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présenté pour obtenir le diplôme d’
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Examinateurs: Jean-Luc GOUZÉ INRIA Sophia Antipolis (jury)
Christophe PRIEUR CNRS Gipsa-lab Grenoble (jury)
Thomas SAUTER University of Luxemburg (jury)

1



2



Abstract

The mathematical analysis of dynamical systems covers a wide range of challenging problems related to the
time evolution, transient and asymptotic behavior, or regulation and control of physical systems. A large part
of my work has been motivated by new mathematical questions arising from biological systems, especially
signaling and genetic regulatory networks, where the classical methods usually don’t directly apply. Problems
include parameter estimation, robustness of the system, model reduction, or model assembly from smaller
modules, or control of a system towards a desired state. Although many different formalisms and methodologies
can be used to study these problems, in the past decade my work has focused on discrete and hybrid modeling
frameworks with the goal of developing intuitive, computationally amenable, and mathematically rigorous,
methods of analysis.

Discrete (and, in particular, Boolean) models involve a high degree of abstraction and provide a qualitative
description of the systems’ dynamics. Such models are often suitable to represent the known interactions in
gene regulatory networks and their advantage is that a large range of theoretical analysis tools are available
using, for instance, graph theoretical concepts. Hybrid (piecewise affine) models have discontinuous vector
fields but provide a continuous and more quantitative description of the dynamics. These systems can be
analytically studied in each region of an appropriate partition of the state space, and the full solution given as a
concatenation of the solutions in each region.

Here, I will introduce the two formalisms and then, using several examples, illustrate how a combination
of different formalisms permits comparison of results, as well as gaining quantitative knowledge and predictive
power on a biological system, through the use of complementary mathematical methods.
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Chapter 1

Introduction

The mathematical analysis of dynamical systems is a vast area of research, encompassing many challenging, as
well as fascinating, problems related to the temporal evolution, behavior, or regulation and control of physical
systems. Many different formalisms and methodologies can be used to study these problems, such as continuous
ordinary or partial differential equations’ models [14, 44, 37], discrete or hybrid frameworks [61, 62, 29, 30],
and also stochastic elements [41] (see also [40], for a review).

In the past decade, a large part of my research work has been on mathematical analysis of models motivated
by biological systems, especially signaling and genetic regulatory networks. Due to their complexity and size,
(continuous) models of biological regulatory systems tend to be analyzed by numerical simulations [44], which
provide an invaluable means for studying the systems, but also involve numerical approximations (hence liable
to numerical errors), which often do not capture the whole range of dynamical behaviors of the given system,
as only a finite number of parameter sets can be tested. In contrast, discrete models provide a (sometimes
very) abstract representation of physical mechanisms, but many exact and rigorous computational tools are
available [12, 32, 19] that can be used to study such system without incurring in numerical approximations.

My goal has been the development of mathematically rigorous methods of analysis with the objective of
contributing to study, understand, and eventually control the behavior of biological regulatory systems. This
Introduction will motivate my choice of mathematical modeling frameworks and give a brief description of
the main two formalisms used in my work by quickly recalling their most relevant properties. I will also
underscore the links between the two formalisms, and illustrate their suitableness and complementarity for
addressing questions inspired by biological systems. 1

1.1 Mathematical models for biological networks

Biological systems have particular constraints, and often give rise to new mathematical problems for which
classical methods do not apply [60]. In general, the variables in a mathematical model will denote the con-
centrations of a set of molecular species (which can be proteins, messenger RNAs, biochemical compounds)
involved in a network of interactions. There are typically many species involved, giving rise to large networks
(easily reaching tens to hundreds of components), where the same species may be involved in more than one
system, which may lead to complex networks of interactions and cross-talks [44]. Despite their complexity,
as well as cell-to-cell variability, biological regulatory networks are known to exhibit rather robust properties
in response to external or internal stimuli [43]. The analysis of such networks and the connection between

1 NOTE ON CITATIONS: the citations to papers where I am a co-author are preceded by the letter C, and can be found in Ap-
pendix A. My list of publications is numbered in reverse chronological order and separated into three general categories: journals and
book chapters, conference proceedings, and technical reports (for instance, [C7] is a journal article and can be found in Appendix A.1).
All other citations are numbered in alphabetical order and listed in the Bibliography section.
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the structure or topology of interactions and the robustness properties of the dynamical outcomes are common
problems in molecular biology [43, 66, 2].

On another level, there are the measurements and external actions on the systems (outputs and inputs,
in control theoretical language), which greatly depend on, and are limited by, the experimental techniques
available. The type of data and information can vary from system to system, affecting model construction and
mathematical representation.

A number of questions have arisen in the context of “synthetic biology”, a recent research discipline which
aims at designing and constructing cellular networks from basic biochemical components. Problems related to
the coupling of individual components, their regulation and control to produce a desired dynamical outcome
can be studied through mathematical models [7, 27, 18, 3, 64, 67].

In my view, a mathematical model is useful if it can be compared to data, reproduces some properties of
the system, and leads to predictions, such as qualitative behaviors, orders of magnitude of some parameters, or
hints to control strategies. To construct and analyze a mathematical model of a biological system – and in the
process gain insight into the system’s properties – new tools and techniques need to be developed, apt to deal
with the available data and the questions concerning the system. This search for appropriate methodology has
lead me to define and develop a (hopefully) coherent research direction.

Data constraints and mathematical models. To model and analyze a genetic network, one of the first as-
pects to be considered is the type of data available for the system. Biochemical experimental techniques have
rapidly evolved in the past decade, and there are currently many different types of measurements available,
from qualitative micro-array data (presence or absence of a DNA motif) to more quantitative data with reporter
genes or fluorescent fusion proteins (see [44] for a review). The latter can have relatively high frequency sam-
pling (relative to the time scale of the phenomenon) and yield quite smooth data. A second aspect is the number
of components that are known to be part of the system or that one wishes to consider as part of the process.
Among these, there will be those components that can be measured, and those that one wishes to control or
follow in some way (see also [67]).

I have come to realize that the choice of model formulation is a central aspect of the analysis, as it will
determine the type of methods that can be used, as well as the predictive power of the model. One of my
objectives has been to construct models that help to extract useful information from the available data, but also
carrying the theoretical analysis as far as possible.

Two modeling frameworks have since imposed themselves throughout my work, due to their suitability
to handle the data available on biological regulatory systems, their amenability to theoretical analysis and
implementability as computational tools. Here, I will thus focus on Boolean and piecewise affine formalisms,
which I believe have proved and will continue to prove useful for the analysis of dynamical systems. Boolean
models describe the topology of the network of interactions through logical functions (with no parameters) and
provide intuition on the dynamical behavior of the system [30, 62]. Piecewise affine (PWA) systems provide a
simplified continuous framework, as they describe synthesis and degradation terms with only a reduced number
of parameters [29, 28, 10].

Model construction. The actual model construction presents several challenges, such as how to mathemat-
ically interpret the effect of one variable on another, or more generally the effect of two or more variables on
another (see below), and then choosing a function that describes it, as the biological data does not always help
here. Detailed continuous modeling approaches such as mass-action kinetics [37] generally provide a precise
stoichiometric description of all the elementary reactions that happen in a biochemical system. However, they
also require a large number of parameters, which in turn require a large number of experiments, many of which
are often difficult to perform, or too expensive, or even not possible. After my PhD thesis (where I studied
a class of mass-action kinetics’ models), I have explored other modeling approaches that would not need so

7



many (unknown) parameters, and could be more easily compared to the available measurements. If continu-
ous, mass-action, models are at an extreme end of the modeling scale, then Boolean models are at the other
extreme as they involve no parameters and are formulated according to logical rules using only a pair of states,
true/false or 0/1, for each variable. At an intermediate level of the modeling scale, piecewise affine systems are
a continuous but abstract framework, based on a finite partition of the state space and involving only a restricted
number of parameters. It has been observed that activity of a gene follows a sigmoid-shaped curve [70, 48],
reasonably represented by Hill functions with exponent larger than 2. In fact, PWA systems can be said to use
approximations of Hill functions as the exponents tend to infinity.

It is always difficult to simplify a chain of two or more events and represent them by a single mathematical
term. There are no correct nor unique answers, but an advantage (or a disadvantage, depending on the point of
view...) of the Boolean and piecewise affine formalisms, is that these simplified representations can be reduced
to a small number of choices and mathematical analysis can then help to discriminate between various possible
model versions of the same system. Another advantage is the fact that various computational and algorithmic
tools are available for the study of PWA systems and Boolean networks. These tools provide an analysis of the
dynamics of the system, its asymptotic behavior (steady states, periodic solutions) and their stability. In many
cases, this information can then be used to guide the construction and analysis of a continuous, more detailed,
model of the system.

A combination of different formalisms for a predictive analysis. Each of these frameworks has advantages
and limitations, but both have allowed for the development of mathematically rigorous methods. While they
can be used independently, these two formalisms can be related and coupled to complement and enrich each
other, thus increasing the predictive power of a model.

There are several ways to combine the two formalisms. For instance, the logical description contained in
a Boolean model can be used to construct a piecewise affine model. Similarly, the state spaces (or the state
transition diagrams) of the two models can be related, and the qualitative information contained in the Boolean
model can provide intuition on the continuous dynamics. Conversely, the parameters of PWA systems can be
combined to (re-)introduce quantitative aspects into the Boolean model, such as the notion of relative timescales
of different physical phenomena, or the probability of a given biochemical reaction or event.

Therefore, the methods described here yield both qualitative and quantitative aspects to characterize the
robustness, variability, and dynamical behavior of biological regulatory systems.

I will next give a brief description of the main properties of each of these modeling formalisms, but first
introduce an example of a (simplified) genetic regulatory network, which will be used below to illustrate model
construction.

An example. Consider the transcription factor NFκB which contributes to the production of its own inhibitor,
IκB, a process that was first observed and reported by Hoffmann et al. [36]. The following phenomena have
been observed:

(a) cytoplasmic NFκB (NFκBcyt) is sequestered by the molecules of IκB (forming a bound complex);

(b) upon external signaling, IκB is phosphorylated and degraded through the action of an IκB kinase;

(c) this frees the molecules of NFκB which can now translocate to the nucleus (NFκBnuc) where they
activate transcription of the gene encoding for IκB;

(d) when bound to IκB, NFκB cannot activate transcription of the gene.

