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Abstract

The dynamics of Boolean networks can be represented
by asynchronous transition graphs, whose attractors de-
scribe the system’s asymptotic behavior. This paper
shows that the attractors of the feedback interconnection
of two Boolean modules can be fully identified in terms
of cross-products of the attractors of each module. Based
on this observation, a model reduction technique is pro-
posed, aiming at analysing the asymptotic behavior of
a high-dimensional network through the computation of
the dynamics of two isolated smaller subnetworks. The
method is applied to a large network which models cell-
fate decision: all the attractors of the full network are
exactly calculated by representing the network as an in-
terconnection of two 3-input/3-output modules.

1 Introduction

Models of biological regulatory networks frequently in-
volve a large number of variables and interactions, and
this introduces mathematical problems related to the
analysis of high dimensional dynamical systems. Search-
ing for model reduction techniques is therefore a cen-
tral point in mathematical modeling [1]. The develop-
ment of reduction techniques appropriate to describe bi-
ological systems remains a very challenging task, due to
the constraints on positivity or interpretation of the re-
duced variables. The method proposed in this paper con-
cerns the special class of asynchronous Boolean networks
(ABN). Boolean models are specially useful to represent
large biological networks for which available information
is essentially qualitative rather than quantitative, in the
sense that interactions among a group of biochemical
species (genes, enzymes, transcription factors, etc.) are
clearly identified and experimentally confirmed, but little
is known about rate constants and kinetic parameters.
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In these cases, Boolean models are able to rapidly pre-
dict gene expression patterns under various experimental
conditions as well as mimick, in a rather straightforward
manner “mutant” behaviors (for instance by forcing one
or several variables to a given value, thus modeling genetic
deletions and over-expressions, or specific drug effects).
Furthermore, Boolean models generally provide an effi-
cient and practical framework to implement complex in-
fluence diagrams, with dozens of interacting variables, in-
tertwined feedback loops and multiple crosstalks between
several antagonistic pathways. Some successful examples
include Drosophila’s segment polarity network [2], a cell-
fate decision network [3], or apoptosis [4].

Due to the nature of its state space (the variables take
only the values 0 or 1), a Boolean model is quite easy to
implement and simulate and one can, in principle, ex-
actly compute all its possible trajectories and “steady
states” or attractors. However, as the dimension n of
the model increases, the full characterization of the state
space rapidly becomes computationally expensive, since
the number of calculations increases with 2n. In such
cases, one solution can be to focus the analysis on a par-
ticular (and wisely chosen) set of initial conditions, which
leads to a partial characterization of the state space and
attractors (see for instance [2]). This has the disadvan-
tage that possibly interesting global dynamical behaviors
and attractors may remain unidentified. Another reduc-
tion technique is described in [5] and consists in project-
ing the transition graph onto a subset of the variables.
When a variable is “hidden”, its logical rule is injected
into the rules of the variables it regulates (self-regulated
variables are thus irreducible), therefore guaranteeing no
loss in terms of interactions. From a dynamical point
of view, this process assumes that the variable is rapid
with respect to the others, as its update is immediately
transmitted to its targets.

In this paper we propose a method to analyse large
Boolean networks as the interconnection of two in-
put/ouput modules, A and B, of smaller dimensions. The
idea of decomposing a system into two smaller modules
to deduce some properties of the composed system is a
classical idea in automatic control. It has been used in
several contexts, notably to characterize the equilibria of
the interconnection of two monotone ODE systems, under
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appropriate conditions on the input/output characteris-
tics [6, 7]. For discrete systems the fact that the state
space of an interconnection can be easily computed as the
set of all cross-products of the states of the two systems,
has been used to predict several facts on the composed
system, such as reachability regions [8].

In this work, we will consider the interconnection of
Boolean networks, with Boolean inputs and outputs. For
each fixed input, the dynamics of the network is char-
acterized by an asynchronous transition graph (see Sec-
tion 2). To study the attractors of the interconnection
of systems A and B, a new asymptotic graph is intro-
duced, where the nodes are the cross products of (same-
output subsets of the) attractors of the networks A and
B, and the edges are those induced by the asynchronous
dynamics (Section 3). The main result states that the
attractors of the interconnected system can be recovered
from the attractors of this asymptotic graph (Section 4),
a result which is valid for general multiple input-multiple
output systems (Section 5). Finally, an application to the
high-dimensional cell-fate decision model developed in [3]
shows that this method can be a very powerful tool for
model reduction and analysis.

