for concavity of
PA. For brevity we omit the intermediate steps and only point out the differences. The function PB(r) is
defined in (75) and the time-to-hit TB is the solution of the implicit equation

G̃B(r) = G(TB(r)), (95)

with G defined in (80) and

G̃B(r) =
φf2 − βr
β(φf1 − r)

. (96)

The derivative of TB can be obtained using the chain rule (cf. (87)) in the relation (95):

T ′B(r) =
(

1
G′(TB(r))

)
φf2 − βφ

f
1

β(φf1 − r)2
, (97)

so that the second derivative of PB can be written as

P ′′B(r) = −γ1

(
T ′B(r)

)2
e−γ1TB(r)(φf1 − r) · (γ1 + F (TB(r))) , (98)

which can be obtained by following, mutatis mutandis, the steps in equations (85)–(89). Note that the
form of P ′′B is symmetrical to P ′′A in (87). We have already established that (γ1 +F (TB(r))) > 0 for TB > 0,
but in this case the term (φf1 − r) < 0 because r ∈ Sg1 (see Figure 6). We conclude that P ′′B(r) > 0 for
r ∈ Sg1 and thus PB is convex for r ∈ Sg1 .

B.3.5 Fixed point.

A stable fixed point of the Poincaré map, i.e. a point r∗ such that P (r∗) = r∗ with (dP/dr)(r∗) < 1,
indicates a stable periodic orbit passing through r∗. We will show that P has a unique stable fixed point
in Sf1 = [φf1 , x

f
1 ]. We first analyze the Poincaré map at the endpoints of the segment Sf1 . The image of the

segment Sg1 under the map PB satisfies

PB(Sg1) > φf1 , (99)

because in Df the coordinate x1 can only reach φf1 asymptotically (when time tends to infinity, see Figure
6). Now, since PA(φf1) ∈ Sg1 , (99) implies that

P (φf1) > φf1 . (100)
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We also know that Sf1 is invariant under P , and hence for the other endpoint, r = xf1 , we have that

P (xf1) ≤ xf1 . (101)

Since P is a continuous map defined on a bounded and invariant set (Sf1 ), it must have at least one fixed
point in Sf1 . Moreover, P is also convex and therefore it can have at most two fixed points (these can be
seen as intersections between the curve y = P (r) and the identity line y = r, and therefore more than two
fixed points would require P to be concave in some interval, see Figure 12). From (100)–(101) we identify
two cases:

(a) One fixed point. If (101) holds as strict inequality, we have a unique fixed point at φf1 < r∗ < xf1 .
Moreover, by (100) we know that P (r) starts above the identity line, so that (see Figure 12)

dP
dr

∣∣∣∣
r=r∗

< 1, (102)

and therefore the fixed point at r∗ is stable.

(b) Two fixed points. If (101) holds as equality, then the endpoint xf1 is also a fixed point. Now, if
r∗ = xf1 then both fixed points match and we have a unique stable fixed point, whereas if r∗ 6= xf1 , by
the mean value theorem, monotonicity, and convexity of P (r) it follows that

dP
dr

∣∣∣∣
r=xf

1

> 1, (103)

so that the fixed point at the endpoint is unstable.

We therefore conclude that the Poincaré map has a unique stable fixed point, which completes the
proof.

xf1

y = P (r)

y = r

r

Sf1

r∗

φf1

Figure 12: Schematic plot of a continuous, non-decreasing and convex Poincaré map and its stable fixed
point.
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B.4 Proof of Corollary 1.

This proof follows from the one for Theorem 3. We know the sets satisfy Ls = Ls̄ = φs when

xf1 = xg1. (104)

The idea behind the proof is to show that r = xf1 is the unique stable fixed point of the Poincaré map and
therefore corresponds to a degenerate stable limit cycle.

Evaluating the function G̃A(r) in (79) at the endpoint of Sf1 we get (after substituting (27))

G̃A(xf1) = G̃A(xg1) =
γ1

γ`
. (105)

In addition, the function G(TA) in (80) is continuous at TA = 0 and given by (using L’Hôpital’s rule)

G(0) =
γ1

γ`
. (106)

Equation (106) implies that the inverse of G (defined by H ◦G(TA) = TA) satisfies H(γ1/γ`) = 0. We can
then combine (105)–(106) to establish that the first time-to-hit in (82) satisfies

TA(xf1) = 0, (107)

which implies that PA(xf1) = xf1 . Conversely, we can also show that PB(xf1) = xf1 , and therefore xf1 is itself
a fixed point of the Poincaré map P = PB ◦ PA. Note that from (85) we obtain

P ′(r)
∣∣
r=xf

1
= 1, (108)

which implies that r∗ = xf1 is the only fixed point (by the same arguments as in case (b) of Section B.3.5,
existence of two fixed points would imply that P ′(xf1) > 1, which contradicts (108)). Stability follows from
the monotonicity and convexity of P . Therefore, r∗ = xf1 is the unique stable fixed point of P (see the
analysis before Figure 12), and thus it corresponds to a degenerate stable oscillation collapsed to the point
(xf1 , βx

f
1).
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