These steps are schematically represented in Fig. 1.1, where a normal (resp., blunt) arrow represents a positive
(resp., negative) effect from the originating to the target species. Several other species are known to be involved

8



Figure 1.1: Schematic representation of the main interactions between transcription factor NFκB and its own
inhibitor, IκB. The shaded area represents cell nucleus and the stripped band represents DNA.

in the interactions between NFκB and IκB (notably, other genes whose transcription is also triggered by NFκB).
A model for this extended network was developed in [47], which includes the interactions pictured in Fig. 1.1.

Many simplifications have been assumed to draw this diagram, for instance, all the transcription and trans-
lation steps for IκB protein synthesis are omitted (binding of transcription factor to the gene, mRNA formation,
etc.): these steps are represented by the positive arrow NFκBnuc→IκB, which means “whenever there is an
abundance of NFκB, it will lead to an increase in the concentration of protein IκB”. Likewise, the forma-
tion of the [NFκB-IκB] complex is not detailed, but simply represented in the diagram by a blunt arrow that
means “whenever there is an abundance of IκB, it will lead to a decrease in the concentration of NFκB.” This
schematic regulatory network will be used in Sections 1.2-1.4 to illustrate the various formalisms.

1.2 Classical models: ordinary differential equations

A large range of ordinary differential equations (ODEs) models are regularly used for describing biological
systems [41, 35, 14, 5], each of them allowing different levels of theoretical analysis. One of the most classical
frameworks for modeling biochemical networks consists of systems in which the vector fields are polynomial.
They are obtained by assuming that each biochemical reaction or event follows the law of mass-action [37, 35]
in an “ideal mixture” (i.e., assuming that all the species are homogeneously distributed, at a fixed temperature,
and in a given time invariant volume). The law of mass-action says that two (or more) species A and B may
combine to produce a new species (called the “complex”, C) and the rate of formation of C is proportional to
the amounts of A and B present in the medium: k1AB. The dynamical properties of some classes of mass-
action systems can be studied in great detail as in the case of zero-deficiency networks[24, 23] or [C24], [C22]
– however, a review of such topics is not the aim of this section.

In general, since the variables in a mathematical model denote the concentrations of molecular species, an
immediate constraint is that the mathematical system and its solutions should exist and remain non-negative for
all times. Given a network with n species, the variables will be x ∈ Rn

≥0 and the model

ẋ = f(x), x(0) = x0

where f is typically Lipschitz continuous (or piecewise Lipschitz, in Section 1.3), so that existence and unique-
ness of solutions is guaranteed [59]. In addition, in order to have invariance of the non-negative orthant Rn

≥0,
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the vector fields should also satisfy

xi = 0 ⇒ fi(x) ≥ 0, ∀i = 1, . . . , n.

These two aspects are usually taken into consideration during the construction of a model.

Example A mass-action kinetics type formalism is used in [47] to model a more detailed version of the
network shown in Fig. 1.1. To simplify the notation I will write:

xa = NFκBcyt, xb = IκBcyt, xr = NFκBnuc, xs = IκBnuc

and also the bound complexes:

xc = [IκBcyt-NFκBcyt], xd = [IκBnuc-NFκBnuc], xk = [xc-IKK]

where IKK is another species (not shown in Fig. 1.1), which contributes to liberate NFκBcyt from its inhibitor.
Using mass-action kinetics, the following system of differential equations is obtained:

ẋa = k2xc − k1xaxb − d1xa + k6xk

ẋb = k0 − k1xaxb − k5xbxc − d2xb + d4xs

ẋr = αd1xa − k3xrxs

ẋs = αd2xb − k3xrxs − αd4xs (1.1)

ẋc = k1xaxb − k2xc − k5xbxc + d3xd

ẋd = k3xrxs − αd3xd

ẋk = k5xbxc − k6xk

The equation for cytoplasmic NFκB (ẋa) contains two “production” terms due to dissociation of the complexes
(k2xc and k3xd), and two loss terms due to binding to its inhibitor (k1xaxb) and transfer to the nucleus (d1xa).
The equation for nuclear NFκB (ẋr) has one production term corresponding to the transfer from the cytoplasm
(αd1xa) and one loss term due to binding to its inhibitor (k3xrxs). In the equations for IκB there is one
production term due to translation of IκB mRNA (denoted k0), there is a two-way transfer of IκB between
the cytoplasm and the nucleus (terms d2xb, d4xs), and note that IκB is not recovered on the dissociation of
complex xc. The equations for the complexes are similarly constructed.

Model reduction This model accounts for many details such as complex formation or various forms of the
same species. Some mathematical techniques are available to study mass-action models [35, 24, 23] but, on
the other hand, model (1.1) involves many parameters, most of which are unknown or difficult to estimate. So,
one often looks for ways of simplifying the model and reducing it to a more compact, but mathematically more
tractable, model. A general simplifying assumption is to consider that some phenomena happen on a faster
timescale relative to others (for instance, complex formation is faster than transcription or translation [2]). This
leads to the hypothesis that some equations will be at quasi steady state (see, for instance, [14]), which can be
justified by identifying a small parameter (or combination of parameters), ε and re-writing the equations in the
form:

ẋ1 =
1
ε
f1(x1, x2)

ẋ2 = f2(x1, x2).

Roughly speaking, εẋ1 = f1(x1, x2) ≈ 0 (if ε is “small” and f1 not “too large”), yields an algebraic equation
that defines x1 as a function of x2, x1 = g(x2). Thus, x1 is called the “fast” variable, as it vector field or
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velocity has larger values relative to those of variable x2. Elimination of the x1 equation as well as substitution
of x1 as a function of x2 leads to a reduced model for the dynamics of x2: ẋ2 = f2(g(x2), x2). There are
however, several mathematical conditions that should be verified in order to establish the range of validity of
this model reduction: these are known as Tikhonov’s Theorem (see, for instance, [42], and a brief summary in
the introductory book chapter [C5]; another application of this technique can be found in [C10]).

Example (continued) Assuming that complex formation is fast, one can use the quasi-steady state assump-
tion to approximate ẋi ≈ 0 (i ∈ {c, d, k}) in model (1.1). Other simplifying assumptions can be introduced,
depending on the system. In this example, I will also consider that:

• there is only one pool of IκB and merge the corresponding cytoplasmic and nuclear forms, xb+xs ; xb;

• for each variable, all degradation or loss terms are grouped into a single linear term.

• for each variable, all production terms are grouped into a phenomenological (positive or negative) acti-
vation term that represents the “overall effect”.

Following these guidelines, an alternative, and more schematic, three-dimensional model can be written with
linear degradation terms and production or activity functions (denoted hj):

ẋa = kah
a(xb)− γaxa (1.2)

ẋb = kbh
b(xr)− γbxb (1.3)

ẋr = krah
ra(xa) + krbh

rb(xb)− γrxr (1.4)

Note that the activity functions are in agreement with the arrows pictured in Fig. 1.1; they could have several
mathematical forms, but ha and hrb should be decreasing functions of their argument (since xb inhibits both
xa and xr), while hra and hb should be increasing functions (see also [C19] for a general idea). Since each
activity function generally represents a sequence of elementary events, typical forms for hj in signaling and
genetic networks can be obtained by application of hypotheses on the timescales of the events and appropriate
assumptions on the parameters (see, for instance, [14] or [2]; see also the introductory book chapter [C5]):

h+(x, θ,m) =
xm

θm + xm
, h−(x, θ,m) =

θm

θm + xm
,

wherem ≥ 1 and θ > 0 are positive real numbers. It is clear that h+ (resp., h−) is increasing (resp., decreasing).
The number θ represents a threshold above (resp., below) which the effect of variable x is very strong. For
instance, in the xb equation, there will be a strong transcription/translation of xb mRNA once xr is above a
certain value θa3. These sigmoid functions (also called Hill functions) are known to fit well to activity data [48],
leading to exponents of the order 2-4 [70], and are often used to model genetic regulatory networks [18, 27].

Theoretical analysis of systems of ODEs is very difficult, especially as the number of variables increases.
Even in this example with three variables, it is difficult (or impossible) to obtain explicit expressions for the
steady states. Besides, mass-action kinetics, there are other classes of systems for which some tools exist (for
instance, monotone systems [4]) but, in general, their stability can be studied only locally and some qualitative
properties can be established (see [14]). For an idea of the dynamical behavior, it is therefore usual to rely on
numerical simulations (as in [47]). Another possible approach is to consider an approximation of system (1.2),
based on the form of its vector field: if m is very large, the functions h± become close to Heaviside (or “step”)
functions, and system (1.2) can be approximated by a piecewise linear system. This fits into a useful framework
that will be discussed next.
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1.3 Piecewise affine models

Piecewise affine (PWA) models also consist on systems of differential equations, but the vector fields have
(finitely many) points of discontinuity [34, 10]. Briefly, the vector field may take different expressions in
different regions of the state space. However, these expressions must be affine or linear in each variable (no
quadratic terms are allowed).

Intuitively, a piecewise affine model can also be obtained as a limiting case of a classical system of ODEs
whose vector fields is given in terms of Hill functions, by letting the exponents tend to infinity (see, for in-
stance, [C17]). In this case, each Hill function becomes a step function with the discontinuity at the point
x = θ.

lim
m→∞

h+(x, θ,m) = s+(x, θ) =
{

0, if x < θ
1, if x > θ.

Note that the function s+(x, θ) remains undefined at x = θ, which are the points (or hyper-surfaces) of
discontinuity of the vector field. Similarly, the decreasing Hill function yields a decreasing step function:
s−(x, θ) = 1− s+(x, θ).

In the context of genetic networks, L. Glass introduced a class of PWA models where the vector field is
obtained from logical activity functions [30, 29, 16, 15]. Alternatively, a PWA model can also be constructed
directly from the available biological knowledge (such as in [52]). More applications of PWA systems to
biological systems can be found in [C21], [6]. The main properties of PWA systems and briefly summarized
next.

Regular domains, focal points, and solutions As above, I will consider variables x = (x1, . . . , xn)′ ∈ Rn
≥0,

which can be assumed to evolve in a bounded subset of Rn
≥0, R = [0,Max1] × · · · [0,Maxn], as will become

clear below. In general, each variable xi may have a finite number of activity/inactivity levels (or thresholds),
describing its interaction with the other variables in the network:

0 = θi0 < θi1 < · · · < θi,pi = Maxi <∞.