2 Dynamics of Boolean modules

A Boolean multiple input-multiple output (MIMO) sys-
tem A is characterized by its state space ΩA : {0, 1}nA
on nA variables a = (a1, . . . , anA), its input u ∈ UA =
{0, 1}pA , output function hA : ΩA → HA, with HA =
{0, 1}qA , and a logical vector function fA(a;u) : ΩA ×
UA → ΩA.

To characterize the dynamics of system A one needs
to specify the updating strategy, by defining a rule for
calculating the state at the next instant (a[t+] ≡ a+) as
a function of the current state (a[t]). There are differ-
ent possible strategies, among them the synchronous case
(where all coordinates ai are simultaneously updated),
and the more general asynchronous case (where a single
coordinate is updated at each iteration). In both cases,
the dynamics of a Boolean system can be fully character-
ized in terms of a directed graph, called transition graph.
Asynchronous updating is more complex as the transi-
tion graph is not deterministic, nevertheless it is more
general and also much more realistic for biological ap-
plications, as different events may happen at very differ-
ent time scales. Throughout this paper, we will consider
asynchronous Boolean networks (ABN). The description
and analysis of an ABN without inputs or outputs can be
found in [9] (see also [10] and [11] for general references
on graphs and positive matrices). For MIMO ABNs, the
relevant objects can be defined as follows.

Definition 1 The asynchronous transition graph,
GA,u = (ΩA, EA,u), of system A under fixed input u is
a directed graph among the elements (or nodes) of ΩA,
where the edges are given by EA,u. An edge “a → ã” is
in EA,u iff:

∃j, ãj = fAj (a;u) = 1− aj and ãi = ai ∀i 6= j.

If fA(a;u) ≡ a, then there are no outgoing arrows from
this node and, in this case, an edge a→ a is added. Such
states are called single state attractors.

Let S(ΩA) represent the set of subsets of ΩA.

Definition 2 The set of asynchronous successors, σA,u :
ΩA → S(ΩA), of an element of ΩA in GA,u is given by:

σA,u(a) = {ã ∈ ΩA : a→ ã is in EA,u}, (1)

(therefore, if fA(a;u) = a, σA,u(a) is the singleton {a}).
By abuse of notation, define also the set of successors of
a set S ⊂ ΩA: σA,u(S) = ∪a∈S σA,u(a).

A pathway in GA,u connecting two of its vertices a0 to af
will be represented in the form:

a0
GA,u

 af .

Definition 3 The basin of attraction and the reachable
set of a set S ⊂ ΩA, in GA,u, are given by:

B(S;GA,u) = {a0 ∈ ΩA : ∃ a0
GA,u

 af , for some af ∈ S},

R(S;GA,u) = {af ∈ ΩA : ∃ a0
GA,u

 af , for some a0 ∈ S}.

Definition 4 A strongly connected component (SCC) of
GA,u is a maximal subset C ⊂ ΩA, that contains a path-
way joining any pair of its elements:

∀a, ã ∈ C, ∃ a
GA,u

 ã.

Define also the set CA,u of all strongly connected compo-
nents of GA,u.

Definition 5 An attractor T is a terminal strongly con-
nected component, that is, ∪a∈TσA,u(a) = T . The output
set of an attractor will be denoted hA(T ) = {hA(a), a ∈
T} ⊆ HA. Each attractor can be decomposed into (at
most) 2qA disjoint subsets, according to their output,
which will be called semi-attractors :

T = ∪α∈HATα, where Tα = {a ∈ T : hA(a) = α }.

In the following, we will only consider the nonempty semi-
attractors (it is immediate to see that at least one of the
semi-attractors will be nonempty). To deal with systems
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that have more than one attractor we will adopt the fol-
lowing notation:

Aiu = ∪α∈HAAiu,α, i = 1, . . . , rA,u, (2)

where Aiu is the i-th attractor of the graph GA,u. The set
of all semi-attractors of the graphs GA,u, for all u ∈ UA,
is denoted T A. To avoid confusions between SCCs, sets
of SCCs and their corresponding states, introduce the
projection function π : S(CA,u)→ S(ΩA):

π(R) = {a ∈ ΩA : a ∈ C for some C ∈ R}.

