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Summary,  One phenomenon in the dynamics of differential equations which does not 
typically occur in systems without symmetry is heteroclinic cycles. In symmetric sys- 
tems, cycles can be robust for symmetry-preserving perturbations and stable. Cycles 
have been observed in a number of simulations and experiments, for example in rotating 
convection between two plates and for turbulent flows in a boundary layer. Theoretically 
the existence of robust cycles has been proved in the unfoldings of some low codimension 
bifurcations and in the context of forced symmetry breaking from a larger to a smaller 
symmetry group. In this article we review the theoretical and the applied research on 
robust cycles. 
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I. Introduction 

A heteroclinic cycle is a sequence of trajectories connecting a set of fixed points in a topo- 
logical circle. The special case of a cycle consisting of one trajectory and one fixed point 
is usually called a homoclinic trajectory. Homoclinic trajectories are typically phenom- 
ena of codimension at least one while more complicated heteroclinic cycles typically 
are formed at singularities of higher codimension. Remarkably, however, differential 
equations with certain structure (for example symmetric systems or population models) 
may have heteroclinic cycles which are robust with respect to structure-preserving per- 
turbations. 
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Fig. 1. An example of a robust heteroclinic cycle. 

The existence of a robust heteroclinic cycle as considered in this article relies on 
the existence of  a sequence of  flow invariant spaces Pi . . . . .  Pk. The equilibria forming 
the vertices of the cycle can be numbered as sej . . . . .  ~k so that ~j, sej+l 6 Pj, j = 
1 . . . . .  k - l and ~k, ~l C Pl- In other words every pair of consecutive equilibria lies 
in an invariant subspace. We further require that for the flow restricted to each of the 
invariant subspaces the consecutive equilibria are a saddle and a sink and are joined 
by a saddle-sink connection. An example is given in Figure 1. By allowing ~j to be 
more complicated invariant sets, we obtain a natural extension of  this definition. Since 
saddle-sink connections cannot be broken by small perturbations it follows that every 
sufficiently small perturbation preserving the invariance of  the spaces Pl . . . . .  Pk also 
preserves the cycle. 

For a symmetric system, invariant spaces arise naturally in the form of fixed point 
spaces, that is, spaces consisting of states invariant under some symmetries of  the system. 
In particular, the cycle in Figure 1 can exist for a system having two reflection symmetries, 
one across the horizontal plane and one across the vertical plane. In this example the 
horizontal and the vertical planes are fixed point spaces of the corresponding reflections. 
For symmetric systems it is natural to define a heteroclinic cycle as a sequence of 
equilibria it . . . . .  ~+l  joined by connecting orbits and such that ~+i  is obtained by 
applying a symmetry operation to ~j. A cycle is homoclinic if k ---- 1. The robust cycle 
depicted in Figure 1 is homoclinic if the underlying system is odd (equivalently - I d  is 
a symmetry) and the two equilibria are equidistant from the origin, l 

A notable feature of  robust cycles is that they can be asymptotically stable (or possess 
some weaker form of stability). Intuitively, stability can be expected when the stable 
eigenvalues of the equilibria on the cycle are on the average stronger than the unstable 
ones. A stable cycle defines a mechanism of intermittency--a solution approaching it 
spends long periods near equilibria and makes fast transitions from one equilibrium to 
the next. In a perfectly symmetric system the return times increase monotonically and 
rapidly approach infinity, thus making the intermittent behavior uninteresting. However, 
under small, symmetry-breaking perturbations, the cycling behavior persists (even if 

I For an odd system a cycle of the type shown in Figure 1 must be homoclinic. 
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there no longer is a cycle) and the transition times no longer converge to infinity. In 
many cases the transition times are either bounded or extremely long transition times 
are very infrequent. In a similar manner stochastic perturbations, or round-off errors in 
numerical computations, lead to boundedness of transition times. Hence, in applications, 
the existence of a stable heteroclinic cycle in the idealized model problem can be linked 
to the occurrence of intermittence. 

Robust cycles have attracted the interest of a number of mathematicians and physicists. 
An important early work on cycles was the article of Busse and Clever [ 18] in 1979, who 
proposed a truncated ODE model based on only three modes in an effort to describe an 
aperiodic intermittent state in rotating Rayleigh-B6nard convection. In their ODE model 
they observed a heteroclinic cycle. Busse and Heikes [19] argued that the turbulent state 
observed in the experiment had gross features consistent with those of the heteroclinic 
cycle. Interestingly, in 1975 May and Leonard [68] had already observed the same cycle 
in a model for the nonlinear competition of three identical species. Here the robustness 
of the cycle is forced by the special structure of the Lotka-Volterra equations. The work 
of [68] stimulated the interest of mathematical biologists in robust cycles and led to 
significant research on the subject. 

A wave of interest in robust cycles among mathematicians and physicists interested 
in equivariant bifurcation theory followed the article of Guckenheimer and Holmes [41] 
published in 1988. Bifurcations of systems with symmetry often lead to spontaneous 
symmetry breaking. A symmetry-breaking bifurcation occurs when a state possessing 
high symmetry loses stability, giving rise to states with less symmetry. The authors of [4 ! ] 
showed that robust heteroclinic cycles could naturally arise due to a low codimension 
symmetry-breaking bifurcation. Another milestone in the theory of robust cycles was the 
article of Lauterbach and Roberts [66], who showed that forced symmetry breaking, that 
is, slightly perturbing the equations so that some of the symmetries are broken, could 
naturally lead to the occurrence of robust cycles. 

As indicated in the preceding paragraph there are three contexts in which robust cycles 
have been shown to exist: spontaneous symmetry breaking (SSB), forced symmetry 
breaking (FSB), and mathematical biology and game theory (MBGT). In this article we 
describe the research on cycles within these three contexts, putting more emphasis on 
SSB and FSB. We devote much attention to the issues concerning stability of cycles and 
their bifurcations. Finally, we describe the main experimental or theoretical situations in 
which there is evidence for the existence of robust cycles. 

As noted robust heteroclinic cycles may connect invariant sets with stationary, peri- 
odic, or aperiodic dynamics. For most of the known examples the vertices are equilibria 
or periodic orbits. In a recent article Dellnitz et al. [27] showed a simple scenario leading 
to cycles for which the vertices can be chaotic (see [33] for a review and results on sta- 
bility of such cycles). Cycles connecting chaotic sets may be present in many physical 
systems; evidence for the existence of such cycles in the context of turbulent flows in 
the wall region of a boundary layer was given by Sanghi and Aubry [79]. 

This article is divided into three parts. In Part I we consider two particularly simple 
robust cycles arising through the SSB and the FSB scenarios respectively. We try to 
give a comprehensive account of the issues concerning the existence and the stability 
of the two cycles. Part I is intended to introduce the main issues at a basic level. Part II 
is a detailed review of the theoretical research. Part III is a review of the applications. 
Readers who are mainly interested in applications can skip Part II and go directly to 
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Part III. The portions of Part II directly relevant to applications will be referred to in Part 
III and will be accessible to a broad audience. 

In the remainder of this introduction we discuss the various aspects of the theory of 
cycles and the structure of this article in more detail. 

Spontaneous Symmetry Breaking 

As noted, Guckenheimer and Holmes [41] showed that SSB could lead to the occurrence 
of robust cycles. Their work inspired a fairly systematic search for robust cycles in low 
codimension problems. For steady state bifurcations of codimension one, cycles were 
found in special classes of symmetry groups [41], [34], [35], [42], [28]. A review of 
these examples can be found in the recent lecture notes of Field [33]. 

For generic (codimension 1) Hopf bifurcations, robust cycles are often found in 
bifurcations with the symmetries of planar lattices [85], [84], [23], [59], [60], [96]. Such 
bifurcation problems arise naturally in connection with Rayleigh-B~nard convection 
between horizontal plates. 

Many examples of cycles are found in mode interactions involving a combination of 
steady state and Hopf modes. The symmetry groups considered were the trivial symmetry 
(the normal form symmetry of triple Hopf bifurcation suffices to force the existence of a 
robust cycle) [69], [63], the group 0(2)  [4], [72], [71 ], the group ]D 4 [20], and the group 
0(3) [37], [3], [43]. 

Results on robust cycles related to SSB will be reviewed in Section 2 and in Section 5. 

Forced Symmetry Breaking 

Lauterbach and Roberts [66] observed that when symmetry is partially broken--that is, 
when equations commuting with the action of a symmetry group F, with dim F positive, 
are perturbed to a system of equations whose symmetries form a subgroup A C F - -  
cycles may appear along the old group orbits. (For this process to produce cycles the 
dimension of A must be less than the dimension of F. Indeed, the Lauterbach-Roberts 
examples broke symmetry from 0(3) to a finite subgroup.) Formation of cycles through 
FSB was subsequently studied in [6], [65], [64], [49]. The results on cycles in FSB will 
be reviewed in Sections 3 and 6. 

Stability 

An important feature of robust heteroclinic cycles is that they may attract nearby dy- 
namics. The strongest form of stability is asymptotic stability, occurring when an entire 
neighborhood of the cycle is attracted to it. Presently there are methods which establish 
necessary and sufficient conditions for asymptotic stability for most of the known cycles 
[61], [47], [35]. Unfortunately these methods cannot be summarized into a simply stated 
theorem. 

Melbourne [70] noted that cycles might be stable in a sense weaker than asymptotic 
stability--indeed, this weaker form of stability may well be more the rule than the 
exception. Stability in this weaker sense occurs when an open subset of initial conditions 
in a neighborhood of the cycle is attracted to the cycle with the measure of that open set 



Robust Heteroclinic Cycles 133 

approaching full measure as the neighborhood shrinks to zero [70], [66], [62]. It turns 
out that yet weaker forms of stability are possible [14], [56], [281. 

The issues concerning stability will be reviewed in Section 4. 

Bifurcations from Cycles 

A natural question is what happens when a cycle loses stability. Such bifurcations may 
lead to the appearance of long period periodic orbits, other heteroclinic cycles, and more 
complicated dynamics [45], [47], [2], [4], [21], [82], [241, [35]. 

Another type of bifurcation occurs when the cycle is broken due to forced symmetry 
breaking. Typically the cycle is replaced by an invariant set contained in a small tubular 
neighborhood of the cycle. The dynamics on the invariant set may be periodic [81], 
quasiperiodic [25], [26], [32], or chaotic [781, [42], [98]. 

The results on bifurcations will be reviewed in Section 8. 

Systems of Mathematical Biology and Game Theory 

Robust heteroclinic cycles also exist in models relevant to mathematical biology and 
game theory (MBGT). The May-Leonard model [68] noted previously is an example. A 
more comprehensive study of the existence and stability of robust cycles in MBGT is 
included in the book of Hofbauer and Sigmund [47]. The work of [47] inspired further 
investigations on the subject [45], [57], [46], [14], [46], [381. The results on cycles in 
MBGT will be reviewed in Section 7. 

Applications 

Heteroclinic cycles were found in a number of applications. Rotating convection was 
mentioned previously. Other applications include: turbulent flow in a wall region of a 
boundary layer [ 10], [79], [ 1 ! ], [ 121, [ 13], convection in the presence of a magnetic field 
[23], [761, flow through an elastic hose pipe [88], the Kuramoto-Sivashinsky equation [5], 
[55], and Kolmogorov flows [83]. This list gives some idea of the number of physically 
motivated fluid dynamic models where heteroclinic phenomena have been observed. 
Part III of this article is devoted to applications. We will describe the cycles occurring in 
the following contexts: the dynamics of the Kuramoto-Sivashinsky equation (Section 9), 
rotating convection (Section 10), convection in the presence of a magnetic field (Section 
11), turbulent flows in a boundary layer (Section 12), and flow through a hose pipe 
(Section 13). 

PART I 

2. Spontaneous Symmetry Breaking--An Example 

The authors of [68], [18], and [41] consider the cubic differential equation 

xj = xl (X + a,x~ + a2x 2 + a3x2), 

• ~2 = X2(~" -[-al x2 + a2 x2 + a3x2), 

x3 = x3(X -1-alx 2 + a2x 2 + a3x2). (2.1) 
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The symmetries of(2.1) are generated by the reflections in coordinate planes xl, ,k2 and x3, 

KI 
(xl, x2, x3) --* ( - x l ,  x2, x3), 

(Xl,X2, X3) ~ (Xl, --X2, X3), 

(Xl,X2, X3) -~ (XI,X2, --X3), 

and the cyclic permutation or, 

c7 

(XI,X2, X3) ~ (X3, XI,X2). 

Remark 1. The symmetry group F of(2.1) is generated by two smaller groups, namely, 
~ : 2 2 ~) Z2 ~ 2 2 generated by x j, K2, and x3, and Z3 generated by a .  The group 
F is not a direct product of  2~ and 23; indeed the elements of the two groups do not 
commute, but other relations are in place, for example x~o : crx3. In algebraic terms F 
is a semidirectproduct of Z23 and Z3, denoted by F : 23. Z3. (For a rigorous definition of 
semidirect products see [52, p. 99].) Equivalently F = T ~ Z2, where T is the tetrahedral 
group consisting of the orientation-preserving symmetries of  a tetrahedron. Yet another 
description of  F is as 22 ~ Z3, where ~ denotes wreath product. Consider (2. l ) as a system 
of three coupled cells, the coordinate xj corresponding to the j th  cell. On every cell there 
is an identical 22 action given by xj ~ - x j .  This action is called internal--indeed it 
consists of  symmetries affecting only the given cell. An external symmetry is a permu- 
tation of different cells. In the case of  (2.1) external symmetries are given by the cycle 
cr and its iterates. For more details and rigor on wreath products see Section 5 and [29]. 