These thresholds define rectangular regions which form a partition of the positive orthant:

D = {(θ1,r1 , θ1,r1+1)× · · · × (θn,rn , θn,rn+1) : ri ∈ {0, pi − 1}}.

The rectangular regions in D are called regular domains, while their boundaries are hyper-planes characterized
by the fact that some of the variables are at a threshold and are called switching domains, Ds. A convenient
way to label the regular domains is to use the indexes of the first threshold of each variable:

(θ1,r1 , θ1,r1+1)× · · · × (θn,rn , θn,rn+1) := “r1, . . . , rn,” (1.5)

so that, if n = 3, the domain “120” corresponds to the 3-dimensional region (see also example below):

“120” ⇔ x1 ∈ (θ11, θ12), x2 ∈ (θ22, θ23), x3 ∈ (θ30, θ31).

The general formulation of a PWA system is as follows:

ẋ = f(x)− Γx

where Γ =diag(γ1, . . . , γn) and the vector field f : Rn
≥0 → Rn

≥0 takes different forms depending on the region
of the state space:

f(x) = fD(x), ∀x ∈ D, D ∈ D.
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Throughout my work, the PWA are characterized by vector fields which are constant in each region (i.e., fD is
a constant), which implies that the equations are decoupled, and the solution can be explicit computed for all
x ∈ D:

ẋi = fDi − γixi, i = 1, . . . , n

with solution

xDi (t) = (xi0 −MD
i )e−γit +MD

i , where MD
i =

fDi
γi
.

For each domain D, it is clear that solutions will evolve towards φD = (MD
1 , · · · ,MD

n ), called the focal
point of D. Since there are only a finite number of thresholds and the fDi are constant, (re-)define Maxi =
maxD{MD

i }. Then the set R is an invariant region for system and one may consider that x(t) ∈ R for all
t ≥ 0. Each focal point φD may be contained inside or outside the domain D. In the latter case, solutions
eventually leave the domain to enter another one, and the system switches to another vector field. In the former
case, the domain is invariant, and the focal point becomes a true fixed point (see also [10]). If the vector
fields in two adjacent domains do not have opposite orientations, the solution can be “normally” continued by
concatenating the solutions in the two domains. Otherwise, the vector field has to be defined as a differential
inclusion along the switching surface shared by the two domains, and a solution can still be constructed in the
sense of Filippov ([26]; see also [33]).

Switching domains and sliding modes Note that the vector fields of the PWA systems are undefined at the
points (or hyper-surfaces) of discontinuity. Nevertheless, solutions can still be continuously defined, using a
construction due to Filippov [26], as follows. On a switching domain Ds, the system is defined as a differential
inclusion:

ẋ ∈ H(x) = co{fD(x)− Γx : Ds ∈ ∂D}, if x ∈ Ds

where co denotes the closed convex hull of the vectors and ∂D contains all switching domains adjacent to D.
For example, if two domains Da and Db share the face Ds characterized by x1 = θ1, then for all x ∈ Ds, the
solutions may satisfy:

ẋ = αfDa(x) + (1− α)fDb(x)− Γx.

for any 0 ≤ α ≤ 1. If fDa
1 − γ1θ1 and fDb

1 − γ1θ1 have the same sign, then there is a “natural continuation” of
the trajectory as it evolves from Da towards the boundary at Ds and crosses Ds to enter Db, always following
the same orientation along the x1-axis, as ẋ1 has the same sign on both regular domains. A continuous solution
will still be obtained at x1 = θ1 (for any α), but it could change direction along the other coordinates (see
Fig. 1.2(a)). If fDa

1 − γ1θ1 and fDb
1 − γ1θ1 have opposite signs, then the two vector fields generate opposing

trajectories at each point in the switching domain Ds, pushing the system in opposite ways (see Fig. 1.2(b)).
A “natural solution” can then be found by letting x(t) evolve on the switching plane, i.e., setting ẋ1 = 0 for
x1 = θ1 (see [33] for more details). Note that this leads to a particular value for α given by:

0 = αfDa
1 (θ1) + (1− α)fDb

1 (θ1)− γ1θ1 ⇒ α =
γ1θ1 − fDb

1 (θ1)

fDa
1 (θ1)− fDb

1 (θ1)
.

(The fact that 0 ≤ α ≤ 1 follows from the hypothesis fDi
1 − γ1θ1 < 0 < f

Dj

1 − γ1θ1, i, j ∈ {a, b}, i 6= j.)
This type of solution can be “unstable” (if both vector fields point away from Ds) or “stable” (if both vector
fields point towards Ds), in which case it will be called a sliding mode solution.
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Figure 1.2: Two different configurations of vector fields on adjacent domains: (a) trajectories can cross from
Da to Db in a natural way; (b) a solution would be to remain on the switching surface shared by Da and Db.

State transition diagram A trajectory will thus evolve among the regular and switching domains in the state
space. Its evolution can be viewed in a more schematic form with the help of a state transition diagram. This
form of diagram was first suggested in [29] (and then generalized to discrete models) and is composed of a set
of vertexes, which represent the regular and switching domains [10], and a set of edges, which represent the
possible transitions between the domains. If no sliding mode solutions are present, the switching domains can
be omitted from this diagram. The regular domains can be labeled, for instance according to (1.5). The possible
transitions from each regular domain depend on the location of its focal point, and hence on the parameters.
To construct this diagram it is useful to use the notation (1.5) and re-write the vector field in terms of the focal
points φD = (MD

1 , · · · ,MD
n ):

ẋi = γi(MD
i − xi), ∀ x ∈ D = “r1, . . . , rn”.

Then, in general, for each i (see the example below){
MD
i − xi > 0 ∀x ∈ D, add arrow “r1 · · · ri · · · rn”→“r1 · · · ri + 1 · · · rn”

MD
i − xi < 0 ∀x ∈ D, add arrow “r1 · · · ri · · · rn”→“r1 · · · ri − 1 · · · rn”.

If the sign of MD
i − xi is not constant in D, then no arrow is added; if ri + 1 ≥ Maxi or ri − 1 ≤ 0 again no

arrow is added, since xi cannot increase (or decrease) out of R. Each outgoing arrow represents the crossing of
a threshold and, to maintain a more realistic description, for each arrow only one variable may cross a threshold.
Hence, each vertex may have zero or up to n outgoing arrows. The resulting diagram (an example is shown in
Fig. 1.3) is very useful to compactly describe and visualize the possible trajectories of the system. The qualita-
tive behavior (oscillations, location of steady states, stability) can be inferred from the state transition diagram,
but detailed knowledge is lost. For instance, for a vertex with more than one outgoing arrow, there are now sev-
eral possible trajectories, but no information on the “most probable”. Likewise, it is clear that a periodic orbit
of the PWA system leads to a transition cycle in the diagram, but the converse is not true, as a transition cycle
may also correspond to a damped oscillation. To recover part of this quantitative knowledge, one possibility is
to assign values or probabilities to each edge, “randomly”, or according to biological data [C23],[C13], [22],
or based in the parameters of the PWA system [C12], [C4].

Example For the reduced NFκB example (1.2), the PWA system is:

ẋa = kas
−(xb, θba)− γaxa

ẋb = kbs
+(xr, θr)− γbxb (1.6)

ẋr = kars
+(xa, θa) + kbrs

−(xb, θbr)− γrxr.
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Note that xa and xr have one threshold each, since they act on one variable each, while xb has two thresholds,
since activity of xa or xr may be triggered with different values of xb. There is an invariant region, given by[

0,
ka
γa

]
×
[
0,
kb
γb

]
×
[
0,
kar + kbr

γr

]
since the vector field points inwards, so typically the study of the dynamics is restricted to this invariant region.

Assuming that all thresholds are inside this invariant region, and in particular satisfy the inequalities:

0 < θa <
ka
γa
, 0 < θba < θbr <

kb
γb
, 0 <

kar
γr

< θr <
kbr
γr
, (1.7)

the state space can be partitioned into 18 rectangular regions D = Ia × Ib × Ir, where:

Ia ∈
{

(0, θa),
(
θa,

ka
γa

)}
, Ib ∈

{
(0, θba), (θba, θbr),

(
θbr,

kb
γb

)}
Ir ∈

{(
0,
kar
γr

)
,

(
kar
γr
,
kbr
γr

)
,

(
kbr
γr
,
kar + kbr

γr

)}
. (1.8)

Following (1.5), the 18 regular domains can be labeled so that (see Fig. 1.3)

“120” ⇔ xa ∈
(
θa,

ka
γa

)
, xb ∈

(
θbr,

kb
γb

)
, xr ∈

(
0,
kar
γr

)
.

To construct the state transition diagram, the outgoing arrows from each vertex need to be computed. In domain
“120” the vector field is as follows:

ẋa = −γaxa < 0,
ẋb = −γbxb < 0,
ẋr = kar − γrxr > 0,

so both xa and xb may decrease below a respective threshold, while xc may increase above a threshold. For
this vertex, three arrows are added, one along each direction:

“120”→ “020”, “120”→ “110”, “120”→ “121”.

For system (1.6) note that, in the case kbr = 0, the system reduces to a simple negative feedback loop with three
components. It has been shown in [21] that such a PWA system has a stable periodic orbit. However, for kbr >
0, a second negative loop appears which may substantially change the dynamics. In [C4] the system (1.6) was
studied for sets of parameters satisfying (1.7), with the state space partitioned according to the intervals (1.8).
The corresponding transition diagram is shown in Fig. 1.3, where several (five) transition cycles exist, but
no sliding modes, hence only vertexes representing regular domains are depicted. In this case, the transition
diagram shows that none of the regular domains contains its focal point, hence no classical equilibria exist. In
fact, one can further see that the system has an unstable Filippov-type equilibrium point at (θa, θba, θr), and
will exhibit a periodic orbit [C4]. The periodic orbit will follow one of the five transition cycles, depending on
the set of parameters.