For any two semi-attractors, define a function ∆ : T A ×
T A → {0, 1} which indicates whether they belong to the
same parent attractor:

∆(Aiu,α, A
i1
u1,α1

)

=


1, u = u1, α 6= α1, and ∃Aı̃

u ∈ such that
π(Aiu,α) ∪ π(Ai1u1,α1

) ⊂ π(Aı̃
u)

0, otherwise.
(3)

3 The asymptotic graph

Consider two Boolean MIMO systems A and B, char-
acterized by the objects defined above, with respective
output functions h̄A and h̄B . The interconnection of A
and B can be described by two feedback functions that
transform the outputs of one system into the inputs of
the other (see Fig. 1):

κAB : HA → UB , κBA : HB → UA.

To simplify the statements, without loss of generality, we

Figure 1: The interconnection of two multiple input-
multiple output systems with (pA, qA) = (1, 3) and
(pB , qB) = (2, 3).

can consider the composition of h̄∗ and κ∗ to be a new
output function with consistent dimensions:

hA : ΩA → UB , hA(a) = κAB(h̄A(a)),
hB : ΩB → UA, hB(b) = κBA(h̄B(b)).

Therefore, we have: HA ≡ UB and HB ≡ UA. Under
this transformation, the interconnection of A and B is

the Boolean system Σ, with no inputs or outputs, with
state space Ω = ΩA × ΩB , and Boolean rule fΣ : Ω→ Ω
constructed in the following way:

fΣ(a, b) =
(
fA(a;hB(b)), fB(b;hA(a))

)
. (4)

The successors σ(a, b) of an element of Ω with the asyn-
chronous updating strategy are of the form

σ(a, b) :=
{

(a, b̃), (ã, b) ∈ Ω :

ã ∈ σA,hB(b)(a) and b̃ ∈ σB,hA(a)(b)
}
. (5)

The notation σ(S) will also be used to designate the suc-
cessors of a set S ∈ Ω (see Def. 2). Let G denote the asyn-
chronous transition graph of Σ. To motivate the concepts
discussed in this section, suppose that systems A and B
are two single input- single output systems that have sin-
gle state attractors of the form A1

01 and B1
10. Then the

Boolean rules for the interconnection give:

fΣ(A1
01, B

1
10) =

(
fA(A1

01; 0), fB(B1
10; 1)

)
=

(
A1

01, B
1
10

)
, (6)

where the last equality follows by definition of the at-
tractors. Therefore, the cross-product A1

01 × B1
10 is it-

self an attractor of the interconnected system. So, one
may ask the following questions: are all cross-products
Aiuα×Bkvβ , also attractors of the interconnected system?
Are all attractors of Σ of this form? The answer to the
first question is, obviously, no. The answer to the second
question is also negative but, in this paper, we will show
that all the attractors of Σ can nevertheless be identified
in terms of products Aiuα×Bkvβ . Consider thus the set of
cross-products of semi-attractors:

Vas = {V ikuα;vβ := Aiuα ×Bkvβ : Aiuα ∈ T A, Bkvβ ∈ T B}.

Note that the asynchronous updating strategy for sys-
tems A and B induces a similar strategy for Σ, since the
successors of a state are defined according to (5). Now,
observe that for any fixed input u, any state a ∈ ΩA must
belong to at least one basin of attraction, that is, there
exist indexes i` = i`(a), ` = 1, . . . , 2pA such that

a ∈ B(Ai`u`αa ;GA,u
`

), ∀ ` = 1, . . . , 2pA (7)

where αa = hA(a) and u` is the binary representation of `
on pA digits (1 = 0 · · · 0, 2 = 0 · · · 01, etc.). Using (5), we
can construct a pathway where coordinates b remain fixed
and a follows a path in GA,β until it reaches an attractor
with u = hB(b) = β:

Aiuα ×Bkvβ 3 (a1, b)
GA,β

 (af , b) ∈ A
if
βαf
×Bkvβ (8)

with hA(af ) = αf . Based on these observations, one can
define a set of edges Eas between nodes of Vas, and thus
generate a transition graph, Gas, as follows.
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Definition 6 Let u, u1, β, β1 ∈ UA and v, v1, α, α1 ∈ UB.
The asymptotic graph associated with the interconnected
system Σ is Gas = (Vas, Eas), where the edges are given
by:
(i) V ikuα;vβ → V ik1uα;v1β1

iff
either α = v1 = v and ∆(Bkvβ , B

k1
vβ1

) = 1,
or α = v1 6= v and R(Bkvβ ;GB,v1) ∩ B(Bk1v1β1

;GB,v1) 6= ∅;

(ii) V ikuα;vβ → V i1ku1α1;vβ iff
either β = u1 = u and ∆(Aiuα, A

i1
uα1

) = 1,
or β = u1 6= u and R(Aiuα;GA,u1)∩B(Ai1u1α1

;GA,u1) 6= ∅.

