Curve/surface intersection problem by means of matrix representations

Luu Ba Thang
(Joint work with Laurent Busé and Bernard Mourrain)

Université de Nice and INRIA Sophia Antipolis
SNC, Kyoto, August 3-5 2009
(1) Matrix based implicit representation

- The implicit equation of a parametrized surface
- What is the matrix representation of a surface \mathbf{S} ?
- How to find the matrix representations?
(2) Curve/Surface intersection problem
- Curve/Surface intersection problem
- Linearization of a polynomial matrix
- The Kronecker form of a non square pencil of matrices
- The Algorithm for extracting the regular part
- Matrix intersection algorithm
(3) Examples
(4) Conclution

Suppose given a parametrization

$$
\begin{aligned}
\mathbb{P}_{\mathbb{K}}^{2} & \xrightarrow{\phi} \mathbb{P}_{\mathbb{K}}^{3} \\
(s: t: u) & \mapsto\left(f_{1}: f_{2}: f_{3}: f_{4}\right)(s, t, u)
\end{aligned}
$$

of a surface \mathbf{S} such that
i) f_{i} are the homogeneous polynomial with the same degree d .
ii) $\operatorname{gcd}\left(f_{1}, \ldots, f_{4}\right) \in \mathbb{K} \backslash\{0\}$.

We have $\mathbf{S}:=\overline{\operatorname{lm} \phi}:=\left\{(x: y: z: w) \in \mathbb{P}_{\mathbb{K}}^{3}: S(x, y, z, w)=0\right\}$ where $S(x, y, z, w) \in \mathbb{K}[x, y, z, w]$ is irreducible homogeneous polynomial.
The equationle $S(x, y, z, w)=0$ is called the implicit equation of S.

Definition

A matrix $\mathrm{M}(\mathbf{f})$ with entries in $\mathbb{K}[x, y, z, w]$ is said to be a representation of a given homogeneous polynomial
$S \in \mathbb{K}[x, y, z, w]$ if
i) $\mathrm{M}(\mathbf{f})$ is generically full rank,
ii) the rank of $M(\mathbf{f})$ drops exactly on the surface of equation $S=0$,
iii) the GCD of the maximal minors of $M(\mathbf{f})$ is equal to S, up to multiplication by a nonzero constant in \mathbb{K}.

'Moving Plane ' :

For all $\nu \in \mathbb{N}$, consider the set \mathcal{L}_{ν} of polynomials of the form

$$
a_{1}(s, t, u) x+a_{2}(s, t, u) y+a_{3}(s, t, u) z+a_{4}(s, t, u) w
$$

such that

- $a_{i}(s, t, u) \in \mathbb{K}[s, t, u]$ is homogeneous of degree ν for all $i=1, \ldots, 4$,
- $\sum_{i=1}^{4} a_{i}(s, t, u) f_{i}(s, t, u) \equiv 0$ in $\mathbb{K}[s, t, u]$.

Denote by $L^{(1)}, \ldots, L^{\left(n_{\nu}\right)}$ a basis of \mathbb{K}-vector space \mathcal{L}_{ν}. Then, define the matrix $\mathrm{M}(\mathbf{f})_{\nu}$ by the equality

$$
\left[\begin{array}{llll}
s^{\nu} & s^{\nu-1} t & \cdots & u^{\nu}
\end{array}\right] \mathrm{M}(\mathbf{f})_{\nu}=\left[\begin{array}{llll}
L^{(1)} & L^{(2)} & \cdots & L^{\left(n_{\nu}\right)}
\end{array}\right]
$$

'Aproximate Complexes' :

Denote $A:=\mathbb{K}[s, t, u]$ with naturally graded by $\operatorname{deg}(s)=\operatorname{deg}(t)=\operatorname{deg}(u)=1$.
We consider the Koszul complex
$\left.\left(K_{\bullet}\left(f_{1}, f_{2}, f_{3}, f_{4}\right), d_{\bullet}\right)\right)$:

$$
0 \rightarrow A[-4 d] \xrightarrow{d_{4}} A[-3 d]^{4} \xrightarrow{d_{3}} A[-2 d]^{6} \xrightarrow{d_{2}} A[-d]^{4} \xrightarrow{d_{1}} A
$$

