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Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example∗
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Abstract. Mixed-mode dynamics is a complex type of dynamical behavior that is characterized by a com-
bination of small-amplitude oscillations and large-amplitude excursions. Mixed-mode oscillations
(MMOs) have been observed both experimentally and numerically in various prototypical systems
in the natural sciences. In the present article, we propose a mathematical model problem which,
though analytically simple, exhibits a wide variety of MMO patterns upon variation of a control
parameter. One characteristic feature of our model is the presence of three distinct time-scales, pro-
vided a singular perturbation parameter is sufficiently small. Using geometric singular perturbation
theory and geometric desingularization, we show that the emergence of MMOs in this context is
caused by an underlying canard phenomenon. We derive asymptotic formulae for the return map in-
duced by the corresponding flow, which allows us to obtain precise results on the bifurcation (Farey)
sequences of the resulting MMO periodic orbits. We prove that the structure of these sequences is
determined by the presence of secondary canards. Finally, we perform numerical simulations that
show good quantitative agreement with the asymptotics in the relevant parameter regime.

Key words. mixed-mode oscillations, canard mechanism, singular perturbations, three time-scales, geometric
desingularization
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1. Introduction. Mixed-mode dynamics is a complex type of dynamical behavior that
is characterized by a combination of small-amplitude oscillations and large-amplitude ex-
cursions of relaxation type. Mixed-mode oscillations (MMOs) are frequently encountered in
multiscale dynamical systems, i.e., in systems of differential equations in which the relevant
variables evolve over several distinct scales. Consequently, typical MMO patterns in such
systems consist of oscillatory sequences in which amplitudes of different orders of magnitude
alternate. Historically, MMOs were first observed in experiments on the well-known Belousov–
Zhabotinsky reaction [38]. They have since been found both experimentally and numerically
in numerous other contexts in the natural sciences. Examples include prototypical systems
from chemical kinetics, electrocardiac dynamics, neuronal modeling, and laser dynamics, as
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362 MARTIN KRUPA, NIKOLA POPOVIĆ, AND NANCY KOPELL

well as from various other disciplines; see, e.g., [10, 16, 23, 27, 29, 30, 32, 31] for details and
references.

Among the various mechanisms which have been proposed to explain the occurrence of
MMOs are the break-up of an invariant torus [21] and the loss of stability of a Shilnikov
homoclinic orbit [16]. MMOs have also been linked to slow passage through a delayed Hopf
bifurcation (cf., e.g., [22]) as well as to the subcritical Hopf-homoclinic bifurcation [12, 13].
In the present article, we consider another explanation for the emergence of MMOs, namely,
the so-called canard mechanism. To the best of our knowledge, this idea was first brought
forward by Milik et al. [27]. More recently, in [2], it was extended to accommodate more
general classes of systems that exhibit canard dynamics.

The classical canard phenomenon [1, 5, 8, 9] was first described in the framework of
two-dimensional fast-slow systems, i.e., of systems with one fast and one slow variable; a
prototypical example is the system of equations given by

v′ = −z + f2v
2 + f3v

3,(1.1a)

z′ = ε(v − λ).(1.1b)

(Here, f2 > 0 and f3 < 0 are real constants, 0 < ε � 1 and λ are small parameters, and the
prime denotes differentiation with respect to time t.)

The term canard explosion [20] is customarily used to denote a transition in (1.1) from
a stable equilibrium through a family of small-amplitude cycles and subsequently to a large-
amplitude relaxation oscillation. Notably, this transition occurs within an exponentially small
range (in ε) of the relevant control parameter, λ. The basic mechanism of a canard explosion
can be described as follows: under the above assumptions, the “fast nullcline” S0 for (1.1),
which is given by z = f(v) := f2v

2 + f3v
3, is an S-shaped curve. Moreover, S0 is a curve of

equilibria for the layer problem obtained for ε = 0 in (1.1) and is (normally) hyperbolic away
from the two fold points where f ′(v) = 0; in particular, the origin is one such point. Rewriting
(1.1) in terms of the slow time τ = εt, one finds that the corresponding “slow nullcline” is
given by v = λ. As λ passes through 0, this slow nullcline moves through the lower fold point
of S0 at the origin, which triggers the onset of the canard explosion; see Figure 1. Finally, for
λ > 0 sufficiently “large,” the dynamics of (1.1) enters the relaxation regime.

One important notion that arises in the study of a canard explosion in (1.1) (as well as
in other, related systems) is that of a maximal canard. In general, a canard is a solution of
(1.1) which originates in the attracting portion of the fast nullcline S0 and which then crosses
over to the repelling one; cf. again Figure 1. Maximal canards are canard trajectories that
remain O(ε)-close to the unstable part of S0 until they reach the upper fold; they mark the
transition from small-amplitude (nonrelaxation) oscillations to large-amplitude oscillations of
relaxation type during a canard explosion.

One of the main goals in this article is to show how systems that exhibit mixed-mode-type
behavior can be constructed from systems that undergo a canard explosion by replacing the
parameter moving the slow nullcline with a dynamical variable. In other words, we will argue
that the emergence of MMOs in such systems is triggered by a “slow passage through a canard
explosion.” More specifically, consider a system of the form
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{v = λ}

(a) λ < 0.
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S0{v = λ}

(b) λ ≈ 0.
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(c) λ ≈ 0.
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Figure 1. Nullcline movement leading to a canard explosion: As the slow nullcline passes through the
origin, one observes a transition from (a) a stable equilibrium via a family of canard solutions ( (b) “headless
canard,” (c) “canard with head”) to (d) a full-scale relaxation oscillation.

v′ = −z + f2v
2 + f3v

3,(1.2a)

z′ = ε(v − w),(1.2b)

w′ = ε
(
μ + φ(v, z, w)

)
,(1.2c)

where μ > 0 and φ = O(v, z, w) is a smooth function that will be specified in the following,
and note that the new slow variable w in (1.2) assumes the role of λ in (1.1). Let S0 denote
the (two-dimensional) critical manifold for (1.2), which is defined by the constraint z = f(v).
Finally, let �− = {(0, 0, w)} and �+ = {(−2f2

3f3
, 0, w)} denote the lower and upper fold lines

for (1.2), respectively, and note that �± are determined by imposing f ′(v) = 0, in addition
to z = f(v). Away from these fold lines, S0 is normally hyperbolic; it consists of the two
attracting sheets

(1.3) Sa−
0 =

{
(v, z, w)

∣∣ v < 0, z < 0
}

and Sa+
0 =

{
(v, z, w)

∣∣ v > −2f2
3f3

, z >
4f3

2

27f2
3

}
,
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Sa+
0

Sa−
0

Sr
0

z

w

v

�−

�+

Γ0
ε

Γ1
ε

Figure 2. The geometry of system (1.2): Critical manifold S0 with sheets Sa±
0 and Sr

0 , fold lines �±, and
canard trajectories Γ0

ε and Γ1
ε.

as well as of a repelling sheet which is given by

(1.4) Sr
0 =

{
(v, z, w)

∣∣ 0 < v < −2f2
3f3

, 0 < z <
4f3

2

27f2
3

}
;

see Figure 2 for an illustration. (Note that, due to f2 > 0 and f3 < 0, there holds −2f2
3f3

> 0
in (1.3) and (1.4).) The singular limit of ε = 0 in (1.2) is described by the dynamics of the
reduced problem on the critical manifold S0.

By standard Fenichel theory [11], for ε > 0 sufficiently small and (v, z, w) in some bounded
subset of R

3, the critical manifold will perturb to a slow manifold Sε away from �±. We will
denote the sheets of Sε corresponding to Sa−

0 , Sa+
0 , and Sr

0 by Sa−
ε , Sa+

ε , and Sr
ε , respectively.

In analogy to the maximal canard encountered in (1.1), we define the so-called strong
canard Γ0

ε for (1.2) as follows: once the two sheets Sa−
ε and Sr

ε are chosen, they are unique
up to exponentially small terms in ε [11]. Then, Γ0

ε can be defined, for ε > 0 small, as the
intersection of the continuation of these two sheets into the fold region. Moreover, as we
will show in section 2, this intersection is transverse, which implies that Γ0

ε is well defined.
It was postulated in [27] that the strong canard forms the boundary between two regions of
very different dynamical behavior, in that it separates small-amplitude oscillations from large
oscillations of relaxation type. We will confirm this postulate in the context of (1.2); in that
sense, Γ0

ε can be interpreted as the “organizing center” for the emergence of MMOs in (1.2).

The detailed structure of the MMO trajectories that will be observed in (1.2) depends
strongly on certain features of the specific equations under consideration. One important
aspect concerns the properties of the global return mechanism, defined by the interplay of μ
and φ in (1.2c), and in particular how far back the value of w is reset by that return.
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If, during the return phase, w becomes O(1) and negative (i.e., if μ+φ is not close to zero),
the dynamics of (1.2) in the initial phase of the passage near the lower fold is of “node type,”
which means that there is strong contraction without any oscillatory behavior. That initial
contractive phase is followed by oscillatory dynamics which can give rise to MMOs; however,
most of the resulting oscillations are of very small amplitude. The class of these so-called
canards of folded-node type is rather well understood and was analyzed in detail in [36].

By contrast, we will discuss a case where the global return mechanism is relatively weak in
the sense that μ+φ is O(1). Note that this case differs from that of the so-called folded saddle-
node [31, 6] in that not only is μ assumed to be small, but φ is, too, and that the weakness of
the return mechanism introduces an additional, “superslow” time-scale into the problem. In
that sense, the folded saddle-node can be regarded as an intermediate case between the folded
node and the situation in (1.2). (Note, however, that (1.2) could alternatively be classified as
a “folded saddle-node of type II with weak global return” [35].)

The basic dynamics of (1.2) can be characterized as follows: given (v, z, w) small, the
system will pass through the small-amplitude phase, where the variable w can grow slightly
and become positive. Then, during the subsequent relaxation phase, w is reset to a small
(negative or positive) value, and the cycle can start anew. Hence, the fact that w is always
close to zero implies that there is no nonoscillatory contraction, contrary to the case of a folded
node. Moreover, due to the three time-scale structure of (1.2), no slow passage through a Hopf
bifurcation is observed, contrary to the case of a folded saddle-node. This distinction will be
made more precise in the following; see also the discussion in section 4 below.

As we will show in this article, it is the interplay between the two main ingredients of
the dynamics, the local flow close to the strong canard and the global return, that underlies
the basic canard mechanism for the emergence of MMOs in (1.2). This mechanism can be
generalized to other classes of systems; see, e.g., [17, 2] for details. In the following, we will
refer to a combination of local, dynamical passage through a canard point and a suitably
defined global return as the generalized canard mechanism. In other words, (1.2) represents
only one specific realization of that very general mechanism. Moreover, as will follow from
our analysis, (1.2) is a normal form for this class of three time-scale systems, in the sense
that the addition of higher-order terms in (1.2) will not fundamentally influence the resulting
dynamics.

Another aspect of the mixed-mode dynamics in (1.2), in addition to the return mechanism,
is the family of so-called secondary canards. In the context of (1.2), we define the kth secondary
canard Γk

ε as a trajectory that undergoes k small (nonrelaxation) rotations, or “loops,” during
its passage “near” the lower fold �− and that then remains O(ε)-close to the critical manifold

S0 until it reaches the O(ε
1
3 )-vicinity of the upper fold �+ [34]. Note that the strong canard Γ0

ε

passes through the vicinity of �− without undergoing any rotation at all, which corresponds
to k = 0. As we will show, the existence of secondary canards in (1.2) is guaranteed by the
fact that they can be defined as trajectories lying in the intersection of Sr

ε with subsequent
iterates of Sa−

ε under the return map Π induced by the flow of (1.2); cf. section 3 below.
This will allow us to give a precise asymptotic description of these canards; to the best of our
knowledge, comparable results have so far been obtained only in the folded-node case [36],
via a combination of asymptotics and numerics. For a qualitative illustration of the canard
trajectories Γ0

ε and Γ1
ε in (1.2), cf. again Figure 2.
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The notion of secondary canards leads to another important concept in this context,
namely, that of the corresponding sectors of rotation, which are defined as (two-dimensional)
portions of Sa−

ε in the fold region that are bounded by the secondary canards. These sectors,
which we denote by RSk, have the following property: trajectories starting in the kth sector
undergo k small rotations near �−. Given that all MMO trajectories pass exponentially close
to Sa−

ε in their relaxation phase, they must enter one of the sectors upon their return to the
fold region. This fact can be exploited to reduce the corresponding (two-dimensional) return
map Π for (1.2), which is a priori defined on an appropriate section for the corresponding flow,

to a one-dimensional map Φ. Moreover, as we will show, the width of RSk is O(ε
3
2

√
− ln ε),

independent of k to leading order; see section 3. Hence, the canard phenomenon occurs rather
“robustly” in the context of (1.2) in the sense that the relevant parameter intervals are not
exponentially small in ε, as in the classical two-dimensional case [20].

Finally, with each MMO trajectory one can associate a sequence Lk0
0 Lk1

1 . . . , called the
Farey sequence [4], which describes the succession of large relaxation excursions and small

(nonrelaxation) oscillations (loops): the segment L
kj
j corresponds to Lj relaxation oscillations

followed by kj small loops. (In the following, we will focus primarily on the case when
Lj = 1.) As we will show, the Farey sequence of each trajectory is completely determined
by the succession of the sectors of rotation visited by the trajectory. A natural question that
arises in this context is which Farey sequences are admissible in a system of the form (1.2)
and which μ-intervals they correspond to. This question is intimately related to the size of the
sectors RSk themselves, to the distance from the return point on Sa−

ε to the strong canard
Γ0
ε after relaxation, and to the contractive (or expansive) properties of the flow induced by Π.

These and similar issues will be discussed in detail in sections 3 and 4.
For the sake of definiteness, we will restrict ourselves to the more specific class of systems

of the form

v′ = −z + f2v
2 + f3v

3,(1.5a)

z′ = ε(v − w),(1.5b)

w′ = ε2(μ− g1z)(1.5c)

in the following, with g1 > 0 constant. Note that (1.5) can be understood as a special case of
(1.2), with μ rescaled by ε and φ(v, z, w) ≡ φ(z) = εg1z. (Other choices of φ can be treated in
a similar manner; see, e.g., [18].) This specific scaling of μ implies that the dynamics of (1.5)
evolves on three distinct time-scales, a fast scale, a slow scale, and a “superslow” scale. Given
that the flow of (1.5c) is governed by that slowest scale, w cannot vary too much, implying
that trajectories cannot be reset very far back (in w) during the global return. Consequently,
they will return close to the strong canard Γ0

ε of (1.5) after relaxation; equivalently, recalling
the analogy between w and the parameter λ in (1.1), one could say that the return is close to
the maximal canard of the (v, z)-subsystem in (1.5).

As we will show in section 3, it is the “lowest” sectors of rotation that will be immediately
adjacent to the strong canard. Hence, only a few successive small oscillations will be observed
in a typical time series of (1.5); moreover, these oscillations are relatively large in amplitude.
Since the relevant parameter intervals will turn out to be relatively small, the corresponding
dynamics is very sensitive to variations of μ. Also, since the stability intervals of “regular,”
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Lk-type orbits (i.e., of MMO trajectories with Farey sequence {Lk}) are smaller still, the
time series can be quite irregular; furthermore, there can be many relaxation cycles occurring
in succession before the system returns to the small-oscillation phase. (By contrast, in the
folded-node case, regular 1k-type orbits are predicted to be stable for most μ-values; cf. [36].)

Moreover, as μ is varied in (1.5), one observes a passage through neighboring sectors of
rotation: for increasing μ, the dynamics of (1.5) will be restricted to lower and lower sectors,
admitting fewer and fewer small-amplitude oscillations, until eventually only relaxation cycles
are seen. In other words, one observes the unfolding of a family of MMOs, including trajecto-
ries that pass through all sectors of rotation, on a fairly small parameter set. (In a folded-node
system, on the other hand, such an unfolding can be expected over a μ-interval whose length
is bounded below by a constant [36].) Also, numerical evidence suggests that only the Farey
sequences predicted in section 3 will “generically” occur in a three time-scale system of the
type of (1.5). Therefore, we conjecture that (1.5) can be interpreted as a “canonical form” for
this particular class of three-dimensional systems. However, a rigorous, analytical justification
of this claim is beyond the scope of this work.

In the remainder of this article, we analyze the “canonical” system (1.5) in detail, using a
wide range of techniques. One of our aims is to derive asymptotic formulae for the return map
induced by the flow of (1.5). To that end, we combine various methods from dynamical systems
theory and, in particular, from geometric singular perturbation theory. To approximate the
flow away from the fold lines �±, we employ standard results due to Fenichel [11]. Upon
entry into the neighborhood of �±, normal hyperbolicity breaks down, and Fenichel’s results
are no longer applicable, which necessitates a detailed analysis of the dynamics there. We
are especially interested in the lower fold �−, since it is there that the canard phenomenon
occurs. To describe the dynamics close to �−, we make use of the near-integrable structure of
the equations in (1.5). To access that structure, we introduce a rescaling that is akin to the
blow-up transformation customarily used in this context; see, e.g., [7, 19] for details. While
each of the parts of our analysis taken by itself is rather standard, the combination of the
different approaches in the present context is new. In particular, by combining the leading-
order global dynamics with detailed local asymptotics, we are able to obtain a closed-form
description of the return map Π for (1.5) and, hence, to describe the resulting mixed-mode
dynamics in detail.

This article is organized as follows. In section 2, we prove that the return map Π is well
defined under an appropriate choice of sections for the flow of (1.5), and we derive precise
asymptotic estimates for Π by desingularizing the dynamics of (1.5) in the fold region and
by making use of the near-integrability of the resulting equations. Section 3 contains the
centerpiece of our analysis in that we show how the “full,” two-dimensional map Π can be
reduced to a simpler, one-dimensional map Φ. This reduction is accurate with at most an
exponentially small error (in ε) and is carried out in two steps: in a first step, Π is restricted
from a two-dimensional section to the union of appropriately defined, one-dimensional curves,
which allows us to describe the family of secondary canards, as well as the corresponding
sectors of rotation, for (1.5). Then, in a second step, the map Π is further reduced and is
restricted to a map Φ that is defined on a single curve. The dynamics of this map is analyzed in
detail to make quantitative predictions on the relevant parameter regimes and the associated
bifurcation (Farey) sequences in (1.5). In section 4, we summarize our results, and we relate
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them to other mechanisms that have been proposed to explain MMOs. Moreover, we illustrate
various properties of the “reduced” flow under Φ, and we compare them numerically to the
“full” dynamics of (1.5). In sum, we thus obtain a fairly complete picture of the mixed-mode
dynamics of (1.5), both qualitatively and quantitatively. Moreover, in doing so, we provide
a framework for an even more detailed analysis of systems of the type of (1.5): once the
dynamics of such a system is accurately reduced to that of a one-dimensional map, the well-
developed theory of unimodal maps [25] can be applied. Our results on Φ are a first step in
this direction in that there is potential for a more rigorous investigation along the lines of
section 3.

