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Abstract

In this paper we will consider a network of vehicles ex-
changing information among themselves with the intention
of achieving a specified polygonal formation. A stochastic
model for information transmission and reception is consid-
ered, allowing for the randomly breaking of the communi-
cation links among the vehicles. The network achieves the
formation through decentralized feedback control, which is
constructed from the available information. Several infor-
mation flow laws are considered in order to improve the
performance of the vehicle network.

1 Introduction

As we move into an era of autonomous vehicles, the control
theory is increasingly used to design and analyze the perfor-
mance of such decentralized systems. The cooperative use
of unmanned vehicles requires some assurance of proper
performance, especially when conditions are unfavorable.
When centralized coordination is either disabled, impracti-
cal or tactically inadvisable, it is unclear whether individual
vehicles will be able to properly use the information avail-
able to them, or how much information they may need to
perform a desired task. One natural question is whether au-
tomated vehicles will be able to arrange themselves into a
prespecified formation, assuming that one or all of the ve-
hicles has incomplete information as to the whereabouts of
other vehicles.

In recent papers [4, 3], the convergence of simple automated
vehicles into formation using directed graphs to describe the
vehicles’ abilities to detect one another, has been explored.
In [3] graphical conditions are developed, which allow us
to predict when the dynamical systems describing these au-
tonomous vehicle formations will be stable. Assuming an
underlying network structure for communication method in
which transmission of information amongst the vehicles fa-
cilitates a more efficient convergence to their predetermined
relative positions has been demonstrated [4]. The forma-
tions considered are achieved when the vehicles in question
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assemble in proper position relative to a stationary central
point which is not determined in advance, but will be ar-
rived at through formation consensus.

In this paper we extend these ideas of vehicle formation to
include several new features. We first provide a novel vehi-
cle formation formulation, a definition which includes dy-
namic or moving formations in which the positions of ve-
hicles relative to a fixed frame of reference is not required.
This definition allows for convergence into stopped posi-
tions oriented about an undetermined final center ([4, 3]), as
well as for convergence of moving formations of vehicles
which maintain fixed positions relative to one another with-
out coming to a halt (as is desirable in satellite and surveil-
lance formations for example.)

Further, we consider systems in which communication and
sensing amongst the vehicles may be faulty, intermittent, or
otherwise randomly varying. We introduce a stochastic el-
ement to the underlying graph in which arcs representing
lines of communication may randomly disappear. After de-
vising a control system for individual vehicles facing the
confusing conditions of intermittent sensory data, we also
study the possibility of improved performance when vehi-
cles transmit and receive information amongst themselves,
again under the conditions of random loss.

2 Problem Formulation

In this work, we consider a network of N vehicles, among
which there are some means of communication. The in-
formation exchange between vehicles is represented by di-
rected graphs.

2.1 Spectral Graph Theory
We shall first give a brief overview of some spectral graph
theory [2, 1] concepts that will be used in modeling the ve-
hicle network.

Definition 2.1 A directed graph G consists of a vertex set
V �G� and an edge set A�G�, where an arc or a directed edge
is an ordered pair of distinct vertices a � �u�v�.The vertex
u is called the tail of a and the vertex v is called the head of
a.
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Definition 2.2 Let u and v be two vertices of a directed
graph G. An u�v walk of G is a finite, alternating sequence
of vertices and arcs u � u0�a1�u1�a2� � � � �un�1�an�un � v
beginning with u and ending with v, and such that ai �
�ui�1�ui�, for i � 1� � � � �n.

Definition 2.3 Let u�v �V �G�. Vertex v is said to be reach-
able from vertex u if the directed graph G contains an u� v
walk.

Definition 2.4 A directed graph G is strongly connected if,
for every two distinct vertices of G, each vertex is reachable
from the other.

Definition 2.5 The adjacency matrix of a graph G, denoted
Ad�G�� is a square matrix of size jV �G�j � jV �G�j defined
as follows:

Ad�i� j� �

�
1 for �ui�u j� � A�G�
0 elsewhere.

where ui�u j �V �G�.

An equivalent characterization of a strongly connected
graph can be given in terms of the adjacency matrix.

