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Part I.1 : Implicit Representation Matrices of Rational
Surfaces
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Motivations

I In geometric modeling, curves and surfaces are
usually given under parameterized forms.

I An implicit representation is very useful in
practice (e.g. decide if a point belongs to a curve
or surface)

⇒ Change of representation:
elimination theory, implicitization problem

I The implicitization problem has become a very classical problem and several
methods have been developed

• methods based on Gröbner basis computations: output a polynomial

• methods based on “resultant-like” computations: eliminant matrices
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Matrix-based methods for implicitization

The main difficulty comes from the base points: points of the parameter space
for which the parameterization is not well defined (typically division by zero).

I Resultant-based methods:
• parameterization without base point over a toric variety (A. Khetan)
• parameterization with prescribed base points (Busé, Eisenbud/Schreyer)

I Square matrices filled with syzygies:
• Sederberg-Chen: the case of plane curves
• Cox, Goldman and al.: moving planes and quadratics without base point
• Cox, D’Andrea, Busé : moving planes and quadratics with base points

I Non square matrices filled with approximation complexes:
• Busé, Chardin and Jouanolou: approximation complexes with less hypothesis,

more general.

Parameterized form
Matrix representation−−−−−−−−−−−−→ Implicit equation
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Syzygies of a parameterized surface

Consider a surface S parameterized by: (K algebraically closed field)

P2
K

φ−→ P3
K

(X1 : X2 : X3) 7→ (f1 : f2 : f3 : f4)(X1,X2,X3)

with d := deg(fi ) ≥ 1. Assume that gcd(f1, . . . , f4) ∈ K \ {0}.

The graded K[X1,X2,X3]-module of syzygies is

L (f) :=

{
4∑

i=1

gi (X1,X2,X3)Ti ∈ K[X1,X2,X3][T1,T2,T3,T4]

such that
4∑

i=1

gi (X1,X2,X3)fi (X1,X2,X3) ≡ 0

}
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Matrices of syzygies

For all integer ν ≥ 0, build the matrix L(φ)ν as follows:

1. Compute a basis L(1), . . . , L(nν ) of L (f)ν
2. L(φ)ν is the matrix of coefficients of this basis, i.e.`

X ν
1 X ν−1

1 X2 · · · X ν
3

´
L(φ)ν =

`
L(1) L(2) · · · L(nν )

´
Theorem ( Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections.
For all integer

ν ≥ 2(d− 1)− indeg((f1, . . . , f4) : (X1,X2,X3)∞)

the matrix L(φ)ν is said to be a representation matrix of φ because:

I L(φ)ν is generically full rank

I the rank of L(φ)ν drops exactly on the surface S = Im(φ)

I the GCD of the maximal minors of L(φ)ν is equal to S(T1, . . . ,T4)deg(φ)

where S is an implicit equation of S.
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Example of a Steiner surface

P2 φ−→ P3

(X1 : X2 : X3) 7→ (X2X3 : X1X3 : X1X2 : X 2
1 − X 2

2 + X 2
3 )

T 2
1 T 2

2 − T 2
1 T 2

3 + T 2
2 T 2

3 − T1T2T3T4 = 0

L(φ)2 =

0BBBBB@
0 T4 0 T1 0 −T1 −T1 0 T2

T4 0 0 0 0 T3 0 T2 0
−T1 −T3 −T1 −T2 0 0 0 0 −T1

T1 T3 0 0 0 0 T2 0 0
−T1 0 0 −T2 T3 0 0 0 0

0 −T1 T3 T4 −T1 0 0 −T1 0

1CCCCCA
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Part I.2: Representation matrix of the intersection curve
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Representation matrix of the intersection curve

Suppose given two parameterized surface S1 and S2.

C := S1 ∩ S2

M(x , y , z ,w): Representation matrix of S1 and let

Ψ : P2
C → P3

C : (s : t : u) 7→ (a(s, t, u) : b(s, t, u) : c(s, t, u) : d(s, t, u))

be a parameterization of S2.
In M(x , y , z ,w), substituting

x = a(s, t, u), y = b(s, t, u), z = c(s, t, u),w = d(s, t, u),

we get the matrix

M(s, t, u) := M(Ψ(s, t, u)) = M(a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u)).

=⇒M(s, t, u): Representation matrix of the intersection curve C.
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Representation matrix of the intersection curve

I For all point (s0 : t0 : u0) ∈ P2 we have

rank(M(s0, t0, u0)) < ρ iff


Ψ(s0, t0, u0) ∈ S1 ∩ S2

or
(s0 : t0 : u0) is a base point of Ψ.