Finally, we note that our analysis of (1.5) was inspired by a more specific problem, a model
for the dynamics of the dopaminergic neuron that was proposed by Wilson and Callaway [37].
This model, which consists of a system of N strongly electrically coupled oscillators, was
analyzed in [24] as well as in [23] (in a slightly different form) via a combination of asymptotic
analysis and numerical techniques. One salient feature of the Wilson–Callaway model is
precisely the unfolding of a family of MMO periodic orbits upon variation of one control
parameter. In an upcoming companion paper [18], we will show how the Wilson–Callaway
model can be fitted into the framework of (1.5) and how the results obtained here can be
applied to study its dynamics.

2. The canonical system (1.5). In this section, we discuss the system of equations (1.5)
or, equivalently, the system obtained by rewriting (1.5) in terms of the slow time τ = εt,

εv̇ = −z + f2v
2 + f3v

3,(2.1a)

ż = v − w,(2.1b)

ẇ = ε(μ− g1z).(2.1c)

Here, the overdot denotes differentiation with respect to τ , f2 > 0, f3 < 0, and g1 > 0 are
O(1) coefficients, 0 < ε � 1 is small, and μ is the “free” (bifurcation) parameter; note the
presence of three time-scales in (2.1).

Let S0 denote the critical manifold for (2.1), as before, and recall that S0 is given by
z = f(v) = f2v

2 + f3v
3; cf. section 1. Moreover, recall the definition of Sa±

0 and Sr
0 in

(1.3) and (1.4), respectively, and let Sa±
ε and Sr

ε denote the corresponding sheets of the slow
manifold for ε > 0 sufficiently small. Finally, the upper and lower fold lines in (2.1) are again
denoted by �±.

2.1. Sections for the flow of (1.5). To derive asymptotic formulae for the return of
trajectories under the flow of (1.5), we will define the corresponding return map on suitable
sections for the flow, which we introduce below. In the course of our analysis, we will show that
the small-amplitude oscillations observed in (1.5) are due to the fact that, in the parameter
regime under consideration, the system passes slowly through a canard explosion about the
origin in (v, z, w)-space. The large-amplitude components of the mixed-mode time series are
generated by the global return mechanism, which takes trajectories back to the fold line �−

after the passage past the origin has been completed. Combining these two aspects of the
dynamics will allow us to describe in detail how MMOs can arise in (1.5).

The dynamics of (1.5) can be broken down into the following four components:
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Σin

�−

Δ

Σout

z

v

w

Sr
0

Sa−
0

Figure 3. The sections Σin, Δ, and Σout for the flow of (1.5).

(i) the flow in a neighborhood of the fold line �− (section 2.2);
(ii) the entry into the fold region (section 2.3);
(iii) the exit from the fold region (section 2.4); and, finally,
(iv) the global return mechanism (section 2.5).

We will construct transition maps for each of the above components of the flow. The desired
global return map, which we denote by Π, will then be obtained via the composition of these
individual maps.

We begin by introducing sections for the flow of (1.5): we will require
(i) a section Σin across the attracting branch Sa−

0 of the critical manifold S0, which is
given by v = −ρ, with |z| and |w| bounded;

(ii) a section Δ, which is defined by v = 0, with |z| and |w| bounded, implying that Δ lies
in the (z, w)-plane and that it bisects the critical manifold S0 along �− (the w-axis);
and

(iii) a section Σout across the fast foliation of S0, with v = δ and |z| and |w| bounded.
Here, ρ, δ > 0 are small but fixed (ε-independent) constants; see Figure 3 for an illustration.
The section Δ will turn out to be especially important in the following, since the global
return map Π will be defined on Δ. (Note that this particular choice of Poincaré section has
previously been made by Dumortier and Roussarie in their analysis of canard cycles; see, e.g.,
[8].)

Next, we introduce two subsets of Δ that will play a crucial role in the description of Π.
We first define C−

ε as follows: a point P ∈ Δ is an element of C−
ε if P is the endpoint of a

segment of trajectory that originates in Sa−
ε . The set C+

ε is defined analogously, with Sa−
ε

replaced by Sr
ε and the time reversed; see Figure 4. The sets C−

ε and C+
ε have the following

properties:
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Sa−
ε

C−
ε

Sr
ε

Δ

P

C+
ε

(a) Trajectory of P ∈ Δ above C+
ε .

Sa−
ε

C−
ε

P

Sr
ε

C+
ε

Δ

(b) Trajectory of P ∈ Δ below C+
ε .

Figure 4. The sets C−
ε and C+

ε .
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(i) If P ∈ Δ is above C+
ε , the trajectory of P is blocked by Sr

ε from entering relaxation.
Depending on the position of P , the initial motion may be toward Sr

ε , but the trajec-
tory must eventually turn toward Sa−

ε (under the fast flow) and return to Δ, having
undergone a small-amplitude oscillation (or loop); see Figure 4(a).

(ii) If P ∈ Δ is below C+
ε , the trajectory of P must leave the vicinity of the fold in the

direction of the fast flow and may re-enter only through a global return mechanism,
since no trajectories can pass through Sr

ε ; see Figure 4(b).
(iii) Any trajectory that is attracted to Sa−

ε will be exponentially close to C−
ε when it

hits Δ.

Remark 1. Since Sa−
ε and Sr

ε are unique only up to exponentially small terms in ε, the
sets C±

ε are, strictly speaking, “strips” rather than curves. However, since our construction of
Π will rely on leading-order ε-asymptotics throughout, this nonuniqueness will not influence
our results.

A proof of these claims will be given in section 3 below. We now proceed with the
derivation of the four components of the return map, as outlined above. The description of
the dynamics in the fold region is the centerpiece of our analysis and will be discussed first.

2.2. Dynamics in the fold region. Our goal in this subsection is to analyze the flow in
the region of the phase space of (1.5) where small-amplitude oscillations (loops) can occur. To
describe these loops, we have to study the equations in (1.5) in an O(

√
ε)-vicinity of the fold

line �− and, specifically, of the origin in (u, v, w)-space. Recall that under our assumptions on
(1.5), �− is given by the w-axis.

To investigate the dynamics of (1.5) close to �−, we define the rescaling

(2.2) v =
√
εv̄, z = εz̄, w =

√
εw̄, and t =

t̄√
ε
.

In terms of the new “barred” variables in (2.2), (1.5) becomes

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3,(2.3a)

z̄′ = v̄ − w̄,(2.3b)

w̄′ = ε(μ− g1εz̄),(2.3c)

where the prime now denotes differentiation with regard to the new rescaled time t̄. Note
that (2.3) is a fast-slow system, with two fast variables v̄ and z̄ and one slow variable w̄. In
other words, the scale separation between v and z has vanished after the rescaling, whereas
w̄ is still slow and constant to leading order. Hence, we can interpret w̄ as a slowly varying
parameter.

For ε = 0, the equations in (2.3) reduce to

v̄′ = −z̄ + f2v̄
2,(2.4a)

z̄′ = v̄ − w̄,(2.4b)

w̄′ = 0.(2.4c)
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z̄

v̄

Δ+

Δ−

γ̄0
0

γ̄h−
0

γ̄h+

0

Figure 5. Typical integral curves of H, with h− < 0 < h+. (The region where h > 0 is shaded.)

Note that, up to various rescalings, (2.4) is of the form

x′ = −y + x2,

y′ = x− λ,

which is a prototypical system for the occurrence of a canard explosion (at λ = 0) [20]; see also
(1.1). In the following, we will describe how the equations in (2.3) fit into the framework of [20],
where the classical two-dimensional scenario is analyzed using geometric singular perturbation
theory. The role of the bifurcation parameter λ is taken by w̄ in our case. For w̄ = 0, (2.4) is
an integrable system, with constant of motion given by

(2.5) H(v̄, z̄) =
1

2
e−2f2z̄

(
−v̄2 +

z̄

f2
+

1

2f2
2

)
.

The equations in (2.4) have a continuous family of periodic orbits which are most conveniently
described via the level curves of H; these are defined by H(v̄, z̄) = h for h constant. The
corresponding (time-parametrized) solution curves will be denoted by γ̄h0 (t) = (v̄h0 , z̄

h
0 )(t) in

the following.
We first note that (v̄, z̄) = (0, 0) lies on the curve defined by H(v̄, z̄) = h0 := (4f2

2 )−1.
For h > h0, there exist no real solutions to H(v̄, z̄) = h. Hence, without loss of generality,
we consider h ≤ h0 now, and we note that h0 > 0. For h = 0 in (2.5), we obtain the special
solution γ̄0

0 of (2.4), with

(2.6) γ̄0
0(t) = (v̄0

0, z̄
0
0)(t) =

( 1

2f2
t,

1

4f2
t2 − 1

2f2

)
.

Note that (2.6) defines an invariant parabola that separates the closed level curves of H, which
are obtained for h > 0, from the open ones, with h < 0; see Figure 5 for an illustration. Since
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the two branches of this parabola correspond to Sa−
0 and Sr

0 for w̄ = 0, after the rescaling in
(2.2), γ̄0

0 is a “singular canard solution,” i.e., a solution of (2.3) that connects Sa−
ε and Sr

ε in
the singular limit as ε → 0. (In fact, as we will see in (2.16) below, the orbit determined by
γ̄0

0 is precisely the strong canard Γ0
ε in this singular limit.)

Let Δ denote the section that corresponds to Δ in the “barred” variables; i.e., let Δ =
{v̄ = 0}, with |z̄| and |w̄| bounded. For h fixed, let z̄h be the corresponding value of z̄ in Δ,
with H(0, z̄h) = h. (In particular, by (2.6), there holds z̄0 = −(2f2)

−1.) Our first result is a
direct consequence of the above discussion; see [20] for details.

Proposition 2.1. To any h ≤ h0, with h0 = (4f2
2 )−1 > 0, there corresponds precisely one

value z̄h ≤ 0 of z̄ in Δ. Moreover, z̄h is an increasing function of h.
Since the limiting equations obtained for w̄ = 0 = ε in (2.3) are integrable, we will refer

to the original, “perturbed” dynamics as “near-integrable.” (A related treatment of a more
general family of near-integrable systems can be found in [15].) The near-integrability of (2.3)
will allow us to analyze the dynamics of the equations using a perturbation analysis, and
to approximate the return map from Δ to itself, which we refer to as Π, to leading order.
Naturally, the closed level curves of H will turn out to be the singular “templates” for the
small-amplitude component of the mixed-mode dynamics observed in (2.1). Moreover, as we
will show, it is the bifurcation structure of Π that is responsible for the emergence of secondary
canards in (2.3); these canards, in turn, determine the qualitative structure of the resulting
MMO patterns. In that sense, the rescaling in (2.2) will enable us to access the near-integrable
structure of (1.5) close to �−.

We will define the return map Π on Δ− ⊂ Δ, which is the portion of Δ where z̄ < 0.
Although Π is a priori a function of (z̄, w̄), it is more convenient to parametrize z̄ by h and
to describe the asymptotics of Π in terms of h and w̄ in the following. For h ≤ h0, with h0

as above, let z̄h again denote the corresponding unique value of z̄ ∈ Δ−, and note that we
will sometimes identify z̄h with its associated h-value. Moreover, let γ̄hε (t) be the solution
to (2.3) emanating from (0, z̄h, w̄), where the time parametrization is chosen so that γ̄hε (0) is
contained in Δ+ := Δ\Δ−. Then, we define T h

−(w̄) < 0 and T h
+(w̄) > 0 by requiring that

γ̄hε (T h
±(w̄)) ∈ Δ−. Moreover, we assume that T h

±(w̄) are the times of the first such intersection.
Let T h : Δ− → Δ− denote the return time of solutions under the flow of (2.3), and note that,

by definition, T h(w̄) = T h
+(w̄) − T h

−(w̄). Let ĥ be defined by the requirement that z̄ĥ is the
z̄-coordinate of γ̄hε (T h(w̄)) ∈ Δ−; an illustration of these definitions is given in Figure 6.
Finally, for w̄ = 0, we write T h := T h

+(0), which, together with T h
−(0) = −T h

+(0), implies

(2.7) T h(0) = T h
+(0) − T h

−(0) = 2T h.

We now make the following assumption on w̄, which will be verified a posteriori for the
parameter regime we are interested in.

Assumption 1. For fixed, real f2 > 0, f3 < 0, μ > 0, and g1 > 0 and 0 < ε � 1 sufficiently
small in (2.3), w̄ = O(

√
ε) uniformly in t̄.

It will follow from our analysis that Assumption 1 defines an invariant region for the return
map Π which roughly corresponds to the regime where w̄ = O(

√
ε). More precisely, if an initial

condition for (2.3) satisfies the assumption, it will be satisfied along the entire corresponding
trajectory of (2.3). Finally, since w =

√
εw̄, Assumption 1 implies that w = O(ε) must hold

in (2.1), uniformly in τ .
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z̄

v̄

γ̄h
ε (T h

−(w̄)) = (0, z̄h, w̄)

γ̄h
ε (T h

+(w̄)) = (0, z̄ĥ, ŵ)

γ̄h
ε

Δ−

γ̄h
ε (0)

Figure 6. The geometry of system (2.3).

We state our next result in a slightly more general context than that of (2.3). The reason
for this generalization is that we will modify (2.3) later to simplify our estimates of the return
time T h(w̄). Thus, instead of (2.3), we now consider the following generalized system of
equations:

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3 +
√
εF (w̄,

√
ε) + w̄G(w̄,

√
ε),(2.8a)

z̄′ = v̄ − w̄ + O(ε),(2.8b)

w̄′ = ε
(
μ− g1εz̄ + O(ε)

)
,(2.8c)

where F and G are assumed to be Cn-smooth for n ≥ 1 sufficiently large in both w̄ and
√
ε.

Note that all the definitions and notation introduced in the context of (2.3) extend without
modification to (2.8).

Proposition 2.2. Let Π : Δ− → Δ− and γ̄hε be defined as above, and let (h, w̄) ∈ Δ−.
Suppose that h > 0, with h = O(εM ) for some M > 0 and ε > 0 sufficiently small, and that
the trajectory starting at (h, w̄) undergoes a small oscillation (“loop”) before returning to Δ−.
Then,

(2.9) (ĥ, ŵ) := Π(h, w̄) =
(
h +

√
εdh√ε + w̄dhw̄ + O

(
(
√
ε + w̄)2

)
, w̄ + εμT h(w̄) + O(ε2)

)
,

where the coefficients dh√
ε

and dhw̄ are defined as

(2.10) dh√ε =

∫ Th

−Th

∇H(γ̄h0 (t)) ·
(
f3v̄

h
0 (t)3, 0

)T
dt

and

(2.11) dhw̄ =

∫ Th

−Th

∇H(γ̄h0 (t)) · (0,−1)T dt,
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respectively, and γ̄h0 (t) = (v̄h0 , z̄
h
0 )(t) denotes the solution to (2.4) with H(v̄h0 , z̄

h
0 ) = h.

Remark 2. Given Assumption 1, as well as the fact that T h(w̄) ∼
√
−2 lnh by Lemma A.2,

h = O(εM ) implies εT h(w̄) = O(ε
√
− ln ε) in (2.9) for any M > 0. Moreover, the expansion

for ĥ remains valid even if M > 1
2 , i.e., when the leading-order term in ε is given by

√
εdh√

ε
.

Hence, it follows that (2.9) describes the map Π up to an O(ε)-error.
Proof. We only sketch the proof here and refer the reader to [19] for details.
To derive the expression for ŵ, one makes use of the near-integrability of (2.8) as well as

of regular perturbation theory.
To prove the assertion for ĥ, we first note that

(2.12) ĥ− h := H(0, ẑĥ) −H(0, z̄h) =

∫ Th
+(w)

Th
−(w)

d

dt
H(γ̄hε (t)) dt.

Since, to lowest order,

d

dt
H(γ̄hε (t)) = ∇H(γ̄hε (t)) · (v̄′, z̄′)T

∣∣
γ̄h
ε

= ∇H(γ̄h0 (t)) · (v̄′, z̄′)T
∣∣
γ̄h
0
,

and since H is a constant of motion, it follows with (2.8a) and (2.8b) that

ĥ− h =

∫ Th

−Th

∇H(γ̄h0 (t)) ·
(
f3v̄

h
0 (t)3 + F (0, 0), 0

)T
dt

√
ε(2.13)

+

∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T dt w̄ + O(2);

see also [20]. (Here, O(2) denotes terms of at least second order in
√
ε and w̄.) Since,

however, (v̄h0 , z̄
h
0 )(−t) = (−v̄h0 , z̄

h
0 )(t) on γ̄h0 by symmetry, a change of variables via t �→ −t in

combination with (2.5) shows∫ Th

−Th

∂H

∂v̄
(γ̄h0 (t)) dt = −

∫ Th

−Th

v̄h0 (t)e−2f2z̄h0 (t) dt = −
∫ −Th

Th

v̄h0 (−t)e−2f2z̄h0 (−t) d(−t)

= −
∫ Th

−Th

∂H

∂v̄
(γ̄h0 (t)) dt.

Therefore, the latter integral must be zero, which implies∫ Th

−Th

∂H

∂v̄
(γ̄h0 (t))F (0, 0) dt = 0 and

∫ Th

−Th

∂H

∂v̄
(γ̄h0 (t))G(0, 0) dt = 0.

It follows that (2.13) reduces to

ĥ− h = dh√ε

√
ε + dhw̄w̄ + O(2),

with the coefficients dh√
ε
and dhw̄ as defined in (2.10) and (2.11). This completes the proof.

Remark 3. Note that the functions T h
±(w̄) and T h(w̄) depend very sensitively on h, w̄,

and
√
ε; in fact, since lim(h,w̄,ε)→(0,0,0) T

h(w̄) = ∞, T h(w̄) has a singularity at the origin. For
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this reason, it is not immediately obvious that T h
+(w̄) and T h

−(w̄) can be replaced by T h and
−T h, respectively, in (2.12). However, the arguments in [19] can easily be extended to justify
this point.