Definition 2.6 A directed graph G is strongly connected if
there exists an integer m � 0 such that the matrix �I �Ad�

m

has all entries strictly positive.

Definition 2.7 The number of arcs incident into a vertex ui

is the in-degree of ui. We denote by D the diagonal matrix
with the in-degree of vertex ui as the �i� i�-th entry.

Definition 2.8 The Laplacian matrix of a graph G is de-
fined as L � I�D�1Ad �

2.2 Vehicle Network Model
We assume that each vehicle is a node in a strongly con-
nected graph, G, with the corresponding Laplacian L. The
adjacency matrix of this graph represents the communica-
tion links among the N vehicles: if �Ad�i j � 1 then vehicle
i can sense information from vehicle j (we also say that “i
can see j”). Note that the links need not be reversible, so
i may receive information from j but j doesn’t receive in-
formation from i. The individual dynamics of each vehicle
will be modeled by a discrete-time linear system:

xi
k�1 � A1xi

k �B1ui
k

zi
k �

1
jJij

∑
j�Ji

��xi
k �hi

0�� �x j
k�h j

0�� �Σ1�

where, for each time k, xi
k �Rn represents the state variable

vector for vehicle i, ui
k � Rm represents the control vector

and zi
k � Rn is the output. Ji � �1�N� n fig represents the

set of vehicles which vehicle i can sense. The output can
be interpreted as the measurement of the positions of the
neighbors j � Ji relative to the position of vehicle i. The
vectors hi

0 represent the desired relative positions of each
vehicle with respect to the center of the formation.

We now consider the entire system of N vehicles,
with state vector xk � ��x1

k�
T � � � � ��xN

k �
T �T � RnN , con-

trol vector uk � ��u1
k�

T � � � � ��uN
k �

T �T � RmN , output vec-
tor zk � ��z1

k�
T � � � � ��zN

k �
T �T � RnN and offset vector h0 �

��h1
0�

T � � � � ��hN
0 �

T �T � RnN . We let A � IN �A1 represent
the matrix A1 repeated N times along the diagonal. Simi-
larly, suitable dimensional adjustments are made for the B1

and F1 matrices below. Using this notation we rewrite the
entire system dynamics as follows:

xk�1 � Axk �Buk

szk � Ln�xk�h0� �Σ�

where A � IN �A1, B � IN �B1 and Ln � L� In is the aug-
mented Laplacian of the graph.

Definition 2.9 N vehicles are said to be in a dynamic for-
mation if at all times they are ordered as the vertices of a
pre-specified 2-complex.

We wish to investigate the problem of controlling this net-
work of vehicles into a specified dynamic formation, where
each vehicle will occupy a fixed position relative to the other
vehicles (see Figure 1, for an example of a dynamic forma-
tion, and section 5 for more simulation results). Using the
measurement signal zk, we intend to construct a decentral-
ized control law for the network of the form uk �Fzk, where
F � IN �F1 and ui

k � F1zi
k regulates the system Σ1 into its

position in a dynamic formation.
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Figure 1: Achieving hexagonal formation, starting from random
initial positions.

In section 3 we consider the communication among the ve-
hicles to be in the form of sensory information (vehicle i
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receives information from the vehicles it can see, accord-
ing to the graph). In section 4, we consider another type of
communication among the vehicles: both sensory and trans-
mitted information (vehicle i also sends some kind of infor-
mation to the vehicles that can see him). In both sections
we also consider the possibility of random loss of informa-
tion, how this affects the stability of the network formation,
and how to improve the information flow laws for formation
control. Finally, in section 5, a model is chosen for the ve-
hicles’ dynamics and several results of simulation tests are
shown. Some remarks and conclusions end our paper.

3 Sensed Information and Stochastic loss

We will consider N vehicles to achieve “formation” if they
are ordered on the vertices of a regular polygon. Notice that
this formation can be dynamic, i.e. the positions of the vehi-
cles may not be constant with respect to some global refer-
ence point. This is not the case in previous work presented
in [4].