$\left.\left(K_{\bullet}\left(f_{1}, f_{2}, f_{3}, f_{4}\right), u_{\bullet}\right)\right):$
$0 \rightarrow A[\underline{x}][-4 d] \xrightarrow{u_{4}} A[\underline{x}][-3 d]^{4} \xrightarrow{\mu_{3}} A[\underline{x}][-2 d]^{6} \xrightarrow{u_{2}} A[\underline{x}][-d]^{4} \xrightarrow{u_{1}} A[\underline{x}]$
$\left.\left(K_{\bullet}(x, y, z, w), v_{\bullet}\right)\right):$
$0 \rightarrow A[\underline{x}][-4] \xrightarrow{v_{4}} A[\underline{x}][-3]^{4} \xrightarrow{v_{3}} A[\underline{x}][-2]^{6} \xrightarrow{v_{2}} A[\underline{x}][-1]^{4} \xrightarrow{v_{1}} A[\underline{x}]$

Define $Z_{i}:=\operatorname{ker}\left(d_{i}\right)$ and $\mathcal{Z}_{i}:=Z_{i} \bigotimes_{A} A[\underline{x}]$. We obtain the bi-graded complex: $\left(\mathcal{Z}_{\bullet}, v_{\bullet}\right)$:
$0 \rightarrow \mathcal{Z}_{4}[-4] \xrightarrow{v_{4}} \mathcal{Z}_{3}[-3]^{4} \xrightarrow{v_{3}} \mathcal{Z}_{2}[-2]^{6} \xrightarrow{v_{2}} \mathcal{Z}_{1}[-1]^{4} \xrightarrow{v_{1}} \mathcal{Z}_{0}=A[\underline{x}]$

Theorem

Suppose that $I=\left(f_{1}, f_{2}, f_{3}, f_{4}\right) A$ is of codimension at least 2 and $\mathbf{P}=\operatorname{Proj}(A / I)$ is locally defined by 3 equations. Then for all $v \geqslant v_{0}:=2(d-1)-\operatorname{indeg}(/ \mathbf{P})$, the matrix of surjective map

$$
\begin{array}{rll}
\mathcal{Z}_{1[v]}[-1]^{4} & \xrightarrow{v_{1}} & \mathcal{Z}_{0[v]}=A[\underline{x}] \\
\left(g_{1}, g_{2}, g_{3}, g_{4}\right) & \longmapsto & x g_{1}+y g_{2}+z g_{3}+w g_{4} .
\end{array}
$$

is matrix representation of \mathcal{S}.

Suppose given an algebraic surface \mathbf{S} with represented by a parameterization and a rational space curve \mathbf{C} represented by a parameterization

$$
\Psi: \mathbb{P}_{\mathbb{K}}^{1} \rightarrow \mathbb{P}_{\mathbb{K}}^{3}:(s: t) \mapsto(x(s, t): y(s, t): z(s, t): w(s, t))
$$

where $x(s, t), y(s, t), z(s, t), w(s, t)$ are homogeneous polynomials of the same degree and without common factor in $\mathbb{K}[s, t]$. Determine the set $\mathbf{C} \cap \mathbf{S} \subset \mathbb{P}_{\mathbb{K}}^{3}$

Assume that $M(x, y, z, w)$ is a matrix representation of the surface \mathbf{S}, meaning a representation of implicit equation $S(x, y, z, w)$. By replacing the variables x, y, z, w by the homogeneous polynomials $x(s, t), y(s, t), z(s, t), w(s, t)$ respectively, we get the matrix

$$
M(s, t)=M(x(s, t), y(s, t), z(s, t), w(s, t))
$$

Lemma

For all point $\left(s_{0}: t_{0}\right) \in \mathbb{P}_{\mathbb{K}}^{1}$ the rank of the matrix $M\left(s_{0}, t_{0}\right)$ drops if and only if the point $\left(x\left(s_{0}, t_{0}\right): y\left(s_{0}, t_{0}\right): z\left(s_{0}, t_{0}\right): w\left(s_{0}, t_{0}\right)\right)$ belongs to the intersection locus $\mathbf{C} \cap \mathbf{S}$.

It follows that points in $\mathbf{C} \cap \mathbf{S}$ associated to points ($s: t$) such that $s \neq 0$, are in correspondence with the set of values $t \in \mathbb{K}$ such that $M(1, t)$ drops of rank strictly less than its row and column dimensions.

Given an $m \times n$-matrix $M(t)=\left(a_{i, j}(t)\right)$ with $a_{i, j}(t) \in \mathbb{K}[t]$.

$$
M(t)=M_{d} t^{d}+M_{d-1} t^{d-1}+\ldots+M_{0}
$$

where $M_{i} \in \mathbb{K}^{m \times n}$ and $d=\max _{i, j}\left\{\operatorname{deg}\left(a_{i, j}(t)\right)\right\}$.