Given Proposition 2.2, we make the following observations:
(i) Observe that, for μ = 0, the equations in (2.3) have an equilibrium point at the

origin. The linearization of (2.3) about this equilibrium has a pair of purely imaginary
eigenvalues, as well as a simple eigenvalue 0. The corresponding steady-state Hopf-
type interactions mark the onset of small-amplitude oscillations in (2.3); see also [20,
Theorem 3.1]. (Note that the presence of the zero eigenvalue, which is due to the
absence of a linear w̄-term in (2.3c), introduces a degeneracy at the origin in (2.3).)

(ii) In order to obtain periodic orbits in (2.3), we have to require h = ĥ and w̄ = ŵ; see
the definition of Π in (2.9). Hence, to leading order, we must impose the condition

(2.14) dh√ε

√
ε + dhw̄w̄ = 0

on (h, w̄). To show that (2.14) can be solved for h and w̄, we have to find the next-order
correction to ŵ in (2.9): integrating (2.3c), we obtain

ŵ = w̄ + 2εμT h − g1ε
2

∫ Th

−Th

z̄(t) dt,

to leading order. Using (2.3a) to express z̄ in terms of v̄, we find

ŵ ∼ w̄ + ε

(
2μT h − g1ε

∫ Th

−Th

(
−v̄′(t) + f2v̄(t)

2
)
dt

)
.

(Here and in the following, the tilde indicates a leading-order asymptotic approxima-
tion.) Since, moreover, v̄(−T h) = 0 = v̄(T h) by definition, and since (2.3b) implies
dz̄
dt ∼ v̄ by Assumption 1, it follows that

ŵ ∼ w̄ + 2ε

(
μT h − f2g1ε

∫ ζh

ξh
v̄(z̄) dz̄

)
.

Here, ξh = z̄(−T h) and ζh = z̄(0) denote the z̄-values in Δ corresponding to γ̄hε (−T h)
and γ̄hε (0), respectively. In sum, the requirement that w̄ = ŵ gives

(2.15) μT h − f2g1ε

∫ ζh

ξh
v̄(z̄) dz̄ = 0

to lowest order. Since 1
Th

∫ ζh

ξh
v̄(z̄) dz̄ increases monotonically in h as h → 0 (see [19]),

it follows that, for ε and μ small and fixed, one can find h such that (2.15) holds.
Given that h-value, one can use (2.14) to determine the associated value of w̄.

(iii) For μ and ε sufficiently small in (2.1), there exists a canard trajectory lying in the
intersection of the manifolds Sa−

ε and Sr
ε ; this trajectory is the strong canard Γ0

ε.
Since Sa−

ε and Sr
ε intersect transversely, as we will show in section 2.3 below, Γ0

ε is
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well defined; moreover, it is unique once specific sheets of Sε have been chosen. The
associated canard critical value w̄c, i.e., the value of w̄ in the rescaled system (2.3)
that corresponds to Γ0

ε, is given by

(2.16) w̄c = −
d0√

ε

d0
w̄

√
ε + O(ε),

where d0√
ε

and d0
w̄ are obtained from (2.10) and (2.11) in the limit as h → 0 [19].

In particular, since w̄c → 0 for ε → 0, (2.16) yields precisely the singular canard
solution γ̄0

0 in this limit; cf. (2.6). Hence, as h → 0, (2.3) undergoes a classical (two-
dimensional) canard explosion at w̄ = 0 = ε [20].
To evaluate (2.16), note that (2.5) implies

(2.17)
∂H

∂v̄
= −v̄e−2f2z̄ and

∂H

∂z̄
= (f2v̄

2 − z̄)e−2f2z̄.

Using the parametrization of γ̄0
0 in (2.6) and taking into account that T 0 = ∞, one

finds as in [19] that

(2.18) d0√
ε = − 3f3

16f4
2

√
2πe and d0

w̄ = − 1

2f2

√
2πe;

see Appendix A for details. Therefore, for given μ, the corresponding value of w̄c can
be obtained from

(2.19) w̄c = − 3f3

8f3
2

√
ε + O(ε);

note that w̄c > 0 due to f2 > 0 and f3 < 0.

These observations combined suggest the following: for ε > 0 fixed, system (2.3) undergoes a
Hopf bifurcation at the origin for μ = 0 by (i); this bifurcation gives rise to small-amplitude
limit cycles in (2.3). These cycles will persist as long as both (2.14) and (2.15) can be satisfied,
as shown in (ii). In that case, μ = O(ε) must hold, since T h = O(

√
− ln ε), ζh = O(

√
− ln ε),

and ξh = O(1) by Appendix A, while v̄, f2, and g1 are O(1) by assumption. Hence, for μ
sufficiently small, the dynamics of (2.3) will be dominated by 0k-type orbits, i.e., by MMO
trajectories with Farey sequence {0k}. As μ is increased, the evolution of w̄ in (2.3c) is
governed by the positive, μ-dependent drift, with w̄′ ∼ εμ. Since z̄ decreases with increasing w̄
(see (2.3b)), it follows that h must also decrease by Proposition 2.1. In other words, h → 0 with
increasing μ, and the system moves closer and closer toward a canard explosion, as discussed
in (iii). Finally, for μ = μc large enough, the w̄-drift is sufficiently strong for the dynamics of
(2.3) to bypass the fold region and enter the relaxation regime. (The corresponding “critical”
μ-value μc will be discussed in detail in section 2.5 below.)

In our analysis, we will focus primarily on the regime where μ is sufficiently large for
0k-type orbits not to dominate the dynamics of (2.3) anymore. Since these orbits can occur
only when (2.3) is close to Hopf bifurcation (i.e., as long as μ = O(ε) and, hence, w̄′ ∼ 0), the
degeneracy of the equations at the Hopf point will not be of relevance to us. On the other
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hand, we will assume that μ < μc, i.e., that μ is not large enough for (2.3) to have entered the
relaxation regime, which is characterized by L0-type orbits (trajectories with Farey sequence
{L0}).

As we will show, this “intermediate” regime corresponds precisely to the nontrivial mixed-

mode dynamics of (1.5), with orbits of the type {Lkj
j } for Lj , kj ≥ 1. Correspondingly, h will

have to be small in the sense that |h| = O(εM ) for some M > 0 “large”; however, h cannot
be exponentially small in ε, since trajectories must stay away from the strong canard Γ0

ε. The
statement of Proposition 2.2 pertains exactly to that intermediate case.

Finally, we remark that we will restrict ourselves to a leading-order description of the
return map Π in the following, as we did in the proof of Proposition 2.2. The resulting
approximation will remain consistent as long as h = O(εM ) is not “too large,” i.e., if ε > 0
is sufficiently small or if M > 0 is large enough: due to T h(w̄) ∼

√
−2 lnh ∼

√
−2M ln ε,

the εT h(w̄)-term in (2.9) will dominate the neglected terms of order O(ε) in that case. These
considerations will be made more explicit in Proposition 3.4 below.

2.3. The transition from Σin to Δ−. Let Πin denote the transition map from Σin to
Δ−; see sections 2.1 and 2.2 for the definitions of Σin and Δ−. Moreover, let us introduce an

intermediate section Δ
in

for the rescaled equations in (2.3), with Δ
in

=
{
(v̄, z̄, w̄)

∣∣ v̄ = −α
}
,

and let Δin denote the corresponding section in (v, z, w)-space. (Here, 0 < α < ρ is some
arbitrary constant.) Then, we have the following result on the transition from Σin to Δ−.

Proposition 2.3. Let (zin, win) ∈ Σin. Then, for ε > 0 sufficiently small,

(h−, w̄−) := Πin(zin, win)(2.20)

=
(√

εd−√
ε
+

win

√
ε
d−w̄ + O

(
(
√
ε + win)2

)
,
win

√
ε

+ winf2μ
√
ε ln ε + O(

√
ε)
)
,

where d−√
ε

and d−w̄ are defined by

(2.21) d−√
ε

=

∫ 0

−∞
∇H(γ̄0

0(t)) ·
(
f3v̄

0
0(t)

3, 0
)T

dt

and

(2.22) d−w̄ =

∫ 0

−∞
∇H(γ̄0

0(t)) · (0,−1)T dt,

respectively (see (2.10) and (2.11)), and γ̄0
0(t) = (v̄0

0, z̄
0
0)(t), as in (2.6).

Remark 4. Since win = O(ε) by Assumption 1, it follows that win
√
ε

in (2.20) remains

bounded as ε → 0.
Proof. We first analyze the transition from Σin to Δin. To that end, we desingularize the

reduced problem associated with (1.5) following the ideas in [2]; see also the derivation of
(2.44) in section 2.4. First, we approximate z by f(v); i.e., we restrict ourselves to the critical
manifold Sa−

0 to leading order. The resulting “reduced” problem for (2.1) has the form

f ′(v)v̇ = v − w,(2.23a)

ẇ = ε
(
μ− g1f(v)

)
.(2.23b)
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MMOs IN THREE TIME-SCALE SYSTEMS 379

(Note that this approximation is reasonable due to the form of (2.23b): since ε multiplies
the entire right-hand side in (2.23b), the O(ε)-correction to z = f(v) will be O(ε2) for the
dynamics.) The desingularized version of (2.23) is obtained by multiplying the right-hand
sides by −f ′(v) = −(2f2v + 3f3v

2):

v̇ = −(v − w),(2.24a)

ẇ = −ε
(
μ− g1f(v)

)
f ′(v).(2.24b)

We now introduce a new variable

W =
w

v

in (2.24). (The introduction of W corresponds to a projectivization of the vector field in
(2.24) that desingularizes the dynamics close to the origin.) After the transformation to the
variables (v,W ), system (2.24) becomes

v̇ = −v(1 −W ),(2.25a)

Ẇ = W (1 −W ) − ε
(
μ− g1(f2v

2 + f3v
3)
)
(2f2 + 3f3v).(2.25b)

Since we are not interested in the (time-parametrized) solutions of (2.25) but only in the
corresponding orbits, we can rescale time by dividing out a factor of 1 − W from both
right-hand sides in (2.25). Moreover, since we consider v ∈ [−ρ,−α

√
ε] (by the definition

of Σin and Δin) and w = O(ε) (see Assumption 1), W is small. Hence, we can expand
(1 − W )−1 = 1 + W + O(W 2) and neglect terms of second order and upward in (v,W ) in
(2.25b), approximating the resulting equations by

dv

dt̃
= −v,(2.26a)

dW

dt̃
= (1 − 2f2με)W − 2f2με− 3f3μεv.(2.26b)

(Here, t̃ denotes the new rescaled time.)

Let T̃ be the transition time from Σin to Δin under the flow of (2.26), and recall that
v = −ρ in Σin and v = −α

√
ε in Δin, respectively. Then, a simple computation using (2.26a)

shows that T̃ satisfies the identity

(2.27) eT̃ =
ρ

α

1√
ε
.

(In particular, (2.27) implies that T̃ depends only on α, ρ, and ε but not on the specific choice

of trajectory in (2.26).) By a direct integration of (2.26b), it follows with εv(T̃ ) = −ερe−T̃ =
O(ε

√
ε) that

(2.28) W (T̃ ) = (W in − 2f2με)e
(1−2f2με)T̃ + 2f2με + O(ε

√
ε),

where W in = −win

ρ is the value of W in Σin. The geometry of (2.26) is illustrated in Figure 7.
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v

W

0

Σin

Δin

(−α
√

ε, W ( eT ))

(−ρ, W in)

Figure 7. The geometry of system (2.26).

Now, note that w = −α
√
εW (T̃ ) holds in Δin for the w-value corresponding to W (T̃ ).

Hence, expanding the exponential in (2.28), we obtain

(2.29) w(T ) = win + winf2με ln ε + O(ε),

where T denotes the transition time from Σin to Δin in the original system (2.24).
To complete the proof, we have to describe the second part of the transition, from Δin to

Δ−. To that end, we slightly modify the ideas of section 2.2. Recall the rescaled equations in
(2.3), as well as the singular version obtained for ε = 0 (cf. (2.4)) and the parametrization of
the z̄-coordinate therein by h. (For z̄ fixed, the corresponding (unique) value of h is determined
from H(0, z̄) = h; cf. (2.5).) Also recall that, for h = 0, there exists a parabolic level curve
for H which corresponds to the special (singular canard) solution γ̄0

0 to (2.4) and which acts
as a separatrix between the closed level curves (where h > 0) and the open ones (with h < 0).

Let Π
in

denote the transition map from Δ
in

to Δ−, and let (z̄, w̄) ∈ Δ
in

. Since we are
interested in describing the dynamics close to Sa−

0 , we may assume that (−α, z̄, w̄) is the
endpoint of a trajectory originating in Sa−

ε . We claim that

(2.30) (h−, w̄−) = Π
in

(z̄, w̄) =
(√

εd−√
ε
+ w̄d−w̄ + O(2), w̄ + 2αf2με + O(ε2)

)
,

where d−√
ε

and d−w̄ are defined as in (2.21) and (2.22), respectively, and O(2) = O((
√
ε+ w̄)2),

as before.
To derive the expression for w̄− in (2.30), we simply integrate the w̄-equation in (2.3) to

obtain w̄− = w̄+εμT
in

+O(ε2), where T
in

denotes the transition time from Δ
in

to Δ in (2.4).

Then, by integrating (2.4) directly from v̄ = −α to v̄ = 0 along γ̄0
0 , we find T

in
= 2αf2.

The expression for h− is obtained from the near-integrability of (2.3) and from the analysis
in [20]; see also the proof of Proposition 2.2. More specifically, the condition for (v̄, z̄, w̄) to
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MMOs IN THREE TIME-SCALE SYSTEMS 381

be on a trajectory originating in Sa−
ε is

(2.31) h− =
√
εd−√

ε
+ w̄d−w̄ + O(2),

which proves (2.30). (Here, the limits of integration in the definition of d−√
ε

and d−w̄ follow

from the fact that T h
+(0) → ∞ as h → 0.)

Finally, the assertion of the proposition follows by combining (2.29) and (2.30), taking
into account that w̄ = w√

ε
.

Remark 5. Note that to the order considered here, the definition of the intermediate sec-

tion Δ
in

does not influence the asymptotics of Π
in

, as expected.
Proposition 2.3 has the following important implication: recall the set C−

ε ⊂ Δ− consisting
of the endpoints of trajectories starting in Sa−

ε . Then, it follows from (2.31) that C−
ε can be

represented as the graph of a function h−(w̄,
√
ε) satisfying

(2.32) h−(w̄,
√
ε) =

√
εd−√

ε
+ w̄d−w̄ + O(2).

In analogy to (2.21) and (2.22), one can define the coefficients

(2.33) d+√
ε

= −
∫ ∞

0
∇H(γ̄0

0(t)) ·
(
f3v̄

0
0(t)

3, 0
)T

dt

and

(2.34) d+
w̄ = −

∫ ∞

0
∇H(γ̄0

0(t)) · (0,−1)T dt

to describe the leading-order dynamics on Sr
ε . Hence, it follows that the set C+

ε can also be
represented as the graph of a function h+(w̄,

√
ε) satisfying

(2.35) h+(w̄,
√
ε) =

√
εd+√

ε
+ w̄d+

w̄ + O(2).

Note that d±√
ε

= ∓1
2d

0√
ε

and, similarly, d±w̄ = ∓1
2d

0
w̄ by symmetry, where d0√

ε
and d0

w̄ are

defined in (2.18).
Given the above representation of C∓

ε , we make the following observations:
(i) Due to d−w̄ < 0 and d+

w̄ > 0, (2.32) and (2.35) imply that C−
ε and C+

ε intersect trans-
versely for w̄ = w̄c, with w̄c as in (2.19). Hence, the strong canard Γ0

ε is indeed well
defined; recall the discussion in section 1. In particular, the resulting geometry justifies
the heuristic picture sketched in Figure 4; cf. Figure 8.

(ii) Similarly, the representations in (2.32) and (2.35) will be used in the definition of
secondary canards Γj

ε for j ≥ 1 as the transverse intersection of subsequent iterates of
C−
ε under Π with C+

ε ; see section 3.3 for details.

2.4. The transition from Δ− to Σout. We now discuss the behavior of trajectories that
exit the fold region in the direction of positive v and that then undergo relaxation. We begin
by making a change of coordinates which transforms C+

ε to the plane z̄ = z̄0, where z̄0 denotes
the z̄-value corresponding to h = 0 in (2.3). To that end, we define

(2.36) Δz̄(w̄,
√
ε) = z̄0 − z̄h

+(w̄,
√
ε),
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w̄

0 w̄c

C+
ε

C−
ε

h(w̄)

Figure 8. The curves C−
ε and C+

ε .

where h+ is as in (2.35), and we let

(2.37) z̃ = z̄ + Δz̄(w̄,
√
ε).

The transformation in (2.37) is introduced to “flatten” the repelling sheet Sr
ε of Sε in Δ for

ε > 0 sufficiently small: by (2.36), the z̄-value corresponding to h+, z̄h
+
, is transformed into

z̄h
+

+ z̄0 − z̄h
+

= z̄0; hence, C+
ε is represented as the graph of the zero function after the

transformation:

(2.38) C+
ε =

{
(0, w̄)

∣∣ w̄ = O(
√
ε)
}
.

Recall that in the singular limit of ε = 0 = w̄, h = 0 separates the small-oscillation regime
in (2.3), where h > 0, from the relaxation regime (with h < 0); see Proposition 2.1. By
introducing z̃, as defined in (2.37), we extend this characterization to the case where ε (and,
hence, also w̄) is positive but small: given (2.38), trajectories with h < 0 will end up “below”
Sr
ε in Δ−, implying that they will leave the fold region and undergo relaxation; trajectories

with h > 0, on the other hand, will remain trapped “above” Sr
ε and will therefore stay in

the small-oscillation regime close to �−. (This fact will simplify the following analysis and, in
particular, the study of secondary canards in section 3.3, since it will facilitate the evaluation
of the conditions that define these canard trajectories.)

In analogy to h+, the function h− in (2.32) is mapped to

h0(w̄) ≡ h0(w̄,
√
ε) = h−(w̄,

√
ε) − h+(w̄,

√
ε)

=
√
ε
(
d−√

ε
− d+√

ε

)
+ w̄(d−w̄ − d+

w̄) + O(2)

=
√
εd0√

ε + w̄d0
w̄ + O(2)

(2.39)

by (2.37), where we suppress the
√
ε-dependence of h0 for brevity. Hence, after performing
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Sr
ε

Sa−
ε

C−
ε

C+
ε

z

v

w

ΔΓ0
ε

Figure 9. The curves C−
ε and C+

ε after the transformation in (2.35).

the coordinate transformation in (2.37), we find that C−
ε is given by

(2.40) C−
ε =

{
(h0(w̄), w̄)

∣∣ w̄ = O(
√
ε)
}
.