3.1 Stochastic loss of information
We first consider the case when sensed information is re-
ceived with some probability p. At each time step, we asso-
ciate to each arc �i� j� (with �Ad�i j �� 0), a number θi j

k which
is zero if the sensed information that i would receive from
j is lost — in this case, we say that the arc was broken or
invisible at time k. In the same way as in [7], we define

θi j
k �

�
1� if i sees j
0� if i doesn’t see j�

(1)

For each pair �i� j�, θi j
k is a Bernoulli process with P�θi j

k �
1� � p. We assume that every arc �i� j� has the same proba-
bility p of not breaking at time k, and that the random vari-
ables θi j

k , k � 1�2� � � � are independent. We also assume that

each vehicle has access to θi j
k , in other words, each vehicle

knows when an arc is broken.

Whenever an arc is invisible, vehicle i does not receive the
new position of its neighbor j � Ji. To overcome this loss
of information, we allow vehicle i to use the last available
information received from vehicle j. So, as discussed in [7],
a sensory information vector can be defined as follows:

wi j
k � wi j

k�1 �θi j
k �x

j
k�wi j

k�1� (2)

which represents the information that i receives from j at
time k. If the arc �i� j� was not broken, then i receives the
new position information, x j

k, but if the arc was broken, then

i receives the latest position information available, wi j
k�1.

(Note that there is a different vector wi j
k associated with each

arc �i� j�: if, for instance, j1� j2 � Ji, then vehicle i may re-
ceive old information from neighbor j1 and new information
from another neighbor j2.)

Vehicle i will now use wi j
k to compute the control ui

k. In
the case of a broken arc, we improve the sensory informa-
tion vector by estimating the current position of vehicle j
instead of using previously received information. Using the
old information wi j

k�1, and assuming that j would follow its

drift direction, the vector wi j
k becomes

wi j
k � A1wi j

k�1 �θi j
k �x

j
k�A1wi j

k�1�� (3)

Then each vehicle, i � 1� � � � �N, in the network evolves ac-
cording to

xi
k�1 � A1xi

k �B1F1zi
k

zi
k �

1
jJij

∑
j�Ji

��xi
k �hi

0�� �wi j
k �h j

0�� (4)

Using only the simplest mechanism for estimating the po-
sition of their intermittently disappearing neighbors, vehi-
cles were able to collect themselves into position rather ef-
ficiently, as shown in Section 5.

4 Information Flow Laws and Stochastic Loss

We next consider that the vehicles that can sense each other
may also be able to exchange information. We then intro-
duce stochastic loss of data for a network of vehicles that
can sense and communicate simultaneously. We again as-
sume that vehicles know when data is received, or if the
data was lost, i.e. they have access to θk. In particular, we
suppose that whenever vehicle i can sense j, it also receives
a relay of the positions of the vehicles that j sees.

As in [4] in the case when no information is lost we consider
the following simple information law for each vehicle i:

pi
k�1 � zi

k �
1
jJij

∑
j�Ji

p j
k

In other words, vehicle i senses information and also re-
ceives information at time k. The information it will have at
time k�1 is the sum of the information sensed and the aver-
age of the information it received from its neighbors at the
previous step. Globally, the information law for the system
becomes:

pk �

�
k

∑
l�0

Gl

�
Ln�xk�h0�

where G � I�Ln. The dynamics for the system are:

xk�1 � Axk �BF pk�

In the case when vehicle i receives information from j with
some probability p, we assume that every arc �i� j� has the
same probability p of not breaking at time k (i.e. informa-
tion can be transmitted), and that the random variables θi j

k ,
k � 1�2� � � � are independent.
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One question investigated by the authors was whether the
incorporation of an information flow law as above into the
model (3) would improve the convergence of the vehicles
to the formation. Since in this random loss system there
is “old” and not very accurate information on the vehicles’
positions being passed around, it is conceivable that an in-
formation flow law would only increase the level of inac-
curacy in the system and thus hinder, rather than improve,
the convergence. Indeed the results from our simulations
confirm this. To avoid increasing the level of inaccuracy we
develop an alternative information flow law. We will see
in the next section that this particular information flow law
leads to some improvements. For each pair �i� j�, such that
j � Ji, the information that vehicle i receives from j is given
by:

pi� j
k � wi� j

k � for θi� j
k � 1

pi� j
k �

∑l�Jj
θi�l

k θl� j
k wl� j

k

∑ j�Jj
θi�l

k θl� j
k

� for θi� j
k � 0 (5)

pi� j
k � 0� for ∑

j�Jj

θi�l
k θl� j

k � 0�

For j � i we set pi�i
k � xi

k.

