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Abstract. Systems possessing symmetries often admit heteroclinic cycles that persist
under perturbations that respect the symmetry. The asymptotic stability of such cycles
has previously been studied on an ad hoc basis by many authors. Sufficient conditions,
but usually not necessary conditions, for the stability of these cycles have been obtained
via a variety of different techniques.

We begin a systematic investigation into the asymptotic stability of such cycles. A
general sufficient condition for asymptotic stability is obtained, together with algebraic
criteria for deciding when this condition is also necessary. These criteria are always
satisfied in R® and- often satisfied in higher dimensions. We end by applying our
results to several higher-dimensional examples that occur in mode interactions with O(2)
symmetry.

1. Introduction

Let &, ..., &, be equilibria of a vector field f : R® — R". If there are trajectories
{y1(®), ..., ym(£)} with the property that y;(¢) is backward asymptotic to £; and forward
to &4 then it is usual to call the collection of trajectories {&;, y; (t)} a heteroclinic cycle.
(Here we use the convention that &, = &;.)

Typically one does not expect heteroclinic cycles to exist for general vector fields.
However, Field [7] has shown that heteroclinic cycles can occur robustly in symmetric
systems. More recently, Guckenheimer and Holmes [12] showed that robust heteroclinic
cycles occur naturally in low codimension bifurcation theory. Since this paper of [12],
several authors have exploited symmetry to compute examples of robust heteroclinic
cycles, see references {1-3, 8, 9, 17, 20, 21, 23-26]. Robust heteroclinic cycles are
prevalent also in population dynamics. References may be found in Hofbauer and
Sigmund [15].

Many of the heteroclinic cycles in the above references can be asymptotically stable.
Then the cycles lead to interesting phenomena such as intermittency and bursting in the
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dynamics. Early investigations of the asymptotic stability of robust heteroclinic cycles
forced by symmetry yielded sufficient conditions based on the relative magnitudes of
the real parts of certain eigenvalues at each equilibrium along the cycle. Usually, these
conditions were not optimal.

Melbourne, Chossat and Golubitsky [23] required a fairly general setting for a stability
theorem and proved a sufficient condition for stability that applies to all their examples.
In particular, they included cycles connecting relative equilibria (flow-invariant group
orbits). However, their condition for stability fails to be optimal for two reasons. First,
the condition involves the so-called ‘radial’ or ‘branching’ eigenvalue at each relative
equilibrium. We will show that the radial eigenvalues are irrelevant for questions of
stability (thus generalizing a result of Melbourne [21] and answering a conjecture of
Armbruster [1]). Second, there is an example of Field and Swift [9] (see also Hofbauer
and Sigmund [15]) for which the optimal conditions for asymptotic stability are quite
different from those in [23] (even neglecting radial eigenvalues).

The example of [9] indicates that the theory of asymptotic stability of a heteroclinic
cycle forced by symmetry is unexpectedly rich. A further complicating issue is as
follows. It is clear that for asymptotic stability it is necessary that the whole unstable
manifold of &; is asymptotic to §;,; (or at least the group orbit through &;,;. However
Melbourne [22] has shown that there are physically meaningful notions of stability even
when this requirement is relaxed. (See also recent work of [4], [16] and [19].) It is
evident that the theory of asymptotic stability of heteroclinic cycles is only part of a
more general stability theory.

This paper represents a first step in a systematic investigation of the stability of
heteroclinic cycles. We shall only consider asymptotic stability, and so in our definition
of heteroclinic cycle, Definition 2.1, we require that the entire unstable manifold of &;
is asymptotic to the group orbit through &;,,. Then we say that the heteroclinic cycle
consists of the collection of unstable manifolds. Our definitions in the present paper
are formulated in such a way as to facilitate a return to the issues raised above in a
subsequent paper.

Our results yield necessary and sufficient conditions for asymptotic stability of many
of the cycles in the above references. Theorem 2.7 gives a sufficient condition (2.3) for
asymptotic stability of heteroclinic cycles forced by symmetry. Our condition is similar
to that of [23] but is independent of the radial eigenvalues.

Theorems 2.9 and 3.1 are concerned with necessity of the sufficient condition (2.3).
Indeed, we give algebraic criteria under which condition (2.3) is necessary and sufficient.
These criteria are automatically satisfied in R? and we recover a result of (21].

The remainder of this paper is structured as follows. In §2 we define precisely what
we mean by a heteroclinic cycle forced by symmetry, and state our main theorems when
the group of symmetries is finite. Then in §3 we generalize the setting to incorporate
continuous groups of symmetries.

The fundamentals of asymptotic stability theory are covered in §4. Although the
results of this section fall into the folklore variety, it is hard to find rigorous proofs in
the literature. Stability properties of the heteroclinic cycle can be understood in terms
of stability of an invariant set under a Poincaré map associated with the cycle. Some
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of the technical details in this section are deferred to the appendix. We prove our main
results in §5.

Finally, §6 consists of examples. We compute sufficient conditions for the asymptotic
stability of heteroclinic cycles in codimension two mode-interactions with O(2) symmetry
and show that this condition fails to be optimal in only one case. In doing so, we regain,
and in many cases substantially improve upon, the conditions of [24], [3] and [23]. This
section can be read independently of §8§4 and 5.

2. Heteroclinic cycles forced by symmetry, and their geometry

Throughout this section we restrict to the case when the group of symmetries is finite.
There are four subsections. In subsection 2.1 we define precisely what we mean by a
heteroclinic cycles and its asymptotic stability. Then in subsection 2.2 we introduce
the idea that these heteroclinic cycles are robust under certain perturbations. This
is formalized in the hypothesis (H1) which is assumed to hold throughout the paper.
Symmetry provides a natural setting for hypothesis (H1) to hold, and we review some
basic facts about the lattice of isotropy subgfoups.

In subsection 2.3 we use the geometry of the heteroclinic cycle to pick out certain
eigenvalues along the cycle. It is the relative magnitudes of the real parts of these
eigenvalues that drive the stability of the heteroclinic cycle. In subsection 2.4 we state
our main results in terms of these eigenvalues.

2.1. The main definitions. Suppose that T" is a finite Lie group acting linearly on R".
Let f : R* — R” be a ['-equivariant vector field. That is

Sf(yx) =yf(x), forall y €.

Definition 2.1. Suppose that &, j = 1,..., m are hyperbolic equilibria with stable and
unstable manifolds W*(&;) and W*(£;). The set of group orbits of the unstable manifolds

X={W'y§), j=1,...,m y €T},
forms a heteroclinic cycle provided dim W*(§;) > 1 and

WhE) - &) < | Wik

yerll

Remark 2.2. (a) The case m = 1 is sometimes distinguished, and the cycle called a
homoclinic cycle. Our methods for determining asymptotic stability are independent of m.
(b) Define the principal unstable manifold W*(&;) to be the invariant manifold tangent
to the generalized eigenspace of the unstable eigenvalues with maximal real part. Then
we may speak more generally of a heteroclinic cycle replacing W#(&;) in Definition 2.1
throughout by WP*(£;). These more general cycles cannot be asymptotically stable.
Nevertheless, they may have strong stability properties, see {22], [20].

Definition 2.3. A heteroclinic cycle X is said to be stable if for any neighborhood U of
X, there exists a smaller neighborhood V such that trajectories starting in V remain in
U for all forward time.
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The cycle is asymptotically stable if V can be chosen so that in addition trajectories
starting in V are asymptotic to X.
The cycle is unstable if it is not stable.

2.2.  Robust heteroclinic cycles and symmetry. For a general vector field without
symmetry, a heteroclinic cycle is necessarily structurally unstable. However, symmetry
may force the flow-invariance of certain subspaces and this may permit structural stability
to occur. We shall make the following standing hypothesis:

(H1) For each j, there is a flow-invariant subspace P; such that W*(§;) C P; and &,
is a sink in P;.