The situation is illustrated in Figure 9; note the change from Figure 4 in that C+
ε is now

parallel to the w-axis, with C−
ε “tilted” accordingly.

Next, we note that the higher-order terms that are introduced into (2.3) by the transfor-
mation in (2.37) are precisely of the form O(w̄,

√
ε). Hence, the resulting, transformed system

is of the form (2.8), and the results of Proposition 2.2 can be applied directly to it.

Finally, in analogy to the transition times T h(w̄) defined for h > 0 above, we now define

(2.41) T h,out(w̄) = −T−h
− (w̄)

for h < 0. We have the following result on the transition from Δ− to Σout.

Proposition 2.4. Let (h, w̄) ∈ Δ− with h < 0 and h = O(εM ) for some M > 0 and ε > 0
sufficiently small. Then,

(2.42) (zout, wout) := Πout(h, w̄) =
(
εz̃out + O(ε ln ε),

√
εw̄ + ε

√
εT h,out(w̄)μ + O(ε

√
ε)
)
,

where z̃out is the z̃-value corresponding to hout = h+
√
εdout√

ε
+w̄dout

w̄ , with dout√
ε

and dout
w̄ defined

by

dout√
ε = −

∫ Th,out(w̄)

0
∇H(γ̄h0 (t)) ·

(
f3v̄

h
0 (t)3, 0

)T
dt
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v̄

z̄
γ̄−h

ε

γ̄0
ε

Δ
out

γ̄h
ε

γ̄−h
ε (T−h

− (w̄))

γ̄−h
ε (0)

γ̄h
ε (0)

γ̄h
ε (T h,out(w̄))

Δ−

Figure 10. The definition of Th,out(w̄) for h < 0.

and

dout
w̄ = −

∫ Th,out(w̄)

0
∇H(γ̄h0 (t)) · (0,−1)T dt,

respectively (see (2.10) and (2.11)).

Proof. For (h, w̄) ∈ Δ− with h < 0 and h = O(εM ), let Π
out

denote the time-T h,out(w̄)
transition map for (2.8), i.e., for the system obtained from (2.3) after the transformation to

z̃. Moreover, let Δ
out

:= Π
out

(Δ−), which implies that the definition of the intermediate

section Δ
out

is now “implicit” (w̄-dependent); cf. Figure 10. Then, it follows as in the proof
of Proposition 2.2 that

(2.43) (hout, w̄out) := Π
out

(h, w̄) =
(
h +

√
εdout√

ε + w̄dout
w̄ +O(2), w̄ + εT h,out(w̄)μ + O(ε

√
ε)
)
,

where again O(2) = O((
√
ε+ w̄)2), T h,out(w̄) is, by the definition of Δ

out
, the transition time

from Δ to Δ
out

in (2.8), and dout√
ε

and dout
w̄ are defined as above.

To study the second part of the transition, from Δ
out

to Σout, we introduce a new variable Z
in the original (unmodified) system (1.5), where Z is defined by z = v2Z. This transformation
serves to desingularize (1.5) close to the origin for v positive and small: in terms of (v, Z,w),
(1.5) becomes

v′ = v2(−Z + f2 + f3v),(2.44a)

Z ′ = −2Zv(−Z + f2 + f3v) +
ε

v

(
1 − w

v

)
,(2.44b)

w′ = ε2(μ− g1v
2Z).(2.44c)

Now, let Ψ(v, Z) = v2(−Z+f2+f3v); then, dividing the right-hand sides of (2.44) by Ψ(v, Z),
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v

Z

Δout

Σout

0

(vout , Zout)

(δ, Z( eT ))

Figure 11. The geometry of system (2.46).

we find

dv

dt̂
= 1,(2.45a)

dZ

dt̂
= −2

v
Z +

ε

vΨ(v, Z)

(
1 − w

v

)
,(2.45b)

dw

dt̂
=

ε2

Ψ(v, Z)
(μ− g1v

2Z);(2.45c)

here, t̂ denotes the new, rescaled time.
We first investigate the dynamics of Z in the transition. Let Δout denote the section in

(v, Z,w)-space corresponding to Δ
out

. Given an initial v-value vout for (1.5) in Δout, it then
follows that vout = O(

√
εT h,out(w̄)) = O(

√
−ε ln ε) must hold, which, together with (2.45a)

and w = O(ε) (see Assumption 1), implies that w
v is small throughout. Since, moreover,

dw
dt̂

= O(ε(ln ε)−1) by (2.45c), w remains almost constant, and we can neglect its evolution.
Hence, expanding Ψ in (2.45b) and truncating the resulting equation, we find that to

leading order,

dv

dt̂
= 1,

dZ

dt̂
= −2

v
Z +

ε

f2v3

(
1 + O(v, Z)

)
.

(2.46)

The transition from Δout to Σout under the flow of (2.46) is illustrated in Figure 11. Now, for
(vout, Zout) ∈ Δout, we can solve (2.46) explicitly to leading order by variation of constants,
which gives

(2.47) Z(v) =
(vout)2Zout

v2
+

ε

f2v2
ln

v

vout
+ O(ε).
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Here, we have neglected the effect of the inhomogeneous O(v, Z)-terms in (2.46), since it can
be shown that these contribute only terms of order O(ε) in (2.47). Now, the corresponding
expression in the original variable z is given by

z(v) = εz̃out +
ε

f2
ln

v

vout
+ O(ε)

for z̃out in Δ
out

, where we have used v2Z = z = εz̃. Recalling that vout = O(
√
−ε ln ε) as well

as that v = δ in Σout, we find

(2.48) z(T ) = εz̃out + O(ε ln ε);

here, T denotes the transition time from Δout to Σout.

We now use the estimate for z(T ) in (2.48) to derive an estimate for w(T ). Since dv =
Ψ(v, Z) dt (see (2.44a)) and since, moreover, Z = O(1), there certainly holds 1

2Ψ(v, 0) ≤
Ψ(v, Z). Hence, it follows that T satisfies the inequality

(2.49) T ≤ 2

∫ δ

vout

dv

Ψ(v, 0)
,

to leading order. The integral on the right-hand side of (2.49) can be evaluated explicitly,
giving

T ≤ 2

f2vout
− f3

f2
2

ln ε + O(1).

Integrating the w-equation (2.44c) directly and taking into account (2.43) as well as vout =
O(

√
−ε ln ε) and w =

√
εw̄, we obtain

w(T ) =
√
εw̄out + ε2

(
μT − g1

∫ δ

vout

z(v)

Ψ(v, 0)
dv

)
+ O(ε3)

=
√
εw̄ + ε

√
εT h,out(w̄)μ + O(ε

√
ε).

(2.50)

To complete the proof, it remains to collect the above estimates: with z̃out the z̃-value cor-
responding to hout (see (2.43)), we find the desired expression for zout in (2.42) from (2.48).
The estimate for the wout-component of Πout follows directly from (2.50).

2.5. The global return mechanism. In this subsection, we describe the global mechanism
that determines the return of trajectories of (1.5) from Σout back to Σin. The corresponding
return map will be denoted by Πret. Since the necessary analysis is largely based on standard
geometric singular perturbation (Fenichel) theory [11], we do not discuss it in full detail here;
moreover, for the sake of exposition, we will make a number of additional, simplifying assump-
tions throughout this subsection. As it turns out, the resulting leading-order asymptotics of
Πret will still give an approximation for the composite return map Π that is consistent to the
order considered here; cf. section 4 below.

In a first approximation, we may assume that z = f(v) is satisfied; i.e., for ε > 0 sufficiently
small, we may restrict ourselves to the singular dynamics of (1.5) on S0. We recall the
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v

z

vmax v0

Σin
Σout

S0 : {z = f(v)}

0v∗max

Figure 12. The geometry of the global return mechanism.

definition of the corresponding reduced system from (2.24):

v̇ = −(v − w),(2.51a)

ẇ = −ε
(
μ− g1f(v)

)
f ′(v).(2.51b)

Moreover, we can safely neglect the w-term on the right-hand side of (2.51a), since this term
is assumed to be small throughout; see Assumption 1. Then, we rewrite (2.51) with v as the
independent variable; i.e., we divide (2.51b) by (2.51a), which gives

(2.52)
dw

dv
= ε

(
μ− g1f(v)

)f ′(v)

v
.

Given an initial v-value v∗ on S0, (2.52) can be integrated explicitly as follows:

(2.53) w(v) − w(v∗) = εG(v∗, v, μ) := ε

∫ v

v∗

(
μ− g1f(σ)

)f ′(σ)

σ
dσ.

To describe the return of trajectories from Σout to Σin under the flow of (2.52) on S0, we
need to consider two separate parts of the transition, namely, the parts where v evolves along
Sa+

0 and Sa−
0 , respectively. (Note that by restricting ourselves to the slow flow on S0, we are

implicitly neglecting the transition from �− to Sa+
0 and from �+ to Sa−

0 , respectively, under
the fast flow of (1.5), since, by standard Fenichel theory [11], the corresponding contributions
to Πret are of higher order; cf. Figure 12.) The relevant integrals in (2.53) are given by

G(v0, vmax, μ) =

∫ vmax

v0

(
μ− g1f(σ)

)f ′(σ)

σ
dσ

and

G(v∗max,−ρ, μ) =

∫ −ρ

v∗max

(
μ− g1f(σ)

)f ′(σ)

σ
dσ,
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respectively. Here, vmax is the value of v for which f attains its local maximum, v∗max < 0
is defined by the requirement that f(v∗max) = f(vmax), and v0 > 0 is the second (nontrivial)
zero of f , with f(v0) = 0; see again Figure 12. To facilitate further the evaluation of these
integrals, we will approximate G(v∗max,−ρ, μ) by G(v∗max, 0, μ); i.e., we will evaluate the integral
over Sa−

0 down to and including �−. (In fact, a straightforward though lengthy computation
shows that this approximation will offset precisely the part of the O(

√
ε)-error term in Πin

that is independent of win; cf. Proposition 2.3.)
Hence, in sum, it follows that the w-component ŵ of Πret : Σout → Σin is given by

(2.54) ŵ = w + ε
(
G(v0, vmax, μ) + G(v∗max, 0, μ)

)
,

to lowest order. In particular, note that (2.54) determines the global “amount of return” of
w after one relaxation cycle, expressed as a function of the parameter μ. (This fact will prove
especially useful in section 3 below.) Let

Dμ =
d

dμ

(
G(v0, vmax, μ) + G(v∗max, 0, μ)

)
,

and observe that the rate of change of the return point with respect to μ is given by Dμε.
From the above, it follows that Dμ can easily be approximated to lowest order in terms of the
function G: by the definition of G and making use of the fact that

vmax = −2f2

3f3
, v∗max =

f2

3f3
, and v0 = −f2

f3
,

we obtain

(2.55) G(v0, vmax, μ) + G(v∗max, 0, μ) =
g1

18

f5
2

f3
3

− μ
f2
2

f3
.

Differentiating (2.55) with respect to μ, we find Dμ = −f2
2
f3

.
Similarly, the critical value μc of μ for which MMOs cease to exist in (1.5) is to leading

order determined by requiring ŵ = w in (2.54) or, alternatively, by finding μ such that (2.55)
equals zero; again, a simple computation shows

(2.56) μc =
g1

18

f3
2

f2
3

.

For μ > μc, the dynamics of (1.5) is in the pure relaxation regime in the sense that the only
admissible periodic trajectories are those with Farey sequence {L0}.

Remark 6. Note that the fold line �+ will in general contribute logarithmic terms (in ε)
to (2.56); see, e.g., [34]. In our case, however, these terms can be shown to be of higher order
and are hence negligible.

2.6. Summary: The return map Π : Δ− → Δ−. Given the analysis of the previous
subsections, we can now define the composite return map Π : Δ− → Δ−. We note that the
definition of Π will depend on the sign of h: if h > 0, the corresponding trajectory of (1.5) will
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MMOs IN THREE TIME-SCALE SYSTEMS 389

remain in the fold region, i.e., in the small-oscillation regime, and undergo another “loop.”
Hence, the return to Δ− is described by Π in that case; cf. Proposition 2.2. If, on the other
hand, h < 0, the trajectory will exit the fold region and undergo relaxation; i.e., it will leave
Δ− in the direction of the fast flow of (1.5), move “up” the slow manifold Sa+

ε under the slow
flow until it reaches �+, “jump” to Sa−

ε , and move “down” that manifold until it re-enters
a neighborhood of �−; cf., e.g., Figure 12. Therefore, the return to Δ− is described by the
composition of Πout, Πret, and Πin in that case; see Propositions 2.3 and 2.4 as well as the
discussion in section 2.5. Hence, in sum, the desired expression for Π is given as follows:

(2.57) Π(h, w̄) =

{
Π(h, w̄) if h > 0,

Πin ◦ Πret ◦ Πout(h, w̄) if h < 0.

3. Partial dimension reduction for the map Π. In this section, we show how the two-
dimensional return map Π formulated in section 2.6 can be accurately approximated by an
appropriately defined one-dimensional map, which we denote by Φ. More precisely, we will
prove that the resulting approximation error will be exponentially small in ε. The reduction
itself is carried out in two steps: first, the map Π is restricted from the two-dimensional section
Δ− to a union of one-dimensional curves ∪Cj

ε , to be specified in section 3.1. In the second step,
this restricted map is reduced further, in section 3.4, to a map Φ that is defined on the single
curve C−

ε . For a detailed study of the dynamics of Φ, we require some preparatory analysis:
in section 3.2, we approximate the derivative dΠ

dw̄ , which, in turn, allows us to derive estimates

for dΦ
dw̄ in section 3.5. The latter are needed for analyzing the contractive (or expansive)

properties of the reduced flow under Φ. In section 3.3, we characterize the secondary canards
introduced in section 1 above: we derive the defining conditions for these trajectories, and we
use those conditions to describe the family of the associated sectors of rotation. Finally, in
section 3.6, we study the dynamics of Φ on these sectors by combining the results of sections
3.3 and 3.5, and we derive precise asymptotic estimates for the bifurcation structure of the
resulting mixed-mode dynamics in (1.5).

3.1. The curves Cj
ε . In this subsection, we perform the first step in our exponentially

accurate reduction of Π to a one-dimensional map Φ. More precisely, we show how Π can be
restricted from Δ− to a union of one-dimensional curves ∪Cj

ε that will be defined below.
Recall the definition of the curves C−

ε and C+
ε from section 2.1, as well as the fact that C−

ε

can be represented as the graph of the function h0(w̄) defined in (2.39); see (2.40). For j ≥ 1,
we now make the inductive definition

Cj
ε = Π

({
(h, w̄) ∈ Cj−1

ε

∣∣ h > 0
})

,

where we define C0
ε ≡ C−

ε for the zeroth iterate of C−
ε under Π. Next, we show that for j ≥ 1,

each set Cj
ε can be written as the graph of a function hj(w̄), in analogy to the representation

of C−
ε given in (2.40). We first consider the case when j = 1. Note that by Proposition 2.2,

(h1, w̄1) = Π(h0(w̄), w̄) =
(
h0(w̄) +

√
εd

h0(w̄)√
ε

+ w̄d
h0(w̄)
w̄ + O(2), w̄ + εμT h0(w̄) + O(ε2)

)
,

where O(2) = O((
√
ε + w̄)2), as before. Since h0 =

√
εd0√

ε
+ w̄d0

w̄ + O(2) by (2.39) and since
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w̄

C−
ε

C+
ε

w̄c
0w̄c

1w̄c
j0

h(w̄)

Cj
ε

C1
ε

Figure 13. The curves Cj
ε for j ≥ 0, where C−

ε ≡ C0
ε .

dh
0√
ε
∼ d0√

ε
and dh

0

w̄ ∼ d0
w̄, respectively, it follows that

(3.1) h1(w̄) = 2
√
εd0√

ε + 2w̄d0
w̄ + O(2).

Similarly, for higher iterates of Π, there holds

(hj , w̄j) = Π
j
(h0(w̄), w̄)(3.2)

=

(
h0(w̄) +

√
ε

j∑
i=0

d
hi(w̄)√
ε

+ w̄

j∑
i=0

d
hi(w̄)
w̄ + O(ε), w̄ + 2εμ

j∑
i=0

T hi(w̄) + O(ε2)

)
and, therefore,

(3.3) hj(w̄) = (j + 1)
√
εd0√

ε + (j + 1)w̄d0
w̄ + O(2).

This gives the desired representation of Cj
ε as the graph of the function hj(w̄) in (3.3), with

(3.4) Cj
ε =

{
(hj(w̄), w̄)

∣∣ w̄ = O(
√
ε)
}

for j ≥ 1; cf. Figure 13.
Finally, we prove that the map Π can be restricted from Δ− to the union of the set of

curves Cj
ε with an only exponentially small error; here, Πj denotes the jth iterate of the map

Π defined in (2.57).
Proposition 3.1. Let (h, w̄) ∈ Δ−, and fix ε > 0 sufficiently small. Then, there exists k > 0

such that, for 1 ≤ j ≤ k, Πj(h, w̄) is exponentially close (in ε) to ∪k
j=1 C

j
ε .

Proof. First, observe that all trajectories must become exponentially close to Sa−
ε after

relaxation; consequently, they must return to Δ− exponentially close to C−
ε . This is equivalent

to saying that, for any (h, w̄) with h < 0, Π(h, w̄) is exponentially close to C−
ε .
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MMOs IN THREE TIME-SCALE SYSTEMS 391

We now prove that Π2(h, w̄) must be exponentially close to C−
ε ∪C1

ε . Let (h1, w̄1) = Π(h, w̄),
and note that if h1 < 0, the forward trajectory of (h1, w̄1) must undergo relaxation. Hence,
by the above argument, Π(h1, w̄1) = Π2(h, w̄) is exponentially close to C−

ε in that case. Let
us suppose that h1 ≥ 0 now and consider h1 = O(ε) first, which is in the domain of Π. Since
the map Π is induced by the flow of (2.8) and since T h1

(w̄1) = O(
√
− ln ε) for the return

time to Δ (cf. Appendix A), the expansion that can be incurred during that return is of at
most algebraic order in ε. Consequently, Π(h1, w̄1) must be exponentially close to C1

ε . If, on
the other hand, h1 is exponentially small, i.e., if O(e−

κ
ε ) for some κ > 0, the argument from

the first part of the proof can be applied to show that Π(h1, w̄1) is again exponentially close
to C−

ε .