Note that this law does not involve any “old” information:

� if the arc �i� j� is not broken, then θi�l
k � 1 and there-

fore pi� j
k � wi� j

k � x j
k;

� if the arc �i� j� is broken, then θi�l
k � 0, but any other

broken links (θi�l
k � 0 or θl� j

k � 0), which would bring

in some old information, do not contribute to pi� j
k .

The main idea behind this flow law is that, if the arc �i� j�
is broken (so “i does not see j”) at time k, then vehicle i
may still receive vehicle j’s new position information, in the
following situation. Suppose there exists some other vehicle
l , such that l � Ji and j � Jl and at time k both θi�l

k �

1 and θl� j
k � 1 (that is, both arcs �i� l� and �l� j� are not

broken). Then, information flow law (5) states that vehicle
i receives the new position information from j through its
neighbor l. If several vehicles satisfy these two conditions,
an average is computed.

The state transition for each vehicle, in this case, is given by

xi
k � A1xi

k �B1F1zi
k

zi
k �

1
jJij

∑
i�Ji

�xi
k�hi

0�� �pi� j
k �h j

0��

Information flow law (5) is expected to improve the com-
munication in the network, especially in the case of high
connectivity graphs.This is shown in Section 5.

5 Simulations

To test and explore our results, a linear discrete-time sys-
tem was implemented and simulated for several different
situations, as described below. A simple statistical analysis,
based on Monte Carlo methods, is also presented, that pro-
vides a measure of our system’s performance. We consider
several networks and topologies for the various simulations.

5.1 Decentralized control
In this paper, we restrict our examples to deal with linear
feedback control of the form

uk � FLnxk�FLnh0� (6)

where h0 �RnN is a constant vector, containing information
about the desired formation. In our examples, we set h0

to be the positions at the vertices of a regular N-gon: The
matrix F �RmN�nN is determined so that individual vehicle
will converge to its desired position in formation.

The general problem of finding a matrix K that stabilizes
the linear system xk�1 � Axk �Buk with output feedback
uk � KLxk, has an optimal solution K provided by the LQ
regulator method. Then the system xk�1 � �A�BKLn�xk is
stable and the solution K is optimal in the sense that some
cost function of uk and zk is minimized. However, a matrix
F obtained by the LQ method would generally result in a
centralized control ([6].) For practical purposes, designing a
decentralized control, is of greater interest for us and is one
of the goals of this paper. With a decentralized control each
vehicle in the network is able to independently construct its
own control ui

k from its sensed and communicated informa-
tion. In our design each ui

k picks up only the information
that vehicle i receives form its neighbors, j � Ji. Matrix F
is independent of L (as opposed to what happens in the LQ
regulator case). In all simulations described below we use
this constant feedback matrix.

5.2 Simulation Results
As a first step towards understanding the role of an infor-
mation flow law such as described in [4], we compare the
evolution of our network of vehicles and its convergence to
regular formation, in the two cases:

(i) each vehicle has access only to its sensed informa-
tion;

(ii) each vehicle has access to its sensed information as
well as to extra communicated information from its
neighbors, in the form of an information flow law.

From Figure 2, it is clear that the network with information
flow law added achieves the desired formation in a more ef-
ficient way. In this simulation there were no communication
links broken.

Next we consider the effect that random losses of sensed in-
formation have on the vehicles in the network, and address
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Figure 2: Triangle formation: no information flow (dashed line)
and with information flow (solid line).

the question of how to control vehicles to the desired for-
mation under these adverse conditions.