In this section we analyze the existence and stability of  cycles for (2.1) with ~. > 0. 
Rather than repeat the analysis of  [41] we combine the approach of [78] (existence) 
and [61] (stability) to obtain somewhat sharper results than [41]. Namely we derive 
a necessary and sufficient condition for the existence of the cycle and show that the 
condition of [41] i s - - in  a sense to be specified below--necessary and sufficient for 
asymptotic stability. The results we derive hold for a large class of generic steady-state 
bifurcations with symmetry F (as shown in [41]). In the remainder of this section we 
prove the existence of the cycle, analyze its stability, and indicate how the obtained 
results can be generalized to the context of  a bifurcation with symmetry F. 

2.1. Existence 

Recall that a heteroclinic cycle in the symmetric context was defined as a sequence of 
equilibria ~1 . . . . .  ~k4-1 joined by connecting orbits and such that ~k+l = Y~I for some 
y ~ F, k > O. The robust cycle we are going to find is homoclinic, that is, k = 1. Hence 
we need to find a flow invariant plane P, and two equilibria ~j, ~2 c P with the following 
properties: 

(i) ~n is a saddle and ~2 is a sink for the flow of (2.1) restricted to P. 
(ii) there is a saddle-sink connection in P from ~1 to ~2. 

(iii) there exists an element y c F such that ysel = ~2. 
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The plane P is chosen to be the xlx2 plane, 

P = {x E JR3: x 3 = 0}. 

The equations in (2.1) show that P is flow invariant. Note also that P is the fixed point 
space of  the reflection x3. We look for sel in invariant line L = {x E ~ 3 : x 2  = x3 = 0} 
(the xl-axis). Assuming al < 0, so that the bifurcation is supercritical, we get ~el = 
( ~ ,  0, 0). We also define ~ = ersej = (0, ~ ,  0) and requirement (iii) is 
satisfied with V = a .  

One checks easily that 

al --a3 al --a2 
\ 

Df(~ l )  --~ ~.- diag - 2 , - - ,  - -  , J al at 

Df(~2) = ~" diag ( al-a2aj ' - 2"  at-a3)aj_ . (2.2) 

Condition (i) is satisfied by assuming 

a3 > al and a2 < al. (2.3) 

Note that (2.3) is a necessary condition for the existence of  a robust cycle. 
Cbecking condition (ii) is in general a nontractable problem; existence of  connections 

must be checked using numerics. If d im(P)  = 2, analytic results can be obtained using 
the Poincar6-Bendixson theorem [41], [71]. Sandstede and Scheel [78] obtain optimal 
conditions on (aj, a2, a3), for which a cycle exists in (2.1). The argument of  [78] is 
presented below. 

Consider the restriction of  (2.1) to P:  

Jcl = Xl(~ + alx~ + azx2), 

2?2 = x2(~. + alx~ + a3x~). (2.4) 

We find conditions on (al, a2, a3) under which the flow of  (2.4) has the following prop- 
erties: 

(a) (2.4) admits no equilibria other than the origin, -t-/~l and -t-~2. 
(b) The unstable manifold W"(~2) remains within C9(v~) from the origin. 

Properties (a) and (b), combined with the Poincar6-Bendixson theorem, imply the exis- 
tence of  the connection ~1 --~ ~2. Moreover, the connecting trajectory is within O(*,,/~) 
of  the origin. Thus the cycle approaches the origin as ~. ~ 0. A straightforward compu- 
tation shows that if ~l is a saddle and ~2 a sink for (2.4) (or vice versa), then (a) holds. 
Hence (a) follows from (2.3). 

We now show that (b) follows from al < 0 and (2.3). Let x(t) = (Xl (t), x2(t)) be 
the branch of WU(~2) contained in the positive quadrant. Note that 0 > al > a2 implies 
the existence of a constant C > 0 such that 0 < xl (t) < C4'-£ for all t ~ IlL Hence 
J;z(t) < ~.(1 -1- C2a3)  q- a l .  Since al < 0, x2(t) remains O(V'-£) and the assertion follows. xztt) -- 

We have proved the following proposition. 
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X3 2; 3 

,171 :~1 

X2 

Fig. 2. The cycle existing for the system (2.1). 

Proposi t ion 1. The cycle exists i f  and only if  al < 0 and condition (2.3) holds. 

Remark 2. In this example the existence of  a homoclinic cycle in the symmetric sense 
implies the existence of  a heteroclinic cycle in the usual sense. Indeed, the existence of  
the connection 4t ~ 42 = ~r4t implies the existence of  two other connections, namely 
O41 ~ O'241 and cr241 ~ o-341 = 41. The union of  these three connections forms a 
heteroclinic cycle in the usual sense; see Figure 2b. This implication holds true for any 
finite symmetry group, but may not hold for infinite groups. 

Remark 3. An ODE in IR 3 whose symmetries are generated by the reflections trl, x2, 
and K 3 may have a heteroclinic cycle as shown in Figure 2b [69]. In this case there is no 
homoclinic cycle as in Figure 2a, since (7 is not a symmetry. 

2.2. Stability 

In this section we prove the following stability theorem. 

Theorem 1. The cycle found in the preceding section is stable if  2al > a2 + a3. For a 
generic choice of  (al, a2, a3) the cycle is unstable when 2al < a2 + a3. 

Theorem 1 was partially proved in [41] (sufficiency) and follows from the results 
of  [69]. Our proof follows the ideas of  [61]. The advantage of  this approach is its 
applicability to a wide class of  robust cycles. 

To prove Theorem 1 we derive the lowest order approximation of  the return map 
around the cycle. We begin by defining the appropriate sections of  the flow. 

Let 6 > 0 be a small real number. Let x0, Y0, zo ¢ R 3 belong to the connecting 
orbits O'--141 ~ 41, 41 ~ 42, and 41 ~ 42, respectively, with Ixo - 41l = lYo - 41l = 
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~3 

, / /" ; zo / 

$1 

Fig. 3. The sections S0, SI, andS2. 

[z0 - ~zl = 3 (see Figure 3). We consider  the fol lowing sections of  the flow near the 
cycle (see Figure 3): 

S 0 = x 0 q- {(u, to, O): /,12 q._ 1/)2 < r]}, 

Si = Y o + { ( u , O , v ) :  u 2 + v  2 < r/}, 

$2 = zo -~- {(0,/2, to): t/2 --]-- ,//)2 < •}, 

where q > 0 is a small real number. Let U be a neighborhood of  the origin (xo) in So. If  U 
is sufficiently small then all trajectories starting in U either converge to ~j (this happens 
for all points with w = 0) or hit one of  the sections $2 and K2S2. Let  h denote the first 
hit map from U to $2. Note that h is defined on the set U >° = {x 6 U: w > 0}. Define 
g: U >° --+ Sff ° by g = c r - lh .  By a slight abuse of  notation we identify the elements of  
So with points in R 2, that is, we write g(u, w), rather than g(xo + (u, w, 0)). Let g~ and 
g2 denote the u and w components of  g, respectively. 

We now extend the definition of  g to all of  U, by requiring that g(u, w) = 
(gl (u, - w ) ,  - g 2 ( u ,  - w ) ) .  In particular g(u, 0) = (0, 0). Note that the resulting map is 
continuous. This follows from the properties of flow near hyperbolic equil ibria and from 
the invariance of  the plane a - I P  (the xlx3-plane).  Indeed, for any E > 0 there exists 
~l such that for any x = (u, w) a U the est imate 0 < Iwl < el implies that the flow 
trajectory o f x  intersects Sz U x2S2 at a point no further than e away from {zo, x2zo}. The 
stability analysis is based on the following result (see [61] for a more general version). 

Proposition 2. 

(i) The cycle is asymptotically stable if O is asymptotically stable as a fixed point of g. 
(ii) The cycle is unstable ifO is a fixed point of g. 
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Proof Note that for all initial conditions in U \ a - 1 P  the map g3 is the return map 
generated by the flow along the heteroclinic cycle (the connections ~l ~ ~2 --~ a~2 
~l ). The result follows. [] 

It is known that under a finite number of algebraic conditions (nonresonance con- 
ditions) the flow can be linearized [90]. The linearizing tansformation does not affect 
the symmetry properties [7]. Hence we assume that the flow is linear in small neighbor- 
hoods of the equilibria ~l and se2 and that the sections So to $2 are contained in these 
neighborhoods. It follows that x0 ----- ~1 + •e3, Y0 = ~1 + ~e2, and zo = ~2 + 6el, where 
{el, e2, e3} is the euclidean basis o f ~  3. The oddness of g in w implies that it suffices to 
work out g for the elements of  U >°. Hence we assume that w > 0. 

From (2.2) we read offthe eigenvalues of D f  (Sel) and introduce the following notation: 

) a l  - -a3 ) a 2 - - a l  
r = - k ,  e = , c = 

al al 

The letters r, e, and c signify the radial, the expanding, and the contracting directions. 
The radial direction is the xl-axis and corresponds to the fixed point space of the group 
generated by x2 and x3. The radial direction contains the equilibrium ~l. It can also be 
described as a - l P  f) P. It will become clear below that the radial eigenvalue plays no 
role in determining stability. 

In the following result we give a lowest order expression of g which will suffice to 
analyze its stability properties. 

Proposit ion 3. The map g has the form 

g(u, w) = (a(u, w),  b(u, w)w~'/e), 

for  some continuous functions a and b, b(u, w) > O for  w > O. Moreover there exist 
constants K,  c~ > 0 such that 

la(u, w)l < Kwh; Ib(u, w)l < K, (u, w) 6 U. 

For a generic choice of  (al , a2, a3) there exists a constant L > 0 such that L < b(u, w) 
for  (u, w) ~ U. 

Proof Let ~ and q~ denote the first hit maps from U >° to Sl and from a neighborhood 
of Y0 in SI to $2. The map ~ is (after linearization) given by 

(u, w, 3) ~ (Alw r/~, 3, A2wc/~), 

where A 1 and A 2 a r e  positive constants. The map ¢ is a diffeomorphism, since the flow 
between Sl and $2 has no singularity. Note that the invariance of  P under the flow implies 
that ¢ maps P fq Sl to P ¢q $2. Hence ¢ has the following form: 

(u, 3, v) ~-~ (3, ao(u, v), bo(u, v)v) ,  

where a0 and b0 are smooth functions. The condition a0 (0, 0) 5~ 0 can be easily expressed 
as a condition on the variational equation (Melnikov integral) for the connection ~l --~ ~2, 
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and it is satisfied for an open and dense set of  (a i, a2, a3). The assertions of  the proposition 
follow from the fact that g = o r - l ~  o l~t. [] 

To establish the stability properties of the origin for g, we need the following elemen- 
tary lemma. 

L e m m a l .  Let B, p > O, p 7~ 1 be constants. Let  k: IR + --~ N + be defined by 

k ( w )  = B w  p. There exists R > 0 such that the fo l lowing  statements hold: 

(i) I f  p > 1 then w < R implies that the sequence {k~(w)},z=l,2 .... is decreasing and  

converges to 0 as n goes to infinity. 
(ii) I f /9  < 1 then f o r  every 0 < w < R there exists an n such that the sequence  

{k j (w)}j=J,2 ..... is increasing and k " ( w )  >_ R. 

Proo f  

J The assertion follows. (i) L e t R  < ( );~i. T h e n w  < R imp l i e sk (w)  < gw.  

(ii) Let R < (~)~-; .  Then w < R implies k ( w )  > 2w. The assertion follows. [] 

Proof  o f  Theorem 1. Suppose 2ai > az + a3. This is equivalent to c/e < 1. Let L be as 
defined in Proposition 3. Let k ( w )  = L w  `/e. Proposition 3 implies that (gn)2(u, w) > 
k ( w )  for a generic choice of  (al, a2, a3). It follows from Lemma 1 that the origin is 
unstable for g. By Proposition 2 the cycle is unstable. 

Suppose 2al < a2 + a3. Let K and ot be as introduced in Proposition 3. Let k ( w )  = 
K w  ~ and let 0 < R < ~ be such that the assertion of  Lemma 1 holds and K R  '~ < ~. 

It follows that the set UR = {(u, w) 6 U: w < R} is forward invariant for g and 
that (gn)2(u, w) < k~(w) .  It follows that the origin is asymptotically stable for g. 
Consequently the cycle is asymptotically stable. [] 

Remark  ~ Note that the radial eigenvalues play no role in determining stability. 

2.3. The Generic Case 

Consider a dynamical system with symmetry F = Z 3. Z3 and depending on a parameter 
~.. Suppose that for some value of ~ there is a steady-state bifurcation of  a state with full 
symmetry. Denote the critical eigenspace by E. We make the following assumption: 

(A1) The eigenspace E is isomorphic to IR 3 with the action of  1 ~ as described previously. 

A generic bifurcation for which (A1) holds admits a homoclinic cyclu analogous to the 
one described in the preceding paragraph. This follows from the following facts: 

1. Using the center manifold theorem one can reduce the bifurcation problem to a 
problem posed on the space E with symmetry F [40]. 

2. For a generic bifurcation problem it suffices to establish the existence of  the cycle 
for the third order truncation (to see this, rescale the variables and time and treat the 
higher order terms as a small perturbation). 
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3. Forced Symmetry Breaking--An Example 

In this section we present an example of a robust cycle arising through forced symmetry 
breaking. Recall that such an example was first found by Lauterbach and Roberts [66]. 
Here we present the much simpler example of Hou and Golubitsky [50]. Our presentation 
is less complete than in the previous section--we concentrate on the ideas behind the 
example of [50] and omit the computations. 