Remark 2.4. (a) Hypothesis (H1) guarantees robustness of the heteroclinic cycle within
the class of vector fields that leave the subspaces P; invariant. That is, a heteroclinic cycle
satisfying hypothesis (H1) persists under small perturbations that preserve the invariance
of these subspaces, see Proposition 2.5 below.

(b) For optimal results we shall take P; to be the smallest possible subspace such that
hypothesis (H1) is satisfied.

(c) Set L; = P; N P;_;. In many examples, the problem reduces to one where
dim L; = 1 and dim P; = 2, hence our notation. However this restriction is not necessary
for our results to be valid.

(d) Robust heteroclinic cycles occur naturally in systems with symmetry, the flow-
invariant subspaces arising as fixed-point spaces for the action of the symmetry group.
A second context in which robust heteroclinic cycles occur naturally is in population
dynamics, see Hofbauer and Sigmund [15]). Here the invariant subspaces P; arise
in the boundary of inadmissible regions of phase space. See also Brannath [4] and
Gaunersdorfer [10].

We conclude this subsection by reviewing some basic group representation theory,
(see Golubitsky, Stewart and Schaeffer [11] for more details). Let ' be a compact Lie
group acting on R". The isotropy subgroup of a point x € R" is defined to be the
subgroup of I,

Y, ={y eMyx =x}.
If £ C T is an isotropy subgroup, then there is a corresponding subspace of R" called
the fixed-point subspace of T,

Fix(Z)={x e R"ox =x forall 0 € }.
If f is a T"-equivariant vector field, and ¥ is an isotropy subgroup, we have
f(Fix(X)) C Fix(¥).

In particular, fixed-point subspaces of isotropy subgroups are invariant under the flow of
an equivariant vector field. Thus we have the following basic result.

PROPOSITION 2.5. Suppose that f : R" — R" is C-equivariant, and that there is a
heteroclinic cycle satisfying hypothesis (H1). If each P; is the fixed-point subspace of
an isotropy subgroup of T, then the heteroclinic cycle persists under small I"-equivariant
perturbations of f.
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There is a partial ordering on conjugacy classes of isotropy subgroups of T, defined
as follows:
Ty <D if X C y_lzzy for some y € T,

that is, X; is contained in some conjugate of ;. By abuse of terminology, we refer
to the partially ordered set of conjugacy classes of isotropy subgroups as the lattice of
isotropy subgroups.
Let £ be an isotropy subgroup. Recall that R" can be written as a direct sum of
3-irreducible subspaces
R'=Vo®---®V,. (2.1)

Some of the V; may be Z-isomorphic, that is they carry isomorphic representations of
¥. Group together the isomorphic representations to obtain

Rr=W,®---dW, (2.2)

where each W; is a direct sum of irreducible subspaces, and two irreducible subspaces are
contained in the same W; if and only if they are isomorphic. The decomposition in (2.2)
is called the isotypic decomposition, and the W; are called the isotypic components. We
may choose W, = Fix(Z). Unlike the decomposition in (2.1), the isotypic decomposition
is unique. Since the isotypic components carry nonisomorphic representations of X, any
linear map L commuting with the action of ¥ satisfies L(W;) C W;. If § € Fix(Z)
then the linearization (df);, commutes with X. It follows that each eigenvector of the
linearization lies in an isotypic component of 3. Moreover, generically each generalized
eigenspace lies in a single isotypic component.

2.3. Geometry of heteroclinic cycles. Our conditions for asymptotic stability will
depend on the magnitudes of the real parts of certain eigenvalues of the linearization
of the vector field f at each equilibrium. The geometry of a heteroclinic cycle
satisfying hypothesis (H1) allows us to divide the eigenvalues into four classes, as shown
schematically in Figure 1. Let —r; be the maximum real part of eigenvalues of (df);,
restricted to L; = P; N P;_y, and let —c; be the maximum real part of the remaining
eigenvalues in P;_y. Thus r;, ¢; are positive and correspond to the weakest radial and
contracting eigenvalues at &;.

We define ¢; > 0 to be the maximum real part of an eigenvalue of (df);;, the strongest
expanding eigenvalue. We refer to all the nonradial eigenvalues in P; as the expanding
eigenvalues even though some of these may have negative real part. (Note that at least
one of the eigenvalues has to have positive real part.) Finally, let ¢; be the maximum real
part of eigenvalues whose eigenvectors are normal to P;_; + P;, the weakest transverse
eigenvalue. If R” = P;_; + P;, then set t; = —oo. Since all the eigenvalues with positive
real part have eigenvectors in P;, it follows that ¢; < 0.

Remark 2.6. We have defined r;, ¢; and ¢; so that they are positive, but ¢; is negative.
The more general notion of stability in [22], [19] occurs when certain of the transverse
eigenvalues have positive real part, and we have made our choice to avoid the use of
double negatives in that work.
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Pi

FIGURE 1. Assignment of radial, contracting, expanding and transverse eigenvalues at the relative equilibrium

§.

24. Statement of the main results. We begin by stating a sufficient condition for
asymptotic stability of heteroclinic cycles. The result depends only implicitly on the
presence of symmetry. The explicit dependence is on the flow-invariant subspaces in
(H1).

THEOREM 2.7. Suppose that X is a heteroclinic cycle satisfying hypothesis (H1). Then X
is asymptotically stable provided the condition

m

nmin(cj, e — 1) > l—[ej, 2.3)

j=1 j=1

is satisfied.

Remark 2.8. (a) The e; —t; terms in condition (2.3) are due to the flow-invariance of the
subspaces P;. In systems without symmetry, there is no distinction between contracting
and transverse eigenvalues and condition (2.3) reduces to the standard (and intuitive)
condition that [T7L, ¢; > [T/, ;.

(b) Condition (2.3) does not involve the magnitudes of the radial eigenvalues —r;
and is thus a refinement of the condition in {23, Theorem 5.1]. In particular, we have
verified the conjecture of {1]. The proof of Theorem 2.7 shows that this is again a result
of the flow-invariance of the subspaces P;.

In order to discuss necessity of condition (2.3) for asymptotic stability we need to
take account of how symmetry enters into the problem. Suppose that in hypothesis (H1),
P; = Fix(%;) for some isotropy subgroup X;. We introduce two further hypotheses.

(H2) the eigenspaces corresponding to cj, t;, €j41 and ¢4 lie in the same X;-isotypic
component.
(H3) dim W“(§;) = L.

THEOREM 2.9. Let T be a finite group acting on R" and f : R* — R" be a ["-equivariant
vector field. Suppose that X is a heteroclinic cycle for f satisfying hypotheses (HI)—(H3).
Then generically, condition (2.3} is necessary and sufficient for asymptotic stability of X.
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Remark 2.10. (a) In §3 we show that Theorem 2.9 holds when I' is a compact Lie group.
Within this context, hypothesis (H3) can be weakened considerably.

(b) Hypotheses (H2) and (H3) are automatic when n = 3, so Theorem 2.9 generalizes
a result of [21].

(c) The eigenvalues corresponding to c;, ¢;, €j41 and ¢4 lie in Pji. Now P; =
Fix(%;) is always an isotypic component for ¥;. It follows that if each isotypic
decomposition of R” under X; is into two isotypic components, then hypothesis (H2) is
valid. This is the case in many of the examples in §6.

3. Continuous groups of symmetries

In this section we modify the definitions in §2 to include the case when I is any compact
group of symmetries. We shall be interested in heteroclinic cycles that connect normally
hyperbolic group orbits of equilibria, or more generally, normally hyperbolic relative
equilibria.