Definition

The generalized companion matrices A, B of the matrix $M(t)$ are the matrices with coefficients in \mathbb{K} of size $((d-1) m+n) \times d m$ that are given by

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
0 & I & \ldots & \ldots & 0 \\
0 & 0 & I & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & \ldots & I \\
M_{0}^{t} & M_{1}^{t} & \ldots & \ldots & M_{d-1}^{t}
\end{array}\right) \\
& B=\left(\begin{array}{ccccc}
1 & 0 & \ldots & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & \ldots & -M_{d}^{t}
\end{array}\right)
\end{aligned}
$$

Matrix based implicit representation Curve/Surface intersection problem

Curve/Surface intersection problem Linearization of a polynomial matrix
The Kronecker form of a non square pencil of matrices The Algorithm for extracting the regular part Matrix intersection algorithm

Theorem

$$
\operatorname{rank} M\left(t_{0}\right)<m \Leftrightarrow \operatorname{rank}\left(A-t_{0} B\right)<d m .
$$

We recall some known properties of the Kronecker form of pencils of matrices.

$$
L_{k}(t)=\left(\begin{array}{ccccc}
1 & t & 0 & \ldots & 0 \\
0 & 1 & t & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 1 & t & 0 \\
0 & 0 & \ldots & 1 & t
\end{array}\right)
$$

Curve/Surface intersection problem
Linearization of a polynomial matrix
The Kronecker form of a non square pencil of matrices
The Algorithm for extracting the regular part
Matrix intersection algorithm

$$
\Omega_{k}(t)=\left(\begin{array}{ccccc}
1 & t & 0 & \ldots & 0 \\
0 & 1 & t & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & \ldots & 1 & t \\
0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

Theorem

$P(A-t B) Q=\operatorname{diag}\left\{L_{i_{1}}, \ldots, L_{i_{s}}, L_{j_{1}}^{t}, \ldots, L_{j_{u}}^{t}, \Omega_{k_{1}}, \ldots, \Omega_{k_{v}}, A^{\prime}-t B^{\prime}\right\}$ where A^{\prime}, B^{\prime} are square matrices and B^{\prime} is invertible.

Remark: The dimension $i_{1}, \ldots, i_{s}, j_{1}, \ldots, j_{u}, k_{1}, . ., k_{v}$ and the determinant of $A^{\prime}-t B^{\prime}$ (up to a scalar) are independent of the representation and $A^{\prime}-t B^{\prime}$ is a square regular pencil.

Matrix based implicit representation Curve/Surface intersection problem

Curve/Surface intersection problem
Linearization of a polynomial matrix
The Kronecker form of a non square pencil of matrices
The Algorithm for extracting the regular part
Matrix intersection algorithm

Theorem

We have

$$
\operatorname{rank}(A-t B) d r o p s \Leftrightarrow \operatorname{rank}\left(A^{\prime}-t B^{\prime}\right) d r o p s .
$$

We start with a pencil $A-t B$ where A, B are constant matrices of size $p \times q$. Set $\rho=\operatorname{rank} B$. In the following algorithm, all computational steps are easily realized via the classical LU-decomposition.

Step 1.

$$
B_{1}=P_{0} B Q_{0}=[\underbrace{B_{1,1}}_{\rho} \mid \underbrace{0}_{q-\rho}]
$$

where $B_{1,1}$ is an echelon matrix. Then, compute

$$
A_{1}=P_{0} A Q_{0}=[\underbrace{A_{1,1}}_{\rho} \mid \underbrace{A_{1,2}}_{q-\rho}]
$$

Step 2.

Matrices A_{1} and B_{1} are represented under the form

$$
P_{1} A_{1} Q_{1}=\left(\begin{array}{c|c}
A_{1,1}^{\prime} & A_{1,2}^{\prime} \\
\hline A_{2} & 0
\end{array}\right) \quad P_{1} B_{1} Q_{1}=\left(\begin{array}{c|c}
B_{1,1}^{\prime} & 0 \\
\hline B_{2} & 0
\end{array}\right)
$$

where

- $A_{1,2}^{\prime}$ has full row rank,
- $\left(\frac{B_{1,1}^{\prime}}{B_{2}}\right)$ has full column rank,
- $\left(\frac{B_{1,1}^{\prime}}{B_{2}}\right)$ and B_{2} are in echelon form.

After steps 1 and 2, we obtain a new pencil of matrices, namely $A_{2}-t B_{2}$.