3.1. Existence 

The authors of [50] consider a differential equation 

= f ( z ,  E), z =- (zl, z2) E C z, e ~ ~, (3.1) 

where f is smooth as a function of z and E. Equivalently we think of (3.1) as posed on 
R 4. Let "/I `2 denote a two-torus and ]]3)4 the group of symmetries of the square. For e = 0 
the symmetries of (3.1) are generated by the following operations: 

(Zl, Z2) (~'~) (eiOzl,ei~z2), 

(zl,z2) ~ (zz, xl),  

(Zl, Z2) ~-~ (Zl, Z2)" 

(3.2) 

Let/(2 = /(/(1. The action of/(2 is, clearly, 

K2 
(zl, z2) ~ (zi, ~2). 

For E ~ 0 most of the symmetries of f are broken. The remaining symmetries are 
generated by the reflections xl and x2. 

Remark 5. Let F be the group of symmetries of the unperturbed system (~ = 0) and 
A the group of symmetries of the perturbed system. The group I" consists of all the 
symmetries of a square lattice in the plane. Equivalently F = "11 `2 • D4, where - denotes 
semidirect product. The group A is the four element group Z2 @ Z2, also denoted by D2. 

We now consider the unperturbed system (E = 0). Suppose that (3.1) has an equi- 
librium with symmetry D4, that is, of the form ~0 = (x, x), x ~ ~. The group orbit 
M = F~0 is given by 

M = {(ei¢x, eieze)x: ($, ~0) c "1I"2}, 

and is clearly diffeomorphic to qi "2. Moreover, M is D4-invariant. The symmetry of (3.1) 
implies that f I M ~ 0. Hence D f ( x )  I TxM = 0 for all x e M. (This means that 
t0 cannot be a hyperbolic equilibrium in the usual sense.) The symmetry of (3.1) also 
implies that the eigenvalues of D f ( x )  are the same for every x E M and are equal to the 
eigenvalues of D f  (t0)- It follows that if all the eigenvalues of D f  (t0), except for the ones 
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corresponding to directions in the tangent space to M, are all in the left half of  the complex 
plane then M is a locally attracting, normally hyperbolic invariant manifold. In this case 
we say that ~0 is a hyperbolic equilibrium. Consequently, one is interested in finding stable 
hyperbolic equilibria with symmetry D4, that is, of the form (x, x), x E R. The work of  
Field [30] implies that there exists an open set of  smooth, F-symmetric vector fields of  
the form (3. I ) with E = 0 which possess a stable hyperbolic equilibrium of  the required 
form. The authors of  [50] make, using local bifurcation theory, a particular choice of  
such a set. By making this choice they have enough information about the dynamics of  
the perturbed vector field (E ~ 0) to be able to prove the existence of  stable cycles. 

As noted above, M is a locally attracting, normally hyperbolic invariant manifold. 
The consequence of  this is well known; for ~ :fi 0 the equation (3.1) has an invariant 
manifold M,. Moreover, M, has the following properties: 

(i) M, retains the "unbroken" symmetries of  M, that is, every symmetry of  M which 
remains a symmetry for f when ~ :~ 0 is a symmetry of  M,. 

(ii) M, is diffeomorphic to M. This diffeomorphism preserves the symmetry properties 
of  M~. 

We conclude that the flow on M, can be described in terms of  near-identity A-symmetric 
flow on M, or, by identifying M with 2 "2, with a near-identity, A-symmetric flow on q/"2. 
It follows from (3.2) that the action of  A on qr 2 is generated by 

KI 
(4~, ~P) --* ( - ¢ ,  ~), 

(¢, ~p) G (¢, -~p). 

This action has the following fixed-point sets (no longer vector spaces, since the action 
is on the manifold): 

Ci = Fix(xl) = {(0, ~) :  ~p E $1} U {(rr,~p): ~p c SI}, 

C2 = Fix(x2) = {(~b,O): ~b C SI}U {(qS, rr): ~b c S~}, 

E = Fix(A) = {~l = (0, 0), ~2 = (7l", 0 ) ,  ~3 ---~ (7l", ~ ) ,  ~:4 = (0,  7/')}. 

The sets C~, C2, and E must be invariant for the flow. (It is easy to check directly that 
these sets are invariant for any vector field on "IF 2 with the above specified symmetries.) 
The structure of  the invariant sets on q7 z is shown in Figure 4. It is clear that the points 
~1 . . . . .  ~4 are equilibria. 

Proposition 4. [50] For an open set o f  families o f  A-symmetric vector fields f (z, ~:), 
E ,~ O, the f low on Ci and C2 is as shown in Figure 4. Consequently there exists a 
heteroclinic cycle connecting ~l ~ ~2 --+ ~3 --~ ~4- 

Sketch of  the proof The existence of  the cycle is a consequence of the following prop- 
erties: 

(i) The equilibria ~l . . . . .  ~4 have stable and unstable directions as shown in Figure 4, 
(ii) ~1 . . . . .  ~4 are the only equilibria for the flow on 'IF 2. 
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L • 

Fig. 4. The structure of the invariant sets on the invariant toms. 

Hou and Golubitsky [50] prove that these conditions hold for an open set of families 

f ( z ,  ~). [] 

Remark  6. The role of the planes Pj is played by the connected components of C1 and 
C2. The cycle is heteroclinic--the equilibria ~l . . . . .  ~4 are not symmetry related. 

3.2. Stability 

Recall that Me uniformly attracts nearby dynamics. Consequently the cycle is stable if 
and only if it is stable for the flow restricted to Me. Since M~ is two-dimensional one 
needs to deal only with contracting and expanding eigenvalues, which makes the stability 
computation significantly simpler than in the previously described example of [41 ]. 

We now describe the relevant stability condition. For the flow restricted to Me let - c j  
be the stable eigenvalue of ~j and eJ the unstable eigenvalue of {~, j = I . . . . .  4. Then 
the cycle is stable if 

cjc'?c'3c4 > ele2e3e4. (3.3) 

Generically the cycle is unstable if CLC2C3C'4 < eLe2e3e4 (see Section 4 and [73] for 
details). 
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Proposition 5. [50] For an open set offamilies offlows defined by (3.1) the cycle shown 
in Figure 4 exists and is asymptotically stable. 

Proposition 5 is proved by showing that (3.3) holds for an open subset of the set of vector 
fields found in Proposition 4. 

PART II 

In Part II we review the more theoretical research on robust cycles. We begin by sum- 
marizing the results on the stability of cycles (Section 4). The sections on spontaneous 
symmetry breaking, forced symmetry breaking, and cycles in mathematical biology and 
game theory follow (Sections 5, 6, and 7). In Section 8, which is the last section of Part 
II, we review the results on bifurcations from robust cycles. 

4. Stability of Robust Cycles 

Many of the early articles on robust cycles contain some stability results, but these results 
are often relevant only in a narrow context and are not always optimal. A systematic ap- 
proach to stability computations in the context of systems with symmetry was developed 
by Krupa and Melbourne [61 ], who also obtained a sharp stability condition for a class of 
cycles. Hofbauer [45] and Hofbauer and Sigmund [47] developed methods for stability 
computations in the context of mathematical biology and game theory. The method of 
[47] turned out to be applicable for a class of cycles in systems with symmetry and was 
rediscovered by Field and Swift [35]. 

The goal of this section is to provide the reader with an overview of the stability 
issues. To this end we review the methods of computing stability and present the state 
of the art stability conditions in an abstract context. In the forthcoming sections, when 
reviewing stability results for particular examples, we refer back to the discussion of the 
present section. We concentrate on the case when the vertices of the cycle are equilibria, 
although the results described here sometimes generalize to the case of more complicated 
invariant sets. Field [33, Chapter 7] develops a stability condition for cycles connecting 
chaotic sets. 

Consider a trajectory following a robust heteroclinic cycle. Clearly it will spend large 
amounts of time near the equilibria and the passages from one equilibrium to another will 
be relatively short. Hence the relative size of the eigenvalues of the linearizations at the 
equilibria will be the factor determining stability. The simplest example where this type 
of stability analysis has been applied is a pair of homoclinic cycles in the plane forming 
a 'figure 8'; see Figure 5. Let - c  and e denote respectively the contracting and the 
expanding eigenvalues at the equilibrium. The 'figure 8' configuration is asymptotically 
stable i fc  > e, and is unstable i fc  < e; see dos Reis [74]. 

In general we consider ODE's 

k = f ( x ) ,  x ~ R", (4.1) 

commuting with the action of a symmetry group F. We assume that (4.1) has a robust 
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Fig. 5. The 'figure 8' configuration. 

Hi ( in )  

r-d  
Fig. 6. The sections of the flow near ~j and ~j+l. 

cycle and discuss its stability properties. We consider only the case when the vertices 
of the cycle are equilibria. Some generalizations of the stability theory to the case of 
vertices of other types will be discussed in the forthcoming sections on a case-by-case 
basis. 

The approach to stability analysis reviewed in this section is to compute the return 
map for trajectories following the cycle. An alternative method using average Liapunov 
functions was developed by Hofbauer [45]. This method has only been applied in the 
context of MBGT and will be reviewed in Section 7. 

4.1. Computation of the Return Map 

Most stability computations are based on the derivation of a return map around the 
cycle. This map is composed of local maps, given by the flow near the equilibria, and 
connecting diffeomorphisms given by the flow between the vicinity of one equilibrium 
and the vicinity of the next one. For the derivation of the j th local map one often uses 
the linear flow determined by Df(~j) relying on the fact that a typical vector field can 
be linearized near equilibria [90] and that the linearizing transformation does not affect 
the symmetry properties [7]. We now sketch the derivation of the return map following 
the presentation of [61 ]. We use the system of sections of the flow defined in Figure 6. 
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Let 

• ~.)' be the eigenvalue of df(~j )  restricted to Pj- lkPj  with maximal real part. 2 Let 
- c j  = Re(k~) (cj > 0 by assumption). 

• Let ~.~ be the eigenvalue of df(~j )  restricted to PjkPj-I  with maximal real part. Let 
ej ---- Re(k~) (ej > 0 by assumption). 

• Let ~.~ be the eigenvalue o fd f (~ j )  restricted to (Pj + Pj_j)± (an invariant space for 
df(~j))  with maximal real part. Let tj = Re (k~) and assume that 

tj < 0, j = 1 . . . . .  k. (4.2) 

If  Pj + Pj_j = R n, then set tj = -oo .  

Remark Z Iftj  were positive for some j then there would be trajectories leaving every 
sufficiently small neighborhood of the cycle. Hence (4.2) is necessary for asymptotic 
stability. If tj > 0 for some j ,  weaker forms of  stability are possible as discussed in 
Section 4.4. 

Remark 8. It may happen that Pj_ 1 C Pj [76] (in fact this case was overlooked in [61 ]). 
The contracting eigenvalue ~.~ is then not defined. For the sake of  simplicity we do not 
consider this case here. It can be handled using similar methods. 

Let 4~j denote the first hit map from Hi(in) to Hj(out)  and ~pj the connecting dif- 
feomorphism from Hj (out) to Hj+l (in). In general the expression for 4~j may be rather 
complicated. Let us assume the following hypothesis: 

(HI)  dim(WU(~j))= 1, j = I . . . . .  k. 

The hypothesis (HI)  implies that k~ ---- ej. The derivation of 4~j is quite tedious, although 
elementary. In particular a choice of  coordinates near ~'j is necessary. We will write 
down an approximate formula for gj = ~j • dpj using the coordinates wj and zj which 
are defined as follows: wj is a (one-dimensional) coordinate along W"(~j), and zj is 
a multidimensional coordinate corresponding to the directions in (Pj_ i + Pj)±. These 
coordinates must be understood as local to the section Hj (in). We write zj = (z j0, zj j ), 

t and Zjl corresponds to where zjo corresponds to the directions in the eigenspace of ~.j 
the union of the other eigenspaces. It turns out that only the components of  gj transverse 
to Pj matter in the stability computation. In particular the so-called radial directions 
corresponding to Pj-l (q Pj in the domain of gj and to Pj n Pj+~ in the range of  gj 
do not matter (this was conjectured in [2] and proved in [61]). The mechanism of this 
phenomenon is clear in the stability computation in Section 2. For more details see [61]. 
We make the generic assumption that for both ~.) and k~ no generalized eigenvectors exist. 
(Note that the eigenspaces ofd f (~ j )  may be forced by symmetry to be multidimensional.) 

2 More precisely, we consider eigenvalues of the linear map induced by df (~j) on Pj _ ~/Pj_ I N Pj. 
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The components of gj orthogonal to Pj N Pj+t are given as follows: 

(AjIwjl x)/ej + Bjlwjl-x~/e~zjo + . . . )  the Wj+lth component, 

( ~  , X'/ej ~ , --)~(/ej ~jlWj , + UjlWj ~ zjo + " " )  thezj+l thcomponent .  (4.3) 

Remark 9. 

(i) Both components o f &  vanish for (wj, zj) = (0, 0). This follows from the flow- 
invariance of  the planes Pj. 

C l (ii) If  ~,, and Zj are real then the exponentiation in the terms Iwjl~'/ej and Iwjl ~'/ej 
should be understood in the usual way. If, for example, Z~ is genuinely complex 

then Iwjlx', /~ denotes a rotation of  some vector v0 by an angle 0 = const • In Iwl 
followed by multiplication by Iwj I c/~j . 

(iii) The entities A j, Bj, Cj, and Dj are matrices depending on the point in the section 
Hj(in). It follows from (HI) that Aj and Bj are row vectors. The matrices Cj and 
Dj may have arbitrary dimensions. 

(iv) The te rms . . ,  are related to coordinates corresponding to the zjl directions. In many 
cases it can be shown that these terms are of  higher order. The action of  F may pose 
restrictions on the matrices A j, Bj, Cj, Dj and sometimes even force some of them 
to vanish. 

c t If ~.j and ~.j are real, then (4.3) assumes the following simplified form: 

(Ajlwjl  ~/ej + Bjlwjl-I/~Jzo + . . . )  the wj+jth component, 

(Cj l~ ld j[  cj/ej ÷ O j l l l d j ] - t ' / e ' z  0 ÷ - . . )  the zj+lth component. 