For other regions of parameters, such as

0 < θa <
ka
γa
, 0 < θba < θbr <

kb
γb
, θr < min

{
kar
γr
,
kbr
γr

}
, (1.9)
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Figure 1.3: State transition diagram for system (1.6) with parameters satisfying (1.7). Each node represents
one of the 18 regular domains of the state space, labeled according to (1.5). The bold arrows represent the
asymptotic behavior of the system. To introduce more quantitative aspects, a transition probability may be
assigned to the vertexes with more than one outgoing arrow. Some are indicated by P112, P012, and P021.

it is possible to show that (0, θbr, θr) is in fact a stable equilibrium point (of Filippov-type, since it lies on a
switching domain). To see this, observe that the set

S = [0, θa)×
(
θba,

kb
γb

]
×
[
0,
kbr
γr

]
is invariant for the system. In S, system (1.6) with parameters (1.9) can, in fact, be reduced to a two-dimensional
system,

ẋb = kbs
+(r, θr)− γbb

ẋr = kbrs
−(b, θbr)− γrr.

since the variable xa is strictly decreasing (ẋa = −γaxa) and exerts no influence on the others. It is well known
that this 2D system converges towards the steady state (θbr, θr) [31]. Therefore, in a (sufficiently small) open
neighborhood of (0, θbr, θr) ∈ S, the full system (1.6) converges towards this point. In the state transition
diagram, the point (0, θbr, θr) would be on a switching domain at the center of the rectangle formed by “011”,
“021”, “012”, and “022”.

In conclusion, the parameters play an important role in determining the dynamics of the state transition dia-
gram. Moreover, this object can be used to explore the connections between the PWA and Boolean frameworks,
in order to compare and complement our knowledge on a given system.

1.4 Asynchronous Boolean networks

Boolean networks have first been introduced for modeling genetic regulatory networks by S. Kauffman and R.
Thomas [61, 62]. Since then, many aspects of the Boolean formalism have been studied, such as conditions
for existence of given configurations of attractors [63, 49], the role of positive or negative circuits [50, 51],
or extensions to other logical frameworks, including time constraints [8, 57]. There is a natural relationship
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between Boolean, discrete, and piecewise affine systems [C11], [38], which have been seen in Section 1.3 and
will be further illustrated below.

Due to the rapid advances in molecular biology, regulatory networks are known to involve increasingly
larger number of components, as well as greater complexity. Boolean models have thus become a most useful
framework, especially in the case of large networks (on the order of 10 or more variables), with many successful
applications [54, 1, 71, 11, 45, 56, 46, 22, 53, 55, 9].

Boolean networks consist of a set of nodes or variables (mRNAs, proteins or other entities) of the ge-
netic system, and a set of logical rules, which represent the interactions between those variables (see, for in-
stance, [69] for a review). The logical rules dictate the dynamical behavior of each variable. Boolean variables
can only take two values, 0 or 1, which are often appropriate for modeling gene expression, especially when
data is scarce. In this case, one can say that 0 (resp., 1) corresponds to a weak (resp., strong) expression of a
gene or protein. The Boolean variables will be denoted byX = (X1, . . . , Xn) and the state space Ω = {0, 1}n.
The time is also assumed to be discrete, 0 < t1 < · · · < tk < · · · and the dynamics of a Boolean model is
specified by a set of logical rules, {Fi(X) : Ω→ {0, 1}, i = 1, . . . , n} which determine the state of the nodes
at time tk+1, given the state at time tk: Xi(tk+1) = Fi(X(tk)). To simplify notation, one usually defines

X+
i := Fi(X), i = 1, . . . , n.

To determine the temporal evolution of the system, one must specify a mode of update, roughly, the order in
which the variables progress in time. Several algorithms exist, as briefly discussed next.

Synchronous and asynchronous networks In general, there are different possible strategies to update the
system and obtain its trajectories. One of the most common assumes that all nodes are simultaneously updated,
that is, at each instant tk+1 all variables change to their new value, so

∀k > 0, ∀i = 1, . . . , n Xi(tk+1) = F (Xi(tk)).

The corresponding networks are called synchronous Boolean networks.
However, the synchronous assumption is not always very realistic, as the timescales of different biological

processes can vary widely (translation or transcription are generally much slower than complex binding; some
timescales are given in [2]). A more general updating strategy considers that, at each instant, only one node is
updated to its new value, i.e.,

∀k > 0, ∃!j ∈ {1, . . . , n} Xj(tk+1) = Fj(Xj(tk)) and Xi(tk+1) = Xi(tk)) i 6= j.

The corresponding networks are called asynchronous Boolean networks. There are other intermediate or mixed
strategies [C23],[22], but they are typically based on these two. For all strategies, the trajectories of the Boolean
network consist of a sequence of transitions among the 2n states in Ω. There is a transition between two states
V,W ∈ Ω if V = X(tk) and W = X(tk+1), in which case one says that W is a successor of V . The set of
successors of X is obtained as:

σ(X) = {X̃ ∈ Ω : ∃j X̃j = Fj(X) and X̃i = Xi i 6= j}.

All possible trajectories can also be described as a directed graph with 2n vertexes (the cardinality of Ω), with an
edge connecting two vertexes whenever one state is the successor of the other. Note that there is a fundamental
difference between the directed graphs corresponding to synchronous or asynchronous networks. In the former,
any given state can have at most one successor, thus generating deterministic behavior, while in the latter each
state can have up to n successors, generally leading to several different choices of trajectories from any given
state. To understand this difference intuitively, consider that each vertex corresponds to a “large” region in
the continuous state space (eg. “low” x1 and “high” x2); for the continuous system, each initial condition
generates one trajectory, and thus several different trajectories are indeed possible from this region. The graph
associated to an asynchronous network would thus capture all qualitatively distinct trajectories originating on
the corresponding region in the continuous state space.
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Graph theoretical representation and tools I have chosen to focus on asynchronous Boolean networks,
since they permit a more realistic interpretation. The associated directed graph will be called the asynchronous
transition graph, and its properties can be studied using graph theoretical tools. A directed graph can be
decomposed into strongly connected components (SCCs), which are maximal subsets of vertexes where every
pair is mutually reachable (two vertexes are said to be mutually reachable if there are directed paths linking
one vertex to the other). SCCs can contain a single state or several states (the whole state space can constitute
a single SCC, for some particular models). Hence, SCCs can have outgoing paths directed towards (states
contained in) other SCCs. An SCC that contains no outgoing path is called a terminal SCC or attractor, since
any trajectory that reaches it cannot leave. The SCCs of a graph can in fact be viewed as the vertices of a new
acyclic graph, where the SCCs are hierarchically organized into levels such that, from each level, there can only
be transitions to a higher level. This analysis facilitates the identification of the attractors, which contain the
asymptotic behavior of the system.

Moreover, the asynchronous transition graph can also be described as a Markov chain (represented by a
2n × 2n matrix P = [pij ]), if a probability of transition is associated to each edge in the graph. Thus pij
denotes the probability that there exists a transition from state i to state j (pij = 0 if no such edge exists). In
the most simple case, the probabilities can be equally assigned among the outgoing edges of a vertex:

pij =
1

#successors of state i
.

More generally, different weights may be assigned to different edges according to biological knowledge, for in-
stance, due to the frequency or timescale of the process described by that edge (see, for instance, the approaches
in [C23] or [C13]). For instance, in Fig. 1.3, there are two possible pathways from state “112”: a probability
P012 has been assigned to the edge 112 → 012; then the edge 112 → 122 will have a probability 1 − P012.
Similarly for the states “012” and “021”. Several questions, concerning transient behavior or reachability from
a given state, can also be answered from analysis of the transition graph. Indeed, the transition matrix P con-
tains useful quantitative information on a qualitative system: the ij-th entry, pkij , of the k-th power of the matrix
P denotes the probability that a trajectory follows a path from vertex i to vertex j in k steps. Therefore, j is
reachable from i if, for some k ≥ 1, pkij > 0. If i is a single state attractor, then pii = 1 and pij = 0 for all
j 6= i. If a set of states I = {i1, . . . , iL} constitutes an attractor of the system, then for any i` ∈ I, pi`j > 0
if and only if j ∈ I. By separating the rows and columns relative to the attractors, the matrix P can be written
as [25]

P =
(
Pa 0
Ra P̃

)
where Pa is of dimension 2L × 2L and P̃ is 2N−L × 2N−L has no attractors, so there is a path leading from
every state in {N − L, . . . , N} to some state in {1, . . . , L}. Then, (I − P̃ ) is invertible and T1

...
TN−L

 = (I − P̃ )−1

1
...
1


provides the estimated time for absorption of the state i ∈ {N−L, . . . , N} into an attractor (if the probabilities
are normalized, then Ti gives the number of steps needed on average to reach an attractor from state i).

As will be seen in the example below, a Boolean model can be derived from a piecewise affine system. In
the case, the probabilities pij can be assigned based on the parameters of the PWA system, as in [C12], [C4],
for instance.
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Figure 1.4: The asynchronous transition graph for the Boolean network (1.10). The 18 vertexes organized in a
circle correspond to the permissible states. Within these, the light colored vertexes compose the only attractor
(terminal strongly connected component) of the network (see also Fig. 1.5).(Figure drawn using the open source
software platform Cytoscape [58].)

Example To write the NFκB example above as a Boolean model, the methodology proposed in [C11] can
be used to extend the discrete system generated by the PWA model. Briefly, for each positive activity level,
one Boolean variable is added to the system, so that a discrete variable x with levels 0, 1, . . . , d is described
by d Boolean variables X1 to Xd, which satisfy: Xj ≥ Xj+1. In other words, if x = 2 then X1 = X2 = 1,
while the state X1 = 0 and X2 = 1 is biologically meaningless (since a very high expression level naturally
entrains all the intermediate levels). The extended Boolean state space can thus be divided into “forbidden”
and “permissible” states, where the former can have any arbitrary dynamical evolution and the latter must
represent the dynamics of the discrete system generated by the PWA model. The logical rules for the extended
model should thus mimic the PWA model (for the permissible states) and also guarantee that no transitions are
allowed from the permissible to the forbidden states (for a biological meaningful model). In [C11], a method is
proposed to generate appropriate Boolean variables and assign logical rules that satisfy these consistency rules.
The Boolean model corresponding to (1.6) has one variable to describe species xa (A) and two variables each
to describe xb (B1, B2) and xr (R1, R2). The model is then:

A+ = ¬B1

B+
1 = B2 ∨R2

B+
2 = B1 ∧R2 (1.10)

R+
1 = A ∨R2 ∨ (¬B2 ∧R1)

R+
2 = A ∧R1.
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Figure 1.5: The hierarchical decomposition into strongly connected components of the graph of Fig. 1.4. The
top vertex corresponds to the only attractor of the network, which contains the states corresponding to the light
colored vertexes of Fig. 1.4. All other vertexes correspond to SCCs which are composed of a single state.(Figure
drawn using the open source software platform Cytoscape [58].)