To illustrate this construction, see Examples 1-3 below.
Since the number of attractors for each graph is typi-
cally much smaller than the total number of states, the
graph Gas will be much faster to construct and analyze
than the full G. Note that the transitions in the asymp-
totic graph follow an asynchronous strategy in T A×T B ,
since no edges are allowed to connect elements V ikuα;vβ →
V i1k1u1α1;v1β1

, with u 6= u1, α 6= α1, v 6= v1, and β 6= β1.

Remark 1 A timescale hypothesis. An edge of Gas of
type (ii) in Def. 6 corresponds to a trajectory in G of the
form (8), Pb = {(aj , b), j = 1, . . . , f} for some fixed
b ∈ Bkvβ and a1, af in distinct semi-attractors. One
may say that pathway Pb evolves according to the ΣA dy-
namics, with no update of the interconnecting function
v = hA(·). Similar trajectories, Pa, correspond to type
(i) edges. Pathways in Gas correspond, therefore, to con-
catenations of type Pb and Pa pathways in G, along which
the interconnecting functions are updated at a “low” fre-
quency (w.r.t. the dynamics of each system). In fact, v
(resp., u) can be updated only at the endpoint of a type
Pb (resp., Pa) sequence.

4 Attractors of an interconnection

The main result states that the set of attractors of Gas

generates all the attractors of the full system G.

Theorem 1 If Q is an attractor of G, then there exists
at least one corresponding attractor in Gas, Qas = Qas(Q).
Moreover, if Q1 6= Q2 are two distinct attractors of G,
then Qas(Q1) 6= Qas(Q2).

In broad terms, Theorem 1 says that any attractor of G
generates an attractor in Gas, but the converse is not nec-
essarily true and Gas may have more attractors than G.
Moreover, the individual states of Qas(Q) are contained
in Q (ie. π(Qas(Q)) ⊂ π(Q)). The proof is given in Sec-
tion 5.

To decide which of the attractors of Gas actually cor-
respond to attractors of G, one way is to compute the

reachable set of each of them in G. However, using (6),
it is immediate to see that those Qas formed by a cross-
product of two single state (semi-)attractors are also at-
tractors of G:

Lemma 1 Suppose that R is a single state attractor of
Gas i.e., π(R) contains a single element of Ω. Then π(R)
is also an attractor of G.

We next give two simple examples to illustrate Def. 6
and Theorem 1.

Example 1 Consider the interconnection between two
positive feedforward cascades, A, B both of the form:

ΣA : fA(a;u) =
(
u
a1

)
, hA(a) = a2,

It is easy to check that each system has only one attractor
for each fixed input:

A1
00 = {00}, A1

11 = {11}, B1
00 = {00}, B1

11 = {11}.

The interconnection Σ obtains by setting u = hB(b) =
b2 and v = hA(a) = a2, and the asymptotic graph is,
therefore,

A1
00 ×B1

00 ← A1
00 ×B1

11

↑ ↓
A1

11 ×B1
00 → A1

11 ×B1
11

.

By Theorem 1 and Lemma 1, Σ has exactly two attrac-
tors: {0000} and {1111}. Indeed, it is easy to see that Σ
is a positive feedback loop, hence a bistable system, with
exactly these two attractors.

Example 2 Consider next the interconnection between
a positive and a negative cascade, with ΣA as in Exam-
ple 1 and:

ΣB : fB(b; v) =
(
v
¬b1

)
, hB(b) = b2,

where ¬b1 = 1− b1 denotes negation. Again there is only
one attractor for each fixed input, as follows:

A1
00 = {00}, A1

11 = {11}, B1
01 = {01}, B1

10 = {10}.

As in the previous example, the interconnection Σ obtains
by setting u = hB(b) = b2 and v = hA(a) = a2, and the
asymptotic graph becomes:

A1
00 ×B1

01 ← A1
00 ×B1

10

↓ ↑
A1

11 ×B1
01 → A1

11 ×B1
10

.