The return map g has the form 

(4.4) 

g : gk • gk-l . . . . .  gl- 

To guarantee asymptotic stability we need, apart from condition (4.2), a condition guar- 
anteeing that the intersection of the cycle with HI (in) attracts nearby initial conditions 
under iteration of  g. The simplest case occurs when the symmetry forces one of  the 
leading terms in every component and for every j to drop out. In this case the transition 
matrix method, which will be reviewed below, is applicable. Equivalently the method of 
average Liapunovfunctions can be used [46]. If  no or less stringent symmetry restric- 
tions on A j, Bj, Cj, and Dj are present, one can try to single out a leading term in (4.3) 
for a subset of the initial conditions and show that this set is invariant for the return map. 
We refer to this approach as the invariant cones method. General results in this direction 
have been obtained by [61 ]. 

We now review the transition matrix method and the invariant cones method. 

4.2. The Transition Matrix Method 

For simplicity we consider the cases for which the transverse components of  the maps gj 
are as in (4.4) and that the cycle is in N4, which means that zj is (at most) one-dimensional. 
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We are interested in the special cases when the maps g) have the form 

"w Y ~ . (4.5) 
l) j Zj 

This happens when, for example, Aj = /9/ = 0. This is the case most commonly 
encountered in the literature. 

We now define the j th  transition matrix as follows: 

M j  = . ( 4 . 6 )  
y) 6j 

Let M = MkMk-~.  • • Mj. It can now be easily computed that g has the form 

bwYzS , (4.7) 

where oe, 15, y,  and ~ are the entries of  M. When the entries of  M are positive then its 
eigenvalues are real, one positive and one negative. We denote them by ~.+ and )~_. The 
following result was obtained independently by [471 and by [35]. 

Theorem 2. The cycle for  which g has the form (4. 7) is stable when, in addition to 
(4.2), Z+ > 1. If  a(O, 0), b(0, 0) 5~ 0, then the cycle is unstable when )~+ < 1. 

Sketch o f  the proof. If ,k+ > 1 then there exists a positive integer k such that the sum 
of both rows of  M k is greater than 1. It is then easy to see, using polar coordinates for 
(w, z), that the cycle is stable. 

If,k+ < 1 one can show that the sums of rows of M k converge to 0 as k ~ oo. Using 
this fact and polar coordinates one concludes that the cycle is unstable. [] 

Remark 10. The transition matrix method can be generalized to the case when, for all 
j ,  zj = (zjj . . . . .  Zjm) and each component o fg j  has the form . -  w~z~, where • is some 
function of (w, z), c~ and ¢~ are exponents depending on j and the component of  gj and 
l ~ {] . . . . .  kl .  

The transition matrix method is applicable for cycles in mathematical biology and 
game theory [45], [47], and in some problems with symmetry [35], [63]. 

4.3. The lnvariant Cone Method 

Krupa and Melbourne [61] show that the following condition (in addition to (4.2)) 
guarantees asymptotic stability: 

k k 

I - I  min(c~, ej - tj) > 1 7  ej. (4.8) 
j = l  j = l  
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A natural question is whether the condition 

k k 

H min(cj, ej - tj) < H e j  (4.9) 
j=l j=l 

guarantees instability for a typical f .  In general the answer is no. In particular in the 
cases when the maps gj have the form (4.5) the necessary and sufficient condition for 
stability obtained using the transition matrix method (see Theorem 2) is weaker. Krupa 
and Melbourne [61] observe that the answer to the question whether (4.9) is sufficient 
depends on the action of symmetry. Let ~) denote the subgroup of F whose elements fix 
all points in Pj. Clearly this group leaves Hj (out) and Hj (in) invariant, and consequently 
~pj commutes with the action of Ej. This action may restrict the form of the matrices 
A j, Bj, Cj, Dj. The following condition, formulated by [61], guarantees that no such 
restrictions take place: 

(H2) The eigenspaces of L~, ~.~, Z~+ 1, and ~.~+~ lie in the same isotypic component of 
the action of g./. 

Remark 11. Recall that an action of a compact group can be decomposed into isotypic 
components, each being a direct sum of a number of copies of an irreducible represen- 
tation. The hypothesis (H2) means that each of the four eigenspaces is a direct sum of a 
number of copies of the same irreducible representation. 

Additionally [61] make the following hypothesis: 

(H I ') D f  (~j) has only one eigenvalue with a positive real part and every two eigenvectors 
contained in the corresponding eigenspaces can be mapped to each other by a 
symmetry element fixing ~j. 

The authors of [61] prove that (4.9) typically implies instability of the cycle when 
(HI') and (H2) hold. 

Hypothesis (HI') reduces to (HI) when dim F ---- 0 and is a natural extension of 
(HI) to the cases with continuous symmetries. In most of the known examples (HI') is 
satisfied; an example of a heteroclinic cycle where it fails can be obtained by modifying 
the cycle found by Swift and Barany [96]. It is quite natural to conjecture that cycles are 
typically unstable when (4.9) holds even if (HI') is not satisfied. Proving such a result is 
an open problem. 

Hypothesis (H2) implies that there are no symmetry restrictions o n  A j, Bj, Cj, and Dj 
(see (4.3)). It holds for many of the cycles found in the Hopf-steady state and Hopf-Hopf 
mode interactions [71] as well as for the cycles found in Hopf bifurcation problems 
with the symmetry of planar lattices, that is, Dk. "IF ~, k = 2, 4, 6 [85], [84], and [23]. 
These examples will be discussed in more detail in Section 5. Hypothesis (H2) fails in 
many known cases, in particular whenever the transition matrix method is applicable 
(see Section 4.2). 

The arguments of [61] are based on the existence of a g-invariant cone in Hi(in) 
consisting of the points for which 

cllwll < Izt0[ < c~lwjl, (4.10) 
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where c I and c2 are positive constants. The existence of  the invariant cone relies on the 
hypothesis (H2). Inside the cone it is not hard to choose the leading term: It is Iwj I x)/ej 

--U.le) if cj < ej - tj and wj , zjo if the opposite inequality holds. 
In the case when no transverse eigenvalues are present, condition (4.8) reduces to 

1-I~=l cj > l-I~=l ej. This condition was known to Dulac for cycles in the plane and 
appeared in various contexts in the work of  [44], [75], [74], and [69]. 

4.4. Nonasymptotic Stability and Heteroclinic Networks 

An interesting situation happens when WU(~j) 9" Pj (equivalently, tj > 0) for some 
choice of j .  In this case asymptotic stability is impossible but the cycle can be stable in 
the following sense: For all initial conditions near the cycle excluding a cusp-shaped set of  
small measure, the corresponding trajectories approach the cycle [70], [66], and [62]. 3 
This stability property is called almost  asymptot ic  stability (the original terminology 
introduced in [70] is essential asymptot ic  stability). Cycles satisfying (H2) and (H 1') are 
almost asymptotically stable if 

k k 

VImin(cj,ej --tj) > H e j ,  
j=l )=l 

tj < ej, j = 1 . . . . .  k. (4.11) 

The condition (4.11) is necessary and sufficient--if one of the inequalities is opposite, 
a strong form of instability takes place. 

The case when gj 's  have the form (4.5) was studied by Brannath [14] and Kirk and 
Silber [56]. In this case forms of  stability weaker than almost asymptotic stability are 
possible. The authors of  [14] and [56] consider the situation occurring when, at least for 
one j ,  the equilibrium ej belongs to two or more different robust cycles. Such cycles are 
a part of  a heteroclinic network (which may consist of  yet more cycles). Brannath [ 14] 
and Kirk and Silber [56] show that the cycles forming the network can be simultaneously 
stable (in a weak sense). When the network is asymptotically stable then trajectories tend 
to a stable subcycle and no consistent 'switching' between different cycles within the 
network can occur. 

Ashwin and Chossat [9[ consider homoclinic cycles with dim(WU(~j)) > I and all 
expanding eigenvalues real. They show that, if the cycle is asymptotically stable, there 
exists a subcycle tangent to the strong unstable direction which attracts most of  the 
trajectories, but is not asymptotically stable. For complex contracting eigenvalues the 
authors of  [9] obtain numerical evidence that the basin of  attraction of  the subcycle is 
riddled [ 1 ], [8]. 

Remark 12. Alexander et al. [1] and Ashwin et al. [8] show that chaotic attractors 
contained in a single fixed-point space exhibit complicated kinds of  stability including 
almost asymptotic stability. 

3 As pointed out by Brannath [14], in a rigorous definition of almost asymptotic stability the shape of the 
small neighborhood of the cycle from which the interior of the cusp is removed must be specified. It suffices 
to assume that for all j such that tj > 0 the intersection of this neighborhood with Hj (in) is a disc. 
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5. Creation of Cycles through Spontaneous Symmetry Breaking 

Robust heteroclinic cycles have been found in a number of bifurcation problems of the 
spontaneous symmetry breaking type. Below we review the analysis of many of these 
problems, classifying them by codimension. We begin with some background on local 
bifurcations with symmetry. For details see [40]. 

Consider a parameter dependent ODE, 

)c = f ( x ,  ~.), x E R '~, • E ~k, (5.1) 

for some n and k. Assume that f commutes with the linear action of a compact Lie group 
F and that P0 6 Fix(F) is an equilibrium of(5.1). One is interested in studying the steady- 
state and Hopf bifurcations of P0. Since Df(po) also commutes with F it follows that 
the eigenspaces of Df(po) must be F-invariant. Generically the eigenspaces of Df(po) 
corresponding to real eigenvalues are absolutely irreducible and the eigenspaces corre- 
sponding to complex eigenvalues are F-simple (see [40] for the definitions). Spontaneous 
symmetry breaking occurs if the action of F on the critical eigenspace is nontrivial. 

Using the equivariant center manifold theorem one can reduce the bifurcation problem 
to an equivariant problem posed on the eigenspaces of the critical eigenvalues, that is, 
on the eigenspace of p0 for a generic steady state bifurcation or on the eigenspace 
corresponding to the pair of purely imaginary eigenvalues for a generic Hopf problem. 
Hence generic steady-state bifurcation problems are posed on absolutely irreducible 
spaces and generic Hopf bifurcation problems on F-simple spacesL In mode interactions 
one considers direct sums of the relevant spaces. 

5.1. Codimension 1 Problems 

5.1.1. Steady State Bifurcations. The existence of a homoclinic cycle in an unfold- 
ing of a generic bifurcation was first shown by Guckenheimer and Holmes [41]. The 
bifurcation problem studied by [41] is relevant to the dynamics of rotating convection 
between two plates (see [19] and Section 10). It was analyzed in Section 2. 

For a number of symmetry groups equivariant vector fields on absolutely irreducible 
spaces are determined and gradient at lowest order, which means that robust heteroclinic 
cycles do not occur for generic steady-state bifurcations. Known examples of robust cy- 
cles occurring through generic steady-state bifurcations, other than one example given 
in [41], are in the work of Field and Richardson [34], Field and Swift [35], and Gucken- 
heimer and Worfolk [42]. In this section we discuss the results on robust cycles found in 
these articles. A more extensive review as well as a number of new examples are given 
in the recent book by Field [33]. 

Field and Richardson [34] and Field and Swift [35] consider bifurcation problems 
with symmetries of (Z2) k- Zk acting on ~k, k >_ 4. The groups (Z2) ~- Zk and their actions 
on ~k are the natural generalization of (Z2) 3 - Z3 and its action on R 3, see Section 2. 

A helpful tool in equivariant bifurcation theory is the invariant sphere theorem of 
Field [31] (see also [36] and [95]). This theorem asserts the existence of an attracting 
invariant sphere following the loss of stability of the trivial equilibrium. The invariant 
sphere exists under an assumption on the cubic terms guaranteeing the attractivity of a 



Robust Heteroclinic Cycles 151 

PO01 

Ploo 'Polo 

Poool 

P ~ooo Poo~o 

(b) 
POOOOl POOOlO 

PlO000 POOIO0 

Pomoo 

(c) 

Fig. 7. The edge cycles (copied from a figure in [34]): (a) a heteroclinic cycle on A2; (b) a 
heteroclinic cycle joining four equilibria on A3; (c) possible heteroclinic cycles on A4. 

small neighborhood of  0. For the (Z2) k • Zk symmetric problems we assume, following 
[35] and [34], the existence of such an invariant sphere and denote it by Ak-j .  

Note that the action of  (Z2) k implies the invariance of  the positive quadrant 
{(ul . . . . .  uk): uj >_ 0, j = I . . . .  k}. Consider the invariant simplex Sk-i given by 
the intersection of Ak j and the positive quadrant. The edges and faces of  Sk-I are also 
invariant, due to the action of  (Z2) k. It is not difficult to study the dynamics on the edges 
and to find cycles consisting of  the edges of  Sk-j.  Some of  these edge cycles are shown 
in Figure 7. Field and Swift [35] compute the stability of  the edge cycles on $3 using the 
transition matrix method. They also found a different type of  cycle on $3, namely cycles 
joining equilibria contained in the interior of  the edges. 4 Field and Richardson [34] find 
complicated 'face cycles'  using the Poincar&Hopf theorem. 

Remark 13. By modifying the cycles on Sk-i one could obtain heteroclinic networks 
analogous to the ones studied by Brannath [ 14] and Kirk and Silber [56]. 