To construct the asynchronous transition graph, one proceeds as follows: (1) for each state X ∈ Ω, compute
the possible variable changes from the synchronous Boolean table; (2) then consider only one change at a time,
to obtain all the successors of X (Y1, . . ., Y`) and draw an edge from X to each Yi. For example:

X = (1, 1, 1, 0, 0) ⇒ X+ = (0, 1, 0, 1, 0)

so the possible successors are

(0, 1, 1, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 1, 0)

by allowing only the variable, respectively, A, B2, or R1 to change at each time. It is not difficult to check
that there are indeed no transitions from the “permissible” to the “forbidden” states, as can also be seen by
observation of the corresponding asynchronous transition graph, in Fig. 1.4, where the 18 vertexes organized
in a circle correspond to the permissible states. Note that these 18 vertexes correspond to the states in the state
transition diagram of the PWA system shown in Fig. 1.3.

The graph of Fig. 1.4 can be decomposed into SCCs which shows that there is a single attractor, labeled
“1” (see Fig. 1.5). Furthermore, the Boolean states contained in this attractor are those which are shown in light
color in Fig. 1.4 and correspond to the asymptotic states (those connected by bold arrows) in the state transition
diagram of the PWA system (Fig. 1.3).

In conclusion, there is indeed a clear correspondence between the state transition diagram of the “hybrid”
PWA model (1.6) (with parameters satisfying (1.7)) and the asynchronous transition graph the Boolean sys-
tem (1.10); both frameworks capture the (same) qualitative asymptotic behavior of the biological system,
although the “hybrid” approach further provides continuous solutions across the regular domains.

Boolean networks with inputs and outputs To study other properties, such as the interconnection of two net-
works [C32],[C3], it is useful to introduce Boolean models into a classical control theoretical framework [59].
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Figure 1.6: The interconnection of two multiple-input multiple-output systems A and B.

A Boolean multiple input-multiple output (MIMO) system is characterized by its state space Ω, a set of p
inputs u ∈ U = {0, 1}p, a set of q outputs given by an output function h : Ω → H, with H = {0, 1}q, and a
logical vector function F : Ω× U → H.

The inputs typically represent quantities that can be regulated or controlled by a scientist, while the output
functions represent quantities that can be measured. In the Example, the input might be a stimulating substance
such as Tumor Necrosis Factor (TNF) which is known to affect the NFκB network [47] and the output function
might be, for instance, the expression of IκB:

u = TNF, h(X) =
(
B1

B2

)
.

At a basic level, TNF activates IKK and will thus have a negative effect on IκB, hence one way to include the
effect of input u on (1.10) is as follows:

B+
1 = B2 ∨R2

B+
2 = ¬u ∨ (B1 ∧R2).

For each fixed u, the Boolean MIMO system has a specific asynchronous transition graph, G = G(u). In this
case, the graph G(0) coincides exactly with be the one represented in Fig. 1.4. The case u = 1, would imply
B2 ≡ B1 ≡ 0 and the resulting changes.

Given two Boolean MIMO systems, their interconnection can be described by two feedback functions
that transform the outputs of one system into the inputs of the other. Let the two systems, A and B, be
characterized by (ΩA,UA,HA) and (ΩB,UB,HB), with output functions h̄A and h̄B and logical rules FA,
FB . The interconnection of A and B can be described by two feedback functions that transform the outputs of
one system into the inputs of the other:

κAB : HA → UB, κBA : HB → UA.

Consider the composition of κ∗ and h̄∗: hA(a) = κAB(h̄A(a)) and hB(b) = κBA(h̄B(b)). Then, the intercon-
nection of A and B is the Boolean system Σ, with no inputs or outputs, with state space Ω = ΩA × ΩB , and
Boolean rules FΣ : Ω→ Ω constructed in the following way:

FΣ(a, b) =
(
FA(a;hB(b)), FB(b;hA(a))

)
. (1.11)

Let GA(u) (resp., GB(v)) denote the asynchronous transition graph of system A under input u (resp., system
B under input v). Define σA,u(a) to be the set of successors of state a for system A under input u, that is, in
the asynchronous transition graph GA(u) (similarly for σB,v(b)). The successors of an element of Ω are again
computed according to the asynchronous updating strategy, and they are of the form{

(a, b̃), (ã, b) ∈ Ω : ã ∈ σA,hB(b)(a) and b̃ ∈ σB,hA(a)(b)
}
. (1.12)
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Intuitively, trajectories of the interconnection system will evolve either in GA(hB(b)) with part b fixed, or in
GB(hA(a)) with part a fixed. At any update, the trajectory can “switch” between graphs, depending on the
successors at that instant. More details asnd results are left to Chapter 5, which discusses this recent work.

1.5 Outline

The next chapters collect a selection of my published articles, ranging from 2005 to 2013, chosen to showcase
my work in the analysis of dynamical systems applied to signaling and genetic regulatory networks. By putting
together this collection, I wished to highlight the evolution and richness of my theoretical work as inspired
by questions and problems from biological regulatory networks. This mémoire, as a collection of articles, is
divided into four chapters, each dedicated to a different problem, as summarized next.

Chapter 2 is composed of two articles dealing with introductory questions on how to model the various
biological events in a network and compare the different formalisms. The first article is a short introduction
to modeling and analysis of genetic regulatory networks, using continuous and piecewise affine models, which
is published in a book based on a series of courses taught in the scope of the Master of Science program on
Computational Biology and Biomedicine at the Université Nice Sophia Antipolis, France. The second article
is on the mathematical comparison between Boolean, multi-level discrete and piecewise affine models.

Chapter 3 collects four articles dedicated to the quantitative analysis of various dynamical properties: ro-
bustness with respect to changes in the parameters and convergence to steady states, dependence of the system
on its different timescales, as well as probabilistic approaches for predicting which steady state or periodic will
more likely be attained. The papers also show how to combine Boolean and piecewise affine networks, to ob-
tain more realistic models and quantitative analysis. These four papers deal with different biological examples,
including the segment polarity network of the fruit fly Drosophila melanogaster and a mammalian apoptosis
network.

Chapter 4 comprises two articles on qualitative techniques for control of piecewise affine systems in the
plane. The first article uses the rectangular partition of the state space to consider a problem where the available
measurements consist of an interval for each concentration, and the possible actions (or control inputs) on the
system are constant in each rectangular region and would correspond to switching gene expression on or off in
each region. The second article studies a system where the state space is partitioned into conical regions, whose
order and respective focal points change with the regulatory function (i.e., activation, inhibition) of one of the
variables on the others. The various dynamical behaviors induced by this global control are fully characterized.

Chapter 5 consists of two articles that describe and prove a theoretical method for the analysis of large
Boolean networks, by the interconnection of two smaller modules. The asymptotic behavior of the full network
obtains by studying the two smaller modules, thereby greatly reducing the computational effort and time.

One final chapter summarizes the main results contained in this mémoire, and suggests further applications
of the methods described here, as well as future research directions.

The Appendices contain further information, such as my Curriculum Vitae, complete list of publications,
and the abstract of my PhD. thesis. The original publications of the ten articles mentioned in the four chapters
are included in Appendix B.
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Chapter 2

Modeling genetic regulatory systems: from
continuous to Boolean networks

In general, for any mathematical framework, there are several possible ways of representing a given biological
process, so the construction of the model requires an inspection of the network of interactions. An introduc-
tion to modeling genetic regulatory networks is given in §2.1, using continuous, piecewise affine and discrete
models.1

The introductory paper §2.1 is intended for graduate students with either mathematical or biological back-
grounds and gives a detailed description of how to model activation, transcription and translation events, and
then to assemble the various processes in a single model and analyze the dynamics of this model. For con-
tinuous systems, some simplifying hypotheses and their validity are discussed, namely the quasi-steady state
approximation which is based on the fact that different processes have different timescales, implying that the
model can be reduced under appropriate conditions. Classical methods are recalled for continuous ordinary
differential equations, such as verification of positivity, computation of the steady states of a model, their local
analysis by linearization around the steady states and inspection of the eigenvalues. Not so classical methods
are also recalled, such as Tikhonov’s Theorem for simplifying a model based on different timescales’ argu-
ments. For piecewise affine systems, it is recalled that solutions can be defined according to a construction due
to Filippov, by interpreting the system of equations as a differential inclusion (see also above [...]). A basic
example - the bistable switch - is used to illustrate model assembly and analysis, both in the continuous and the
piecewise affine frameworks.

In view of all the different formalisms available, it becomes important to have an idea of whether and
how they can be compared. Furthermore, if one of the goals is to “transfer” or exchange information between
model formulations, then one would like to guarantee that the different formulations do model the same system,
and that parameters (whenever appropriate) can be related. The article §2.2 presents some methodologies to
compare and interchange models in the piecewise affine, discrete and Boolean formalism.

As can be seen in the article §2.1, there is a natural way to relate continuous and piecewise affine models
if the former use saturated, sigmoid type activity functions. Letting the cooperativity exponent tend to infinity,
the sigmoid function converges to a step-like, Heaviside function, whose point of discontinuity (or activity
threshold) is given by the half-maximal concentration. The continuous set of differential equations is thus
transformed into a set of piecewise affine differential equations, where the vector field has a finite number of
discontinuities, at the threshold points of the step functions.

A piecewise affine system can itself be straightforwardly related to a multi-valued discrete system, given the
1 This article is the second chapter of a book based on a series of courses taught in the scope of the Master of Science program on

Computational Biology and Biomedicine at the Université Nice Sophia Antipolis, France. Since 2009, I have regularly taught in this
program, on modeling and analysis of gene regulatory networks using continuous and piecewise affine models. In this article, together
with Jean-Luc Gouzé, I have been responsible for section 2.
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partition of the state space into hyper-rectangles (see above [...]). Indeed, recall that an hyper-rectangle is de-
fined by a product of intervals in each variable, defined by the thresholds, such as [θi11 , θ

i1+1
1 ]×· · ·×[θinn , θ

in+1
n ].