The estimation of the current position as in (3) (as opposed
to the more basic equation (2)) is observed to introduce an
improvement in the convergence of system (4) to the forma-
tion as shown in Figure 3. In this simulation there was no
inter vehicle communication.

−25 −20 −15 −10 −5 0

−15
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−5

0

Figure 3: Square formation with p� 0�4 of information commu-
nication. Comparison between the two sensory infor-
mation vectors: with estimation of the current position
(left corner); with no estimation (center).

Once we allow inter vehicle communication the new infor-
mation flow law (5) considerably improved the convergence
for the vehicle network as shown in Figure 4.

5.3 Monte Carlo analysis
To evaluate the performance of our vehicles under random
losses of information, and to try to provide some estimates
of rapidity of convergence and deviation from the forma-
tion, we focused on the following two questions:

(i) How fast do the vehicles converge to the formation,
depending on the probability p of no information

−8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

Figure 4: Square formation with random loss of information: no
information flow law (dashed line) and with informa-
tion flow law (solid line).

loss?

(ii) After a given fixed time has elapsed, what is the devi-
ation of the formation from the desired formation, as
a function of the probability p?

Using a Monte Carlo approach, for each probability p �
P :� f0�05s : s � 0�1� � � � �20g, the system is simulated M
times. For each of these simulations, the initial condition
x0 is a random vector, and the random variables θi j

k take the
value 1 with probability p. For each of these simulations a
certain quantity f � f �p� (supposed to depend on the pa-
rameter p) is recorded

f �r� p�� r � 1� � � � �M� p � P�

and then an estimate of the quantity f � f �p� can be ob-
tained by averaging

f �p� �
1
M

M

∑
r�1

f �r� p��

For question (i), it is necessary to establish the following
measure: the network is said to be “within ε of the N-gon
formation at time k” if the sides and the diagonals of the N-
gon formed by the vehicles at time k do not differ from the
ideal values for more than ε. Thus in case (i), the estimated
quantity is f �p� � “iteration k, when vehicles come within
0�05 of the square formation”.

In Figure 5, for a network of four vehicles and M � 10, we
can see the estimated number of iterations that are necessary
for system (4) to be within ε � 0�05 of the square formation,
as a function of p. As expected, for low p the probability
of information loss is large (1� p), and the vehicles need
quite a long time to reach the desired formation. An inter-
esting observation is that, as p increases, there seems to be
an abrupt transition and, for p � 0�3, the number of itera-
tions necessary for the network to come to formation does
not differ very much, and lies in the range 120� 160. In
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Figure 5: Estimated time to reach square formation, as a function
of p.

Figure 6, the error between the exact formation and the po-
sition of the vehicles after a fixed number of iterations (40)
is plotted against the probability p. As expected, this er-
ror decreases as the probability of having no broken arcs
increases.
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Figure 6: Deviation from formation, after 40 iterations, as a func-
tion of p.

6 Conclusion

Our initial goal of smoothly inserting stochastic loss of
communication, both passive and active, into a vehicle net-
work has been achieved. The stringency of the graph-
theoretical sufficient conditions for system stability (pro-
posed in [4]) made it unclear whether or not such vehicle
networks could be expected to reach formation and stay in
formation subject to more than a very modest stochastic dis-
turbance of the graph.

We have found that although the static network model re-
quired strong connectivity to ensure stability, vehicles in a
stochastic model were able to achieve and maintain forma-
tion even when the instantaneous graph was not even ex-
pected to be connected for the majority of time iterations!
It seems from experiment that we need only require strong
connectivity in the underlying network structure, that is, the
collection of all arcs available over the entire course of the
simulation. Statistical analysis shows that these vehicles
were able to consistently converge into formation with even

as much as two-thirds of all communication lost. Using
only the simplest mechanism for estimating the position of
their intermittently disappearing neighbors, they were able
to collect themselves into position in a small number of time
steps.

The static network information flow law proposed in [4] did
not give satisfactory results when applied to our stochastic
vehicle network model (due to its unwaveringly consistent
circulation of information, obviously not suited for graphs
which may not be connected for several instants).It is clear
that a new information flow law based on makeshift single-
layer approach has a much better performance.
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