Recall that a flow-invariant set &; is a relative equilibrium if & is a group orbit
under the action of I". Krupa [18] shows that if &; is a relative equilibrium, then in a
neighborhood of &; the vector field f can be decomposed as fy + fr, where both the
normal vector field fy and the tangent vector field fr are equivariant, fr is tangential
to group orbits. Moreover, the dynamics of f may be understood as the dynamics of
fn coupled with drift along group orbits. It follows from results of Field {7] that the
real parts of the eigenvalues of the linearization of fy at a point x; € £; are independent
of the choice of the point x; and independent of the decomposition into normal and
tangent vector fields. In particular it makes sense to say that a relative equilibrium §; is
hyperbolic if x; € §; is a hyperbolic equilibrium of fy.

We generalize Definition 2.1 and speak of heteroclinic cycles connecting hyperbolic
relative equilibria &;. The heteroclinic cycle X is defined to be the set of group orbits
of the unstable manifolds W* (&;) of the relative equilibria. The definition of asymptotic
stability of X is unchanged.

As before, we use the geometry of the heteroclinic cycle to define the radial,
contracting, expanding and transverse directions. The only difference is that we work
with the linearization of the normal vector field fy at each relative equilibrium &;.
More precisely, for each j we choose an x; € & and consider the linearization (dfy)y;.
Associate with each relative equilibrium &; the eigenvalue data r;, ¢;, ¢; > Oand ; <0
defined in terms of the real parts of the eigenvalues of (dfy),,. This is independent of
the choice of x; € &; by the aforementioned results of [7].

Suppose that X is a heteroclinic cycle between relative equilibria and satisfying
hypothesis (H1) with P; = Fix(Z;) for some isotropy subgroup X;. Then the statement
and proof of Theorem 2.7 go through without any changes and X is asymptotically
stable provided condition (2.3) holds. In addition, Theorem 2.9 is still valid, that is if
hypotheses (H1)-(H3) are satisfied, then generically condition (2.3) is both necessary and
sufficient for asymptotic stability. In fact we can weaken hypothesis (H3) as follows.
Let N(X;) denote the normalizer of %; in I

(H3Y dim W* (&) = dim (N(Z;)/Z;) + 1.
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Of course (H3) reduces to (H3) when I' is finite.

THEOREM 3.1. Suppose that T" is a compact Lie group acting on R" and that X is a
heteroclinic cycle satisfying hypothesis (H1), (H2) and (H3). Then generically X is
asymptotically stable if and only if condition (2.3) is satisfied.

Remark 3.2. (a) In many examples,
dim P; = dim (N(Z;)/Z;) + 2, 3.1)

this being required in order to establish existence of a heteroclinic connection in P;
by the Poincaré-Bendixson theorem (see for example [23]). When equation (3.1) holds
hypothesis (H3)’ is automatically satisfied.

(b) Examples of heteroclinic cycles where equation (3.1) fails are given by Armbruster
and Chossat [2] and Swift and Barany [26]. The existence of certain connections in these
cases is established by construction of a Liapunov function and numerical simulation
respectively. We note that hypothesis (H3)' is valid in the examples of [2] but fails for
some of the examples in [26].

(c) The standing hypothesis (H1) is sufficient to incorporate all examples of robust
heteroclinic cycles that we know of. However, it is possible to generalize hypothesis
(H1) to take account of the continuous symmetries. Let x; be a point in &; and let A; be
the isotropy subgroup of x;. Let A;’ be the connected component of the identity in A;.

(H1)For each J there is an isotropy subgroup Z; with

P, = | sFix(5)),
seaf

such that W*(&;) C P; and &;4, is a sink in P;.
As in Proposition 2.5, heteroclinic cycles satisfying (H1) persist under '-equivariant
perturbations. In addition, Theorem 2.7 holds for heteroclinic cycles satisfying hypothesis
(H1). Moreover, Theorem 3.1 is valid under a similar modification to hypothesis (H3)":
(I-f3)’dim (W* (&) NFix(Z;)) = dim (N(Ej)/Ej) + 1.

4. Poincaré maps and asymptotic stability
In this section, we set up the foundations for our analysis of the stability of heteroclinic
cycles satisfying hypothesis (H1). Our main results are not surprizing, and probably fall
into the ‘folklore’ category. However, it is hard to find proofs elsewhere. Moreover,
many of the results in this paper are proved using the methods developed in this section.
The main tool in our analysis is the Poincaré map. In subsection 4.1 we construct
the Poincaré map as a composition of ‘first hit maps’ defined in a neighborhood of each
relative equilibrium £; and ‘connecting diffeomorphisms’. In subsection 4.2 we obtain
standard estimates on the first hit maps and show that the Poincaré map is well-defined.
Then in subsection 4.3 we relate asymptotic stability of the cycle with the stability of
a certain invariant set for the Poincaré map. In subsection 4.4 we consider the issue of
genericity of the connecting diffeomorphisms.
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4.1. Construction of the Poincaré map. We begin by linearizing the normal vector
field fy in a neighborhood of each relative equilibrium. In §2(c) we used the geometry
of the heteroclinic cycle to partition the eigenvalues of the linearization at each relative
equilibrium into four groups: radial, contracting, expanding and transverse. Now, in
the region of linearized flow, we introduce local coordinates (u, v, w,z) around §;
corresponding to the radial, contracting, expanding and transverse directions. Recall
that at least one of the expanding eigenvalues has positive real part, but there might
in addition be expanding eigenvalues with negative real part. Write w = (w¥, w™)
corresponding to the partition of the expanding eigenvalues into those with positive and
negative real part.

Let | | denote the euclidean norm in the local coordinates. Scaling the local coordinates
if necessary, we may assume that the unit ‘cube’ {|u|, [v|, jw™|, |lw™], }z| < 1} lies within
the region of linearized flow. We shall define various cross-sections to the fiow near the
heteroclinic cycle. In the linearized flow, the connection leaving & must lie in the
subspace {4 = v = w~ = z = 0} and so we define the cross-section

H = {u,v,w. )l <1, ol <1, jwh =1, [w [ <1, [z < 1),
Define the generalized origin
O=W'ENH™ =fu=v=w"=2=0, lwt =1).

The connection approaching &; lies in the subspace P;_; which is coordinatized locally
by u and v. We define the cross-section

H™ = (v, w,2) | [u? + =1, lw] < 1, |z] < 1).

Again we define the generalized origin O = W*(§;_;) N I-Ij(i") C {w =z =0}. See
Figure 2 for a diagram of the cross-sections I-lj(i") and Hj(”"').

Py

H(out)

7

FIGURE 2. The cross-sections Hj(i") and H/.(”"').

We now define the first hit maps

. (in) (out)
@ : Hj — Hj ,
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and the connecting diffeomorphisms

¥ O - HY).
Then define g; : Hj(i") - I-Ij(i:'l) to be the composition g; = ¥, o ¢;. Finally set

.. . . i (in)
g =g o---og. This is our Poincaré map g : Hl('") - H'".

Remark 4.1. (a) At present g is not well-defined. In particular, the first hit maps ¢; are
not defined when w* = 0 so g is not defined at O. However, Corpllary 4.4 below shows
that g is well-defined and continuous on a certain subset of H\'™.

(b) The connecting diffeomorphism ; maps neighborhoods of O C Hj(""')
homeomorphically onto neighborhoods of O C Hj(i"l) .

(c) We began this section by linearizing the vector field in a neighborhood of each
relative equilibrium. In general, this change of coordinates is not C!. Nevertheless
we refer to the maps ; as connecting diffeomorphisms, and indeed our techniques in
subsequent sections proceed as if they are C'. One way around this is to assume finitely
many nondegeneracy conditions on the linearization of (df )¢, for each j, so that there is
indeed a C! change of coordinates. Even if these conditions fail the results on stability
remain valid and can be proved by combining our methods with the results of Deng [6].

4.2, Estimates on the first hit maps. The first hit map ¢; may be computed explicitly,
where defined, using the linear flow near §;. Recall that we have the eigenvalue
data —r;, —c;j, e;, t; corresponding to the (u, v, w, z) directions. In addition we have
w = (w*, w™). The eigenvalues in the w* directions have positive real part and e; is
the largest real part. Let —é; denote the smallest real part of the eigenvalues in the w™
directions, so &; > 0.