The transitional regime between h1 = O(ε) and exponentially small h1 is more difficult
to describe. This issue is addressed in detail in [20], where it is shown, roughly speaking,
that the contraction and expansion in the z-direction cancel each other out to leading order
near the fold. An analogous property can be proven to hold in our case, which allows us to
conclude that Π(h1, w̄1) is exponentially close to C1

ε even in that transitional regime. Finally,
by an iteration of the above argument, it follows that Π3(h, w̄) must be exponentially close to
C−
ε ∪ C1

ε ∪ C2
ε , and so on.

To conclude the proof, we note that there exists a finite number k such that for any point
(h, w̄) with h > 0, there is 1 ≤ j ≤ k such that the h-coordinate of Πj(h, w̄) is negative, so that
Πj+1(h, w̄) must again be close to C−

ε . (Note that k gives the maximum possible number of
small oscillations a trajectory can undergo.) It follows that for any (h, w̄) ∈ Δ−, the trajectory
of (h, w̄) under Π must be exponentially close to the union of the sets Cj

ε , j = 1, . . . , k.

In the following, we will assume that the points on a trajectory of Π are on C−
ε or on one

of the curves Cj
ε . By Proposition 3.1, this assumption incurs at most an exponentially small

error. To find the restriction of Π to Cj
ε , we recall that Cj

ε can be represented as the graph
of a function hj(w̄); see (3.4). In analogy to the definition of Π in (2.42), we again have to
distinguish between hj > 0 and hj < 0 here. In the former case, Π reduces to Π, whereas in
the latter case, we have to take the composition of Πout, Πret, and Πin to describe the return
to ∪Cj

ε ; see the discussion in section 2.6 for details. Moreover, since Cj
ε is parametrized by w̄

(cf. (3.4)), it is natural to consider Π as a function of w̄. Hence, combining the definition of Π
in (2.42) with (2.9) for hj > 0 and with the estimates in (2.20), (2.42), and (2.54) for hj < 0,
respectively, we finally obtain

Π(w̄) ≡ Π(hj(w̄), w̄) =

⎧⎪⎨⎪⎩
w̄ + εμT hj(w̄)(w̄) + O(ε2) if hj(w̄) > 0,

w̄ + εμT hj(w̄),out(w̄) + w̄f2με ln ε

+
√
ε
(
G(0, vmax, μ) + G(v∗max, v0, μ)

)
+ O(ε) if hj(w̄) < 0.

(3.5)

3.2. The derivative of Π. To estimate the contractive (or expansive) properties of the
flow induced by Π on ∪Cj

ε , we need to estimate the derivative dΠ
dw̄ of Π. Given (3.5), it follows
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that the following approximation holds to leading order, i.e., up to an O(ε)-error:

(3.6)
dΠ

dw̄
∼

⎧⎪⎪⎨⎪⎪⎩
1 + εμ

dT hj(w̄)(w̄)

dw̄
if hj(w̄) > 0,

1 + εμ
dT hj(w̄),out(w̄)

dw̄
+ f2με ln ε if hj(w̄) < 0.

(Here, we have used the fact that the function G is independent of w̄; see (2.53).) Now,
recall that T h(0) = 2T h by (2.7), and note that, for (h, w̄) small, T h(w̄) depends much more
sensitively on h than on w̄. Therefore, to evaluate (3.6), we can in a first approximation
neglect the w̄-dependence of T h(w̄) and write

dT hj(w̄)(w̄)

dw̄
∼ 2

dT hj(w̄)

dw̄
.

Due to T h ∼ (−2 lnh)
1
2 (see Appendix A), it follows that

(3.7)
dT hj(w̄)(w̄)

dw̄
∼ − 2

hj(w̄)

1√
−2 lnhj(w̄)

(hj)′(w̄);

similarly, we can use the definition of T h,out(w̄) in (2.41) to conclude

(3.8)
dT hj(w̄),out(w̄)

dw̄
∼ − 1

hj(w̄)

1√
−2 lnhj(w̄)

(hj)′(w̄).

To complete the computation of the derivative of Π, we require approximate formulae for the
derivatives of hj with respect to w̄: by (3.3), it follows that

(3.9) (hj)′(w̄) = (j + 1)d0
w̄ + O(

√
ε, w̄).

Combining (3.7) and (3.9), we finally obtain

(3.10)
dT hj(w̄)(w̄)

dw̄
∼ − 2

hj(w̄)

1√
−2 lnhj(w̄)

(j + 1)d0
w̄

as well as

(3.11)
dT hj(w̄),out(w̄)

dw̄
∼ − 1

hj(w̄)

1√
−2 lnhj(w̄)

(j + 1)d0
w̄,

which can be substituted into (3.6) to obtain a more explicit expression for dΠ
dw̄ .

3.3. Secondary canards and sectors of rotation. Recall the definition of the jth sec-
ondary canard Γj

ε as a trajectory of (1.2) that undergoes j small oscillations (loops) during its
passage through the fold region. In this subsection, we derive the conditions on the rescaled
equations (2.8) by which these trajectories are defined. The corresponding analysis will re-
quire us to refine the results of Proposition 2.2; see Proposition 3.2 below. Given the family

D
ow

nl
oa

de
d 

01
/0

2/
13

 to
 1

39
.1

84
.3

0.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MMOs IN THREE TIME-SCALE SYSTEMS 393

of secondary canards {Γj
ε} for j = 0, . . . , k, we will define the corresponding family of sectors

of rotation, {RSj}. We will then analyze the geometry of these sectors; in particular, we will
estimate the sector width (Proposition 3.3), and we will show that it is independent of j to
lowest order. Here, we note that the family {RSj} will be crucial for the reduction of the
(two-dimensional) map Π to the (one-dimensional) map Φ in section 3.4 below. Finally, in
Proposition 3.4, we discuss the uniform validity of our asymptotic estimates.

Let (h0(w̄), w̄) ∈ C−
ε , as before, and recall the definition of the transition map Π for (2.8);

see Proposition 2.2. Moreover, let Ph and Pw̄ denote the projections onto the h-coordinate
and the w̄-coordinate, respectively. Then, the defining condition for the jth secondary canard
is given by

(3.12) PhΠ
j
(h0(w̄), w̄) = 0;

i.e., the h-coordinate of the jth iterate of (h0(w̄), w̄) under Π has to be zero. In other words,
we are interested in finding the points of intersection of subsequent iterates of C−

ε under Π
(i.e., of Cj

ε) with C+
ε . For j ≥ 1 fixed, let w̄c

j denote the corresponding solution of (3.12).

Then, w̄c
j fixes a point in C−

ε that will determine the location of the jth secondary canard Γj
ε;

see Figure 13 for an illustration. In particular, for the first secondary canard, we have the
requirement that

PhΠ(h0(w̄c
1), w̄

c
1) = 0.

Remark 7. Recall that C−
ε corresponds to the intersection of the locally invariant slow

manifold Sa−
ε in (1.5) with Δ, before the rescaling. Since the critical manifold S0 for (1.5)

is normally hyperbolic away from �±, it follows that the slow manifold Sε is unique up to
exponentially small terms [11, 14]. Once the corresponding sheets of Sa−

ε and Sr
ε are chosen,

the strong canard Γ0
ε is uniquely determined. Similarly, since the jth secondary canard Γj

ε,
with j ≥ 1, is defined as the trajectory lying in the intersection of the jth iterate of Sa−

ε

under Π with Sr
ε , all secondary canards will originate in the same sheet of Sa−

ε . Thus, we can
restrict ourselves to C−

ε when studying secondary canards.
Given the asymptotics of the return map Π : Δ− → Δ−, as derived in Proposition 2.2

(cf. (2.9)), we can write

(3.13) Π(h, w̄) = Π0(h, w̄) + O(ε),

where Π0(h, w̄) denotes the return map for the system

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3 +
√
εF (0, 0) + w̄G(0, 0),

z̄′ = v̄ − w̄,

w̄′ = 0.

(3.14)

We begin by showing that the leading-order approximation Π0, which is obtained by omitting
the O(ε)-terms in (3.13), is not sufficiently accurate to give nontrivial solutions of (3.12), i.e.,
solutions that are not exponentially close (in ε) to the canard critical value w̄c for (3.14).
(Recall that w̄c is the w̄-value corresponding to the strong canard Γ0

ε, after the rescaling in
(2.2), with

w̄c =
d0√

ε

d0
w̄

√
ε + O(ε)
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by (2.16).) Since Γ0
ε itself is only unique up to exponentially small terms, we conclude that

the map Π0 will admit no secondary canards.

The argument goes as follows: to determine the w̄-value corresponding to the first sec-
ondary canard Γ1

ε from Π0, one would have to solve PhΠ0(h
0(w̄), w̄) = 0. Solutions of this

equation are obtained by applying the implicit function theorem about (0, w̄c). (Here, we have
taken into account that h0(w̄c) = 0 by the definition of w̄c; cf. again (2.16).) However, since
w̄c corresponds precisely to the critical value of the canard parameter w̄ in the classical (two-
dimensional) scenario, it can be shown [20] that PhΠ0(0, w̄

c
0) is exponentially small. By the

implicit function theorem, it follows that any solution w̄∗ of the equation PhΠ0(h
0(w̄), w̄) = 0

close to w̄c must be such that |w̄∗ − w̄c| is exponentially small. (Note that this is exactly the
situation encountered in a two-dimensional canard explosion; see again [20].)

Hence, in order to find secondary canards, we must refine our analysis and include addi-
tional terms in the description of the “local” return map Π. In the following, we will use the
partially decoupled truncated system

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3 +
√
εF (0, 0) + w̄G(0, 0),(3.15a)

z̄′ = v̄ − w̄,(3.15b)

w̄′ = εμ(3.15c)

as the basis for our computation. As it turns out, this refinement will suffice to solve (3.12)
for w̄, in a nontrivial fashion, to leading order. Note that the only difference between (3.14)
and (3.15) lies in the w̄-equation: instead of keeping w̄ constant to lowest order, we let it
evolve in (3.15c), according to the leading-order approximation obtained for w̄′ from (2.8c),
w̄′ = ε(μ− g1εz̄ + O(ε)) ∼ εμ.

The relevant result on the refined asymptotics of Π is obtained as follows.

Proposition 3.2. Let Π : Δ
− → Δ− denote the return map for (3.15), and fix ε > 0

sufficiently small. Then,

(3.16) Π(h, w̄) =

(
PhΠ0(h, w̄) + εμK(h) + O(ε2)

w̄ + 2εμT h + O(ε2)

)
,

where Π0 denotes the return map for (3.14) and K is defined via

K(h) =

∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T (t + T h) dt.

Proof. Let w̄c
0 denote the critical w̄-value for the “refined” system (3.15). We begin

by showing that, to leading order, w̄c
0 equals w̄c, which is again the corresponding w̄-value

determined from Π0; cf. (2.16). Suppose that w̄ is given and that we wish to find h− such
that (h−, w̄) ∈ C−

ε holds. Solving (3.15c), we obtain w̄(t) = w̄+ εμt, which we then substitute
into (3.15a) and (3.15b):

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3 +
√
εF (0, 0) + (w̄ + εμt)G(0, 0),

z̄′ = v̄ − w̄ − εμt.
(3.17)
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Fix w̄, and suppose that h−0 is the h-value obtained from (3.14) such that (h−0 , w̄) ∈ C−
ε ; see

the proof of Proposition 2.2. Then, it follows that

(3.18) h− = h−0 − εμ

∫ 0

−∞

∂H

∂z̄
(γ̄0

0(t))G(0, 0)t dt,

again by the proof of Proposition 2.2. A similar computation shows that

(3.19) h+ = h+
0 + εμ

∫ ∞

0

∂H

∂z̄
(γ̄0

0(t))G(0, 0)t dt,

where h+ and h+
0 are defined by the requirement that (h+, w̄) ∈ C+

ε and (h+
0 , w̄) ∈ C+

ε in
(3.15) and (3.14), respectively. By symmetry, we find that

(3.20)

∫ 0

−∞
−∂H

∂z
(γ̄0

0(t))t dt =

∫ ∞

0

∂H

∂z
(γ̄0

0(t))t dt.

It follows that the defining condition for the strong canard in (3.15), which, for (2.8), is given
by h− = h+, reduces to h−0 = h+

0 + O(ε2) and, hence, that the corresponding critical values
of w̄ are indeed the same to leading order.

Finally, the approximation for Π in (3.16) is derived as in the proof of Proposition 2.2,
where we note that the additional K-term is due to the fact that h �→ h+−h− = h0 +εμK(h),
by (3.18), (3.19), and (3.20).

Remark 8. It can be shown that the inclusion of additional (higher-order) terms in (3.15)
will not alter the result of Proposition 3.2, since these terms will either drop out by symmetry,
as in the proof of Proposition 2.2, or contribute only terms of higher order in (3.16).

The asymptotics of K are studied in Appendix A, where we show that K(h) = 2d0
w̄T

h +
O(1); see Lemma A.5. Therefore, the defining condition for the first secondary canard,
PhΠ(h0(w̄), w̄) = 0, can be written as

(3.21) PhΠ0(h
0(w̄), w̄) = −εμK(h0(w̄)) + O(ε2),

to leading order. Moreover, recalling that w̄c
1 denotes the value of w̄ that solves (3.21), we

write w̄c
1 = w̄c

0 + Δw̄. Then, we have the following estimate for the width Δw̄ of the first
sector of rotation.

Proposition 3.3. With Δw̄ defined as above, there holds

(3.22) Δw̄ = −2εμ
√
−2 ln ε + O(ε)

for ε > 0 sufficiently small.
Proof. Making use of the definition of Π0 (see Proposition 2.2), we first rewrite PhΠ0(h

0(w̄),
w̄) as

PhΠ0(h
0(w̄), w̄) = PhΠ0(0, w̄

c
0) + PhΠ0(h

0(w̄), w̄) − PhΠ0(0, w̄
c
0)

= PhΠ0(0, w̄
c
0) + d

h0(w̄)
w̄ w̄ − d0

w̄w̄
c
0 +

√
ε
(
d
h0(w̄)√
ε

− d0√
ε

)
+ O(ε,

√
εΔw̄,Δw̄2)

= PhΠ0(0, w̄
c
0) +

(
d
h0(w̄)
w̄ − d0

w̄

)
w̄ + d0

w̄Δw̄ +
√
ε
(
d
h0(w̄)√
ε

− d0√
ε

)
+ O(ε,

√
εΔw̄,Δw̄2);
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see the discussion in section 3.1 as well as (2.39). Now, recall that w̄ = O(
√
ε) by Assump-

tion 1, and note that one can estimate d
h0(w̄)
w̄ − d0

w̄ = O(h0(w̄) ln(−h0(w̄))
3
2 ); cf. (A.9). Also,

since h0(w̄c
0) = 0 by (2.16) and (2.39), a Taylor expansion shows

(3.23) h0(w̄) = d0
w̄Δw̄ + O(Δw̄),

which implies in sum

PhΠ0(h
0(w̄), w̄) = PhΠ0(0, w̄

c
0) + d0

w̄Δw̄ +
√
ε
(
d
h0(w̄)√
ε

− d0√
ε

)
+ O

(
ε,
√
ε(− ln ε)

3
2 Δw̄,Δw̄2

)
.

Using the fact that PhΠ0(0, w̄
c
0) = O(e−

κ
ε ) for some κ > 0 as well as the estimates from (A.9)

and Lemma A.5, we conclude that the w̄-value corresponding to the first secondary canard,
w̄c

1, is determined from d0
w̄Δw̄ = −2εμd0

w̄T
h0(w̄) + O((

√
ε + Δw̄)2). Hence, we obtain

(3.24) w̄c
1 = w̄c

0 − 2εμT h0(w̄c
1) + O(ε),

which implies in particular |w̄c
1 − w̄c

0| � ε, i.e., |w̄c
1 − w̄c

0| > ε as well as |w̄c
1 − w̄c

0| ∼ ε. Due

to h0(w̄c
0) = 0 and dh0

dw̄ ∼ d0
w̄, it follows from the intermediate value theorem that h0(w̄c

1) � ε,
which, together with Lemma A.2, shows that the desired estimate for the size of the first
sector of rotation is given by

(3.25) w̄c
1 − w̄c

0 = Δw̄ = −2εμ
√
−2 ln ε + O(ε).

This completes the proof.
Let k > 1, and consider j = 0, . . . , k. We now set out to find an analogue of condition

(3.21) for the kth secondary canard Γk
ε . Let w̄c

k again denote the corresponding w̄-value,
consider an initial condition (h0(w̄), w̄) ∈ C−

ε , and let

w̄j = Pw̄Π
j
(h0(w̄), w̄),

as before. Note that w̄c
k must be a solution of the equation

PhΠ(hk−1(w̄k−1), w̄k−1) = 0

or, equivalently, of

(3.26) PhΠ0(h
k−1(w̄k−1), w̄k−1) = −εμK(hk−1(w̄k−1)) + O(ε2).

Observe that the condition in (3.26) is analogous to (3.21), with h0 replaced by hk−1; hence,
the structure of (3.21) is replicated at higher orders. Note also that it follows from (3.24) that
w̄c,1

1 = w̄c
0 +O(ε), where w̄c,1

1 is the first iterate of w̄c
1 under Π. This estimate, in turn, implies

that h1(w̄c
0) = O(ε); see (3.1). An argument analogous to the derivation of (3.24) now leads

to the estimate
w̄c,1

2 = w̄c
0 − 2εμT h(w̄c,1

2 ) + O(ε)

or, equivalently, to

(3.27) w̄c
2 = w̄c

0 − 2εμ
(
T h(w̄c

2) + T h(w̄c,1
2 )

)
+ O(ε).
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0

w̄
RS0RS1RS2RSk

w̄c
1 w̄c

0w̄c
2w̄c

k−1w̄c
k

Figure 14. The sectors of rotation, RSj.