Starting from $j=2$, repeat the above steps 1 and 2 for the pencil $A_{j}-t B_{j}$ until the $p_{j} \times q_{j}$ matrix B_{j} has full column rank, that is to say until rank $B_{j}=q_{j}$.
If B_{j} is not a square matrix, then we repeat the above procedure with the transposed pencil $A_{j}^{t}-t B_{j}^{t}$.
At last, we obtain the regular pencil $A^{\prime}-t B^{\prime}$ where A^{\prime}, B^{\prime} are two square matrices and B^{\prime} is invertible.

Matrix intersection algorithm

Input : A matrix representation of a surface \mathbf{S} and a parametrization of a rational space curve \mathbf{C}. Output: The intersection points of \mathbf{S} and \mathbf{C}.

1. Compute the matrix representation $M(t)$.
2. Compute the generalized companion matrices A and B of $M(t)$.
3. Compute the companion regular matrices A^{\prime} and B^{\prime}.
4. Compute the eigenvalues of $\left(A^{\prime}, B^{\prime}\right)$.
5. For each eigenvalue t_{0}, the point $P\left(x\left(t_{0}\right): y\left(t_{0}\right): z\left(t_{0}\right): w\left(t_{0}\right)\right)$ is one of the intersection points.

Let \mathbf{S} be the rational surface which is parametrized by

$$
\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{3}:(s: t: u) \mapsto\left(f_{1}: f_{2}: f_{3}: f_{4}\right)
$$

where

$$
f_{1}=s^{3}+t^{2} u, f_{2}=s^{2} t+t^{2} u, f_{3}=s^{3}+t^{3}, f_{4}=s^{2} u+t^{2} u
$$

the rational space curve \mathbf{C} given by the parameterization

$$
x(t)=1, y(t)=t, z(t)=t^{2}, w(t)=t^{3} .
$$

First, on computes a matrix representation of \mathbf{S} :

$$
\left(\begin{array}{ccccccc}
0 & 0 & 0 & w-y & 0 & 0 & z-x \\
w & 0 & 0 & x & w-y & 0 & 0 \\
x-y-z & 0 & 0 & -z & 0 & w-y & 0 \\
0 & w & 0 & 0 & x & 0 & -y \\
0 & x-y-z & w & 0 & -z & x & y+z-x \\
0 & 0 & x-y-z & 0 & 0 & -z & 0
\end{array}\right)
$$

$$
M(t):=\left(\begin{array}{ccccccc}
0 & 0 & 0 & t^{3}-t & 0 & 0 & t^{2}-1 \\
t^{3} & 0 & 0 & 1 & t^{3}-t & 0 & 0 \\
1-t-t^{2} & 0 & 0 & -t^{2} & 0 & t^{3}-t & 0 \\
0 & t^{3} & 0 & 0 & 1 & 0 & -t \\
0 & 1-t-t^{2} & -t^{3} & 0 & -t^{2} & 1 & t^{2}+t-1 \\
0 & 0 & 1-t-t^{2} & 0 & 0 & -t^{2} & 0
\end{array}\right)
$$

We have $M(t)=M_{3} t^{3}+M_{2} t^{2}+M_{1} t+M_{0}$

The generalized companion matrices of $M(t)$ are

$$
A=\left(\begin{array}{ccc}
0 & I & 0 \\
0 & 0 & I \\
M_{0}^{t} & M_{1}^{t} & M_{2}^{t}
\end{array}\right), B=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & -M_{3}^{t}
\end{array}\right)
$$

We find that the regular part of the pencil $A-t B$ is the pencil $A^{\prime}-t B^{\prime}$ where A^{\prime} is given by

$$
\left(\begin{array}{ccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 \\
0 & 2 & 0 & 0 & 2 & 0 & 2 & 0 & -1 & -1 & -2 & -2 & 1 \\
0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 & 2 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & -1 & -1 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 & 1 & 0 & 0 & 0 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & -1 & -1 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & -1 & -1 & 0 \\
0 & -1 & 0 & 0 & -2 & 0 & -1 & 0 & 0 & 0 & 1 & 2 & -1
\end{array}\right),
$$

and B^{\prime} is the identity matrix.

Then, we compute the following eigenvalues: $t_{1}=1, t_{2}=-1$ and the roots of the equation $Z^{7}+3 Z^{6}-Z^{5}-Z^{3}+Z^{2}-2 Z+1=0$.

- Introduce new matrix based representation of rational surfaces that are allowed to be non square.
- Transfer the solving of the curve/surface intersection problem into the eigenvalues computing problems
- Develop a symbolic/numeric algorithm to manipulate these new representations.

Thank you for attention