By Theorem 1, there is only one attractor for Σ,
and it contains the elements: {0001, 1101, 1110, 0010}.
Indeed, it is easy to check that Σ is a nega-
tive feedback loop, with a cyclic attractor: TΣ =
{0001, 1001, 1101, 1111, 1110, 0110, 0010, 0000}.
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The third example shows that there is not a one-to-one
correspondence between G and Gas: an interconnected
system where Gas has three attractors but G only two.

Example 3 Consider two 3-dimensional systems, char-
acterized by their asynchronous transition graphs, shown
in Fig. 2. Assume that the output for each system is
the last coordinate, hA(x) = hB(x) = x3. Each system
has four semi-attractors, so the asymptotic graph has 16
states, while the graphG of the interconnected system has
8 × 8 = 64 states, which is a very significant reduction.
The asymptotic graph Gas corresponding to the intercon-
nection of the two systems is given in Fig. 3. Theorem 1
says that G has at most three attractors, characterized
by: Qas

1 = A1
01 × B1

10 = {001000}, Qas
2 = A2

01 × B1
10 =

{111000}, and Qas
3 = {A1

10 × B1
00, . . . , A

2
11 × B2

10}. The
two single state attractors are immediately attractors of
the interconnected system, by Lemma 1. However, we
can also see that Qas

3 is not a true attractor of G. Indeed,
consider the following set of transitions

A1
10 ×B3

11
GB,0

 A1
10 × 000 GA,0

 001× 000 = Qas
1

which shows there is a pathway connecting Qas
3 to Qas

1 .
This pathway is “hidden” in Gas, as it is not allowed in
Def. 6: the first part of this trajectory stops at 000 in
GB,0 instead of at 110 = B1

00.

(a) (b)

(c) (d)

Figure 2: The transitions graphs for Example 3: (a) GA,0,
(b) GA,1, (c) GB,0, (d) GB,1.

5 Proof of Theorem 1

To prove Theorem 1, it is useful to introduce a function
that assigns elements of Vas to subsets of Ω.

Figure 3: The asymptotic transition graph Gas for Exam-
ple 3.

Definition 7 The asymptotic reducing function ψ :
S(ΩA × ΩB)→ S(Vas) is defined as:

ψ(Q) = {Aiuα ×Bkvβ ∈ Vas : π(Aiuα)× π(Bkvβ) ⊂ Q}.

Recall that, without loss of generality, we are assuming
pA = qB and pB = qA, which implies HB = UA, HA =
UB .

Lemma 2 If Q is an attractor of G, then ψ(Q) 6= ∅.

Proof. Suppose Q is an attractor of G, and let (a, b) ∈
Q, with a ∈ ΩA and b ∈ ΩB . Set u := hB(b) = β and let
a ∈ B(Aiβα;GA,β), for some i and some α ∈ UB . Since Q
is a terminal SCC, it contains all the paths starting from
any of its elements, in particular Q must contain the set
π(Aiβα) × {b}, for all α ∈ UB , because Aiβ is connected.
Since Aiβα is nonemtpy, then the set {ã}×π(Bkαδ) belongs
to Q for all ã ∈ Aiβα and b ∈ B(Bkαδ;G

B,α), for some
δ ∈ UA (since Bkαδ is nonemtpy for some δ ∈ UA, by (7)).
Therefore, one can conclude that Aiβα ×Bkαδ ∈ ψ(Q). �

Lemma 3 Let Q be an attractor of G and let Aiuα ×
Bkvβ ∈ ψ(Q). Then all its successors in Gas are also in
ψ(Q).

Proof. Assume that Ai1u1α1
×Bkvβ is a successor. Then,

by Definition 6, either

1. u1 = β and R(Aiuα;GA,u1) ∩ B(Ai1u1α1
;GA,u1) 6= ∅

2. or u = u1 = β and α1 6= α.