PROPOSITION 4.2. Let y = (u, v, w*.w™,2) € H'”, w* # 0, and let € > 0. There is a
constant K such that

Pl < Klw*|i/a,
/Nl < Klwt|ala,
g (NI < Klwtr|a/e,
B2l < Klw* [T

Proof. The linear flow ¢; : I1lj(i”) - H,.(”“') takes the form

E

+
C T w

" 4
‘v, e

¢;(u, v, wH w™, z) = (e Ry, e” ce Eitw, eTily),

where ¢ is time and —R;, —C;, E;, —E;, T; are matrices. A trajectory hits Hj(”“') when
IeEf+ 'w*] = 1 and we may estimate the time of flight ¢ using this equation. Suppose
that 6 > 0. It follows from the proof of [13, Theorem 1, p. 145], that there is a positive

constant £ such that
IeEIT"rw-i-l < ke(ef+‘s)’|w+|.
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From this inequality follows the estimate

In(kjw™)).

e +4
We can now estimate e~ %’y say. Again, there is a positive constant £ such that
le Rifu| < L=y,
Substituting in the estimate for —¢ yields
le™ " ul < KJw* | ul,
where K > 0. In Ifjgi"), |u] <1 and so we obtain
I (NI < K |w* |7/,

Now choose & so that (r; —8)/(e; +8) > r;/e; — € in order to obtain the required estimate
for |¢/|. The estimates for the remaining components are similar. Note that in the case
of ¢; we can remove the factor of |z but choose not to. O

Remark 4.3. The occurrence of an € > 0 in the proposition is due to the fact that
linearization at £, may be nonsemisimple. If the linearization is semisimple, then we
may take ¢ = O (again see [13]).

COROLLARY 4.4. Let U be a neighborhood of O C Hj('""). There is a neighborhood V of
O0cC Hj(i") such that ¢; : V — {wt = 0} - U is well-defined and continuous.

Proof. The estimates in Proposition 4.2 show that provided y € V has w*-component
small enough but nonzero, the 4, v, w™, z components of ¢;(y) are small so that ¢;(y) is
close to O. (We have used the fact that r;, ¢;, é; and e; are positive, and ¢ is negative.
Also |z] < 1)) 0

Let W denote the union of the stable manifolds of the relative equilibria in the cycle

k
w=JUJwwen. “.1)

j=lyel’

COROLLARY 4.5. There is a neighborhood S of O € Hl(i") such that

g:S—-W— H" —w
is well-defined and continuous.

Proof. Observe that the subspace {w* = 0} in Hj(i") is a subset of W. Now W is forward
and backward invariant under the flow and hence the complement of W is forward
and backward invariant under the maps ¢; and ;. It follows from Remark 4.1(b)
and Corollary 4.4 that we may choose a neighborhood S of O in Hl(i"), so that
g:S—W— H](i") is well-defined and continuous. 0
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43. Asymptotic stability. Our main result in this subsection is to show that asymptotic
stability of the heteroclinic cycle is determined by the w*-component of the Poincaré
map g. This is to be expected intuitively since all the other components lie in the stable
manifold of & . To make this precise, we introduce the notion of transverse stability.
Let E denote the stable manifold/subspace of & within the region of linearized flow
intersected with Hl(i"). Recall that the sets W and S were defined in equation (4.1) and
Corollary 4.5.
Definition 4.6. The origin O in Hl(i") is transversely stable under the map g if for
any neighbourhood U of E there is a neighborhood V of O satisfying the following
condition.
(@ IfyeV—Wandg(y)eSfori=0,....,r—1theng'(y)eU fori=0,...,r.
The origin O is transversely asymptotically stable if in addition V can be chosen so
that:
(b) If ye V—W and g'(y) C S for all i > 0 then dist(g"(y), £) — 0.
The origin O is transversely unstable if it is not transversely stable. The interrelation
of the various sets (apart from W) in Definition 4.3 are shown in Figure 3.

A
. —)

Hl(in)

FIGURE 3. The sets Hl(i"), S, U, V and E in the definition of transverse stability.

THEOREM 4.7. Let X be a heteroclinic cycle satisfying hypothesis (H1).

(@) X is (asymptotically) stable if and only if the origin O C Hl(i”)
(asymptotically) stable under the Poincaré map g.

(b) X is unstable if and only if O is transversely unstable under g.

is transversely

Proof. The proof is given in the appendix. O

A consequence of Theorem 4.7 is the intuitively obvious statement that if a heteroclinic
cycle is contained entirely in a proper flow-invariant subspace, then stability of the cycle
is governed by stability within that subspace.

COROLLARY 4.8. Suppose that X is a heteroclinic cycle in R" satisfying hypothesis (H1),
and that Q C R" is a flow-invariant subspace containing X. Then
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(a) X is (asymptotically) stable in R" if and only if X is (asymptotically) stable in Q.
(b) X is unstable in R" if and only if X is unstable in Q.

4.4. Genericity of connecting diffeomorphisms. Many of the forthcoming stability
theorems will require hypotheses stating that certain nondegeneracy conditions on the
linear coefficients of the connecting diffeomorphisms ¥, are valid. It seems plausible
that such conditions are valid for an open dense set of I'-equivariant vector fields f. The
results of this subsection ensure that this is indeed the case.

The connecting diffeomorphism ; : ij("") — Hj(""') is ¥;-equivariant with respect
to the (isomorphic) actions of X; induced on I1Vj(i") and Hj("“t ). Identifying these cross-
sections with R¥ (where k = n — dim P;) we can write ¥; : R* — R*.

Since the heteroclinic cycle is robust, it makes sense to talk about the connecting
diffeomorphism ; corresponding to each vector field close to the original vector field
f :R* > R". With this in mind, the following proposition can be stated at least roughly.
The technicalities related to making the statement completely precise are deferred to the
appendix.

PROPOSITION 4.9. Suppose that there is a property P that holds for an open and dense
set of Zj-equivariant diffeomorphisms ¥ : R* — R*. Then for an open and dense
set of vector fields on R" near to the vector field f, the corresponding connecting
diffeomorphism ; satisfies property P.

Remark 4.10. The open and dense sets in Proposition 4.9 will be interpreted as subsets
of spaces of C” vector fields/diffeomorphisms (with the C” topology) defined by finitely
many transversality conditions, see the appendix. In our examples, the heteroclinic
cycles arise in the context of local bifurcation theory. By standard arguments, there is
a residual set in the space of families of C" vector fields for which the corresponding
connecting diffeomorphisms satisfy property P. This residual set is defined by countably
many transversality conditions.

It follows from Proposition 4.9 that generically the only restrictions on the connecting
diffeomorphisms are the symmetry restrictions on mappings from Hj(”'”) to Hj(i"). In
particular, such mappings are forced to vanish at linear order in directions tangent to the
group orbit. The next result which is proved in the appendix shows that some directions
are automatically exempt from such restrictions.

LEMMA 4.11. Let O and O’ denote the generalized origins in Hj(”"') and Hj(i",)
respectively. Then

(a) the eigenspaces of ¢; and t; have trivial intersection with T,T'y for all y € O.

(b) the eigenspaces of ej and tjy, have trivial intersection with T,U'y for all y € 0.

5. Proof of the main results

In this section we prove our main results, Theorems 2.7 and Theorems 3.1. Both rely
on a basic result about stability of the origin for mappings of the plane. This stability
result is proved in subsection 5.1. Then subsections 5.2 and 5.3 contain the proofs of

the theorems.
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5.1. A basic stability result.