4 There is a strong analogy between tile cycles in (Z2) k • Zk symmetric systems and the cycles found in the 
systems of mathematical biology and game theory--see Section 7.3 for a comparison. 
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Guckenheimer and Worfolk study the bifurcation problem with symmetry group F 
consisting of the orientation-preserving elements of (Z2) 4 • Z4. The cycles they find are 
analogous to the cycles of [35]. The main difference in the dynamics is that the two- 
dimensional faces of S3 are no longer flow invariant. As a result the trajectories can spiral 
around the edges of the cycle, which leads to the occurrence of complicated dynamics. 
In their numerical investigations the authors of [42] find a period doubling cascade and 
a Shilnikov-type homoclinic orbit. Some of this complicated dynamics may be due to a 
bifurcation from the cycle studied by Worfolk [98]. The work of [98] will be reviewed 
in Section 8. 

A fascinating feature of the bifurcation studied by [42] is that it leads directly to 
chaotic dynamics. The authors of [42] named this phenomenon instant chaos. Another 
instance of instant chaos is described by Field and Peng [33, Appendix A]. 

It turns out that for all the vector fields discussed in this section the symmetry group 
has wreath product structure A ~ Zk, where A is some Lie group and k is a positive 
integer. Let E be any subgroup of Sk (the group of permutations of k symbols) and let 
A act on 11~ n. The action of A ~ E on ]~nk is given as follows: 

(~, a)(xl  . . . . .  xk) = (~x~,-,~l), ~x~,-,~2) . . . . .  ~x. ,~)). 

For more details on wreath products and the related bifurcation problems see [291. Pre- 
liminary results of Dionne, Field, and Krupa [28] show that robust cycles are ubiquitous 
in steady-state bifurcations with symmetry A ~ Zk. 

5.1.2. Hopf Bifurcations. In generic Hopf bifurcations robust heteroclinic cycles have 
been found for the symmetries of planar lattices, namely Dk - ql "2, k ---- 2, 4, 6 [85], 
[84], and [23], respectively, and for problems with symmetry Zk - qi "2, k = 2, 4, 6 [60], 
[59], and [96], respectively. These bifurcations are the Hopf bifurcation analogues of the 
Kuppers-Lortz instability studied by Busse and Heikes [19]. In this section we review 
the work of Siiber et al. [85], Siiber and Knobloch [84], Knobloch and Silber [59], [60], 
and Swift and Barany [96]. The article of Clune and Knobloch [23] will be discussed in 
connection with cycles in magnetoconvection in Section 11. 

The normal form of a F-symmetric system near a Hopf bifurcation has additional ~1 
symmetry corresponding to phase shift [40]. Hence, near a Hopf bifurcation point, one is 
effectively studying a bifurcation problem with symmetry F x ~l. In Hopf bifurcations 
one encounters solutions with purely spatial symmetry, that is, with symmetry groups 
contained in F × {1}, and solutions having some spatio-temporal symmetry of the form 
(y, a),  a :fi 1. The former are called standing waves (patterns) and the latter traveling 
or rotating waves (patterns). In problems with lattice symmetry one usually refers to 
patterns having some translational symmetry (a nonzero T 2 component) as rolls. Other 
types of patterns are usually called, according to their symmetry, hexagons, squares, or 
rectangles. 

Silber et al. [85] classify the periodic solutions of the relevant II)2 • T 2 × S l equivari- 
ant normal form system. They prove the existence of a heteroclinic cycle joining three 
types of these periodic orbits, namely traveling rolls, standing squares, and alternating 
rolls. Using the stability condition of [61] they prove that under certain conditions on 
the system's parameters and the normal form coefficients the cycle is asymptotically 
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stable. Silber and Knobloch [84] carry out similar analysis for Hopf bifurcations with 
D4"/I"2 symmetry. They find a heteroclinic cycle joining three types of periodic solutions, 
namely alternating rectangles, standing rectangles, and standing squares. The cycle can- 
not be stable. They conjecture the existence of a stable heteroclinic cycle involving a 
quasiperiodic solution. 

Knobloch and Siiber [60] study Hopf bifurcations Z4 • "£2 finding a homoclinic cycle 
to a traveling roll solution. The cycle can be stable. Knobloch and Silber [59] find similar 
cycles in problems with symmetry Z2 - ql "2 and Z6- ,£2. In the Z6 • ,£2 symmetric problem 
another cycle, namely a homoclinic cycle to a standing square solution, was found by 
Swift and Barany [96]. This cycle is quite interesting for the following reason. Let s e and 
ys e, y 6 Z6. T 2 be two consecutive equilibria in the cycle and let Fix A be the fixed-point 
space containing the connection s e ---> F~. The contracting eigenvalue of F~ turns out to 
be complex. Consequently the cycle is of Shilnikov type and chaotic dynamics arise in its 
vicinity. The cycle obeys the stability condition of [61], that is, c/e > I is the necessary 
condition for stability. For c/e ~ 1 numerical experiments indicate the existence of a 
strange attractor. 

5.2. Problems of Codimension Higher than 1 

Codimension-two bifurcation problems provide a number of examples of robust hete- 
roclinic cycles; see [4], [72], [71], [3], [20], [69], and [63]. In this section we review 
these examples concentrating on the work of Armbruster et al. [4], Melbourne et al. [71 ], 
Armbruster and Chossat [3], and Melbourne [69]. 

5.2.1. Steady-State Mode Interactions with 0(2) Symmetry. Armbruster, Gucken- 
heimer, and Holmes [4] and Proctor and Jones [72] were the first to find an example of 
a robust cycle in a codimension-two problem. They proved the existence of a cycle in 
steady-state mode interactions with 0(2)  symmetry. A related problem of steady state 
mode interactions with ]]~4 symmetry was considered by Campbell and Holmes [20]. 
In this section we outline the proof of the existence of a cycle for the 0 (2)  symmetric 
problem. 

Consider a parametrized system with 0(2)  symmetry having an O(2)-invariant equi- 
librium. Since the linearization around a symmetric equilibrium commutes with the 0(2)  
action it follows that eigenspaces are O(2)-invariant. Typical real eigenspaces on which 
at least some reflections and some rotations from 0(2)  act nontrivially can be identified 
with C and admit the following 0(2)  actions: 

0 eikO z z ~ for 0 ~ SO(2), 

z ~,  ~', x is a reflection. 

A steady-state mode interaction occurs when (at least) two eigenvalues corresponding to 
symmetry unrelated eigenvectors simultaneously pass through 0. Here we consider the 
situation when two real eigenspaces merge forming a generalized eigenspace. Armbruster 
et al. [4] consider the steady-state mode interaction of type (1,2) (1 : 2 resonance) 
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occurring when the critical generalized eigenspace has the form C x C with the following 
action: 

(Zl, Z2) ~0 (e iOz l  ' e2iOz2 ) for 0 E SO(2),  

(z], z2) ~-* (~j, z2), x is a reflection. (5.2) 

Note that any matrix commuting with this action must be diagonal. This implies that 
the Jordan block of the 0 eigenvalue at criticality is semisimple and hence must be the 0 
matrix. 

Remark 14. For PDE's the Fourier decomposition provides a decomposition into in- 

variant spaces of the 0(2)  action--the k-th Fourier mode corresponds to the z o eikO z 
action. In the context of Fourier decomposition the bifurcation studied by [4] corresponds 
to the Fourier modes 1 and 2 simultaneously becoming unstable. 

The center manifold theorem for symmetric systems [40] implies that the bifurcation 
problem may be reduced to an ODE on C 2 commuting with the action (5.2) [4[. The 
relevant vector field, after suitable rescalings, has the normal form, 

Zl = ZIg2 -I- ZI(I/-I "[- ell[Zl[ 2 + el2lzzl 2) +hot ,  

z2 = :t:z~ + z2(/z2 + eet ]zl I e q- e2elz212) + hot. (5.3) 

Consider the groups: Z:  = {1, x} and Z2 = {1, x~r}. The corresponding fixed-point 
spaces are 

Fix(Z2) = {(Zl, z2) = (x, y), x, y real}, 

and 

Fix(Z2) = {(zl, z2) -- (ix, y), x, y real}. 

Consider (5.3) with the higher order terms neglected. Armbruster et al. [4] formulate 
conditions on the coefficients ej, j = 1 . . . . .  4 and/Zy, j = 1, 2, implying the existence of 

a saddle point (0, y,) ~ Fix(Z2) OFix(Z2). Additional conditions on ej and ~j imply the 
existence of an attracting neighborhood of 0 containing the 0(2)  group orbit of (0, y,) 
and no other equilibria. The existence of a homoclinic cycle joining ~1 = (0, y,) to 
se2 = (0, - y , )  and, by symmetry, se2 to ~j follows from the Poincarr-Bendixson theorem 
provided that additional conditions on #i and ej are satisfied. Such a cycle is shown in 
Figure 8. The cycle can still exist even if these additional conditions fail as long as s~l is 
a saddle point. Recently Sandstede and Scheel [78] determined exactly the region of the 
existence of the homoclinic cycle. To obtain this result they rescaled (5.3) and applied 
singular perturbation analysis. 

5.2.2. Hopf-Steady State and Hopf-Hopf Mode Interactions with 0(2) Symmetry. 
Melbourne, Chossat, and Golubitsky [71] consider Hopf-steady state and Hopf-Hopf 
mode interactions with 0(2)  symmetry. Recall that a generic Hopf bifurcation in a system 
with 0(2)  symmetry gives rise to two periodic solutions, a standing wave and a rotating 
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I 
P 2  

Fig. 8. The homoclinic cycle in the steady-state mode interaction with 0(2) symmetry. 

wave. More precisely there are two group orbits of  periodic solutions, one corresponding 
to rotating waves and one to standing waves. The symmetry of  an individual rotating 
wave as a set is SO(2) and a standing wave has the symmetry of  a reflection. For more 
details see [40]. 

(a) Steady State-Hopf.  As mentioned in Section 5.2.1 eigenvalues of  the linearization 
at an invariant equilibrium for problems with 0 (2 )  symmetry may be double. For a 
steady state-Hopf interaction the critical eigenspace can have the form C @ C z, with the 
0 (2 )  action given by 

(Zl, 7.2, 7,3) ~ ( e l iOz l ,  miO e ,nio e z2, z3J for 0 ~ SO(2),  

K 

(zl, z2, z3) --~ (zl, z3, z2), K is a reflection. 

Heteroclinic cycles occur when the critical eigenspace has this form. The primary bi- 
furcating solutions are an equilibrium, a standing wave, and a rotating wave. Melbourne 
et al. [71] prove the existence of a heteroclinic cycle joining the steady state and the 
standing wave when l = m. 

(b) Hopf-Hopf .  In a Hopf-Hopf mode interaction cycles may occur when the critical 
eigenspace is of  the form C 2 @ C 2 with the action of 0 (2 )  given by 

(Zl Z2, Z3, Z.4) ~'~ ( e l i ° z  e miO , t ,  e i l ° z  2, z3, e -m iOz4 )  for 0 C SO(2),  

(zl, z2, z3, z4) ~ (z2, zl, z4, z3), K is a reflection. 

The primary solutions are two pairs of  standing waves and rotating waves, a pair corre- 
sponding to each mode. For l = m Melbourne et al. [71 ] find three types of  heteroclinic 
cycles, namely a cycle connecting two rotating waves, a cycle connecting two standing 
waves, and a cycle connecting all four periodic solutions. 

In both the steady state-Hopf and the Hopf-Hopf mode interactions the spaces Pj are 
group orbits of  two-dimensional vector spaces under the product of  the actions of  0 (2 )  
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Fig. 9. Lattice connections suggesting the ex- 
istence of a heteroclinic cycle. 

and the normal form symmetry (~1 in the steady state-Hopf case and ,1~2 in the Hopf-Hopf 
case). Using this property Melbourne et al. [7 t ] are able to apply the Poincar6-Bendixson 
theorem and derive sufficient conditions for the existence of robust heteroclinic cycles. 
These conditions are not necessary. When they fail, phase plane simulation can be used 
to provide evidence for the existence of cycles, s 

The cycles described in this section were found for the normal form equations which 
have additional ~1 symmetry (steady state-Hopf) or  'IF 2 symmetry (Hopf-Hopf). Since 
the normal form symmetry is only approximate, in the full system the cycles are expected 
to be replaced by nearby intermittent dynamics. The situation is similar to that in [69]; 
see also Section 5.2.4. 

Using ~l (respectively 'Ii "2) symmetry of the normal form, one can realize periodic 
orbits as relative equilibria, or, in other words, flow-invariant group orbits. This allows 
for an easy generalization of the stability methods of [61]. It turns out that all cycles 
can be asymptotically stable. Moreover, Krupa and Melbourne [62] show that the cycle 
occurring in the steady state-Hopf interaction and two of the cycles occurring in the 
Hopf-Hopf interaction, namely the cycle joining the rotating waves and the cycle joining 
the standing waves, could be almost asymptotically stable, without being asymptotically 
stable. In Hopf-Hopf interaction almost asymptotic bistability of the two mentioned 
cycles is possible. 

Remark 15. Melbourne et al. [7t] find a useful algebraic indicator for the existence of 
robust cycles. Recall that the isotropy group of a point x e IR n is defined as 

Zx = {a ~ F: a x  = x } .  

The equivalence classes of isotropy subgroups with inclusion form a partially ordered 
set, often referred to as the isotropy lattice. Melbourne et al. [71 ] notice that certain 
configurations in the isotropy lattice suggested the existence of heteroclinic cycles. Let 
~:1 . . . . .  ~k be the equilibria in the cycle and E 1 . . . . .  gk their isotropy subgroups. Suppose 
PI . . . . .  Pk are fixed point spaces of the groups A1 . . . . .  Ak. Clearly FixE~ C FixA~_~ N 
FixAi. It often happens that Ai-l  and Ai are maximal isotropy subgroups properly 
contained in El. The isotropy lattice then contains a configuration of the type shown 
in Figure 9. Conversely, finding such configurations in the isotropy lattice suggests the 
existence of heteroclinic cycles. 