In the first case, since Q is an attractor, for all (a0, b0) ∈
π(Aiuα)× π(Bkvβ) ⊂ Q then also R(a0;GA,β)× {b0} ⊂ Q.
Because hB(Bkvβ) ≡ β we can conclude R(Aiuα;GA,β) ×
π(Bkvβ) ⊂ Q. In particular, π(Ai1u1α1

) ⊂ R(Aiuα;GA,β).
Therefore, Ai1u1α1

×Bkvβ ∈ ψ(Q).
In the second case, one has that Ai1u1α1

= Ai1β,α1
and

Aiβ,α are two semi-attractors belonging to the same at-
tractor Ajβ of the graph GA,β . By connectedness of
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Ajβ , π(Ai1β,α1
) × {b0} ⊂ Q, for all b0 ∈ π(Bkvβ). Hence

Ai1u1α1
×Bkvβ is indeed in ψ(Q). �

Theorem 1 follows immediately as a Corollary:

Corollary 1 If Q is an attractor of G, then ψ(Q) con-
tains an attractor of Gas. If Q1, Q2 are two distinct at-
tractors of G, then ψ(Q1) ∩ ψ(Q2) = ∅ and so ψ(Qi)
(i = 1, 2) contain distinct attractors of Gas.

Proof. By Lemma 3 the set ψ(Q) contains all of its
successors. Recall that all states in a digraph eventually
converge to an attractor. If ψ(Q) contains no attractor
of Gas then it does not contain all the successors of its
states, which is a contradiction.

To prove the second statement, first note that Q1 ∩
Q2 = ∅ since they are two distinct attractors of G. Hence,
by construction of ψ, also ψ(Q1)∩ψ(Q2) = ∅. Therefore,
since each ψ(Qi) contains an attractor of Gas (by the first
statement), they have to be distinct attractors. �

6 Application: cell-fate decision

To further illustrate the reduction method, it is ap-
plied to the Boolean model of cell-fate decision developed
in [3]. This model represents the interplays between three
major cellular pathways: apoptotic cell death (intrinsic
or mitochondria-dependent pathway), non-apoptotic cell
death (RIP1-dependent necrosis in this case) and survival
(through activation of the pro-survival transcription fac-
tor NFκB). It includes the engagement of two different
death receptors: TNF and Fas. For a more thorough bi-
ological description of the network, the reader is referred
to [3] and references therein.

Figure 4: The cell-fate decision network developed in [3].
Only internal variables are depicted (external inputs
FASL, TNF and FADD are considered as constants and
are not represented). The full system (22 variables) is
expressed as the interconnection of two modules A and
B of eleven variables, each with 3 inputs and 3 outputs
(dashed arrows correspond to modules’ interconnections).

Remark 2 The original system of [3] has 25 variables,
three of which do not have specific logical rules as they
correspond to external inputs of the system: TNF (Tumor
Necrosis Factor), FASL (Fas ligand) and FADD (Fas-
associated protein with Death Domain). These external
inputs are represented in italic in Table 1. In this study,
we will consider them as constants and focus our analysis
on the 22-dimensional graph proposed in Fig. 4. The 23 =
8 different combinations of the triple (TNF,FASL,FADD)
will then be analysed separately.

The first step of the method consists in partitioning
the 22 variables into two 11-dimensional, interconnected
MIMO modules A and B. The chosen modules with their
inputs, outputs and logical rules are defined in Table 1
(the rules are taken from [3, Suppl.Mat.]). Mathemati-
cally, the interconnection of A and B is defined by:

8<: u1 := hB,1(b) = RIP1,
u2 := hB,2(b) = ATP,
u3 := hB,3(b) = MPT ∨ BAX,

8<: v1 := hA,1(a) = cFLIP,
v2 := hA,2(a) = NFκB,
v3 := hA,3(a) = C3.

Table 1: Definition of modules.
Module A

Inputs: u = (u1, u2, u3)
Outputs: hA,1 = cFLIP, hA,2 = NFκB, hA,3 = C3
Logical rules:
RIP1ub’ = cIAP ∧ u1
cIAP’ = (NFκB ∨ cIAP) ∧ ¬SMAC
cFLIP’ = NFκB
IKK’ = RIP1ub
NFκB’ = IKK ∧ ¬C3
SMAC’ = MOMP
MOMP’ = u3
CytC’ = MOMP
XIAP’ = NFκB ∧ ¬SMAC
apoptosome’ = CytC ∧ ¬XIAP ∧ u2
C3’ = apoptosome ∧ ¬XIAP

Module B
Inputs: v = (v1, v2, v3)
Outputs: hB,1 = RIP1, hB,2 = ATP, hB,3 = MPT∨BAX
Logical rules:
DISC-TNF’ = FADD ∧ TNFR
TNFR’ = TNF
DISC-FAS’ = FADD ∧ FASL
RIP1’ = ¬C8 ∧ (TNFR ∨ DISC-FAS)
C8’ = (DISC-TNF ∨ DISC-FAS ∨ v3) ∧ ¬v1
BCL2’ = v2
RIP1K’ = RIP1
ROS’ = ¬v2 ∧ (RIP1K ∨ MPT)
BAX’ = C8 ∧ ¬BCL2
MPT’ = ROS ∧ ¬BCL2
ATP’ = ¬MPT