LEMMA 5.1. Suppose that g = g o---© g1 where g; : R? — R? has at lowest order the

Jorm
gi(w,2) = (Ajw4z% + Bjwz%, Cyw* 2% + Djwiz%)

with aj,bj,cj,dj > 0and a; + b;, ¢; +d; > 0. Let pj = min(aj + bj,Cj + dj) and
p = p1---Pm- Then O is an asymptotically stable fixed point of g if p > 1. Suppose
further that A;, B;, Cj, Dj # 0 and that a; + bj # c; +d;. Then O is unstable if p < 1.

Proof. The statement about asymptotic stability is easily verified by working in polar
coordinates. We prove instability when p < 1. First choose constants 8 > a > 0 such
that

4alAjl < |Gl < $BlAjl,  4alB;| < |D;| < 3BIB;l,

for j =1,...,m. We may define a cone in R?,
C = {a|w] < |z| < Blwl}.

Then, set M = J min(a | A}, a%|Bj]).

We claim that if (w,z) € C is close enough to zero then g;(w,z) € C and
Igj'."(w,z)l > M|wl?. It follows that |g¥(w, z)| > M™|w|® and the w coordinate is
expanding since p < 1.

It remains to verify the claim. Let (w,z) € C and suppose that a; + b; < ¢; +d;.
Then jw%z%| > o |w|%+b . But

|w(_‘izdjl < ﬁdj |w|c‘/+(lj = o(lwajzbj |)
It follows that at lowest order
gr(w, ) = Ajw¥z", gi(w,z) = Cuwiz”.
Hence if (w, z) is close enough to O we have the estimates,

HAjwzb| < jgP(w, 2)] < 2]A;wz"],

HCw 2| < |gt(w, 2)| < 2|Cjw*iz?].

We compute that

algf(w,2)l < 2alA;uwz|
< %!Cjwajzbjl
< lgj(w,2)l.

Similarly, |gjz.(w, 2)| < Blgj’(w, 2)|, and so gj(w, z) € C as required. In addition,

1 b
lgj'(w,2)l = ;lA;wiz]
> %ab' IAjwaj+bj|
> Mlw|”.

The argument in the case a; + b; > ¢; + d; is almost identical. O
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5.2. Sufficiency.
Proof of Theorem 2.7. Since condition (2.3) is assumed to be valid, we may find an
¢ > 0 small enough such that

m C; t
min{—j—e,l—i—e} > 1.
-1 €j €

J

Recall that the Poincaré map g : S — W — Hl(i") is the composition of the first hit maps
8, ...,8n. Write g; in components g; = (g, g}, g}, g})- Let y = (u, v, w,2) € Hj('")
lie in the domain of g;. We claim that there is a constant M such that at lowest order

A

gl < MQw]%% + Jw|74¢)g)),
g < Ml + jw| ™5z ).
It then follows from Lemma 5.1 that the origin O C H,(i") is transversely asymptotically

stable under g. By Theorem 4.7 the heteroclinic cycle is asymptotically stable.
It remains to verify the claim. We have the estimates

6D K|wl|a/e¢, 5.1
oI < Klw|[™497¢|z],

IA

A

from Proposition 4.2, We shall show that in a neighborhood U of O in Hj(”"'), there is
a positive constant L such that

[ (P 1 (p)I < Ll + [2]) + o(lvl, |z]), (52)

for p = (u, v, w, z) € U. Inequalities (5.1) and (5.2) combine to produce the required
estimates with M = KL.
It is convenient to momentarily introduce global coordinates

(s,)eR" =P ® P}

Near Hj(”“'), s and ¢ represent (4, w) and (v, z). However near Hj(if'l) they represent
(4, v) and (w, z). The important observation is that

¥i(s,0) =0,

this following from flow-invariance of P;. Transferring back to the local coordinates,
we have that
¥"(y) = ¥ (y) = 0, whenever v=2z=0.

This implies that
¥"(p) = A(p)v + B(p)z + o(v, 2),

and a similar expression for 1//1.2. Thus we have obtained the estimates in (5.2) with

L = max max{|A(p)I, |B(p)|}.
pe0
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5.3. Necessity. In this subsection, we prove Theorem 3.1. Then Theorem 2.9 is a
special case. First, refine the local coordinates (u, v, w, z) of §2(d) as follows. Write
v = (v1,m), w = (W, w), z = (21, 22) where vy, w; and z; are coordinates on the
eigenspaces of the eigenvalues with real part —c;, ¢; and ¢; respectively. Note that the
subspace corresponding to w; is a sum of eigenspaces with negative real part. Moreover,
by (H3) (w;, wy) correspond to (w*, w™) in §4(a).

Now we shall make some genericity assumptions. (Some of these assumptions can be
removed but we shall not distinguish between the essential and inessential assumptions.)
Recall that p; = min(c;/e;, 1 —t; /¢;).

(Gl) cj/ej 7(—' 1 —tj/ej.
(G2) The linearization (dfy )y, x; € &, is semisimple. Moreover each eigenspace lies
inside one X;-isotypic component.

By hypothesis (H3), W“(¢;_,) intersects H;M in finitely many group orbits lying in
{w = z = 0} (the intersection consists of two points if I" is finite). If one point on such
a group orbit has nonzero vy and v, coordinates, then so do all points on that group orbit
and the norm of these coordinates is constant.

(G3) The v; and v; coordinates of the points in W*(§;_,) N I:G(i") are nonzero.

PROPOSITION 5.2. Suppose that (G2) and (G3) hold. Let C € H'™ be the cone
C={y=@wv,w2z2)e H™ |l <yl
where y is a positive constant. If y € C is close to WH(§;), then

O () = w90y, 63 (y) = Y\ Ty, (5.3)
18,21 = 016 DD, 92| = o(Ig7 M) (5.4)

Proof.  The expressions—for '¢j'—’" and '¢f‘ are obtained by following the proof
of Proposition 4.2 but exploiting hypothesis (H3) and genericity assumption (G2).
Hypothesis (H3) implies that all the eigenvalues with positive real part are real and equal.
Hence the expression e that appears in the proof of Proposition 4.2 is replaced by
e“"w;. It follows from assumption (G2) that no € is required and we can solve for the
time of flight exactly: t = —(1/¢;)In|w;|. The equations in (5.3) easily follow.

Now let —c;. denote the real part of the weakest contracting eigenvalues other than
those with real part —c;. Then ¢; > ¢;. Similarly define t; < 1. Arguing as in
Proposition 4.2 there is a constant K such that

1672 ()] < Klw 5% vy, 1820 < K w7 |za].

Now |[v,]| and |vy] are nonzero by (G3) and we have the first estimate in (5.4). The
second estimate follows from the fact that y lies in the cone C. O

In order to compute the lowest order terms of the Poincaré map g we must expand
each connecting diffeomorphism 1; about each of the group orbits in (G3). The fact that
there are finitely many such orbits rather than one does not complicate the analysis in any
way other than leading to cumbersome notation. In addition, the fact that these group
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orbits may be continuous is not a complication since the connecting diffeomorphisms
based at each point on the group orbit are conjugated by the group elements. Hence, we
shall proceed as if there were only one point in the intersection of W*(&;_1) N Hj(i"). Let
pj denote the v;-coordinate of this point.

It follows from Proposition 5.2 that at lowest order the wy, z; and z; components of
g; have the form

g}"l (y) = |w,|“f/efAjv1 + |w1|—tj/eijZI,
g = |wl9Cu + |w |4 Dyzy,
g2(y) = |w|YEju + w74 Fzy,

where A;—F; are constant matrices. We note that if there are no transverse eigenvalues
at & or &4, or all of the transverse eigenvalues have the same real part, then not all of
the matrices will be present.

At this point it is convenient to make two additional assumptions for ease of exposition.
Having proved the theorem under these assumptions, we shall then sketch the proof when
these assumptions are relaxed. Our additional assumptions are

(A1) There is at most one transverse eigenvalue with real part ¢; at each &;.
(A2) c; corresponds to real eigenvalues (possibly with multiplicity).