5 Sharp conditions could probably be obtained using the methods of Sandstede and Scheel [78]. 
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5.2.3. SteadyStateModelnteract ionswithO(3)Symmetry.  ArmbrusterandChossat 
[3] consider steady-state mode interactions with 0(3)  symmetry. Their article follows 
up on the work of Friedrich and Haken [37] who consider steady-state interactions for a 
convection problem in a spherical shell and numerically locate a number of heteroclinic 
cycles. These and other cycles were found analytically in the work of [3]. 

Recall that the irreducible representations of 0(3)  are absolutely irreducible and are 
given by the spaces V/generated by spherical harmonics of order I (for background on 
bifurcations with 0(3)  symmetry see [40]). Armbruster and Chossat [3] consider an 
equilibrium with two eigenvalues 0 and the eigenspace of 0 given by V1 @ V2 and study 
the unfolding of this singularity. They find three types of heteroclinic cycles. In order to 
rigorously establish the existence of the cycles they vary a tertiary parameter (a coefficient 
of a higher order term of the normal form). The three types of cycles found in [3] are: 

(a) A heteroclinic cycle joining two axisymmetric solutions with maximal isotropy 
types. This cycle joins equilibria having the same isotropy type but not lying on 
the same group orbit. The cycle is not stable in the region where it is theoretically 
found, but Armbruster and Chossat [3] locate it numerically for other values of the 
coefficients, where it is asymptotically stable. A sufficient condition of [71] is used 
to confirm asymptotic stability. 

(b) A heteroclinic cycle joining a maximal solution and a submaximal solution, both 
axisymmetric. The cycle is stable. Here the condition of [71] is too strong and 
stability follows from the condition of [61]. Since this condition was not known at 
the time, Armbruster and Chossat [3] conclude stability based on numerical results 
and the conjecture of Armbruster [2]. The submaximal equilibrium can lose stability 
in a Hopf bifurcation leading to the appearance of a heteroclinic cycle between an 
equilibrium and a periodic orbit. 

(c) A homoclinic cycle involving a submaximal nonaxisymmetric solution. This cycle is 
analogous to the one found by [4]; see Figure 8. The cycle can be stable. Armbruster 
and Chossat [3] conjecture that this cycle can explain the mechanism of the aperiodic 
reversal of the Earth's magnetic dipole field in the geological times. 

The work of [3] has recently been extended by Guyard [43], who studied mode 
interactions with 0(3) symmetry for different irreducible representations. He looked for 
heteroclinic cycles of the type shown in Figure 8 and obtained a complete classification 
for the eigenspaces of 0 equal to Vt @ Vt+l. 

5.2.4. Triple and Quadruple Hopf Bifurcations. Melbourne [69] and Krupa, Mel- 
bourne, and Scheel [63] consider triple and quadruple Hopf bifurcations. Here the sys- 
tems under consideration are not assumed to have any symmetry, hut still they behave 
very similarly to symmetric systems. The reason is that the Birkhoff normal forms of 
the considered systems have symmetry, T 3 in the case of a triple Hopf bifurcation and 
ql "4 in the case of a quadruple Hopf bifurcation (the symmetry of a three torus and a 
four torus, respectively). Near the bifurcation points the vector field can be written as a 
small perturbation of the normal form. For the normal-form vector field one can prove 
the existence of a heteroclinic cycle. Upon the addition of the perturbation breaking the 
normal-form symmetry the cycle is replaced by a nearby invariant set supporting inter- 
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mittent dynamics similar to this on the cycle. The main difference is in the transition 
times which, for the perturbed system, are erratic and tend to be bounded (extremely 
long return times occur infrequently). 

We now sketch the analysis for the triple Hopf bifurcation. Center manifold and 
Birkhoff normal form techniques lead to a vector field on C 3. Under finitely many 
nondegeneracy conditions (corresponding to the absence of strong resonances) this vector 
field, truncated at cubic order, decouples into phase-amplitude equations. The amplitude 
equations give a three-dimensional vector field with Z~ = Z2 (9 Z2 @ Z2-symmetry, each 
copy of Z2 being the remnant of the phase-shift symmetry from one of the Hopf modes. 
Coordinates (x j, x2, x3) may be chosen so that the group of symmetries is generated by 
the reflections 

(Xl, X2, X3) ~ (-}-Xl, Jr-x2, -}-X3). 

Then the equivariance of the vector field guarantees that each coordinate axis and plane 
is flow-invariant and it is easy to check that for an open set of equivariant vector fields, 
there is a heteroclinic cycle between three equilibria lying on the coordinate axes. This 
cycle lifts to a cycle between three periodic solutions for the six-dimensional truncated 
vector field. Finally, if the cycle is asymptotically stable, then it is possible to deduce 
heteroclinic-like behavior for the full bifurcation problem. 

Analogous results may be obtained in the case of a quadruple Hopf bifurcation. For 
this case a number of heteroclinic cycles can be found, in particular planar, that is, joining 
equilibria in three coordinate planes, and nonplanar, that is, joining equilibria in four 
coordinate planes. The reduced Z 4 symmetric case was studied by Kirk and Silber [56], 
who addressed mainly the question of the existence of heteroclinic networks and their 
stability. The situation is analogous as in the case of heteroclinic cycles on the simplex 
for the replicator equations of mathematical biology and game dynamics (Section 7); 
see Brannath [14] for the most up to date account. 

Similar considerations hold for a k-tuple Hopf bifurcation, where k is a positive 
integer. 

6. Creation of Cycles through Forced Symmetry Breaking 

Consider a differential equation commuting with a symmetry group F and suppose that 
small terms are added to the equation which break the symmetry of F. In other words 
the group of symmetries of the perturbed equation is a proper subgroup of F. This phe- 
nomenon is called forced symmetry breaking. As illustrated in Section 3, heteroclinic 
cycles may be created as a result of forced symmetry breaking. More specifically, one 
considers an invariant group orbit M (a relative equilibrium), which, under a symmetry- 
breaking perturbation of the vector field, remains invariant for the flow but is not a single 
group orbit for the action of the smaller group. The manifold M is equivariantly dif- 
feomorphic to F/K, where K is the isotropy subgroup of the elements of M under the 
action of F. As indicated in Section 3 such perturbations may lead to the occurrence of 
heteroclinic cycles on M. Lauterbach and Roberts [66] consider forced symmetry break- 
ing from the symmetry of SO(3). They study the following three cases: the dynamics 
on SO(3)/O(2) under the symmetry breaking to T (the group of orientation-preserving 
symmetries of a tetrahedron), the dynamics on SO(3)/T under the symmetry breaking 
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to 0(2),  and the dynamics on SO(3)/T under the symmetry breaking to ID,,. In the first 
two cases they find homoclinic cycles which could be asymptotically stable. In the third 
case, depending on the parity of n, they find a pair of homoclinic cycles or a homoclinic 
network consisting of two homoclinic cycles. Of the pair of homoclinic cycles one has 
to be unstable and the other could be asymptotically stable. In the heteroclinic network 
each of the two cycles, but not both simultaneously, can be almost asymptotically stable 
(see also [70]). 

Armbruster and Ihrig [6] recover some of the results of [66] using topological methods. 
The work of [66] was extended by Lauterbach et al. [65] and Lauterbach and Maier- 

Paape [64]. Let L denote the group of the remaining symmetries acting on M = 
F / K .  Lauterbach et al. [65] define graphs G~L.r/~)  whose vertices are equilibria and 
edges connected components of fixed point spaces of the action of L on G / K .  They 

P obtained from G~L,C/K) by reducing the ac- also consider projected graphs G~L,6m)  

tion of L. Finding heteroclinic cycles is equivalent to finding closed paths in such 
graphs. Lauterbach et al. [65] classify the graphs G e for F = 0(3).  A con- 

( L . G / K )  

sequence of this classification is that homoclinic cycles are admitted for (L, K) c 
{(T, T), (T, ©), (•, T), (T, O(2)), (O(2), T)}, where O denotes the group of orientation- 
preserving symmetries of the octahedron. Lauterbach and Maier-Paape [64] consider 
reaction diffusion equations on a sphere in R 3. They show that for some perturbations 
breaking the symmetry to T there exists a homoclinic cycle. 

Golubitsky and Hou [50] (see also [49]) present a simple and elegant example of 
a heteroclinic cycle arising through forced symmetry breaking. For the review of their 
work see Section 3. 

7. Cycles in Mathematical Biology and Game Theory 

Robust heteroclinic cycles can be found in the models coming from biology and game 
theory (MBGT). The first example of such a cycle was given by May and Leonard [68]. 
In this section we describe the mechanism of the existence of cycles using the example 
of the Lotka-Volterra equations and the replicator equations. The exposition is based on 
the presentation in Hofbauer and Sigmund [47] and in Hofbauer [46]. 

7.1. T h e  E x i s t e n c e  o f  C y c l e s  

The Lotka-Volterra equations, 

xi  = xi  ri + a O x  j , i = 1 . . . . .  n ,  (7.1) 

model various phenomena in biology, e.g., predator-prey systems. The variables xj cor- 
respond to different species of a biological system and are assumed to be nonnegative. 
After a suitable change of coordinates one can transform (7.1) to the replicator equations, 

X i  = X i  [ ( A x ) i  - x • A x ] ,  i = 1 . . . . .  n ,  (7.2) 

which are posed on the simplex Sn = {x 6 R n ~'i'=l xi  = 1}. The equations (7.2) are 
also used as a model in game theory. 
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Note that the coordinate hyperplanes 

Hi, . . .1 ,  = { ( x ,  . . . . .  x , )  : x j ,  . . . . .  xj, = 0 }  

are invariant for the flow of (7.1) and (7.2). There are many examples of heteroclinic 
cycles and networks joining equilibria in the hyperplanes Hi,..4, [45], [47], [57], [46], 
[14], including the already mentioned cycle of May and Leonard [68]. The occurrence 
of heteroclinic cycles and networks depends of course on the signs and relative sizes of 
ri and aij, i, j = 1 . . . . .  n. The following is an example o fa  heteroclinic cycle occurring 
for (7.2). Note that adding a number to a column of A does not alter (7.2) restricted to 
Sn. Hence we may assume with no loss of generality that aii = 0, i ---- 1 . . . . .  n. Let 
el ----- (1,0 . . . . .  0), e2 = (0, 1,0 . . . . .  0), etc. Clearly ej is an equilibrium of (7.2). Note 
also that the eigenvalues of the linearization of (7.2) at ej in the directions tangent to 
S, are given by the nondiagonal entries of A in the j- th row. Under some additional 
assumptions on A implying the nonexistence of equilibria on the one-dimensional edges 
joining ej to ej+l there exists a heteroclinic cycle joining el ~ e2 ~ -..  ~ e, ~ el. 
For n ---- 3 this is the cycle of May and Leonard [68]. 

An interesting property of robust cycles in general was discovered in the context 
of MBGT by Gaunersdorfer [38], who showed that the time averages of trajectories 
converging to heteroclinic cycles do not converge. The work of [38] was extended by 
Takens [99], who classified the topological equivalence classes for the dynamics local 
to a simple heteroclinic cycle. 

7.2. Stability 

As reported in Section 4 stability of cycles can be computed using Poincar6 sections 
and return maps. For (7.1), (7.2), and their generalizations the transition matrix method, 
whose special case was described in Section 4, is applicable. This method was used 
by [47] to obtain asymptotic stability conditions and by [14] to analyze nonasymptotic 
stability for heteroclinic networks on Sn. Hofbauer [44] presented an alternative method 
based on average Liapunov functions. Hofbauer [46] obtained various stability criteria, 
in particular the following explicit criterion for the cycle described in the preceding 
paragraph: 

Theorem 3. Let A' be the matrix obtained from A by reordering the columns so that 
only the diagonal has positive entries. Suppose det A' # O. The cycle is unstable if all 
leading principal minors of A' are positive. The cycle is stable if at least one of the 
leading principal minors is negative. 

Sketch of the proof If all leading principal minors of A' are positive then A' is an M 
matrix. An equivalent characterization of this property is that there exists a vector p > 0 
(that is, p = (pl . . . . .  Pn) and all pj's are positive) such that A'p > 0. Conversely, 
if at least one leading principal minor of A' is negative (A' is not an M matrix) then 
there exists p < 0 such that A'p > 0. Since A = A'S for some permutation matrix S, 
analogous properties hold for A and the vector q = S - I  p. 

Suppose that there exists p > 0 such that Ap > 0. Consider the average Liapunov 
function P(x) = [-I xi p'. Let x(t)  be a trajectory of the system passing nearby the cycle. 
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p n xi P Then F = )--~i=l PIT," It follows that when x( t )  is near ~j then T ~ (Ap)j  > 0. Since 
x( t )  spends most of the time near the vertices ~i it must be repelled from the cycle. 

Suppose that there exists p < 0 such that Ap > 0. Consider P(x)  = I - Ix[  e' . Then 
P 

T p : - -  ) - " ~ i = l n  Pi xS';ci It follows that when x( t )  is near ~j then T ~ - ( A p ) j  < 0. Since 
x (t) spends most of the time near the vertices ~j it must be attracted to the cycle. [] 

An interesting issue related to stability is permanence of the biological system. It 
is important to note that the equilibria in the hyperplanes Hjt...j~ correspond to some 
species being extinct. Near such equilibria deterministic models are usually replaced 
by stochastic ones. This puts the question of stability of cycles in a different light. One 
may consider the problem of permanence of a biological system, that is, whether all the 
species are going to survive. Certainly a necessary condition for permanence is that the 
heteroclinic cycles are unstable. 