Now, if a (continuous) variable has dL thresholds, one can postulate that the corresponding discrete variable
has dL states, so that each hyper-rectangle corresponds to a single state of the discrete model, for instance
(i1, . . . , in). The dynamics of the discrete model can then be established by looking at the possible transitions
between hyper-rectangles to construct a transition graph between discrete states. To be more realistic, only
transitions between adjacent hyper-rectangles (i.e., that share at least one face) are allowed, corresponding to
crossing only one threshold at a time.

Finally, several methods can be devised for relating discrete and Boolean models. In §2.2, an idea due
to [65] is used to obtain a Boolean model from a multi-valued discrete model by extending the number of vari-
ables: if a discrete variable X has dL states, than dL − 1 Boolean variables are created, X1, XdL−1 to describe
X . The Boolean variable Xj is at 1 if and only if the discrete variable X is in state j or higher. However, this
idea should to be analyzed with care, since it generates non-realistic (which will be called “forbidden”) states
(if Xj = 1 then it makes no sense to have Xk = 0 for k < j). Thus, in the Boolean transition graph, one
wishes to avoid transitions from the permissible to the forbidden states. We have introduced and characterized
a map that transforms discrete into Boolean models and vice-versa, while preserving the required biological
properties.

Under these conditions, in the transformation from continuous to discrete models, all behavior on threshold
regions is lost, such as sliding mode solutions. As illustrated by an example, a sliding solution will be replaced
by two arrows with opposite orientations linking the same pair of states. In this case, an alternative represen-
tation can be suggested, by introducing an intermediate discrete state that has two incoming arrows, on from
each of the other two states.

2.1 Modeling and analysis of gene regulatory networks, by G. Bernot, J.-P.
Comet, A. Richard, M. Chaves, J.-L. Gouzé and F. Dayan. In ”Modeling
in Computational Biology and Biomedicine”, F. Cazals and P. Kornprobst
Eds, Springer-Verlag Heidelberg (2013), pp. 47-80.

Article by G. Bernot, J.-P. Comet, A. Richard, M. Chaves, J.-L. Gouzé and F. Dayan. In ”Modeling in Compu-
tational Biology and Biomedicine”, F. Cazals and P. Kornprobst Eds, Springer-Verlag Heidelberg (2013), pp.
47-80.

2.2 Comparison between Boolean and piecewise affine differential models for
genetic networks, by M. Chaves, L. Tournier and J.-L. Gouzé. Acta Bio-
theoretica, 58(2)(2010), pp. 217-232

Article by M. Chaves, L. Tournier and J.-L. Gouzé. Acta Biotheoretica, 58(2)(2010), pp. 217-232.
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Chapter 3

Quantitative methods: analysis of dynamical
properties

This chapter presents some methods adapted to study the main properties of a biological system, while trying
to use only a reduced family of parameters. These methods are designed to make the most of the available
data with a minimum amount of mathematical machinery. Although apparently very schematic and qualitative,
these models and methods yield quantitative results used to make verifiable predictions, discriminate between
different modeling hypotheses, or predict the most likely outcome of a trajectory.

The four articles included here also illustrate the evolution of the methodology to incorporate more quantita-
tive aspects into a discrete framework, while maintaining the easier analytical tractability and intuition provided
by Boolean or piecewise affine models.

The first article §3.1 can in fact be said to mark the beginning of my work on Boolean networks. It proposes
three asynchronous updating algorithms that incorporate timescales and some parameters back into Boolean
models. As recalled in the Introduction (Section 1.4), an underlying assumption for synchronous Boolean
models is that all the processes described have approximately the same timescales, and so their states evolve
and change (almost) simultaneously. However, it is well known that not all biological processes happen at the
same timescale (for instance, binding of proteins is much faster than transcription or translation). In §3.1 we
thus sought to introduce a more realistic time dynamics. Namely, our most general asynchronous algorithm
considers that the next node to be updated is chosen randomly; the random order algorithm requires each node
to be updated exactly once in each time interval (but following a random order at each round of updates); the
third (separation of timescales) algorithm also stipulates a full round of updates but, in each round, the order
is chosen according to the timescales (for instance, updating first all the protein nodes are then all the mRNA
nodes). All these are illustrated by application to the Drosophila melanogaster segment polarity Boolean net-
work developed by R. Albert and H. Othmer [1], to infer its robustness properties with respect to timescales
of the biological processes. This model describes pattern formation between stages 8 and 11 of embryonic
development and has six distinct steady states. One of these corresponds to the wild type (the “normal” phe-
notype) and two others correspond to some mutant phenotypes; the remaining steady states are variations on
the wild type. Fixing the initial condition (corresponding to stage 8 of development), the dynamical evolution
of this Boolean model with the asynchronous or random order algorithms leads most often, but with a rela-
tively low frequency (around 55%), to the wild type steady state. In contrast, the two-timescale algorithm has
a frequency of 87.5%, a result that can be explicitly calculated based the order of nodes updates. Furthermore,
this algorithm can also be characterized by a Markov chain with two absorbing states, the wild type and one
of the mutant phenotypes. Overall the results indicate that the network has a high sensitivity to timescales, but
is nevertheless robust to variability once the timescales are fixed (i.e., within a class of nodes, the order may
vary). Further questions raised by the Drosophila network were also explored in [C21] (combining Glass-type
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models with Boolean activities; see also §3.2) or [C18] (studying the robustness of the network of interactions
under cell division).

The second article (§3.2) develops a Boolean model for an apoptosis pathway and its interaction with the
transcription factor NFκB (Nuclear Factor κ) network, based on continuous models for each of these mod-
ules [17, 47]. The dynamics of the system is studied using Glass-type models (see Section 1.3 in the Intro-
duction), as had been proposed in [C18]. We conclude that there are different possible dynamics: oscillatory
behavior in the presence of external stimulation, or convergence to either one of two steady states, which rep-
resent apoptosis (cell death) or a living cell, in the absence of stimulus. Several quantitative aspects could
be reproduced and compared to experimental data in the literature, such as the average interval between two
peaks for the oscillatory solutions. The model was used to test three different hypotheses on the interconnection
between the NFκB and the apoptosis pathways, which is not clear from experimental data. Based on Monte
Carlo tests and comparison to biological observations, at least one of the hypotheses could be discarded, and
the most likely model could be chosen. This Boolean model was posteriorly further analyzed in [C13], where
the subsystems responsible for each of the asymptotic behaviors (bistability or oscillations) were identified.

The last two articles in this chapter focus on methods for analysis of piecewise affine systems. The article
in §3.3 reviews the main properties of this class of systems and proposes a method to relate the transition graph
to the parameters of the model (activity thresholds, synthesis and degradation rates). In general, there may be
transitions from one hyper-rectangle to several of its adjacent neighbors, and the transition graph contains no
information on the frequency of each transition. Uniqueness of solutions in each hyper-rectangle implies that
there will be well defined regions where every initial condition leads to a trajectory that evolves to the same
adjacent hyper-rectangle. Some suggestions can be found in the literature on how to assign a probability to
each edge on the transition graph, based more or less on biological arguments. To enforce the relation with the
parameters of the PWA system, our idea in §3.3 is to let the probability of transition be proportional to the area
of the region of initial conditions that evolve across that edge. Since solutions of the PWA are easily written
inside each rectangle, the area of this region can also be analytically computed in terms of the parameters. This
task becomes straightforward in the case of at most two transitions from each hyperrectangle. This method
can also be used to estimate (some of the) parameters of the PWA system, for instance, by repeating the same
experience with initial conditions in a given hyperrectangle, and counting the frequency of the outcomes.

The article in §3.4 extends this definition to consider the “memory” of the system, that is, the probability of
transition depends both on the current and the previous hyper-rectangle crossed by the trajectory. We observe
that the previous history of the trajectory prevents some transitions to happen, thus refining the procedure. This
method is applied to the analysis of a system composed of two intertwined negative loops (see the example given
in the Introduction). The transition graph shows that there are five distinct possible periodic orbits. Using our
definitions of probability of transition, given any set of parameters, we can predict which of the periodic orbits
will most likely be reached by the PWA system. Numerical simulations show that the method using the one-
step probability definition correctly predicts the orbit on about 60% of the cases, while the two-step definition
is correct on 70%. Thus, these two articles provide an approximate method to find whether a system contains a
given periodic orbit, as well as indications on how to modify (or control in some sense) the parameters to drive
the system to a desired orbit.

3.1 Robustness and fragility of Boolean models for genetic regulatory net-
works, by M. Chaves, R. Albert and E.D. Sontag. J. Theoretical Biology,
235(3)(2005), pp. 431-449

Article by M. Chaves, R. Albert and E.D. Sontag. J. Theoretical Biology, 235(3)(2005), pp. 431-449.
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3.2 Regulation of apoptosis via the NFkB pathway: modeling and analysis,
by M. Chaves, T. Eissing and F. Allgöwer. In ”Dynamics on and of com-
plex networks: applications to biology, computer science and the social
sciences”, N. Ganguly, A. Deutsch and A. Mukherjee Eds, Birkhauser
Boston, 2009, pp. 19-34

Article by M. Chaves, T. Eissing and F. Allgöwer. In ”Dynamics on and of complex networks: applications to
biology, computer science and the social sciences”, N. Ganguly, A. Deutsch and A. Mukherjee Eds, Birkhauser
Boston, 2009, pp. 19-34.

3.3 Piecewise affine models of regulatory genetic networks: review and prob-
abilistic interpretation, by M. Chaves and J.-L. Gouzé. In ”Advances in
the Theory of Control, Signals and Systems, with Physical Modelling”, J.
Lévine and P. Müllhaupt Eds, Springer-Verlag Heidelberg, LNCIS 407(2010),
pp.241-253

Article by M. Chaves and J.-L. Gouzé. In ”Advances in the Theory of Control, Signals and Systems, with
Physical Modelling”, J. Lévine and P. Müllhaupt Eds, Springer-Verlag Heidelberg, LNCIS 407(2010), pp.241-
253.