Proceeding inductively, we obtain hk−1(w̄c
0) = O(ε) and

(3.28) w̄c
k = w̄c

0 − 2εμ

(k−1∑
j=0

T h(w̄c,j
k )

)
+ O(ε),

where we define w̄c,0
k ≡ w̄c

k. Finally, using Lemma A.2 to again approximate T h(w̄c,j
k ) by√

−2 ln ε + O(1) (nonuniformly in k), we obtain in analogy to (3.25) that

(3.29) w̄c
k = w̄c

k−1 − 2εμ
√
−2 ln ε + O(ε),

which, in conjunction with (2.19), verifies Assumption 1 above.
One question that naturally arises in this context is whether k > 1 can be chosen arbitrarily

large. Here, we show that our analysis, and, in particular, the estimate in (3.28), does not
hold uniformly in k with respect to ε; rather, (3.28) is valid for k fixed and ε sufficiently small.

This is due to the fact that the contributions coming from T h(w̄c,j
k ) become increasingly smaller

with k: since w̄c
k decreases with k and since h(w̄) ∼

√
εd0√

ε
+ w̄d0

w̄ with d0
w̄ < 0 (see (2.18)),

it follows that h increases with k. Therefore, T h ∼
√
−2 lnh decreases, and the O(ε)-terms

can come to dominate the 2εμ(· · ·)-terms in (3.28) if k is sufficiently large. However, in our
analysis, we had to assume that these terms are uniformly of lower order than ε, starting with
the leading-order approximation for Π in Proposition 2.2. In summary, for k “large,” ε thus
has to be chosen small enough to ensure that the estimate in (3.28) remains consistent.

Proposition 3.4. Fix any integer K > 0. Then, there exists an ε > 0 sufficiently small such
that the estimate in (3.28) holds for k ≤ K.

For j = 1, . . . , k, we now define the jth sector of rotation RSj as follows:

RSj =
{
(h0(w̄), w̄) ∈ C−

ε

∣∣ w̄c
j ≤ w̄ < w̄c

j−1

}
.

This definition provides a connection between the family of secondary canards {Γj
ε} and the

corresponding sectors of rotation: the jth sector, RSj , is bounded by the secondary canards
Γj−1
ε and Γj

ε in that the corresponding points w̄c
j−1 and w̄c

j on C−
ε define the boundaries of

RSj .
For notational purposes, we also introduce the zeroth sector RS0 via

RS0 =
{
(h, w̄) ∈ C−

ε

∣∣ w̄c
0 ≤ w̄

}
,

and we note that this definition is equivalent to requiring that h < 0; see (2.37). An illustration
of these sectors of rotation is given in Figure 14. In particular, since w̄c

j < w̄c
j−1 for any j ≥ 1,

the sector RSj lies further “to the left” of RS0 with increasing j.

D
ow

nl
oa

de
d 

01
/0

2/
13

 to
 1

39
.1

84
.3

0.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

398 MARTIN KRUPA, NIKOLA POPOVIĆ, AND NANCY KOPELL

It follows from the preceding analysis that all of the sectors RSj are of equal size to
leading order; cf. (3.29). (However, we conjecture that due to higher-order corrections, the
sector size actually decreases as j increases.) Moreover, for ε and μ fixed, the number of
sectors of rotation RSj , and, hence, also the number of corresponding secondary canards Γj

ε,
has to be finite: note that the frequency of the small-oscillation component in any mixed-mode
time series in (1.5) is globally bounded, with the bound given approximately by the frequency
determined by the Hopf bifurcation around the origin in (1.5). Additionally, the speed of
the drift in w̄ in (2.3c) is always positive for nonzero ε and μ, which implies that w̄ > w̄c

0 in
finite time. Hence, trajectories of (1.5) can undergo only a finite number of small-amplitude
oscillations before entering the relaxation regime, which implies that there can be only a finite
number of sectors of rotation lying in (0, w̄c

0); see again Figure 14.
Remark 9. It follows from Proposition 3.4 that both the number of secondary canards

and that of the corresponding sectors of rotation must go to infinity as ε → 0. However, it
is important to note that Proposition 3.4 gives no bound on the total number of secondary
canards for ε > 0. Rather, the integer K can be chosen arbitrarily large provided ε is small
enough, implying that our analysis is then valid for all k ≤ K.

Finally, we observe that the definition of RSj can be extended to a small neighborhood
of C−

ε by the flow of (2.8) and, hence, that the sectors of rotation can be interpreted as
two-dimensional subsets of Sa−

ε .

3.4. The return map Φ to C−
ε . To show how the “full” map Π (which a priori has to be

interpreted as a map that is defined on
⋃

Cj
ε) can be approximated accurately by a “simplified”

map, we introduce Φ : C−
ε → C−

ε as follows. Let k ≥ 0, and recall the definition of the kth
sector of rotation, RSk, from the previous subsection. Then, we define Φ via

(3.30) Φ(w̄) = Pw̄

(
Πin ◦ Πret ◦ Πout ◦ Π

k
(h0(w̄), w̄)

)
if (h0(w̄), w̄) ∈ RSk.

Note that Φ is a reinterpretation of Π in that it is a composition of the same components that
were used in the definition of Π in (3.5). However, it is defined on a different domain: the
definition in (3.30) reduces the analysis of the flow induced by (1.5) to that of a one-dimensional
map that is defined on the single curve C−

ε , which will allow us to study the recurrent dynamics
on RSk in considerable detail. Moreover, we note that Φ is still an exponentially accurate
approximation for the full, two-dimensional return map Π, which is again due to the fact that
all trajectories must return exponentially close to C−

ε after relaxation, i.e., after application
of Πret; cf. the proof of Proposition 3.1. One drawback of this simplification, however, lies in
the fact that the defining formula (3.30) for Φ is k-dependent; in other words, the definition
of Φ changes with the sector of rotation under consideration. This k-dependence will have to
be taken into account throughout the subsequent analysis.

Finally, we remark that the map Φ is smooth on each of the sectors RSk but that it has
discontinuities at the points w̄c

k and w̄c
k−1. We will not study the nature of these discontinuities

in detail, since we are not attempting to analyze the dynamics of Φ “very close” to the
secondary canards. Rather, we will restrict ourselves to describing Φ on the interior of the
individual sectors RSk.

3.5. The derivative of Φ. In this subsection, we derive estimates for the derivative
Φ′(w̄) := dΦ

dw̄ of Φ on the kth sector of rotation, RSk. We then investigate some of the
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properties of Φ′. The resulting estimates are needed for the analysis of the dynamics of Φ in
section 3.6 below and will allow us to characterize the admissible Farey sequences in (1.5) as
well as to describe the corresponding parameter intervals.

Let w̄ be such that (h0(w̄), w̄) ∈ RSk, and let w̄j = Pw̄Π
j
(h0(w̄0), w̄0), where we set

w̄0 ≡ w̄. Given the definition of Φ in (3.30), we have the following result.
Lemma 3.5. To leading order, there holds

dΦ(w̄)

dw̄
= 1 − εμd0

w̄

(k−1∑
j=0

2(j + 1)
1

hj(w̄j)

1√
−2 lnhj(w̄j)

+ (k + 1)
1

hk(w̄k)

1√
−2 lnhk(w̄k)

)(3.31)

+ O(ε ln ε)

for the derivative of Φ on RSk.
Proof. By the chain rule and taking into account the definitions of Π, Πin, and Πout, as

well as of Πret in Propositions 2.2, 2.3, and 2.4 as well as in (2.54), respectively, we have

dΦ(w̄)

dw̄
=

k−1∏
j=0

(
1 + 2εμ

dT hj(w̄)

dw̄

)(
1 + εμ

dT hk(w̄),out

dw̄

)
+ O(ε ln ε)

= 1 + εμ

k−1∑
j=0

2
dT hj(w̄)

dw̄
+ εμ

dT hk(w̄),out

dw̄
+ O(ε ln ε)

= 1 − εμd0
w̄

(k−1∑
j=0

2(j + 1)
1

hj(w̄j)

1√
−2 lnhj(w̄j)

+ (k + 1)
1

hk(w̄k)

1√
−2 lnhk(w̄k)

)
+ O(ε ln ε),

where the last step follows from (3.10) and (3.11).
Since we assume that hj(w̄j) = O(ε

√
− ln ε) (see the proof of Proposition 3.3 above), we

can write
1√

−2 lnhj(w̄j)
=

1√
−2 ln ε

(
1 + O(1)

)
.

This gives a somewhat less accurate but more concise estimate for the derivative of Φ:

(3.32)
dΦ(w̄)

dw̄
∼ 1 − εμd0

w̄

1√
−2 ln ε

(k−1∑
j=0

2(j + 1)

hj(w̄j)
+

k + 1

hk(w̄k)

)
.

(Note that again due to hj(w̄j) = O(ε
√
− ln ε), the O(ε)-correction in (3.32) will actually be

of the order (ln ε)−1 and that we can therefore neglect the O(ε ln ε)-terms in (3.31).)
To simplify this estimate further, we have to distinguish between different k-values in

(3.32). We first focus on the case where k > 0; the case when k = 0 will be discussed
separately.

Given k > 0, fix an initial condition w̄0 ∈ RSk, and let w̄1, w̄2, . . . , w̄k be defined as in
section 3.4 above; i.e., let w̄j be the jth iterate of w̄0 under Π. Then, it follows directly from
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(3.32) that Φ′ < 1 if w̄0 ≈ w̄c
k, respectively, that Φ′ > 1 if w̄0 ≈ w̄c

k−1. We are interested in
approximating more precisely the size of the w̄-intervals where Φ′ is less than 1 and greater
than 1, respectively.

To that end, let Δw̄j = w̄c
j−1 − w̄c

j be the width of the jth sector of rotation RSj , and
recall that we have the estimate

Δw̄j ∼ 2εμ
√
−2 ln ε,

independent of j to leading order. Given any w̄0 ∈ RSk, we can write w̄0 = w̄c
k + νΔw̄k for

some ν ∈ [0, 1]; i.e., the sector RSk will be parametrized by the variable ν in the following.
Moreover, for any j ≥ 0, we have the following estimates:

w̄c
j ∼ w̄c

0 − 2jεμ
√
−2 ln ε,

w̄j ∼ w̄c
0 − 2

(
(k − j) − ν

)
εμ

√
−2 ln ε,

hj(w̄j) ∼ −2d0
w̄(j + 1)

(
(k − j) − ν

)
εμ

√
−2 ln ε,

where the last expression is a consequence of (3.3). Using (3.32), we obtain

(3.33)
dΦ(w̄)

dw̄
∼ 1 − ωk(ν)

4 ln ε
,

where the function ωk is defined via

(3.34) ωk(ν) =

k−1∑
j=0

1

(k − j) − ν
− 1

2ν
.

Finally, we consider the case where k = 0. For any initial condition w̄0 ∈ RS0, we can
write w̄0 = w̄0

c + 2νεμ
√
−2 ln ε, where ν is now some positive number. Then,

(3.35)
dΦ(w̄)

dw̄
∼ 1 − ω0(ν)

4 ln ε
,

with ω0(ν) = − 1
2ν . Observe that, clearly, Φ′(w̄) < 1 for any w̄ ∈ RS0.

Remark 10. Note that for k ≥ 0, the function ωk(ν) defined in (3.34) is increasing on [0, 1]
and that ωk changes sign exactly once if k > 0; see Figure 15.

The zeros of ωk(ν), k > 0, give the approximate sizes of the subintervals of RSk where Φ′

is greater than 1 and less than 1, respectively. More precisely, we have proven the following
result.

Proposition 3.6. For k > 0 and ε > 0 sufficiently small, the subinterval of RSk on which
Φ′(w̄) < 1 is approximately given by (w̄c

k, w̄
c
k + 2νk0με

√
−2 ln ε), where νk0 denotes the unique

zero of ωk on RSk.

3.6. The dynamics of Φ. In this subsection, we analyze the dynamics of the reduced
map Φ in more detail, combining the results obtained so far in section 3. The aim of our
analysis is to relate the properties of Φ to the resulting mixed-mode dynamics in (1.5) and
to estimate the relevant parameter (μ-)range corresponding to this dynamics. Our first result
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Figure 15. The function ωk on [0, 1] for k = 0, . . . , 3.

(Theorem 3.7) concerns the existence and stability of 1k-type orbits, i.e., of periodic orbits
with symbolic (Farey) sequence {1k}; these orbits correspond to the recurrent dynamics of
(1.5) on the kth sector of rotation, RSk. Then, in Theorem 3.9, we derive conditions for when
a given orbit will pass through RSk. In Theorem 3.10, Proposition 3.11, and Corollary 3.12,

we apply these conditions to classify the periodic orbits of the more general type {Lkj
j }, with

Lj , kj ≥ 1, that can “typically” occur in (1.5).
We start by summarizing some of the features of Φ which follow directly from the results

of sections 3.3 and 3.5; see Figure 16 for a qualitative illustration.
(i) Φ must be decreasing close to the left boundary of RSk and increasing on most of RSk,

with w̄c
k + νk0Δw̄k giving an estimate of the point where Φ′ becomes greater than 1;

cf. Proposition 3.6.
(ii) The derivative Φ′ must change sign near w̄k

min := w̄c
k + νkminΔw̄k, with νkmin de-

termined by the condition that ωk(ν
k
min) = 4 ln ε. This implies in particular that

νkmin = O((ln ε)−1) and, hence, that w̄k
min ≈ w̄c

k. (Note that our analysis does not
prove the uniqueness of this minimum, though.)

(iii) A simple computation along the lines of section 3.5 shows that Φ(w̄k
min) = Φmin +O(ε)

is independent of k to lowest order, where

(3.36) Φmin := w̄c
0 +

√
ε
(
G(v0, vmax, μ) + G(v∗max, 0, μ)

)
+ εμ

√
−2 ln ε;

cf. (2.54). Indeed, given the formula for Π in (3.5), as well as Pw̄Πk(w̄k
min) ∼ w̄0

min, it
follows with (3.30) that

Φ(w̄k
min) ∼ Φ ◦ Pw̄Πk(w̄k

min)

∼ w̄0
min + εμT h(w̄0

min),out + w̄0
minf2με ln ε +

√
ε
(
G(v0, vmax, μ) + G(v∗max, 0, μ)

)
.

Since ν0
min � (ln ε)−1 implies w̄k

min ∼ w̄c
0 and since T h(w̄0

min),out ∼
√
−2 ln ε, one obtains

(3.36).
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RS0RS1RSk RSk−1

w̄

Φ(w̄)

w̄c
k w̄c

k−1 w̄c
0w̄c

k−2 w̄c
1

Figure 16. A qualitative illustration of the map Φ.

By definition, fixed points of Φ on RSk correspond to periodic 1k-type orbits in (2.1). We
are interested in estimating the parameter range (i.e., the μ-interval) in which such orbits can
be observed.

Theorem 3.7. For ε > 0 sufficiently small, the periodic orbit of type 1k, k ≥ 1, exists and
is stable on a μ-interval of the form (μk, μk), with

(3.37) Δμk := μk − μk = −
μk

√
2Dμ

√
ε√

− ln ε

∫ νk0

νk−2

ωk(ν) dν + O
(√

ε(− ln ε)−1
)
;

here, νk−2 denotes the ν-value that solves ωk(ν) = 8 ln ε.
Proof. Note that MMO orbits with Farey sequence {1k} correspond to solutions of the

equation

(3.38) Φ(w̄, μ̄) = w̄

with w̄ ∈ RSk, where we have now included explicitly the μ-dependence of Φ. We are
interested in determining μ in (3.38) so that the corresponding fixed point of Φ will be stable.
To that end, let νk−2 be defined as in the statement of the theorem, and note that for w̄ ∈ RSk,
the leading term of Φ′(w̄, μ) satisfies |Φ′(w̄, μ)| < 1 if and only if w̄ = w̄c

k + νΔw̄k with
ν ∈ (νk−2, ν

k
0 ); cf. (3.33).

Now, if (3.38) is interpreted as defining implicitly a function μ = μ(w̄), we can set μk =

μ(w̄c
k + νk−2Δw̄k) and μk = μ(w̄c

k + νk0Δw̄k). We will use the fundamental theorem of calculus
to estimate Δμk = μk − μk. Applying implicit differentiation to (3.38), we obtain

dμ

dw̄
= −

∂
∂w̄Φ(w̄, μ) − 1

∂
∂μΦ(w̄, μ)

.
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Since
∂

∂μ
Φ(w̄, μ) ∼ Dμ

√
ε

(recall the discussion in section 2.5), it follows that

dμ

dw̄
∼ 1

4Dμ
√
ε ln ε

ωk(ν)

for w̄ = w̄c
k + νΔw̄k with ν ∈ (νk−2, ν

k
0 ); see (3.33). Therefore, using dw̄

dν ∼ Δw̄k, we find

(3.39) Δμk = μk − μk =

∫ w̄(μk)

w̄(μk)

dμ

dw̄
dw̄ ∼ 1

4Dμ
√
ε ln ε

Δw̄k

∫ νk0

νk−2

ωk(ν) dν.

Given that Δw̄k = 2εμ
√
−2 ln ε + O(ε), the result follows.

Observe that by the definition of νk0 , μk marks the value of μ for which the orbit of
type 1k disappears in a saddle-node bifurcation of Φ, since Φ′ = 1 there. In the following, we
summarize a few additional observations which follow from Theorem 3.7:

(i) Note that∫
ωk(ν) dν = ln |Γ(−k + ν)| − ln |Γ(1 + ν)| − 1

2
ln ν = −1

2
ln ν + O(1),

where Γ denotes the standard Gamma function. Since the leading-order contribution
to the corresponding definite integral in (3.39) comes from νk−2 = O((ln ε)−1), one can
show that, for ε sufficiently small,

Δμk =
μk

√
2Dμ

√
ε ln(

√
− ln ε)√

− ln ε
+ O

(√
ε(− ln ε)−

1
2
)
.

Given that the double logarithmic term is “almost constant” (at least if ε does not
vary over too many orders of magnitude), it follows that Δμk is roughly of the order√
ε(− ln ε)−

1
2 as ε → 0.

(ii) The estimate in (3.37) implies that, for ε fixed, the ratio of the widths of the stability
intervals of “adjacent” periodic orbits (i.e., of orbits of the types 1k+1 and 1k) is
approximately given by the ratio of the corresponding integrals of ωk+1 and ωk. Since

{νk0} decays faster with k than {νk−2} (see Figure 15), it follows that
∫ νk0
νk−2

ωk(ν) dν

decreases. Hence, the sequence {Δμk} is decreasing with k.
(iii) The well-developed theory of unimodal maps [25] implies that the μ-interval for which

there is an attractor for Φ in RSk is also of size (μk, μk), to lowest order. Hence, for

μ in any interval given approximately by (μk, μk+1), the dynamics of Φ must involve
at least two different sectors.