7.3. Comparison between Cycles Found in Systems of MBGT and in Systems with 
Symmetry 

Consider a dynamical system on ~n commuting with the action of (Z2) n given by reflec- 
tions in the coordinate axes (e.g., the amplitude equations for the n-tuple Hopf bifurcation 
[69], [63]) or with the action of (Z2)" - Z,,  where the action of Z~ is generated by the 
cycle (Xl . . . . .  x,)  ~ (xn, xl . . . . .  xn-i) (e.g., the steady-state bifurcation problem con- 
sidered in [34] and [35]). Note that for these actions the coordinate hyperplanes must be 
invariant, just as in the case of the equations (7. I) and (7.2). Conversely the equation (7.1) 

2 Consequently can be converted to an equation with Z 2 symmetry by letting xj = uj. 
there are many similarities in the geometry of the flow for the systems with these types 
of symmetry and for the flow of (7. I ) or (7.2). In particular cycles joining the vertices of 
the simplex are analogous to the edge cycles on the invariant sphere of the steady-state 
bifurcation problem [34], [35] and to the cycles in n-tuple Hopf bifurcations [69], [63]. 
The transition matrix method of determining stability is also analogous. 

8. Bifurcations from Robust Cycles 

Bifurcations from robust heteroclinic cycles are a natural problem to consider and have 
been given some attention even in the earliest research. Two types of bifurcations have 
attracted the attention of researchers. The first type of problem is to analyze the bifurcation 
arising as a result of a change in the dynamics near the cycle, for example the loss of 
stability of the cycle. The second type of problem is related to forced symmetry breaking. 
The question is: What happens to the dynamics, if due to small, symmetry breaking 
perturbations the invariance of the planes Pj is destroyed? In this section we review the 
research on the two types of bifurcations. 

8.L A Change in the Dynamics near the Cycle 

The most significant example of this type of bifurcation is the loss of asymptotic stability 
of the cycle. It follows from the discussion in Section 4 that there are two ways in which a 
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cycle can lose asymptotic stability. The first possibility occurs when one of the transverse 
eigenvalues (tj 's) becomes positive. This is called a transverse bifurcation. The second 
possibility occurs when the intersection of the cycle with the appropriate section of the 
flow becomes a repellor for iteration of the return map. Depending on the type of the 
cycle this is equivalent to a change of the direction of inequality in either (4.8), or in the 
condition given in Theorem 2, or in some other algebraic inequality. For this reason this 
type of bifurcation is called a resonant bifurcation. 

The first result on resonant bifurcations was obtained by Hofbauer [45] and Hofbauer 
and Sigmund [47] for beteroclinic cycles in systems of mathematical biology and game 
theory (see Section 7). They show that the loss of stability of a certain cycle led to the 
appearance a periodic orbit with a long period. 

Armbruster, Guckenheimer, and Holmes [4] analyze resonant bifurcations of the 
heteroclinic cycle occurring in the mode interaction problem they considered (see Section 
5.2.1). They show, using elliptic integrals, that, as the homoclinic cycle they find looses 
stability, it gives rise to a modulated traveling wave. Their analysis relies on the presence 
of a two-dimensional symmetry group (the underlying 0(2)  symmetry and the normal- 
form symmetry SO(2)). Armbruster [2] considers a generalization of the example of [4] 
and shows that, as the equilibria in the cycle undergoes a Hopf bifurcation, other cycles 
are created, joining periodic solutions of standing wave type. Scheel and Chossat [82] 
consider resonant bifurcations from a homoclinic cycle of the same configuration as the 
cycle studied in [4] (see Figure 8) occurring in the presence of D4 symmetry. They pose 
the problem in an abstract setting not related to any specific problem and show that, for 
the class of cycles for which c < e typically implies instability, a resonant bifurcation 
leads to the appearance of a long-period periodic orbit. The distance of the periodic orbit 
from Fix(A) is a flat function of 1 - c/e. 

Campbell and Holmes [21 ] consider the example of [2] and study transverse bifurca- 
tions. They conjecture the existence of at least three branches of quasiperiodic solutions 
near the original cycle. Their conjecture is based on a mixture of theoretical considera- 
tions and numerical results. 

Chossat et al. [24] consider transverse bifurcations of homoclinic cycles in ~4. For 
cycles satisfying (H2) (cf. Section 4) a flat bifurcation to a long-period periodic orbit is 
found. For cycles violating (H2) the bifurcation leads to the occurrence of other hete- 
roclinic cycles. A classification of resonant and transverse bifurcations of heteroclinic 
cycles in IR 4 will be given in the forthcoming work of [63]. 

Guckenheimer and Worfolk [42] consider a steady-state bifurcation problem with 
symmetry of an index two subgroup of (•2) 4 × •4 (equivalently Z2 ~ Z4, cf. Section 
5.1.1). Worfolk [98] extends the work of [42], showing that the cycle found by [42] 
undergoes a bifurcation of inclination-flip type [48]. Worfolk [98] shows that, under 
some genericity assumptions, the bifurcation leads to the existence of a horseshoe and 
provides numerical evidence supporting the validity of these genericity assumptions. 

8.2. Destruction of  a Cycle through Forced Symmetry Breaking 

Swift [95] and Soward [86] show that forced symmetry breaking for the cycle of Busse 
and Heikes [ 19] leads to the occurrence of a long-period periodic orbit. Generalizing the 
work of [95] and [86], Scheel [81] considers homoclinic cycles with symmetry Z23 - Z3 



Robust Heteroclinic Cycles 163 

(Figure 2) and ~4 (Figure 8). He projects the equations of motion onto the orbit space and 
applies the method of Lin [67]. In the case of Z~ • Z3 (this case is the abstract realization 
of the bifurcation studied by [95] and [86]) he considers symmetry breaking to T, Z3, and 
Z6, finding periodic orbits with spatio-temporal symmetry Z3, Z3, and Z6, respectively. 
In the case of ~I~4 he considers symmetry breaking to •2, Z2, and Z4, obtaining periodic 
orbits with symmetry Z2, Z2, and Z4, respectively. 

Sandstede and Scheel [78] extend the work of Scheel [81]. They study the same 
types of forced symmetry breaking as considered in [81 ] and obtain precise results on 
the number of existing periodic orbits and their stability as well as information on the 
existence of horseshoes and strange attractors. They exploit the presence of inclination- 
f l ip and orbitf l ip degeneracies for the unbroken homoclinic cycles and apply the expanded 
version of Lin's method worked out in the thesis of Sandstede [80]. 

Chossat [25] studies the example of [4] (see Section 5 and Figure 8) and considers 
forced symmetry breaking 0(2) --+ SO(2). He applies the orbit space reduction and the 
method of Lin. He proves the existence of an invariant two toms. One of the frequencies 
of the motion is given by slow drift along the SO(2) orbit. Chossat and Field [26] 
consider the same example and study forced symmetry breaking 0(2) ~ SO(2) and 
0(2) ~ Zz(x) (the group Zz(x) is generated by a reflection in 0(2)). They apply polar 
blowing up, a transformation leading to an enlarged phase space with a less singular 
action. Polar blowing up may simplify the geometry of the flow. It also renders the 
orbit space reduction more effective, since the orbit space is a manifold. Chossat and 
Field [26] recover the result of [25] using elementary phase plane analysis. In the case 
of 0(2)  ~ Z2(x) they state a result asserting the existence of a long-period periodic 
orbit. The geometry of the periodic orbit depends on the ratio of the contracting and the 
expanding eigenvalues (for notation see Section 4). The proof of the result requires an 
application of Shilnikov coordinates and will be given in the forthcoming article of Field 
[32]. Near the critical ratio of the eigenvalues chaotic dynamics is observed. 

PART III 

Part III is devoted to experimental and numerical applications. We discuss the following 
topics: dynamics of the Kuramoto-Sivashinsky equation (Section 9), rotating convection 
(Section 10), convection in the presence of a magnetic field (Section 11), turbulent flows 
in a boundary layer (Section 12), and flow through a hose pipe (Section 13). In these 
contexts there is good evidence for the existence of robust cycles. 

9. The Kuramoto-Sivashinsky Equation 

In this section we summarize the results of Armbruster, Guckenheimer, and Holmes 
[5] and Kevrekidis, Nicolaenko, and Scovel [55] concerning the existence of a robust 
homoclinic cycle for the Kuramoto-Sivashinsky (KS) equation. The KS equation 

1 
u t + ~ u  . . . . .  +uxx + z(ux)2 = 0; x r R ,  (9.1) 

2 



164 M. Krupa 

I1 ,11 

/ J  
Ot 

Fig. 10. Schematic bifurcation diagram for the Kuramoto-Sivashinsky 
equation. 

has been used to model flame fronts in combustion, directional solidification, and weak 
two-dimensional turbulence (for references see [5]). This equation has symmetries given 
by translations and reflections in the state variable, that is, 

u ( x , t )  o u ( x + O , t ) ,  O r R ,  

K 
--.+ u(x,  t) u ( - x ,  t). 

Hence (9.1) commutes with the action of R.Zz. We impose periodic boundary conditions, 

u(O, t) = u(L ,  t), ux(O, t) = ux(L,  t) . . . . .  

where L > 0 is a constant. Consider the rescaling 

x ~ Lx ,  t ~ L2x, et ~ L2~. (9.2) 

The rescaling (9.2) does not alter the equation (9.1), but leads to the rescaling of the 
boundary conditions, which become 2rr periodic. The period L is now involved in the 
definition of the parameter or. The symmetry group of (9.1) with periodic boundary 
conditions is 0(2).  This follows, since the translation symmetries now have to be taken 
modulo 2zr and form the group SO(2) = ~U[0, 2rr]. 

Note that the function u ~ 0 is an equilibrium solution of (9.1). When L in- 
creases, this solution undergoes a sequence of bifurcations to equilibria with symme- 

try Dk, k ----- 1,2 . . . . .  where Di ~f Z2. The bifurcations occur as the Fourier modes 
{sin (kx), cos (kx)} become unstable. More abstractly this means that the action of SO(2) 
on the eigenspace of the zero eigenvalue is Oz = e i k ° z .  We refer to the bifurcating equi- 
libria as the k-modes. The first two bifurcations of this sequence are shown in Figure 10. 
Near the onset of the mode with D 2 symmetry a heteroclinic-like structure was found 
numerically by Hyman and Nicolaenko [53] and Hyman et al. [54]. In Figure 10 we show 
a schematic bifurcation diagram based on the results of Kevrekidis et al. [55]. The locus 
of the existence of the heteroclinic cycles is indicated by the shaded strip. Armbruster 
et al. [5] and Kevrekidis et al. [55] obtain evidence of the existence of a robust homoclinic 
cycle near the onset of the two-mode using two different approaches. Kevrekidis et al. 
[55] discretize (9.1) using an eight-mode and a sixteen-mode Galerkin projection. In 
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Fig. 11. The convection rolls (copied from a figure in [40]). 

their computations they find the homoclinic cycle and describe its structure, i.e., that the 
connections were contained in invariant spaces and were robust, Armbruster et al. [5] 
study the dynamics of a fourth order truncation of (9.1) reduced to the center unstable 
manifold of the two-mode near its onset. For this system they prove the existence of a 
robust heteroclinie cycle as well as reproduce the diagram shown in Figure 10. Their 
analysis of the reduced equation is very similar to the analysis of the reduced problem 
of [4]; see Section 5.2.1 for a review. 

The work of [5] and [55] provides good evidence of the existence of cycles but the 
result is not rigorously proved in either of the articles. It is unlikely that an analytical 
proof can be found since global information is required. 

10. Rotating Rayleigh-B~nard Convection 

Busse and Clever [18] (see also [! 5], [19], [95]) argue that the dynamics of the rotating 
Rayleigh-B6nard convection observed at some values of the system's parameters has 
gross features consistent with those of a robust homoclinic cycle. One is interested 
in the following experimental situation. A viscous fluid is contained in a rectangular 
box, whose side walls are insulated and whose upper and lower faces are held at constant 
temperature. The box is rotating around the vertical axis with angular velocity ~. Suppose 
the horizontal faces of the box are very large compared to its height. Then one can assume 
that the horizontal walls extend to infinity and thus consider convection between two 
infinite plates. 

A natural parameter used in the context of the convection experiment is the Rayleigh 
number Ra. It measures the temperature difference across the layer. When Ra is small 
the pure conduction state PC is observed. As Ra grows PC loses stability to convection 
rolls (see Figure 11). For ~ very small the rolls are stable, but for slightly higher values of 

they are unstable and a weakly turbulent state is observed. Figure 12, which appeared 
in [19], shows a number of snapshots of the experiment. (For a more recent account of 
the experiment see [ 100].) The pictures were made using the shadowgraphic technique. 
The dark areas represent rising fluid and the light areas represent falling fluid. Following 
the evolution of a patch of rolls one sees that it remains stationary for some time and 
then switches fairly quickly to rolls rotated by an angle of roughly 60 degrees. 
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Fig. 12. Homoclinic cycles in convection. From [19]. Reprinted with per- 
mission from E M. Busse and K. E. Heikes. Convection in a rotating layer: 
A simple case of turbulence. Science 208, 173-175. Copyright 1980 American 
Association for the Advancement of Science. 

Busse and Clever [ 18] consider the bifurcation corresponding to the loss of stability of 
the pure conduction state and derive a three-dimensional ordinary differential equation 
with cubic nonlinearity using asymptotic expansion. In this model they numerically 
verify the existence of the cycle. Guckenheimer and Holmes [41] prove the existence 
of a homoclinic cycle for the system of [18] using the Poincar6-Bendixson theorem. 
For an extensive analysis of the system studied by [18] and [41], see Section 2 of this 
article. Goldstein et al. [39], under certain idealizing assumptions, reduce the bifurcation 
problem for the Boussinesq equation to a bifurcation problem for the system of [18] 
using the center manifold theorem and the methods of equivariant bifurcation theory. 
We now review the results of [39]. 