Finally we shall require some further genericity assumptions on the matrices A;—D;.
In fact, the matrices B; and D;, if they occur, have one column as a consequence of (Al).
By Proposition A.2 and Lemma 4.11 we may assume that the entries are all nonzero or
equivalently
(G4) kerB; =0, kerD; =0.

The remaining matrices may have nontrivial kernels. However, generically these
kernels do not contain the points p;.

(G5) Ajpj #0, ijj #0

We can use these genericity assumptions to define cones in analogy with the proof of

Lemma 5.1. There are constants § > « > 0 such that

4aA;p;| < |Cipj| < 3BlA;p;l,  4alBjzil < |Djauil < §BIBjzl,
for each j and all z;. In addition, there is a constant y > O such that
|Ejpjl < 3¥ICipil,  |Fjp;| < 1y|D;p;l.
Define a cone C; inside Hj(i"),
C = {alwi| < |zl < Blwil, 22l < ylail} € H'™.
Finally, let M = 1 min(|A; p;|, a|B; ).
LEMMA 5.3. Suppose that the genericity assumptions (G1)~(G5) and the additional

assumptions (Al) and (A2) are valid. Let y = (u,v,w,z) € C;. If y is close enough
to W(&)), then g;(y) € Cjy1 and |g;" (¥)| = M|w|”.
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Proof. In the case when there is no z; component, the proof is completely analogous to
the proof of Lemma 5.1. If there is a z; component, then the definition of ¥ and the
corresponding adaptation of the cone guarantees that C; is still mapped into C;4;. Then
Proposition 5.2 ensures that the v, and z; components of ¢;(y) remain higher order terms
throughout. The proof now proceeds as in Lemma 5.1. g

It is clear that Theorem 2.9 follows from the lemma. It remains to relax assumptions
(Al) and (A2). First consider the possibility that the eigenvalues corresponding to f;
are not simple though still real. Observe that if 1 —¢t;/e; < c;/e; for each j, then
the heteroclinic cycle is asymptotically stable by Theorem 2.7. Hence we may assume
without loss of generality that ¢;/e; < 1 — t1/e;. Then the conclusion of Lemma 5.3
still holds for g;. Moreover g{'(y) = wfj/e’Clvl. Suppose that 1 — ty/e; < cy/e;. In
order to obtain the required estimate for g, we need the genericity assumptions

ByCipy #0, DyCipy #0.

Also we must modify the definition of ¢, § and y in the obvious way.

Finally we must address the possibility that the eigenvalues corresponding to ¢; and
t; may be complex. We shall sketch the argument in the case that ¢;/e; < 1 —¢;/e; and
the ¢; eigenvalues are a complex conjugate pair —(c; +iw;) (with multiplicity). Suppose
for simplicity that there is no zo component. Then at lowest order

g () = lwi|9% Aj Ry, wyvr,  &7(y) = |wi|9% C; Roqwyvr,
where Ry is a rotation matrix and

@i
6j(w1) =—1In wi.
€j
As w, varies close to 0, A;Ryp (w,)p; vanishes arbitrarily often. Nevertheless we may
use this oscillation to argue that often this quantity is large in magnitude. The idea is to
demonstrate expansion of intervals rather than individual points. Formally, fix w; > 0
and define a slice

1(y) = {y € H"|wy € [0, i1},

LEMMA 5.4. There is a 8 > O such that for any y' € [0, 612)?”’] there exists y € I(ibq)
with |g;" (y)| = y'. Moreover, if y € C; then g;(y) € Cj41.

Proof. Choose 8y < 1 so that 6;(;) — 6;(So®w;) > 2. Then there is a wy € [§oiy, )]
such that

11A;pl < 1A; R,y Pil < 14;p;l, %ICJ’Pﬂ < |Cj Ry, Pl =1Cjpjl.

~Cilej

It follows that there is an y = (u, v, w, z) € I(i;) such that 1gj'.‘"(y)| = dw,""” where

é > %lAjpjlég’/e’. There is also an y = (u, v, w, z) € I (W) with wy € [§ow;, W] such

that gj'.”l (y) = 0. The first statement of the lemma follows by continuity. The proof of
the statement about the cones is straightforward. ]
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6. Examples in mode interactions with O(2) symmetry

In two-parameter families of vector fields, one may expect to find points where a steady-
state loses stability by having eigenvalues of the linearized equation simultaneously at
(a) 0, 0, steady-state/steady-state,

(b) 0, *wi, steady-state/Hopf,

(€) Zwyi, Lwyi, w /w, irrational, Hopf/Hopf.

Generically in a two-parameter family, these are the only eigenvalues on the imaginary
axis and one may reduce to center manifolds of dimension two, three and four
respectively.

When there is a symmetry group present, eigenvalues may be forced to be multiple,
the multiplicities corresponding (roughly speaking) to the dimensions of irreducible
representations of the group. In the case of O(2)-symmetry, the situation can be described
as follows. Irreducible representations of O(2) are either one or two-dimensional, and
the eigenvalues of the linearized equation may generically have multiplicity one or two.

It follows, that, when there is O(2)-symmetry present, case (a) may lead to a center-
manifold of dimension two, three or four. The corresponding dimensions for case (b)
are 3, 4, 5 and 6, and for case (c) are 4, 6 and 8. It turns out that structurally stable
heteroclinic cycles only occur when all eigenvalues are double, and the center manifold
has the highest dimension available.

The steady-state/steady-state mode interaction has been analyzed by [3] and [24],
and the steady-state/Hopf and Hopf/Hopf interactions by [23]. In this section, we shall
assume that coefficients in the Taylor expansions of the various vector fields are in the
regimes of existence of the heteroclinic cycles. In particular hypothesis (H1) is assumed
to hold. For these heteroclinic cycles, each heteroclinic connection is shown to exist
via application of the Poincaré-Bendixson theorem after phase-amplitude reduction. By
Remark 3.2(a) hypothesis (H3)' is valid for all the cycles in this section. It turns out that
hypothesis (H2) fails only in one case of the Hopf/Hopf interaction.

6.1. Steady-state/steady-state. Coordinates z = (z1,22) can be chosen on the four-
dimensional center manifold C? so that the action of O(2) is given by

mié

0-z = (%, ez,

k-2 = (21,22),

where !/ and m are coprime positive integers 1 <! < m.

It turns out that structurally stable heteroclinic cycles occur only in the case [ =
1, m = 2. (According to conventions other than that adopted in this paper, the cycles
are homoclinic cycles.) There is a single equilibrium on the cycle with isotropy D,
generated by rotation through 7 and the reflection «. The heteroclinic connections lie in
Fix(x) or conjugate copies of this fixed-point subspace.

Even though the cycle lies in a four-dimensional space, one of the eigenvalues is forced
to be zero since the equilibria lie on a continuous group orbit. Hence the normal vector
field at each equilibrium has only three eigenvalues. We label these (real) eigenvalues
—r, —c and e. In particular, hypothesis (H2) (and (H3)) is trivially valid, and by
Theorem 3.1 we have that generically the heteroclinic cycle is asymptotically stable if
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and only if ¢ > e.
This result is the same is that obtained in [24] and is an improvement on [3, Proposition
5.1]. In the latter reference it is shown that (in our notation) the condition min{r, c} > e

is sufficient for asymptotic stability.
6.2. Steady-state/Hopf. In this case we have a six-dimensional center manifold 3
We can choose coordinates z = (2o, 21, 22) so that the O(2)-action has the form

¢ - (20,21, 22) (5920, %2, 679 2;) ¢ € SO(2),

k-(20,21,22) = (20,22, 21)s

i

where k and [ are positive coprime integers.

In addition to the O(2)-symmetry, there is an approximate phase-shift symmetry SO(2)
arising from the Hopf bifurcation. We may assume that the vector field is in Birkhoff
normal form up to any required order in the Taylor expansion. Then SO(2) acts by

{ i6
8 - (0, 21, 22) = (20, €921, €922).