The next step consists in computing transition graphs
GA,u and GB,v (for u, v ∈ {0, 1}3) and their sets of at-
tractors and semi-attractors Aiu,α and Bkv,β . Each one
of these graphs contains only 211 = 2048 states, which
makes these computations (involving SCC decomposition
and terminal SCC detection) much more rapid than for
the transition graph of the whole system (which con-
tains 222 > 4 million states). Once the semi-attractors
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are found, the last step consists in the construction of
the asymptotic graph. As an example, consider the case
where TNF,FASL,FADD=1,0,1. The asymptotic graph
has only 120 nodes. This graph has three attractors, de-
noted a1, a2 and a3, each one containing a single state
(see Table 2). By virtue of Theorem 1 and Lemma 1,
these states are attractors of the interconnected system.
They can be associated to the three expected phenotypes:

Table 2: Steady states when TNF=1, FASL=0 and
FADD=1.

RIP1ub cIAP cFLIP IKK NFκB SMAC MOMP CytC
a1 0 0 0 0 0 1 1 1
a2 0 0 0 0 0 1 1 1
a3 1 1 1 1 1 0 0 0

XIAP apop. C3 D-TNF TNFR D-FAS RIP1 C8
a1 0 0 0 1 1 0 0 1
a2 0 1 1 1 1 0 0 1
a3 1 0 0 1 1 0 1 0

Bcl2 RIP1K ROS BAX MPT ATP phenotype
a1 0 0 1 1 1 0 necrosis
a2 0 0 0 1 0 1 apoptosis
a3 1 1 0 0 0 1 survival

a1 to non-apoptotic cell death (necrosis), a2 to apopto-
sis and a3 to survival through NFκB activation (see [3]
for details). In total, when considering all combinations
of constants TNF, FASL and FADD, 27 attractors are
retrieved, all containing single state attractors. Due to
lack of space, the 27 retrieved steady states are not re-
produced here, but they exactly correspond to the ones
shown in [3, Fig. 2].

Interconnection of Boolean modules is therefore an ef-
ficient and practical method to simplify the analysis of
a large Boolean network, by reducing it to the analysis
of two half-sized isolated subnetworks, as shown in this
example. The fact that the 27 uncovered semi-attractor
cross-products correspond exactly to the attractors of the
whole system is a direct consequence of Theorem 1 and
Lemma 1, and is based on the structure of the asymptotic
graph. In [3] the same conclusion is obtained through a
different argument based on the reduction method devel-
oped in [5]. In contrast to [5], our interconnection method
does not involve the projection onto a subset of variables,
with the advantage that every variable of the original sys-
tem is preserved. A further development of the method
will be to extend the asymptotic graph to include (bio-
logical) transition probabilities (see for instance [3, 9]), in
order to compute the probability to reach each attractor
from a given initial condition. This work is currently in
progress.

7 Conclusions and future work

The main result in this paper is the identification of all the
possible attractors of a Boolean interconnected system in

terms of the attractors of the two isolated subsystems.
This result has important applications to the analysis of
large Boolean networks which appear frequently in the bi-
ological sciences. For any Boolean network, the size of the
transition graph grows exponentially with the dimension
n of the network, thus rapidly limiting the use of algo-
rithms such as SCC decomposition or hierarchical orga-
nization. Therefore, by decomposing a large system into
two smaller MIMO modules, it may become possible to
analytically compute the asymptotic behavior of the sys-
tem without computing the whole 2n-dimensional transi-
tion graph. Several questions have arised from our analy-
sis, in particular the problem of deciding when one of the
predicted attractors is spurious (Lemma 1 provides a first
answer, sufficient in the given example, but possible ex-
tensions are currently being investigated by the authors).
Another question concerns the possibility of decomposing
a network into more than two modules and, more gener-
ally, the necessity of developing algorithms for decom-
posing a network into modules with minimal numbers of
inputs and outputs. Future work is to explore the trade-
off between model decomposition/reduction and the com-
putational load in the construction of the corresponding
asymptotic graph.
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