Next, we derive a set of conditions under which a given periodic orbit will have to pass
through the kth sector of rotation RSk. For the remainder of this subsection, we will consider
only points w̄ ∈ RSk, k ≥ 1, for which w̄ = w̄c

k + νΔw̄k, with

(3.40) ν ∈
(

1

(− ln ε)p
, 1 − 1

(− ln ε)p
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for some fixed integer p > 1. Note that the condition in (3.40) is “generic” in that it covers
“most of” RSk; to put it differently, only w̄-values that are “very close” to the boundary
points w̄c

k and w̄c
k−1 are excluded by (3.40).

We begin by proving a simple preparatory result.

Lemma 3.8. Consider w̄ = w̄c
j + νΔw̄j ∈ RSj for some j ≥ 1, and assume that (3.40)

holds. Then, if w̄ ≤ w̄j
min,

(3.41) |Φ(w̄) − Φmin| = O
( ln(− ln ε)

− ln ε

)
Δw̄j ,

whereas if w̄ > w̄j
min,

(3.42) |Φ(w̄) − Φmin| �
(

1 + O
( ln(− ln ε)

− ln ε

))
Δw̄j .

Proof. Let νjmin be the ν-value corresponding to w̄j
min. By the fundamental theorem of

calculus, we have

Φ(w̄) − Φmin = Δw̄j

∫ ν

νjmin

(
1 − ωj(η)

4 ln ε

)
dη = Δw̄j

(
ν − νjmin − 1

4 ln ε

∫ ν

νjmin

ωj(η) dη

)
.

Since ν is constrained by condition (3.40), we find∫ ν

νjmin

ωk(η) dη = O(ln ν) + O(ln νjmin) = O
(
ln(− ln ε)

)
;

see also the proof of Theorem 3.7. Now, if ν ≤ νjmin, then νjmin − ν = O((− ln ε)−1), and the

estimate in (3.41) follows. If, on the other hand, ν > νjmin, then ν − νjmin < 1, which implies
(3.42).

Next, we show that orbits satisfying the generic condition in (3.40) will typically pass
through the kth sector of rotation if, additionally, Φmin ∈ RSk holds.

Theorem 3.9. Assume that Φmin ∈ RSk and that, for some q satisfying 0 < q < 1
2 ,

(3.43) w̄c
k−1 − Φmin � 1

(− ln ε)q
Δw̄k and Φmin − w̄c

k � 1

(− ln ε)q
Δw̄k.

Consider a periodic orbit {w̄0, . . . , w̄j}, with Φ(w̄
) = w̄
+1 for � = 0, . . . , j − 1, and let
{ν0, . . . , νj} be the corresponding values of ν. Assume that (3.40) holds. Then, the orbit in
question must pass through RSk provided ε > 0 is sufficiently small.

Proof. We will assume that k ≥ 2 in the following and will omit the remaining cases for
the sake of brevity.

First, note that Lemma 3.8 and the assumption in (3.43) imply that, for any w̄ ∈ C−
ε ,

Φ(w̄) ∈ RSk ∪ RSk−1 ∪ RSk−2. This follows from the estimates below, which are a straight-
forward consequence of (3.41), (3.42), and (3.43): we begin by assuming that w̄ ∈ RSk;
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then,

Φ(w̄) − w̄c
k−1 = Φ(w̄) − Φmin + Φmin − w̄c

k−1

� Φmin − w̄c
k−1 + Δw̄k

(
1 + O

( ln(− ln ε)

− ln ε

))
� Δw̄k

(
1 + O

(
(− ln ε)−q

))
,

which implies that Φ(w̄) can be no higher than RSk−2 in that case.
Similarly, for w̄ ∈ RSk−1 ∪RSk−2, we have the estimate

Φ(w̄) − w̄c
k−2 = Φ(w̄) − Φmin + Φmin − w̄c

k−2

� Φmin − w̄c
k−2 + Δw̄k−1

(
1 + O

( ln(− ln ε)

− ln ε

))
� O

(
(− ln ε)−q

)
Δw̄k−1;

see (3.41) as well as (3.43). It follows that for w̄ ∈ RSk−1 ∪ RSk−2, Φ(w̄) can be no higher
than RSk−2.

Finally, for any point w̄ ∈ RSk−2 which is contained in the image of Φ, there holds

w̄ − w̄c
k−2 � O

(
(− ln ε)−q

)
Δw̄k−1

and, consequently,

(3.44) Φ(w̄) � w̄c
k−1 + O

(
(− ln ε)−q

)
Δw̄k−2

by (3.41). It follows that any recurrent set, including the periodic orbit {w̄0, . . . , w̄j}, is
contained in RSk ∪RSk−1 ∪RSk−2.

Now, suppose that such a periodic orbit is given, and note that there is an unstable fixed
point w̄∗ of Φ in RSk−1 close to w̄c

k−2. Assume that w̄0 > w̄∗. Then, the trajectory of w̄0

under Φ must eventually enter RSk−2; moreover, by (3.44), it must terminate at a point w̄j

with w̄j < w̄∗.
Looking at the forward trajectory of w̄j , we see that it is decreasing until it falls below

w̄k−1
min . In other words, there exists � ≥ 0 such that w̄j , w̄j+1, . . . , w̄j+
−1 are greater than

or equal to w̄k−1
min and w̄j+
 is less than or equal to w̄k−1

min . Hence, we conclude that either
w̄j+
 ∈ RSk or, by combining (3.41) and (3.43), w̄j+
+1 ∈ RSk.

It remains to comment briefly on the assumption put forward in (3.43): given that
Φ(w̄k

min) ∼ Φmin (cf. (3.36)) as well as that necessarily w̄c
k � Φmin � w̄c

k−1 by (3.43), one
can show that, to lowest order,

(2k − 1)
μc

Dμ

√
ε
√
−2 ln ε ≤ μc − μ ≤ (2k + 1)

μc

Dμ

√
ε
√
−2 ln ε

must hold for (3.43) to be true, with μc defined as in (2.56). This condition is consistent with
the estimate for Δμk, e.g., given after the proof of Theorem 3.7, and will typically be satisfied
if q is not “too large.”
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Remark 11. The restriction to q < 1
2 in (3.43) is made to ensure that Φmin ∈ RSk will

imply Φ(w̄j
min) ∈ RSk for 0 ≤ j ≤ k−1, since we can a priori conclude only Φmin−Φ(w̄j

min) =
O(ε) from (3.36).

One important consequence of Theorem 3.9 is that it allows us to give a precise qualitative
description of the segments that the symbolic sequence of a given periodic orbit can contain.
For any such orbit, let k ≥ 1 be the largest integer such that the segment 1k is contained in
the corresponding Farey sequence. With this convention, k = 1 implies that the sequence can
contain only the segments 11 and 10; restrictions on the sequences that can occur when k ≥ 2
are given in the following theorem.

Theorem 3.10. Assume that k ≥ 2. Then, a periodic orbit can occur if its sequence consists
of segments of the form 1k (some number of times in succession), 1k−1 (some number of times
in succession), and 1k−2 (preceded by 1k and followed by 1k−1 or 1k).

Proof. First, let us assume that (3.43) is satisfied. Then, the result already follows from
the proof of Theorem 3.9.

Now, suppose that (3.43) does not hold as well as that Φmin ∼ w̄c
k−1. Then, the steps

given in the proof of Theorem 3.9 can be retraced until almost the very end, namely, up
to the statement that w̄j+
 will be less than or equal to w̄k−1

min for some � ≥ 0. Instead, if
w̄j+
 ∈ RSk−1, we can now conclude only that w̄j+
+1 ∈ RSk ∪ RSk−1. The orbit can then
either remain in RSk−1 or enter RSk and subsequently jump back to either RSk−1 or RSk−2.
If, on the other hand, Φmin ∼ w̄c

k, the same kind of sequences can occur, with k shifted upward
by 1. This completes the proof.

Given the result of Theorem 3.10, a natural question that arises is how many times in
succession a given segment can occur.

Proposition 3.11. Let k ≥ 2. If a periodic orbit involves all of the segments 1k−2, 1k−1,
and 1k, then both 1k−2 and 1k can occur at most once in succession.

Proof. First, note that an orbit can contain all of the segments 1k−2, 1k−1, and 1k only if
Φmin ∼ w̄c

k−1; see the proofs of Theorems 3.9 and 3.10. It follows that any point on the orbit

that lies in RSk−2 must lie close to w̄k−1
min and, hence, that it must be mapped to RSk−1∪RSk

under Φ. Similarly, any point on the orbit in RSk must be close to w̄c
k−1 and therefore must

be mapped to RSk−2 ∪RSk−1.

Finally, Theorem 3.10 allows us to make a precise statement on the periodic orbits of the

type {Lkj
j } that can be observed for Lj ≥ 2.

Corollary 3.12. For k ≥ 2, L ≥ 2, and L+k ≥ 5, there are no periodic orbits which contain
the segment Lk and which pass through the part of RSk defined by (3.40).

Proof. Since the segment Lk corresponds to k small loops followed by L large relaxation
excursions, this segment can also be written in the form 1k(10)L−1. If k = 0 or k = 1, Theo-
rem 3.10 places no restrictions on the existence of such segments. Furthermore, Theorem 3.10
implies that the only remaining admissible k-value is 2 and that L− 1 = 1 must hold in that
case, implying L = 2.

To put it differently, one will not “generically” observe Farey sequences of the form {Lkj
j }

if Lj ≥ 3; if Lj = 2, only segments of the form 21 or 22 will occur. The segment L1
j , however,

is admissible for any Lj ≥ 1; this is due to “leakage” from RS0 in the sense that Φ(w̄) � w̄
for w̄ ≈ w̄c

0, implying that trajectories can “drift” back into RS1.
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Finally, we note that we make no assumptions about the stability of the periodic orbits
under consideration, neither in Theorem 3.10 nor in Corollary 3.12; indeed, our results apply
to any orbit for which the condition in (3.40) is satisfied.

4. Conclusions and discussion. In the present article, we have studied mixed-mode oscil-
lations (MMOs) in a three-dimensional model system of ordinary differential equations with
three distinct time-scales; see (1.5). Here, the “superslow” variable w has been playing the role
of a “dynamical parameter” which makes the (v, z)-subsystem of (1.5) move slowly through a
canard explosion. One major advantage of our modeling ansatz is the fact that the resulting
system dynamics is “almost” two-dimensional in the sense that the integrable structure close
to a canard explosion can be exploited to derive the return map Π for the induced flow.

We are aware of two specific examples of three time-scale systems which exhibit mixed-
mode dynamics akin to that studied here. One is a compartmental model for the dopaminergic
neuron, first derived by Wilson and Callaway [37] and subsequently analyzed in [23] and [24],
which in fact served as our motivation for formulating the simplified model system consid-
ered in this article. The other example is a model for a chemical reaction, discussed by
Moehlis [28]. Although these two systems are not exactly analogous to the one studied here,
they do share many of the underlying features and can be analyzed in a similar manner; see
also the upcoming article [18].

The three time-scale model studied in this article is one realization of a more general canard
mechanism that has been put forward to explain the mixed-mode dynamics often observed
in multiscale dynamical systems [36, 2]. This generalized canard mechanism is defined as a
combination of dynamical (local) passage through a canard point and a (global) return that
resets the system dynamics after the passage has been completed; cf. also section 1. Other
mechanisms that do not explicitly involve canards have been proposed to explain MMOs;
examples include break-up of an invariant torus [21], loss of stability of a Shilnikov orbit [16],
slow passage through Hopf bifurcation [22], and subcritical Hopf-homoclinic bifurcation [12,
13]. While these other mechanisms are consistent with some of the characteristic features of
MMOs, they cannot typically explain all of them; see [2]. On the other hand, the generalized
canard mechanism is consistent with most examples known to us of systems exhibiting mixed-
mode-type behavior [2, 17]. In particular, we note that both the Shilnikov and the delayed
Hopf mechanisms can be realized as an aspect of it. These and similar questions are the topic
of ongoing research; see, e.g., the forthcoming article [3].

An explanation of mixed-mode dynamics based on the Shilnikov mechanism has been
suggested by a number of authors (cf. [16] and the references therein) and is based on the
similarities between the respective bifurcation sequences as well as on the presence of Shilnikov-
type equilibria in systems that exhibit mixed-mode-type behavior. Roughly speaking, the
Shilnikov phenomenon is the unfolding of a homoclinic orbit to an equilibrium of saddle type
with a one-dimensional stable manifold and a two-dimensional unstable manifold of spiral
focus type. Since Shilnikov-type equilibria are present in canard-based systems that involve
a so-called folded saddle-node (of type II), we propose that the latter systems do realize a
“suitably modified” Shilnikov mechanism; cf. [3]. Similarly, a case of slow passage through
Hopf bifurcation is seen in the dynamics near a folded saddle-node (of type II) and plays
an important role there. This observation was made already in [26] and will also be fully
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elucidated in [3].

Finally, it is important to note that the equations in (1.2) are neither of Shilnikov type
nor of slow-passage-through-Hopf-bifurcation type, though they clearly realize the generalized
canard mechanism. Moreover, due to our assumption that μ + φ = O(1) in (1.2), the mixed-
mode dynamics analyzed in this article is neither of folded-node type nor of folded saddle-node
type; cf. section 1. More precisely, in a folded-node system, i.e., for μ+φ = O(1) and negative
in (1.2), the dynamics in the fold region would be strongly contractive and not oscillatory.
Furthermore, this dynamics would be transient, since μ would cause w to increase until the
relaxation regime in (1.1) is reached. The MMO patterns observed in this case would be regular
and robust; irregular time series with two or more successive relaxation cycles would rarely
occur upon variation of μ only. In a folded saddle-node system with μ small but φ large, on the
other hand, one would typically observe slow passage through a Hopf bifurcation; moreover,
the resulting mixed-mode dynamics would again be fairly regular in the sense that trajectories
would generically consist of one relaxation excursion followed by a large number of “loops”;
the amplitudes of these loops would be relatively small. This distinction is clearly reflected in
the dynamics of (1.5), as predicted analytically in section 3 and verified numerically below.

Some of our findings on the mixed-mode dynamics of (1.5) are summarized and discussed
in detail in the subsequent paragraphs.

A principal result of our analysis is the accurate reduction of the global return map Π
(which is defined as a two-dimensional map on the Poincaré section Δ−) to a one-dimensional
map Φ which can be studied in a standard, straightforward way.

The first step of this reduction entails the restriction of Π from Δ− to the union of a set
of (one-dimensional) intersecting curves. (These curves, which we have denoted by Cj

ε , are
defined recursively, with C0

ε ≡ C−
ε the flow image of the attracting slow manifold Sa−

ε in Δ and
Cj
ε = Π(Cj−1

ε ), j ≥ 1.) Most importantly, by Proposition 3.1, this reduction incurs an only
exponentially small error; i.e., the sequence {Cj

ε} very accurately approximates the attractor
of Π.

Then, in a second step, another reduction is performed, which yields a one-dimensional
map Φ that is defined on the curve C−

ε . This map again gives an exponentially accurate
approximation, this time for the (k + 1)th iterate of Π on the kth sector of rotation, RSk.
(In other words, Φ restricted to RSk describes the recurrent dynamics on RSk with an expo-
nentially small error.) Even though the map Φ is multimodal and possibly discontinuous at
the boundaries of RSk, it is one-dimensional and thus can be analyzed using techniques from
one-dimensional discrete dynamics. It is interesting to note that, conceptually, the reduction
to Φ is valid for any finite k, since the return of trajectories under Π will always eventually
be to C−

ε . However, given the nonuniformity of our results in k (Proposition 3.4), one might
have to consider higher-order terms (in ε) or, alternatively, take ε “very small” to describe
the asymptotics accurately for “very large” k.

Some authors [23, 27] postulate a reduction to the dynamics of an interval map that
would capture the properties of MMOs in systems of the type of (1.2). The fact that all MMO
trajectories must pass extremely close to Sa−

ε is a strong indication that the system dynamics of
(1.2) is almost two-dimensional in nature. Similarly, one might expect that the corresponding
return map Π is almost one-dimensional. However, our results imply that a straightforward
reduction of Π to a one-dimensional map defined on a single interval is not possible, whereas
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the one-dimensional map Φ, which is defined on a set of intervals corresponding to the sectors
of rotation, approximates Π with an only exponentially small error. By contrast, in [23], the
return is approximated by a piecewise linear map, with a jump discontinuity corresponding
to the strong canard, that admits a large variety of potential Farey sequences. Our analysis,
on the other hand, resolves precisely the rich bifurcation structure of Φ close to the strong
canard of (1.2), allowing us to characterize exactly which Farey sequences will actually be
observed in (1.2), as well as to give accurate estimates of the relevant parameter intervals. (It
is important to note, though, that the analysis in [23] does not focus primarily on resolving
the canard structure in detail; rather, it is concerned with the system dynamics close to Hopf
bifurcation which we do not analyze in detail here.)

The properties of Φ on RSk directly determine those of the corresponding MMO trajecto-
ries of type 1k, i.e., of periodic orbits for (1.5) which pass through the kth sector of rotation.
Hence, a large part of our analysis is devoted to establishing the qualitative and quantitative
asymptotics of the reduced return map Φ. More specifically, our results on the bifurcation
structure of Φ as well as on the Farey sequences Lk0

0 Lk1
1 . . . of the corresponding MMO trajec-

tories include a proof of the existence and stability of 1k-type orbits (Theorem 3.7), a precise
description of the ordering of the Farey sequences that will “generically” occur for Lj ≡ 1
(Theorem 3.10 and Proposition 3.11), as well as a statement on the “improbability” of ob-

serving orbits with symbolic sequence {Lkj
j } when Lj ≥ 3 (Corollary 3.12). It is important to

note that these restrictions on the dynamics of Φ are by no means exhaustive; rather, they
provide a sample of the types of results that can be proved using the techniques of section 3.
A more comprehensive analysis, however, is beyond the scope of this work.