3.4 Probabilistic approach for predicting periodic orbits in piecewise affine
differential models, by M. Chaves, E. Farcot and J.-L. Gouzé. , Bull. Math.
Biology, 75(6), pp. 967-987,2013

Article by M. Chaves, E. Farcot and J.-L. Gouzé. , Bull. Math. Biology, 75(6), pp. 967-987,2013.
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Chapter 4

Qualitative methods: design of control
strategies

One of the applications of model construction and analysis is the investigation of strategies to control or regulate
the true system. For a genetic regulatory system, the “controls,” or actions that can be performed on the system,
amount to experimental techniques such as adding activators/inhibitors, over-expression or knock-out of a gene,
or inserting an inducer-controlled plasmid to externally regulate the transcription of a given gene. The outputs
are the measurements on the system which may include concentrations, reaction rates, relative increases in the
expression of certain genes, and so on.

As discussed in the Introduction, both inputs and outputs depend on the experimental techniques and most
of them are still of a qualitative form. The data available are becoming more smooth and detailed, with high
frequency sampling, but many outputs can be viewed as “gene or protein X is strongly (or weakly) expressed”,
which can be readily interpreted in a piecewise affine model as “X is above (or below) the threshold θ”. The
inputs are usually more difficult to model: for plasmid constructions, addition of a certain amount of inducer
leads to some “m-fold increase” in the transcription of a gene, but it is not always clear how to quantify an
over-expression or knock-out.

Classical control techniques require inputs and outputs to be quantitative and continuous functions of time,
with small errors, which is not the case for biological regulatory networks. The article in §4.1 suggests an
alternative control strategy, based on qualitative inputs and outputs. It is assumed that the production rate of
one mRNA or protein is controllable (through a plasmid, for instance), with the following actions: the “do
nothing” or nominal behavior with an appropriate amount of inducer, turning gene expression ON (resp., OFF)
by adding a sufficiently large (resp., small) amount of inducer. The input u will be, respectively, 1, very
large or very small. For the outputs, it is assumed that only the region of the state space where the trajectory
evolves at the current instant is known, that is, at each instant, only an interval for each variable is known
([θi11 , θ

i1+1
1 ]×· · ·× [θinn , θ

in+1
n ]). Under these conditions, our results show that it is still possible to exactly lead

a system to a desired steady state or even to remain close to a periodic orbit. This illustrates the power of the
PWA framework to help controlling a system under limited data.

Further work on control strategies using only qualitative data is being developed in the context of the ANR
project GeMCo, where the goal is to control the growth rate of bacteria by implementing a new genetic circuit
(see also the Discussion). Along similar lines, in [C33] and [C31] we have also considered the possibility of
designing observers for PWA with qualitative inputs and outputs. The results show that, for a simple example,
it is indeed possible to construct an observer that approaches the trajectory of the system either in finite time,
or asymptotically with a user-regulated velocity, depending on the initial conditions of the observer.

On a different perspective, the other article in this chapter (§4.2) studies the qualitative dynamics of a
genetic/metabolic system induced by different forms of genetic regulation. The system is composed of a
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metabolic chain where each flux is regulated by an enzyme and, in their turn, the genes coding for the en-
zymes are regulated by one of the metabolites. After model reduction due to different timescales, this system
can be represented by a PWA system whose state space is partitioned into cones. Different configurations of
the cones and their focal points are possible, depending on the genes’ positive or negative regulation by the
metabolite, and each configuration leads to its own dynamics. Our analysis suggests that the interconnection
of metabolic and genetic networks can exhibit a wide range of behaviors, from mono- and multi- stability to
periodic oscillations, as seen by our complete classification of the system according to its configurations. It
is interesting to note that oscillatory behavior can happen only in the case of operon-like regulation, that is a
family of genes that are all similarly regulated, as in the case of the lac operon in Escherichia coli. In contrast,
for individual gene regulation, we observe that a fairly simple regulatory structure can lead to more robust,
globally stable behavior or more versatile multistable designs.

4.1 Exact control of genetic networks in a qualitative framework: the bistable
switch example, by M. Chaves and J.-L. Gouzé. Automatica, 47(2011), pp.
1105-1112

Article by M. Chaves and J.-L. Gouzé. Automatica, 47(2011), pp. 1105-1112.

4.2 Multistability and oscillations in genetic control of metabolism, by D.A.
Oyarzún, M. Chaves, and M. Hoff-Hoffmeyer-Zlotnik. J. Theoretical Bi-
ology, 295(2012), pp. 139-153

Article by D.A. Oyarzún, M. Chaves, and M. Hoff-Hoffmeyer-Zlotnik. J. Theoretical Biology, 295(2012), pp.
139-153.
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Chapter 5

Network interconnections: transient and
asymptotic dynamics

This chapter is dedicated to the problem of analyzing “large” networks of interactions. Models of biological
systems very often comprise a large number of species, and can easily have more than 15/20 components (see,
for instance, the Drosophila segment polarity network or the apoptosis network studied in Chapter 3). In a
continuous (or also a piecewise affine) framework, it is in general not possible to analytically study models
with more than three differential equations, unless the mathematical system belongs to a class with special
properties (see, for instance, my previous work on zero-deficiency biochemical networks, with polynomial
vector fields [C27], [C26], [C22], or other classes of networks [35, 5]). The study of large models with contin-
uous frameworks is thus usually limited to computer simulations, which provide only a partial overview of the
models’ dynamical properties.

As mentioned in the Introduction, the Boolean formalism allows a theoretical study of the dynamics of
large models but, nevertheless, some of the graph theoretical tools become very heavy to implement in a rea-
sonable time (such as the decomposition of the state transition graph into strongly connected components,
whose complexity increases with 2n, where n is the number of variables in the network).

At the same time, many systems are obtained by assembling or interconnecting two or more, smaller mod-
ules. This is indeed the case for the Drosophila network cited above, which is formed by interconnecting four
“cells”, that is four similar models describing the network of interactions in a single cell.

Thus, in the articles §5.1 and §5.2, we propose a novel idea to study the dynamical properties of a large
network as the interconnection of two smaller modules. An interconnection of two systems, both having a
set of inputs and outputs, is here defined in the classical control theoretical sense: the coupling between the
two modules is represented by a pair of functions that describe how the outputs of one system are consistently
transformed into the inputs of the other. A new object, called the asymptotic graph (Gas), is introduced in §5.1,
which requires only the knowledge of the state transition graphs of the two modules, as well as the two coupling
functions. The nodes of the asymptotic graph are, roughly, the products of the semi-attractors (members of an
attractor which share the same output) of the two modules. The transitions between nodes are obtained by
supposing that the dynamics of each module is faster than the coupling dynamics. It is shown that the set
of attractors of the asymptotic graph contains a representative of each of the attractors of the interconnected
system. The asymptotic graph can, however, contain more attractors than those of the interconnected system
since, due to its construction, it may not contain information relative to all possible paths in the transition graph
of the interconnection. Thus, this method is guaranteed to recover all the attractors of the large network, but
may also generate some spurious attractors. Some partial results are given to help decide whether an attractor
is spurious or not.

To further understand the generation of spurious attractors, a more comprehensive state transition graph
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called the cross-graph is constructed in §5.2. Its nodes are the products of the semi-SCCs (members of an
SCC which share the same output) of the two modules, and the edges are obtained from the two module’s
asynchronous transition graphs. It is shown that there is a one-to-one correspondence between the attractors
of the cross-graph and those of the interconnected system. Intuitively, the cross-graph reproduces all the paths
of the interconnected system but, for that same reason, it may be as heavy to compute as the transition graph
of the interconnection itself (think of the limiting case where each SCC is a single state). Therefore the cross-
graph is interesting from an analytical point of view, as the complement of the asymptotic graph, but not as a
computational method.

Two directions for application of the asymptotic graph have been illustrated in §5.2. The first is a direct
application to find the attractors of a composed system from two well studied models (as in the Drosophila
segment polarity network). The second requires the prior decomposition of the large network into two smaller
modules (as in the apoptosis model). The latter direction opens up a whole new family of questions relative to
network decomposition (see also the Discussion below). There are a few classical graph partitioning algorithms,
such as spectral techniques or hierarchical clustering algorithms, but these are not always appropriate as most of
them aim to minimize the number of edges between modules. Among other observations, for a most successful
application of the asymptotic graph, the two modules should be approximately of the same size, and contain
the least number of inputs/outputs possible.

5.1 Predicting the asymptotic dynamics of large biological networks by inter-
connections of Boolean modules, by M. Chaves and L. Tournier. Proc. 50th
IEEE Conf. Decision and Control and European Control Conf., Orlando,
USA, Dec. 2011

Article by M. Chaves and L. Tournier. Proc. 50th IEEE Conf. Decision and Control and European Control
Conf., Orlando, USA, Dec. 2011.

5.2 Interconnection of asynchronous Boolean networks, asymptotic and tran-
sient dynamics, by L. Tournier and M. Chaves. Automatica, 49:884-893,
2013

Article by L. Tournier and M. Chaves. Automatica, 49:884-893, 2013.
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Chapter 6

Discussion and perspectives

Throughout this collection of articles a research direction emerges aimed at the development of predictive math-
ematical methods for the analysis of biological regulatory networks. The work presented here indicates a clear
set of guidelines that lead to informative results on the dynamical properties of the system. The usefulness
of abstract formalisms was illustrated by their relevance to deal with the currently available data and experi-
mental techniques, their suitability for rigorous mathematical analysis, and their capacity for finally generating
quantitative and not so abstract results.

6.1 Problems motivated by biological regulatory networks

A family of mathematical questions and problems specifically inspired by biological regulatory networks have
been studied in these papers. They also cover a variety of examples from generic systems such as the bistable
switch to signaling (apoptosis network) and genetic networks (Drosophila segment polarity or E. coli genetic
machinery).

One of the problems is that of understanding cell-to-cell variability and its influence on the robustness of the
system with respect to environmental perturbations, for instance checking the stability or not of steady states
(corresponding to phenotypes) under large or small parameter variability (Sections 3.1, 3.2). Similarly, the
robustness of the network to changes in the timescales of the various biological processes has also been studied
(Section 3.1). Another problem is model discrimination: in the presence of incomplete knowledge, it is useful
to test different network interconnections and compare the results against known data (Section 3.2).

Parameter estimation is common to all physical systems and was also briefly considered here (Sections 3.3, 3.4),
where the difficulty lies essentially on the type of data and the experimental techniques available.

The design and construction of synthetic biological regulatory networks has also motivated various prob-
lems, such as finding strategies to control/regulate the system towards a desired steady state or dynamic behav-
ior, which was explored in Chapter 4.