Goldstein et al. [39] assume that the box laterally extended to infinity, and they make 
the idealizing assumption that the centrifugal force is balanced by pressure. Under these 
assumptions the experiment has the symmetry of the special Euclidian group SE(2) = 
SO(2) - R 2, SO(2) corresponding to rotations and ~2 to translations in the horizontal 
directions. An additional symmetry of midplane reflection is due to the Boussinesq 
approximation and the assumption that the boundary conditions at the bottom and the 
top plates are identical. 

One is now interested in studying a steady-state bifurcation problem with symmetry 
SE(2). Note however that SE(2) is not a compact group (the effect of this is discussed in 
[40]). It turns out that the eigenspace of the zero eigenvalue associated to the instability is 
infinite dimensional. This problem may be partially solved by reducing the phase space 
to the space of functions periodic on a planar lattice. Goldstein et al. [39] consider the 
space 

H6 = {functions periodic on a hexagonal lattice}. 
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Reduced to H6 the problem has symmetry of Z6. "ii ̀2 • Z2, where Z 6 • "[I ,2 is the subgroup 
of SE(2) leaving//6 invariant and Z2 corresponds to the midplane reflection. Goldstein 
et al. [39] derive the relevant bifurcation problem on the center manifold. Thus the ODE 
obtained, posed on C 3 (]K6), has a three-dimensional fixed-point space invariant under 
the action of Z3 • (Z2) 3. The ODE restricted to this space is identical to the system 
studied by [18] and [41] and thus possesses a robust homoclinic cycle. For idealized 
boundary conditions the authors of [39] symbolically compute the normal coefficients 
(the coefficients a~, a2, and a 3 in (2.1); see Section 2) and show they corresponded to 
the regime of the existence of a stable cycle. Clune [22] computes these coefficients for 
experimental boundary conditions, reaching the same conclusion. 

It remains to explain what happens in the experiment. It is clear from Figure 12 that 
the dynamics observed are only very roughly approximated by a homoclinic cycle. The 
two main discrepancies are the following: 

1. The intermittent roll patterns are fragmented (confined to small patches of the plane). 
2. The return times for the patches of intermittent rolls do not grow to infinity but remain 

bounded and display erratic behavior. 

Based on these two points there has been much criticism of the Busse-Clever model [51 ], 
[97]. Below we present some arguments in support of the model. 

The first discrepancy between the model and the experiment expresses the limitation 
of the assumption that solutions are periodic on a lattice. The same problem is observed 
for steady-state patterns--using the method of looking for solutions defined on a periodic 
lattice, a number of steady state patterns (rolls, hexagons) are found, yet this approach 
fails to predict the fragmentation of the patterns that occurs in experiments. 

The second discrepancy is most likely caused by imperfections of the model. It may be 
due to nondeterministic effects, but an equally likely reason is symmetry imperfections. 
Busse [16], [17] argues that under stochastic perturbations of the model the behavior 
seen int he experiment can be predicted. Swift [95] and Soward [86] explore the second 
point of view, that adding symmetry imperfections to the model equations may result 
in breaking the heteroclinic cycle and lead to similar, yet physically realistic dynamics. 
These authors exploit the fact that for a non-Boussinesq fluid the midplane reflection 
is broken. They consider the system of [ 18] and introduce terms breaking the midplane 
reflection, which is equivalent to breaking the invariance of the plane containing the 
cycle. They show the existence of periodic solutions close to the original cycle and 
having the same symmetry properties. 

Dynamics yet closer to the experiment would likely be found if one considered pertur- 
bations of the rotational symmetry (which is not perfect in the experiment). The resulting 
dynamics would, most likely, no longer be periodic, but chaotic, yet would closely resem- 
ble the homoclinic cycle [69]. The main difference would be in transition times, which, 
rather than growing to infinity, would behave erratically. Stone and Holmes [93] (see 
also [69]) show in a similar context that deterministic perturbations lead to a probability 
distribution of return times. Very long return times become very unlikely, i.e., the prob- 
ability of the occurrence of a return time larger than To > 0 is of the order O(e-Z°r°), 
where ~.u is the unstable eigenvalue of the equilibrium (roll solution). The results of 
[93] are in qualitative agreement with the rotating convection experiment; indeed, the 
transition times between laminar phases display erratic behavior. 
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11. Convection in the Presence of  a Magnetic Field 

In this section we consider convection between two infinite plates in the presence 
of a magnetic field acting in the vertical direction. The experiment has symmetry 
E(2) = 0(2)  - ~2 (rotations and reflections in the plane). Clune and Knobloch [23] 
show that the pure conduction state can lose stability through a Hopf bifurcation. The 
analysis of the full E(2)-symmetric Hopf bifurcation problem is not possible due to 
the noncompactness of E(2). Clune and Knobloch [23] study Hopf bifurcations on the 
square lattice (]I~ 4 • "IF 2 symmetry) and on the hexagonal lattice (D6 • "II ,2 symmetry); see 
Section 5.1.2 for a review of related work. They compute the normal form coefficients 
from the model equations using a symbolic computation program, thus making sure that 
the parameter regions considered are relevant for the physical system. For the hexagonal 
lattice problem they find a cycle joining a number of periodic solutions. Based on the 
necessary condition of [61 ] they conclude that the cycle was unstable, but are able to see 
it as a transient in numerical computations. The dynamic behavior of trajectories start- 
ing near the heteroclinic cycle involves switching between the cycle and its symmetric 
iterate. 

Rucklidge and Matthews [76], [77] consider a Galerkin truncation of the model equa- 
tions involving 44 modes. Using a scaling and elimination procedure they further reduce 
the number of equations to ten. In their numerical simulations they find a heteroclinic 
cycle involving two types of rolls (equilibrium solutions). An interesting feature of this 
cycle is that the isotropy group of one of the roll solutions is contained in the isotropy 
group of the other one. As a result one observes a transient equilibrium state with certain 
symmetry, then a transition to an equilibrium with less symmetry and then again a tran- 
sition to an equilibrium with more symmetry. More specifically one first sees convection 
rolls, then convection rolls with shear and then convection rolls again. The cycle of Ruck- 
lidge and Matthews clearly does not come from a Hopf bifurcation--it joins steady-state 
solutions. Thus it is not related to the cycles of [23]. Moreover it appears to be stable for 
a large parameter range. It is known that no heteroclinic cycles are present in steady state 
bifurcation problems with ]D 4 - ,]~2 symmetry; this means that it is not possible to realize 
the cycles of [76], [77] in the context of spontaneous symmetry breaking. An interesting 
problem would be to find the origin of those cycles, in the same way as most known 
cycles can be traced back to a spontaneous or forced symmetry breaking bifurcation. 

Rucklidge and Matthews [76], [77] predict the existence of a number of other het- 
eroclinic cycles based on the form of the reduced ODE system, but do not find them 
numerically in the 44-mode model. 

12. Robust Heteroclinic Cycles in Turbulent Fluid Flows 

Consider fluid flow along a flat plate or in a circular pipe. Such domains have symmetry 
which is preserved by the equations of motion (the Navier-Stokes equations). Clearly 
the symmetry must have an influence on the dynamics and may lead to the occurrence of 
robust heteroclinic cycles. There is a considerable amount of research providing evidence 
of the existence of cycles in turbulent flows. In this section we give a summary of this 
research concentrating on the pioneering work of Aubry et al. [ 10]. 
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Fig. 13. The streak-like eddies observed by Kline et al. [58] (S. J. Kline, W. C. Reynolds, 
W. C. Schraub, and P. W. Rundstadler. The structure of turbulent boundary layers. Journal of 
Fluid Mechanics 30, 741-773. (~) 1990 Cambridge University Press, Reprinted with permission 
of Cambridge University Press). 

Aubry et al. [ i 0] consider the dynamics of fluid flowing along a flat plate (wall). Their 
work is motivated by the experiments of Kline et al. [58], who observed intermittent 
structures in the dynamics of the flow. More specifically, they saw large eddies in the 
form of streaks stretched along the streamwise direction (see Figure 13). The streaks 
underwent violent bursting events characterized by the ejection of slow moving fluid 
from the wall and the arrival of fast moving fluid to the wall region. After a bursting 
event the streaks formed again and the configuration was a translate of the previous one. 
Aubry et al. [10] study a Galerkin approximation of the flow, using Fourier modes for 
the directions parallel to the wall and a Karhunen-Lo~ve (KL) eigenfunction [ 11] in the 
direction normal to the wall. The KL eigenfunction is derived using experimental data. 
In order to justify a truncation involving relatively few modes, the flow only in the wall 
region is considered and a time-dependent pressure term representing the influence of 
the outer flow is introduced. This term is estimated as of lower order and is neglected 
in the initial analysis, The symmetry of the reduced equations is 0(2)  corresponding to 
translations and reflections in the spanwise direction (the direction parallel to the wall and 
normal to the direction of the stream). In the reduced equations Aubry et al. [10] find an 
asymptotically stable homoclinic cycle connecting an equilibrium to its translate by zr (in 
the model domain of width 4rr). The equilibria contained in the cycle are reconstructed 
to the corresponding velocity fields which in a satisfactory manner resemble the velocity 
field of the streaklike structure. The feature of the streaks rearranging in a translated 
formation after the event corresponds to the equilibria on the cycle being translates of 
each other by ft. 
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The pressure term modeling the effect of the flow in the outer level can be seen 
as a small, time-dependent forcing. To reflect the influence of the pressure field in 
the outer level, a stochastic perturbation is also included in the model. The cycle is 
found in the absence of these two perturbations; upon their addition it is replaced by 
intermittent dynamics. Stone and Holmes [91 ], [92], [93] consider systems possessing a 
homoclinic cycle and study the effects of a stochastic forcing or a deterministic periodic 
forcing. Recall that in the absence of a perturbation the passage times (the duration of 
the passages near the equilibrium) for a trajectory following the cycle tends to infinity. 
The perturbation causes the solution to leave the vicinity of the equilibrium sooner--  
extremely long return times are no longer expected. Stone and Holmes [91], [92], [93] 
show that the passage times have a characteristic distribution P (T) with exponential tails 
of the order O(e -x"r) where ~,u is the unstable eigenvalue. The mean passage time is of 
the order O(~lln(e)l), where E is the size of the perturbation. The results of [91], [92], 
[93] hold for deterministic as well as stochastic perturbations and are in good qualitative 
agreement with the experimental observations. 

The model of [10] is quite crude and it was a surprise that it so well reproduced the 
experimental data. In particular the use of just the constant Fourier mode to model the 
spanwise direction led to a number of problems in the modeling [79], [ 11 ]. The surprising 
accuracy of the low dimensional model was explained by Berkooz et al. [12], [13]. 

Sanghi and Aubry [79] consider Galerkin approximations involving more modes, 
in particular nonconstant Fourier modes in the streamwise direction. In the numerical 
studies of the equations thus obtained they find evidence of heteroclinic cycles joining 
time-dependent (periodic, quasiperiodic, chaotic) invariant sets. The gross features of 
the dynamics are the same as in the work of [10]. 

Sometimes, in order to reduce drag, riblets--that is, small streaks parallel to the mean 
flow--are introduced. Mathematically this means 0(2)  --~ D,, n c Z, forced symmetry 
breaking in the spanwise direction. Such forced symmetry breaking with n = 4 was 
considered by Campbell and Holmes [20], who proved the existence of a heteroclinic 
cycle analogous to the one found by Armbruster, Guckenheimer, and Holmes [4] (since 
D 4 is finite, the cycles of [20] are isolated in the phase space unlike the cycles of [4], 
which lie on a continuous group orbit). 

13. Flow through an Elastic Tube with Symmetric Support 

Steindl [88] (see also [87]) considers fluid flow through an elastic tube supported by n 
symmetrically positioned springs; see Figure 14. The symmetry of the system is D,. The 
0(2)  symmetry is obtained in the limit when n --* oo or the springs become infinitely 
long. Steindl [88] studies the stability of the 0(2)  symmetric equilibrium solutions 
corresponding to the tube hanging down. He varies four parameters: 

• the fluid velocity p, 
• the stiffness of the support c, 
• the height of the support ~, 
• the mass ratio fi = ,,F where m F is the mass of the fluid and mr is the mass of 

mFh-mT " 
the tube. 
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Fig. 14. Fluid conveying elastic tube with 
D4 symmetric support. (This figure was 
made by A. Steindl.) 

When the fluid velocity p grows from 0, the symmetric equilibrium loses stability. For 
smaller c this occurs through a Hopf bifurcation and for larger c through a steady-state 
bifurcation. Steindl [88] shows numerically that for a large region in the (/~, ~) plane a 
Hopf-steady state mode interaction took place for a moderate value ofc. Moreover/3 and 

could be adjusted in such a way that the unfolding of the mode interaction contained 
an almost asymptotically stable heteroclinic cycle. The cycle was found for small values 
of/3, which corresponds to the choice of a very thick tube. In another work Steindl [89] 
numerically locates Hopf-Hopf mode interactions and shows the existence of a cycle 
joining two standing waves in the unfolding. For general results on cycles in steady-state 
Hopf and Hopf-Hopf mode interactions see Section 5.2.2 and [71 ]. 

It is quite interesting to imagine the motion of the tube corresponding to a trajectory 
following the cycles. Consider the cycle joining an equilibrium to a standing wave. 
Both the equilibrium and the standing wave have spatial symmetry Z2 corresponding 
in the physical space to a reflection across an invariant plane. The equilibrium is a 
buckled state contained in an invariant plane and the standing wave is an oscillatory 
motion also in an invariant plane. A trajectory following the cycle may first approach the 
buckled state, then oscillate out of the invariant plane approaching an oscillation in the 
perpendicular invariant plane. Next it approaches the buckled state in the same invariant 
plane. Subsequently the whole process repeats itself. 
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