It turns out that structurally stable heteroclinic cycles occur only when k =1 =1. We
now run quickly through the structure of the lattice of isotropy subgroups that is relevant
to the existence of heteroclinic cycles. Define the following subgroups:

Zr(k) = {1, «},
ZZ(K'(”$”)) = {1,K'(7T,JT)},
Z; = {1, (m, m)}.

The relevant portion of the lattice of isotropy subgroups is shown in Figure 4. The
isotropy subgroups (1)—(4) are given together with their fixed-point subspaces in Table 1.

a 2)

3 C))

FiGURE 4. Lattice connections for the cycle between equilibria and periodic solutions in the steady-state/Hopf
interaction.

Theorem 3.1 of [23] guarantees (under certain open conditions) the existence of
a heteroclinic cycle between equilibria with isotropy (1) and periodic solutions with
isotropy (2). The heteroclinic connections lie in Fix(3) and Fix(4). The equilibrium
has one radial eigenvalue —r;, a zero eigenvalue and contracting and expanding
eigenvalues of multiplicity two with real parts —c; and e; respectively. The periodic
solution has a radial eigenvalue —r;, two zero eigenvalues, and simple real contracting,
expanding and transverse eigenvalues —c3, ¢; and t, respectively. Each of the isotropy
subgroups (3) and (4) is a two element group and hence has precisely two distinct
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TaBLE 1. Isotropy subgroups and fixed-point subspaces for the cycle between equilibria and periodic solutions
in the steady-state/Hopf interaction.

I Isotropy subgroup I Fixed-point subspace
D) | Zk)xSO(2) | (x,0,0)
) Zy(k) ® Z; 0, z1,21)
(3) Zy(x) (x,21,21)
@ Zok-(m,m)) | Uy, 21,21)

irreducible representations. The isotypic decomposition under each group consists of
two components and (H2) is valid by Remark 2.10(b).
In our notation, [23, Theorem 3.3] states that the heteroclinic cycle is asymptotically
stable provided
min(ry, ¢;) min(ry, ¢, €3 — 1) > eje;.

However it follows from Theorem 3.1 that generically the cycle is asymptotically stable
if and only if
cymin(cy, e, — 1) > ejes.

6.3. Hopf/Hopf This time we have an eight-dimensional center manifold C*.
Effectively, the symmetry group is O(2) x T2, the T?-symmetry being present in the
normal form and arising from the simultaneous Hopf bifurcations. We can choose
coordinates z = (21, 22, 23, Z4) sO that the action of O(2) x T? is as follows:

¢z = ("%,e7%2,, ™z, 67 ™z), ¢ € SO(2),
Wi ¥2) -z = (W21, ez, eV2z3,6V22y), (Y1, ¥) € T,
K-z = (22,21,24,23)

where [ and m are positive coprime integers and ! < m.

There are several possibilities for heteroclinic cycles and it turns out that the cases
I=m=1 and ] < m are quite different. In order to describe these possibilities it is
necessary to reproduce the group-theoretic information in [23].

Define the following subgroups

Z(¢’ 1//1’ 1//2) = group generated b)’ (¢7 1//1, '902) € SO(Z) X TZ,
Z(9, Y1, ¥2) = group generated by « - (¢, ¥y, ¥2),
Stk,l,m) = {(k6,16,m0) € SO2) x T?, 6 € §'}

The upper part of the lattice of isotropy subgroups is given in Figure 5. The isotropy
subgroups are listed together with their fixed-point subspaces in Table 2.

The isotropy subgroups (1) and (4) correspond to rotating waves, and the isotropy
subgroups (2) and (3) to standing waves. It turns out that for [ = m = 1 there are
three structurally stable heteroclinic cycles between these periodic solutions. One cycle
connects the rotating waves and a second cycle connects the standing waves. The third
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1) 2 3) “

) Q) €)) (%) 8 6

FIGURE 5. Upper part of lattice of isotropy subgroups in the Hopf/Hopf interaction. Isotropy () is (10) if m
is odd and (11) if m is even.

TABLE 2. Isotropy subgroups in the Hopf-Hopf interaction.

Isotropy subgroup Fixed-point subspace
) $(0,0,1) x S(1,—1,0) (21,0,0,0)
2) $0,0,1) xZ, x Z(x/1l, 7, 0) | (z1,21,0,0)
3) [50,1,0) xZ, x Z(w/m,0,m) | (0,0, z3, 23)

@) 50, 1,0) x S(1,0, m) 0,0,0, z¢)
5) $(0,0,1) x Z(x /1, 7, 0) (z1, 22, 0,0)
(6) 5(0,1,0) x Z(x/m, 0, 7) (0,0, 73, z4)
Q) S(1,1,m) 0, 22,0, z4)
)] S(1,1,—m) (0,22,23,0)
9 Zy x Z(w, I, mm) (21, 21,23, 23)

(10) Z(0,m,0) X Z(m, Im, mm) (21, =21, 23, 23)
¢8)) Z, (0,0, 1) x Z(m, I, mm) (z1, 21, 23, —23)

cycle connects all four periodic solutions. When ! < m, only the cycle connecting the
rotating waves can occur. The portions of the lattice of isotropy subgroups corresponding
to the three heteroclinic cycles are illustrated in Figure 6.

The case | = m = 1. Each of the three heteroclinic cycles is realized in this case.
We show that for each cycle, the necessary and sufficient condition of Theorem 3.1
applies. Up to multiplicity forced by the group action, there are precisely four nonzero
eigenvalues corresponding to the modes (j), j = 1,---,4 and we label their real parts
—rj, —cj, ¢; and ¢; in the usual way.

Generically the necessary and sufficient conditions for asymptotic stability have the
form

m m
l—[min(cj, e —tj) > l_[ej, 6.1)
j=1 j=1

where m = 2 for the cycles (a) and (b) and m = 4 for the cycle (c).

In order to establish condition (6.1) we verify hypothesis (H2). By Remark 2.10, it
is sufficient to show that the isotypic decompositions of the isotropy subgroups (5)<11)
consist of two components. We give the details for (9), (7) and (5). The arguments for the
remaining isotropy subgroups are similar. First, notice that Z(m, &, w) acts trivially on
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FIGURE 6. Isotropy connections for the heteroclinic cycles in the Hopf/Hopf interaction: (a) cycle of rotating
waves, (b) cycle of standing waves, and (c) cycle of rotating and standing waves.

the whole of C* so that, when [ = m = 1, the isotropy subgroup (9) reduces essentially
to a group generated by an element of order two, and we can apply Remark 2.10(b).
Isotropy subgroup (7) reduces to S(1, 1, 1) which acts as

; 2i8
72— (€921, 22, €723, 24).

Again there are two isotypic components (0, z2, 0, z4) and (21,0, z3,0) corresponding
to the 0 and 2 representations of S'. Finally isotropy subgroup (5) reduces to
$(0,0, 1) x Z(x, 7, 0) which acts as

3

72— (21,22, €%23,€%28), 7 — (21,22, —23, —24).

In particular, the action of Z(r, rr, 0) is subsumed into the action of $(0, 0, 1) and there
are two isotypic components corresponding to the 0 and 1 representations of S!.

The case | < m. In this case only the cycle (a) between rotating waves can exist.
Although, cycles (b) and (c) are still suggested by the lattice of isotropy subgroups their
existence as heteroclinic cycles is ruled out by the structure of the low order equivariant
mappings.

Theorem 2.7 guarantees that condition (6.1) remains sufficient for asymptotic stability
of the cycle between rotating waves. However this condition is not optimal and a
necessary and sufficient condition is given by

C] + Cz + T] T2 > min(2, 1+ C]Cz), (62)

where C; = cj/e; and T; = t;/e;.