The analysis of large networks is another frequent problem in biology. The method proposed here was
developed for Boolean networks and views the large network as an interconnection of two smaller networks.
The method applies control and graph theoretical tools to obtain the global (asymptotic) behavior of the inter-
connected system, using only the properties of the two smaller modules (Chapter 5).

6.2 Combining PWA and Boolean models

Both formalisms are well adapted to describe the dynamics of signaling and genetic regulatory networks [30,
62]. Boolean models require no parameters but provide qualitative information based only on the network of
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interactions and their logic. PWA models provide a continuous but still abstract description of the systems, and
require a reduced family of parameters: activity thresholds, synthesis and degradation rates.

Boolean models are most useful for modeling large networks (let’s say with more than five components),
for which they provide a good intuition on the possible trajectories and asymptotic behavior of the system.
However, for small networks the results may be less informative. In contrast, PWA models are most useful
for small networks, allowing a theoretical characterization, which becomes very heavy and unfeasible for large
networks.

This suggests the pertinence of combining the two formalisms in the study of the same system, by develop-
ing two models, one (Boolean) that comprehends all the variables known to be involved in the system and the
other a reduced PWA model describing only a small set of fundamental variables. The two models carry com-
plementary information which could not have been obtained by studying only one type of model. An example
of this synergy is the NFκB model described in the Introduction. In fact, this 3-dimensional (reduced) model
was obtained by application of the method in [C13] to the Boolean network described in Section 3.2. The low
dimensional model was then studied in Section 3.4 as a PWA model, which enabled the inference of further
details such as the existence of qualitatively distinct periodic orbits that depend on the set of parameters.

The two formalisms can complement each other in several other ways, for instance, by defining the activity
functions (or production terms) of the PWA system through the Boolean logical regulatory functions at each
node (as in Sections 3.1, 3.2). At the level of the state transition graphs, the PWA parameters can be used to
assign probabilities of transition to each edge of the Boolean model (as in Sections 3.3, 3.4).

6.3 Predictive analysis

The mathematical methods presented here have evolved to address specific problems in biological regulatory
networks, they have become more informative and predictive, to include both quantitative and qualitative as-
pects with a reduced amount of mathematical machinery.

One of the highlights is the characterization of the asymptotic behavior of a large (Boolean) network as a
composition of two modules. It is a quite strong result, since it starts with information on the two modules
only, together with the interconnecting function, but is able to predict the full asymptotic behavior of the large
network. There are, of course, some limitations, such as the complexity of the algorithm as the number of
outputs/inputs increases, or the decomposition of the large network into several modules, but it remains a
powerful concept.

Another highlight is the idea of assigning probabilities of transition to the asynchronous transition graph
based on the parameters of the PWA system. This leads to the prediction of the dynamical behavior of the
system in terms of the parameters. In an example, observation of the asynchronous transition graph shows that
qualitatively distinct periodic orbits may arise in the continuous system, depending on the set of parameters. It
is an interesting point that this orbit can be predicted in a probabilistic way, and remarkable in the sense that
not many methods exist for studying the existence of periodic orbits in a general nonlinear system. This also
illustrates the strength of combining different frameworks and methodologies to complement each other, thus
deriving the most knowledge from the available data and predicting new properties.

6.4 Perspectives

The methods developed throughout this memoir suggest a combination of modeling approaches to gain other-
wise possibly inaccessible knowledge on a physical system from several sources. Some prospective applications
as well as research directions are discussed below, covering different topics.

As it becomes clear from the papers assembled here, different mathematical models of a system can be
useful to characterize different properties of the system. One of the questions that can then be raised is how to
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construct models of the system in each of the formalisms and how to conjugate them to obtain new information.
New applications of these formalisms include techniques for constructing large networks by assembling

several smaller modules (see, for instance, [C1]) or, conversely, suggest model reduction techniques. The latter
concern a wide topic related to graph analysis and partition.

Lastly, these formalisms are advantageous to deal with problems concerning the regulation and control of
genetic networks [C6], by suggesting and testing different control strategies.

A methodology for analysis of biological networks A general methodology would be composed of three to
four steps to establish a ’hierarchy’ of models that comprises several levels of abstraction (see also [C2] for a
recent example).

The first step would be to start at the more abstract level, using experimental data and observations to
establish a network of interactions and write a set of logical rules, which can include a finite number of discrete
states for each variable. The discrete model can then be transformed into a Boolean model, by appropriately
extending the state space. The Boolean model is characterized by an asynchronous transition matrix, which can
itself be analyzed using tools from graph theory (such as algorithms for decomposition into strongly connected
components, hierarchical organization, and attractor identification). This yields qualitative information on the
dynamical behavior of the system induced by the network topology.

The second step would be to generate a piecewise affine model from the discrete model, by assigning
thresholds such that each discrete state corresponds to a regular domain; the discrete rules could be written
in terms of sums of products of step functions, by assigning appropriate parameters. The PWA model can
be studied using analytical tools (for example, in each domain the solutions can be explicitly computed), and
refines the information given by the discrete model. In addition, PWA models have a continuous state space
and a set of fundamental parameters, which can be more easily estimated from experimental data. While the
translation from PWA to discrete models can be well defined (as in [C11]), the reverse process is not so clear
and needs to be further precised, and there may be several solutions.

The third step would be to generate a more detailed, “fully” continuous, ODE model. One immediate
approach is to use Hill functions to replace step functions, to avoid the solution problems generated at the
regions of vector field discontinuities, but there are clearly many possibilities open here.

From continuous to Boolean models The procedure outlined in the previous paragraph can also be used in
the inverse order, that is, starting from an ODE model, successively consider more abstract modeling frame-
works. Indeed, a sketch of this can be seen in the Introduction for the schematic NF-κB example. For some
systems it may be easier or more appropriate to construct a first model not only from the structure of inter-
actions, but by taking into account all details, such as the binding of two molecules, complex formation, and
conservations of mass.

It is clear that a continuous model would also benefit from an analysis with rigorous theoretical tools such
as those developed for discrete systems, if only there is a way to “translate” the continuous ODE into a Boolean
model. The application of these qualitative methods to continuous systems, if an appropriate correspondence
has been established, will be useful for finding regions where a given qualitative behavior is expected and can
help with parameter estimation. An obvious question is thus how to obtain a set of logical rules that reasonably
describe the ODE model and its dynamical behavior. A straightforward idea is to partition the state space into a
grid and use the continuous model to assign a value to each domain or point of the grid. But there are, of course,
a wide range of questions related to such procedure: how to choose the grid, given the parameters and scales
of the system; how to discretize the continuous system to obtain a discrete set of values for each variables;
how to assign these values at each point of the grid; how to write a set of logical rules; etc. Coupling Boolean
frameworks with other techniques inspired by continuous dynamical systems may lead to improved and more
intuitive methodologies.
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Model reduction, composition/decomposition of networks The Boolean interconnection of two or more
models is a valuable and potentially cost-effective way to construct a model of a large network and analyze its
asymptotic behavior. One of the remaining questions is, however, related to the possible occurrence of spurious
attractors. One first result to help decide whether an attractor of the asymptotic graph is spurious has been
provided in [C3], and subsequently refined [C1]. It would be quite useful to improve or develop new results
to decrease the gap between the outcome of the asymptotic graph (which gives all the attractors of the large
model, but possibly also some spurious) and the real system.

On the other hand, given a large network, and knowing that the size of a transition graph grows exponen-
tially with the network’s dimension, it becomes a pertinent problem to find appropriate techniques to decompose
a network into two or more modules. This is known to be a NP-hard problem in graph-partitioning, but some
classical algorithms that minimize the edges between modules exist, namely spectral techniques [68], hierar-
chical clustering [39] and Markov cluster algorithm [13]. These have been used in [C3], to illustrate the model
reduction idea. However, a critical point will be to balance the number and size of the modules with the number
of inputs (or edges) connecting each of the modules, in order to increase the effectiveness of such a model
reduction technique.

Control design The study of control problems generally requires three points to be known: a model of the
system, the outputs or measured variables, which give information on the state of the system over time, and the
inputs or control parameters, which allow a user to manipulate the system. The classical procedures for control
design are not well adapted for application to biological molecular systems, where the measured variables are
typically the concentration or expression levels of a group of proteins and/or mRNAs. A major difficulty is
the time frequency of data sampling: instead of having access to continuous, online, measurements, it is more
likely that we have to deal with qualitative indications of protein expression levels at spaced intervals. Another
difficulty is the range of values and functional forms allowed for the inputs. Some of the possible inputs include
rates of transcription of certain genes (for instance, through the construction of plasmids containing inducers to
those genes [27], so that the transcription rate of a gene can be increased by a certain factor simply by adding
a suitable amount of the corresponding inducer molecules to the system). With the plasmid experimental
techniques, it may be difficult to tune the amount of inducer to obtain a very precise transcription rate, so the
control range is again limited to qualitative indications.

Therefore, by their qualitative nature, the methods described throughout this memoir seem appropriate to
adapt and develop control strategies that can deal with the various constraints imposed by the biological system.
Even though details may be scarce and information only partially available, discrete or PWA frameworks can
still suggest qualitative strategies for control to a desired state ([20],[C9]). Most importantly, the design of
feedback control laws must take into account the experimental setup and an implementation [60, 67] using
biological components or by re-wiring the network through feasible interconnections. This is the goal, for
instance, in the projects GeMCo (ANR) and RESET (Investissements d’Avenir) (see Section ??), which are
dedicated to several control objectives for the growth rate of bacteria E. coli using synthetic circuit engineering.
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nalisation. In Réseaux d’interactions : analyse, modélisation et simulation, Integrative Post-Genomics,
Lyon, France, November 2007.

42
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Collected articles (original publications)

NOTE: The original articles have been removed from this version of the manuscript. Some of them are
freely accessible. Preliminary versions can also be found in my webpage, http://www-sop.inria.
fr/members/Madalena.Chaves.

The book chapter:

“Modeling and analysis of gene regulatory networks” by G. Bernot, J.-P. Comet, A. Richard, M. Chaves,
J.-L. Gouzé, and F. Dayan. In F. Cazals and P. Kornprobst, editors, Modeling in Computational Biology and
Biomedicine, pages 47–80. Springer-Verlag Heidelberg, 2013.
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