(1)

where ρ := rank M(s, t, u).

I

Spectrum of M(s, t, u) :=
{

(s0 : t0 : u0) ∈ P2 : rankM(s0, t0, u0) < ρ
}

=⇒ Spectrum of M(s, t, u) ≡ the intersection locus of S1 ∩ S2 + the base
points of the parameterization Ψ of S2
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Spectrum of the intersection matrix

Theorem (Busé,Luu Ba)

The spectrum of the matrix M(s, t, u) is an algebraic curve in P2, that is to say is
equal to the zero locus of a homogeneous polynomial in C[s, t, u]. In particular,
there is no isolated points in the spectrum of M(s, t, u).

Ψ

Figure: The plane curve C corresponding to S1 ∩ S2
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By dehomogenization (u = 1), we obtain a bivariate polynomial matrix M(s, t, 1)

Extract a pencil of M(s, t, 1) that yields a matrix representation of the
intersection curve as a matrix determinant.
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Part II.1: Reduction of a bivariate pencil of matrices
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Spectrum of a bivariate polynomial matrix

Let M(s, t) be a matrix of size m × n depending on the two variables s and t.

The spectrum of M(s, t) is defined to be the set

{(s0, t0) ∈ K×K : rank(M(s0, t0)) < ρ}

where ρ := rankM(s, t).

Spectrum(M(s, t)) := {(s0, t0) : det M
j1,...,jρ
i1,...,iρ

= 0,
1≤i1<···<iρ≤m
1≤j1<···<jρ≤n }. (2)

I The continuous part of the spectrum ! The one-dimensional roots of the
system (2) ! The one-dimensional eigenvalues of the matrix M(s, t).

I The discrete part of the spectrum ! The zero-dimensional roots of the
system (2) ! The zero-dimensional eigenvalues of the matrix M(s, t).
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Linearization of a bivariate polynomial matrix

Given an m × n-matrix M(s, t) = (ai,j(s, t)) with ai,j(s, t) ∈ K[s, t].

M(s, t) = Md(t)sd + Md−1(t)sd−1 + . . .+ M0(t)

where Mi (t) ∈ K[t]m×n and d = maxi,j{degs(ai,j(s, t))}.

The generalized companion matrices A,B of the matrix M(s, t) are the matrices
with coefficients in K[t] of size ((d − 1)m + n)× dm that are given by

A =

0BBBBB@
0 Im . . . . . . 0
0 0 Im . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 . . . 0 Im

Mt
0(t) Mt

1(t) . . . . . . Mt
d−1(t)

1CCCCCA ,
B =

0BBBBB@
Im 0 . . . . . . 0
0 Im 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 . . . Im 0
0 0 . . . 0 −Mt

d (t)

1CCCCCA

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 16 / 28



Linearization of a bivariate polynomial matrix

Given an m × n-matrix M(s, t) = (ai,j(s, t)) with ai,j(s, t) ∈ K[s, t].

M(s, t) = Md(t)sd + Md−1(t)sd−1 + . . .+ M0(t)

where Mi (t) ∈ K[t]m×n and d = maxi,j{degs(ai,j(s, t))}.
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Property

There exists two unimodular matrices E (s, t) et F (s, t) with coefficients in C[s, t]
and of size dm and (d − 1)m + n respectively, such that

E (s, t) (A(t)− sB(t)) F (s, t) =

(
tM(s, t) 0

0 Im(d−1)

)
. (3)

We provide a direct proof of:

Theorem (Kublanovskaya)

A(t)− sB(t)!

 ∗ ∗ M3(s, t)
∗ M2(s, t) 0

M1(s, t) 0 0


I M2(s, t) is a regular pencil and has only continuous spectrum coinciding with

the continuous of spectrum of M(s, t).

I The union of the discrete spectrum of the pencil M1(s, t) and M3(s, t)
coincides with the discrete spectrum of M(s, t).
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Extracting the regular part and the discrete part

The ∆ W - Decomposition.

The decomposition of an univariate polynomial M(t) of rank ρ under the form

M(t)W (t) = [∆(t), 0],

W (t): an unimodular polynomial matrix,
∆(t): a polynomial matrix of full column rank ρ.

I The ∆ W - Decomposition is much more complicated than LU
(QR)-Decomposition.

I Reason: The operations of the transformation of M(t) have been done over
the polynomial ring K[t], not the field K.

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 18 / 28



Extracting the regular part and the discrete part

The ∆ W - Decomposition.