The derivation of condition (6.2) relies on the transition matrix method of [9] and will
appear in future work. Here we show only that hypothesis (H2) is violated at each of
the rotating waves. Recall that (7) = S(1, !, m) which acts as

2im6

6 -z = (421,22, €¥™ 23, 22).
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We claim that the isotypic decomposition under (7) is
C* = {22, 24} ® {21} @ {23}

Indeed these subspaces correspond to the 0, I and m representations of S' which are
nonisomorphic since 0 < [ < m. Similarly, the isotypic decomposition under (8) is

C* = {22, 3} ® (21} ® {24}
It follows that hypothesis (H2) fails at each relative equilibrium.

Appendix A

In this appendix, we give the technical details omitted in §§ 4.3 and 4.4. In particular,

we prove Theorem 4.7 and Lemma 4.11 and give a precise version of Proposition 4.9.
We begin by showing that transverse (asymptotic) stability (resp. transverse

instability), defined in Definition 4.3, of O under g corresponds roughly to (asymptotic)

stability (resp. instability) of O under g. A more precise statement is required since g

is not defined at O.

LEMMA A.l. Suppose that O C Hl(i") is transversely stable under g. Then for any
neighborhood U of O there is a smaller neighborhood V so that g8(V — W) C U for all
i > 0. If O is transversely asymptotically stable then V can be chosen so that in addition
dist(g'(y), 0) > Oforye V — W.

Proof. Let U be a neighborhood of O. It follows from the estimates in Proposition 4.2
that for y = (u, v, wt, w™,2) € Hl(i"), ¢1(y) = O as wt — 0. Moreover ¢,(y) > O
uniformly in #, v, w™ and z (recall that |[z] < 1). By continuity of ¢; and ; where
defined, we have that g(y) — O uniformly in u, v, w™, z as w* — 0. Hence there is a
neighborhood U’ of E, U’ C H{™ such that g(U' — W) C SN U.

Now suppose that O is transversely stable under g. Let V be a neighborhood of O
satisfying condition (a) of Definition 4.3 with respect to U’. Shrink V if necessary so
that V. ¢ SNU NU'. Observe that g¢(V — W) Cc SNUNU' for all i > 0. (This is
easily shown by induction on the integer i.) In particular g'(V — W) C U for all i > 0
as required.

Finally suppose that O is transversely asymptotically stable under g. Shrink V if
necessary so that V also satisfies condition (b) of the definition with respect to U’.

Let y € V — W and € > 0. Using Proposition 4.2 as before, there is a neighborhood
U” of E so that g(U” — W) is contained in an e-neighborhood of O. By condition (b) of
Definition 4.3, eventually g‘(y) € U”. It follows that eventually g'*! is within distance
€ of O. O

Proof of Theorem 4.7. We shall prove part (a). Then part (b) follows immediately from
the definitions of instability. Suppose that O is transversely stable under g and let U be
a neighborhood of the heteroclinic cycle X. Suppose that U C S is a neighborhood of
O in Hl(i"). Let F;(x) denote the trajectory of a point x under the flow. If x e U — W
there is a 7(x) > 0, the ‘first return time’, so that F,(x) ¢ Hl(i") for 0 <t < t(x) and
Fey = g(x) € H™. A

We claim that U can be chosen so that F;(x) e U forall x e U — W and t < 7(x).
Indeed, it follows from Remark 4.1(b) and Corollary 4.4 that whenever F;(x) € Hj(i")
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or Hj(”'”) and 0 <t < t(x), we have F,(x) € U. Now we can use compactness of the
heteroclinic cycle between Hj("“') and H;ﬂ:? to show that between these cross-sections
F,(x) e U provided U is chosen small enough. On the other hand, the linearity of the
flow between I-Ij(i") and Hj(""') implies that between these cross-sections Fy(x) € U for
U small enough. Thus we have verified the claim.

Let V be a neighborhood as guaranteed by Lemma A.1. For y € V — W we have
that g'(y) € U for all i > 0. It follows that for i > 0,

Fi(y) € U for t € [0, 7(p) + t(g(»)) + - - + (g )]

Observe that the time taken to flow from H” to H"™ say is bounded away from zero
and so t(y) > 19 > O for y € V — W. It follows that Zi':o":(gi()’)) —> ooasi — 00.
Hence F,(V — W) C U for all t > 0.

If O is transversely asymptotically stable, then we can choose V to satisfy the
additional property described in Lemma A.1. Let U’ be a neighborhood of X. Then as
above there is a neighborhood V' of O in Hl(i") such that F,(V' = W) C U’ for all t > 0.
If ye V— W then g'(y) —» O so eventually g'(y) € V'. It follows that eventually
F(y) e U’ and since U’ is arbitrary, dist(F;(y), X) — 0.

Finally, using similar arguments to those used in the construction of U, we can
construct a neighborhood V of X so that the forward trajectory through any point in
V — W intersects V and does not leave U during the time it takes to reach V. It follows
that trajectories starting in V — W remain in U for all forward time (and are asymptotic
to X), and we have proved that the heteroclinic cycle is (asymptotically) stable. (]

Proof of Lemma 4.11. We prove (a) and omit the analogous proof of (b). Choose x; € &;
with isotropy subgroup A; and let © be a closed submanifold of I" transverse to A;
at the identity element 1 and such that A; N Q = {1}. The eigenspaces must have
trivial intersection with the tangent space T, Qx; and, by continuity, also with 7,Qy.
To complete the proof of (a) we need to show that their intersection with Ty A,y is also
trivial. Let L = (dfn), and suppose that 7 is an eigenvector of L with eigenvalue A.
Let ¥ : [0, 1] > A; be a smooth curve with y(0) = 1.
Then we compute that

, d d
Ayn = )»E)/(t)nlmo = d_ty(t)MI'ZO

d d
= —y()Lnlj=o = L— o= Lyn.
dty() Nle=0 dty(t)nh_o Lyn

Hence y7 is also an eigenvector of L with eigenvalue A. It now follows that T, A;y is
contained in the span of eigenspaces having nontrivial intersections with P;. Generically
the intersection of the eigenspaces corresponding to ¢; and #; with P; is trivial and (a)
follows. 0

Finally, we consider the problem of making Proposition 4.9 completely precise.
Field [7] has studied the corresponding problem for equivariant Poincaré maps around a
periodic orbit. Here we follow closely the approach in {7].

If U, V are I'-invariant open sets in Rk, let CL(U, V) denote the space of C” I'-
equivariant maps of U into V. Let C[. denote the space of C” equivariant vector fields
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on R". Consider f € C}. having a heteroclinic cycle with relative equilibria {£,, ..., £, }.
Let @,(x) denote the flow corresponding to the vector field f. A
For y € Hj(""') let p(y) be the least positive time such that ®,,,(y) € Hj(;"l). Let O

and O’ denote the generalized origins in Hj(”"') and Hj(r,) respectively, and define

Ao = [ J1®(0), 1 €10, oM, A =TA,.
ye0

Consider a normal bundle N(A) (for background on normal bundles see [S]), and let D
(resp. D’) be the restriction of N(A) to 'O (resp. ' O’). For € > 0 let D, be the bundle
with the same base space as D and whose fibers are e-balls in the fibers of D. Define
D! similarly. We choose N(A) in such a way that

(our) (in)
D, =TH"", D,=TH}/.

Let U be a [-invariant neighborhood of A with the property that

Uc |J@m),el0omi).

yehy

Given € > 0 let X7 be the subset of C[.(D;, D;) consisting of maps equal to y; outside
of D,. O

PROPOSITION A.2. There exists € > 0, an open neighborhood Q of W in X! in the
C™*! topology and a continuous map x : Q — C[. with the following properties:

(@ ForyeQ, x(¥)=fonR"-U.

(b) Fory € Q, x(¥) has connecting diffeomorphism .

() x(¥p=1r.
Proof. Analogous to the proof of Lemma C, p. 198 in [7]. O
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