Another important aspect of the generalized canard mechanism is the asymptotic structure
of secondary canards, as well as of the corresponding sectors of rotation. To date, rigorous
results in this direction have only been obtained by Wechselberger [36] for systems of general
folded-node type, via a bifurcation analysis of resonances. To the best of our knowledge, no
comparable analysis has been available so far for other realizations of the generalized canard
mechanism. The three time-scale structure of our problem in combination with the resulting
near-integrability, however, allows us to obtain rather specific results; in particular, it enables
us to derive a more or less explicit asymptotic estimate for the sector size: given the definition
of the critical canard value w̄c

0, as well as of the w̄-value w̄c
k corresponding to the kth secondary

canard Γk
ε , it follows with w =

√
εw̄ that wc = O(ε) after “blow-down,” as well as that

Δwk :=
√
εΔw̄k ∼ 2με

3
2

√
−2 ln ε

is the width of RSk ⊂ C−
ε , independent of k to leading order. This estimate confirms the

well-known fact [33, 36] that the canard phenomenon is fairly “robust” in three dimensions in
the sense that the relevant parameter intervals are relatively large, whereas in two dimensions,
they are only exponentially small [20]: in our case, the width of the relevant w-interval will
roughly be O(ε).

Finally, given the above discussion, our partly rigorous and partly heuristic conclusions on
the bifurcation (Farey) structure of the mixed-mode dynamics which will typically be observed
in (1.5) can be summed up as follows:

(i) Symbolic sequences of the form {1k} and {1k1k−1} dominate the stable dynamics; such

D
ow

nl
oa

de
d 

01
/0

2/
13

 to
 1

39
.1

84
.3

0.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

410 MARTIN KRUPA, NIKOLA POPOVIĆ, AND NANCY KOPELL
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(b) μ = 0.04.
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(c) μ = 0.045.
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(d) μ = 0.05.

Figure 17. The time series of v, z, and w in (1.5) for f2 = 1.5, f3 = −1, g1 = 0.5, and ε = 0.01. As μ
increases from (a) 0.035 via (b) 0.04 and (c) 0.045 to (d) 0.05, one observes a transition from 1716 via 1615

and 1514 to 1413 in the resulting Farey sequences.

sequences correspond to MMO trajectories that visit only one sector of rotation and
two adjacent sectors, respectively; see Figure 17.

(ii) Stable 1k-type orbits are observed in a relatively small parameter range. Consequently,
non-1k orbits (i.e., orbits that are not periodic with Farey sequence {1k}) dominate a
significant portion of the parameter space. Moreover, they occur more frequently with
increasing k, since the 1k-stability intervals decrease in size as k increases; cf. Figures
17 and 18.

(iii) For Lj ≥ 2, segments of the form L
kj
j are not generically observed when kj ≥ 2, except

for the segment 22. The segment L1
j , on the other hand, is possible for any Lj ≥ 1;

see Figure 19.
(iv) As μ increases, the Farey sequences observed in the transition are roughly of the

form . . . → 1k → 1k1k−1 → 1k−1 → . . . ; in particular, all sectors of rotation are
“swept through” until μ > μc, when the dynamics finally enters the relaxation regime
(cf. Figures 18 and 20).

(v) The local dynamics depends quite sensitively on the curvature of f(v), i.e., on the
coefficient f2; in particular, 1k-type orbits become increasingly harder to observe with
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(a) μ = 0.065.
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(b) μ = 0.0675.
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(c) μ = 0.07.
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(d) μ = 0.0725.
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(e) μ = 0.075.
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(f) μ = 0.0725.

Figure 18. The time series of v, z, and w in (1.5) for f2 = 1.5, f3 = −1, g1 = 0.5, and ε = 0.01. As μ
increases from (a) 0.065 via (b) 0.0675, (c) 0.07, and (d) 0.0725 to (e) 0.075, one observes a transition from
12 to 11 in the resulting Farey sequences, with transitory sequences which contain mixed segments of the form
1211 as well as 221211. Panel (f) shows a zoom on the time series of w for μ = 0.0725; clearly, w = O(ε), in
accordance with Assumption 1 (cf. also section 3.3).

growing f2; see Figure 21(a).
(vi) The number of sectors visited is also influenced by the strength of the global dynamics,

i.e., by how far “back” w is reset after relaxation: the smaller the parameter g1 is, the
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(a) μ = 0.0775.
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(b) μ = 0.08.
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(c) μ = 0.0825.
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(d) μ = 0.085.
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(e) μ = 0.0875.
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(f) μ = 0.09.

Figure 19. The time series of v, z, and w in (1.5) for f2 = 1.5, f3 = −1, g1 = 0.5, and ε = 0.01. As
μ increases from (a) 0.0775 via (b) 0.08 to (c) 0.0825, one observes a variety of complex Farey sequences,
with segments containing 11, 22, and 21 as well as repetitions thereof. As μ is increased further to 0.09, one
observes a transition from (c) 1121 via (d) 21 and (e) 2131 to (f) 3141, as predicted analytically in section 3.5.

closer to the strong canard trajectories will return after relaxation, and the smaller
the relevant μ-interval will be; cf. Figure 21(b).

(vii) Since w = O(ε) throughout (see Figure 18(f)), the global return point will be O(ε)-
close (in w) to the strong canard. This implies that only the “lower” sectors will
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(a) μ = 0.095.
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(b) μ = 0.0925.

Figure 20. The time series of v, z, and w for μ = 0.095 and μ = 0.0925. Clearly, the system is in the
pure relaxation regime in (a), whereas in (b), one observes already mixed-mode dynamics, in agreement with
the theoretical prediction that the critical μ-value should be μc ≈ 0.0938, up to an O(ε)-error.
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(a) μ = 0.019, f2 = 2, g1 = 0.5.
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(b) μ = 0.045, f2 = 1.5, g1 = 0.25.

Figure 21. The effects of a change of (a) f2 and (b) g1 on the dynamics of (1.5). As f2 is increased from
1.5 to 2, the stability interval of 11-type orbits decreases, since Dμ = 2.25 is replaced by Dμ = 4 and since
Δμ1 ∝ D−1

μ ; see Theorem 3.7. As g1 is decreased from 0.5 to 0.25, the dynamics recurs to lower sectors of
rotation; cf. Figure 17(c).

typically be involved in the dynamics, resulting in MMO trajectories with a submax-
imum number of small oscillations.

(viii) As k increases or, alternatively, as μ decreases, the sectors of rotation decrease in size.
Overall, however, the dynamics seems to become less expanding with higher k, making
it less likely for sequences containing segments of the form 1k1k−
, � > 1, to occur.

With the exception of the conjecture in (viii), these observations are reflected by our numerical
findings; see Figures 17 to 21 as referred to in the individual items. Figure 17 shows a sample
of regular 1k1k−1-type orbits for k = 4, . . . , 7, while Figure 18 illustrates the transition from
12 to 11 via mixed transitory segments of the form 221211; Figure 19 indicates how Farey
sequences with mixed segments containing 11, 22, and 21, as well as L1

j -type sequences with
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Lj ≥ 1, can arise; Figure 20 illustrates the transition from mixed-mode dynamics to the
pure relaxation regime at μ = μc in (1.5); finally, in Figure 21, (a) and (b) exemplify the
effects of a change in f2 and g1, respectively, on the dynamics of (1.5). In each case, the
relevant parameter regimes are specified in detail in the corresponding captions. All numerical
simulations were performed in MATLAB using the predefined routine ode23tb with absolute
and relative accuracies 10−10 and 10−8, respectively. For clarity, the results are illustrated
starting at t = 6000, after initial transients have subsided.

Appendix A. Some asymptotic results. In this appendix, we summarize a few results on
the asymptotics of the rescaled system (2.3), as well as of its generalization in (2.8). Recall
that the equations in (2.3) are given by

v̄′ = −z̄ + f2v̄
2 +

√
εf3v̄

3,(A.1a)

z̄′ = v̄ − w̄,(A.1b)

w̄′ = ε(μ− g1εz̄)(A.1c)

as well as that they reduce, for ε = 0, to

v̄′ = −z̄ + f2v̄
2,(A.2a)

z̄′ = v̄ − w̄,(A.2b)

w̄′ = 0;(A.2c)

cf. (2.4). For w̄ = 0, the system in (A.2) is integrable. Moreover, given the constant of motion

(A.3) H(v̄, z̄) =
1

2
e−2f2z̄

(
−v̄2 +

z̄

f2
+

1

2f2
2

)
as defined in (2.5), the orbits of (A.2) correspond in a unique fashion to the level curves
of H with H = h constant; cf. section 2. More precisely, to any h < h0 = (4f2

2 )−1, we
can assign a unique z̄-value z̄h in Δ−. For any such point (0, z̄h, w̄) ∈ Δ−, we denote the
corresponding solution to (A.1) by γ̄hε . Here, we assume the parametrization to be such that
γ̄hε (−T h(w̄)) = (0, z̄h, w̄) holds and that γ̄hε (T h(w̄)) is the point of first return to Δ−; recall
Figure 6.

In the particular case when w̄ = 0, we write T h = T h(0). Let h > 0 be fixed, and let
γ̄h0 denote the corresponding (periodic) solution of (A.2). For convenience, we denote the
z̄-coordinates of the two points of intersection of γ̄h0 with Δ by ξh and ζh, respectively; see
Figure 22.

Lemma A.1. There holds ζh = 1
2f2

(− lnh) + O(1) and ξh = − 1
2f2

+ O(h).

Proof. The assertion follows from (A.3): note that v̄ = 0 in Δ−, and expand z̄
f2

+ 1
2f2

2
=

h1
2e2f2z̄ for z̄ large, respectively, for z̄ (asymptotically) constant, to obtain the expansions for

ζh and ξh, respectively.
Given Lemma A.1, we have the following result on the asymptotics of T h.
Lemma A.2. There holds T h =

√
2(− lnh)

1
2 + O(1).

Proof. Given (A.3), we first express v̄ via

(A.4) v̄ =

√
z̄

f2
+

1

2f2
2

− 2he2f2z̄ =

√
z̄

f2

√
1 +

1

2f2z̄
− 2f2h

e2f2z̄

z̄
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z̄

v̄

γ̄h
0 (0) = (0, ζh)

γ̄h
0 (−T h) = (0, ξh) = γ̄h

0 (T h)

Δ−

γ̄0
0

γ̄h
0

Figure 22. A typical solution of (A.2).

and then make use of v̄ = z̄′ = dz̄
dt for w̄ = 0 (see (A.4)) to obtain∫ ζh

ξh

dz̄√
z̄
f2

√
1 + 1

2f2z̄
− 2f2h

e2f2z̄

z̄

=

∫ 0

−Th

dt.

Integrating the left-hand side by parts, we find that

T h = 2
√
f2z̄

(
1 +

1

2f2z̄
− 2f2h

e2f2z̄

z̄

)− 1
2

∣∣∣∣ζh
ξh

(A.5)

+

∫ ζh

ξh

√
f2z̄

(
1 +

1

2f2z̄
− 2f2h

e2f2z̄

z̄

)− 3
2
(
− 1

2f2z̄2
− 2f2h

e2f2z̄

z̄2
(2f2z̄ − 1)

)
dz̄.

From Lemma A.1, it follows that the leading-order contribution in the first term on the
right-hand side of (A.5) comes from the evaluation at the upper limit ζh. Moreover, by
expanding the integrand in the second term, one can check that the corresponding integral
will contribute only terms of O(1). Hence, again by Lemma A.1, T h ∼ 2

√
f2ζh ∼

√
2(− lnh)

1
2 .

This concludes the proof.
Recall the definitions of dh√

ε
and dhw̄ in (2.10) and (2.11), respectively:

dh√ε =

∫ Th

−Th

∇H(γ̄h0 (t)) ·
(
f3v̄

h
0 (t)3, 0

)T
dt,(A.6a)

dhw̄ =

∫ Th

−Th

∇H(γ̄h0 (t)) · (0,−1)T dt.(A.6b)

For a numerical evaluation of the transition map Π : Δ− → Δ− (as defined in section 2.2),
it is convenient to express dh√

ε
and dhw̄ as follows.
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Lemma A.3. Let the integrals I1 and I2 be defined by

I1(h) := 2

∫ ζh

ξh
e−2f2z̄ v̄h0 (z̄) dz̄ and I2(h) := 2

∫ ζh

ξh
e−2f2z̄ v̄h0 (z̄)3 dz̄,

respectively, with ξh and ζh as above. Then, there holds

(A.7) dhw̄ = −2f2I1(h) and dh√ε = −f3I2(h).

Proof. We will verify the assertion for dh√
ε

first: since

∂H

∂v̄
= −v̄e−2f2z̄ and

∂H

∂z̄
= (f2v̄

2 − z̄)e−2f2z̄,

it follows that ∇H · (f3v̄
3, 0)T = −f3v̄

4e−2f2z̄. To replace the t-integration in (A.6a) by an
integration with respect to z̄, we make use of the fact that dz̄

dt = z̄′ = v̄ for w̄ = 0. Then,

dh√ε = −2f3

∫ ζh

ξh
e−2f2z̄ v̄h0 (z̄)3 dz̄,

since (v̄h0 , z̄
h
0 )(−t) = (−v̄h0 , z̄

h
0 )(t) on γ̄h0 . To evaluate dhw̄, note that the corresponding integrand

in (A.6b) is given by −f2v̄
2 + z̄. Also, it follows from (A.4) that v̄ and z̄ are related via

z̄ = −v̄′+f2v̄
2. The result then follows from an integration by parts, since v̄h0 (ξh) = 0 = v̄h0 (ζh)

by definition.

In general, for h �= 0, the integrals I1 and I2 cannot be computed analytically but have
to be approximated numerically. However, for h = 0, one can evaluate I1 and I2 exactly by
integrating by parts repeatedly. Recalling the definition of γ̄0

0 in (2.6), one finds, for instance,

I1(0) =
e

4f2
2

∫ ∞

−∞
t2e−

t2

2 dt =
e

4f2
2

(
−te−

t2

2

∣∣∣∞
−∞

+

∫ ∞

−∞
t2e−

t2

2 dt

)
=

e
√

2π

4f2
2

.

Similarly, one can show I2(0) = 3e
√

2π
16f4

2
; see also [19, 20]. In particular, this implies

d0
w̄ = − 1

2f2

√
2πe < 0 and d0√

ε = − 3f3

16f4
2

√
2πe > 0.

We require the following result on the asymptotics of I2(h) for h small.

Lemma A.4. There holds I2(h) = I2(0) −
√

2
f2
2
h(− lnh)

3
2 + O(h(− lnh)

1
2 ).

Proof. We will prove the assertion by first determining the leading-order behavior of dI2
dh :

given v̄2 = z̄
f2

+ 1
2f2

2
− he2f2z̄, we obtain by implicit differentiation that ∂v̄

∂h = −v̄−1e2f2z̄ and,

hence, that

dI2(h)

dh
∼ −6

∫ ζh

ξh
v̄h0 (z̄) dz̄.
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As in the proof of Lemma A.1, we now make use of (A.4) and then perform an integration by
parts to find

(A.8)
dI2(h)

dh
= − 4√

f2
(ζh)

3
2 + O

(
(ζh)

1
2
)

= −
√

2

f2
2

(− lnh)
3
2 + O

(
(− lnh)

1
2
)
.

The assertion follows by integrating (A.8) with respect to h, to leading order.
Given Lemma A.4, one can write

(A.9) dh√ε = d0√
ε + R(h) = d0√

ε + hR̃(h),

where R(h) denotes the corresponding remainder term and R̃(h) = −f3
dI2
dh is the first-order

coefficient in the Taylor expansion of dh√
ε
about h = 0. Note that the leading-order asymptotics

of dhw̄ can be obtained in a similar manner.
Finally, recall the generalized system of equations from (2.8), as well as the definition of

the corresponding return map in (3.16),

Π(h, w̄) =

(
PhΠ0(h, w̄) + εμK(h) + O(ε2)

w̄ + 2εμT h + O(ε2)

)
,

where Π0 denotes the return map for (3.14) and K is defined via

K(h) =

∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T (t + T h) dt.

An estimate for K is derived as follows.
Lemma A.5. There holds

(A.10) K(h) = 2d0
w̄T

h + O(1).

Proof. Recall that, by definition, we have∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T dt =

∫ Th

−Th

∇H(γ̄h0 (t)) · (0,−1)T dt = dhw̄;

see (A.6b) and the proof of Proposition 2.2. It follows that

K(h) = dhw̄T
h +

∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T t dt.

To estimate the above integral, note that∫ Th

−Th

∇H(γ̄h0 (t)) · (G(0, 0),−1)T t dt = −G(0, 0)

∫ Th

−Th

v̄h0 (t)e−2f2z̄h0 (t)t dt(A.11)

−
∫ Th

−Th

(
f2v̄

h
0 (t)2 − z̄h0 (t)

)
e−2f2z̄h0 (t)t dt.
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Since the integrand in the second integral on the right-hand side of (A.11) is odd in t, that
integral vanishes. Hence, it remains to estimate the first integral: using integration by parts,
we obtain

(A.12)

∫ Th

−Th

v̄h0 (t)e−2f2z̄h0 (t)t dt = T h

∫ Th

−Th

v̄h0 (t)e−2f2z̄h0 (t) dt−
∫ Th

−Th

∫ t

−Th

v̄h0 (s)e−2f2z̄h0 (s) ds dt.

The first integral on the right-hand side of (A.12) is again zero, since the corresponding
integrand is odd in t. Next, we recall that (v̄h0 , z̄

h
0 )(t) is a solution of (A.2) for w̄ = 0 and,

hence, that

v̄h0 (s)e−2f2z̄h0 (s) = − 1

2f2

d

ds

(
e−2f2z̄h0 (s)

)
.

Consequently, ∫ t

−Th

v̄h0 (s)e−2f2z̄h0 (s) ds = − 1

2f2

(
e−2f2z̄h0 (t) − e−2f2ξh

)
,

where ξh = z̄h0 (±T h), as before. Now, since∫ Th

−Th

e−2f2z̄h0 (t) dt

is bounded, i.e., O(1), we conclude that∫ Th

−Th

v̄h0 (t)e−2f2z̄h0 (t)t dt ∼ 1

f2
T he−2f2ξh ,

and it remains only to estimate G(0, 0): indeed, by (2.36) and (2.37), there holds

G(0, 0) = −dz̄h
+(w̄,ε)

dw̄
(0, 0).

Recalling that the relationship between z̄h and h is given implicitly by

1

2f2
e−2f2z̄h

(
z̄h +

1

2

)
= h

(cf. (A.3)), we find from an implicit differentiation that

dz̄h

dh
= 2f2e

2f2z̄h + O(h).

Since ξh = z̄h, (2.35) shows that

dh+(w̄,
√
ε)

dw̄
(0, 0) = d+

w̄ = −1

2
d0
w̄

and, hence, that G(0, 0) = d0
w̄f2e

2f2ξh . The result follows.
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