The decomposition of an univariate polynomial M(t) of rank ρ under the form

M(t)W (t) = [∆(t), 0],

W (t): an unimodular polynomial matrix,
∆(t): a polynomial matrix of full column rank ρ.

I The ∆ W - Decomposition is much more complicated than LU
(QR)-Decomposition.

I Reason: The operations of the transformation of M(t) have been done over
the polynomial ring K[t], not the field K.

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 18 / 28



Extracting the regular part and the discrete part

The ∆ W - Decomposition.

The decomposition of an univariate polynomial M(t) of rank ρ under the form

M(t)W (t) = [∆(t), 0],

W (t): an unimodular polynomial matrix,
∆(t): a polynomial matrix of full column rank ρ.

I The ∆ W - Decomposition is much more complicated than LU
(QR)-Decomposition.

I Reason: The operations of the transformation of M(t) have been done over
the polynomial ring K[t], not the field K.

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 18 / 28



Extracting the regular part and the discrete part

The ∆ W - Decomposition.

The decomposition of an univariate polynomial M(t) of rank ρ under the form

M(t)W (t) = [∆(t), 0],

W (t): an unimodular polynomial matrix,
∆(t): a polynomial matrix of full column rank ρ.

I The ∆ W - Decomposition is much more complicated than LU
(QR)-Decomposition.

I Reason: The operations of the transformation of M(t) have been done over
the polynomial ring K[t], not the field K.

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 18 / 28



Algorithm for extracting the regular and discrete part

We start with a pencil A(t)− sB(t), A(t),B(t): matrix of size p × q and
ρ = rankA(t) via the classical ∆ W - Decomposition.

I Step 1
• A(t)Q0(t) = [∆0(t)| {z }

ρ

| 0|{z}
q−ρ

], B(t)Q0(t) = [B1,1(t)| {z }
ρ

|B1,2(t)| {z }
q−ρ

]

• P0(t)B1,2(t) =

„
B ′1,2(t)

0

«
; B ′1,2(t) has full row rank.

• Matrices A(t) and B(t) are represented under the form

P0(t)A(t)Q0(t) =

„
A1,1(t) 0

A2(t) 0

«
, P0(t)B(t)Q0(t) =

„
B ′1,1(t) B ′1,2(t)

B2(t) 0

«
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At the end of Step 1:

P0(t)(A(t)− sB(t))Q0(t) =

(
A1,1(t)− sB ′1,1(t) −sB ′1,2(t)

A2(t)− sB2(t) 0

)

I Step 2
• Repeat the Step 1 for the pencil A2(t)− sB2(t) until the step k where the

matrix Ak+1(t) is of full column rank.

• At the step k:

P(t)(A(t)− sB(t))Q(t) =

„
Ak+1,k(t)− sB ′k+1,k(t) M3(s, t)

Ak+1(t)− sBk+1(t) 0

«
I If the pencil Ak+1(t)− sBk+1(t) is not a regular pencil, repeat the above

procedure to the transposed pencil At
k+1(t)− sB t

k+1(t).
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Algorithm for extracting the regular and discrete part

I At the end:

A(t)− sB(t) =⇒

 ∗ ∗ M3(s, t)
∗ M2(s, t) 0

M1(s, t) 0 0


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Part II.2: Applications to Intersection Problems

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 22 / 28



The point in the curve intersection problem

Given a point P ∈ P3 and two parameterized surfaces S1 and S2,
test whether P ∈ S1 ∩ S2 or not.

I Compute an implicit equation
S1(x , y , z ,w) and S2(x , y , z ,w)
∈ K[x , . . . ,w ]

I Evaluate S1 and S2 at P

I Check if ‖S1(P)‖ < ε and
‖S2(P)‖ < ε

I Compute two representation matrices
M1(x , . . . ,w) and M2(x , . . . ,w)
∈ Mat(K[x , . . . ,w ])

I Evaluate M1(P) and M2(P)

I Check if the ε-rank of M1(P) and M2(P)
drops.

General philosophy:
replace implicit equations by representation matrices whenever possible

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 23 / 28



The point in the curve intersection problem

Given a point P ∈ P3 and two parameterized surfaces S1 and S2,
test whether P ∈ S1 ∩ S2 or not.

I Compute an implicit equation
S1(x , y , z ,w) and S2(x , y , z ,w)
∈ K[x , . . . ,w ]

I Evaluate S1 and S2 at P

I Check if ‖S1(P)‖ < ε and
‖S2(P)‖ < ε

I Compute two representation matrices
M1(x , . . . ,w) and M2(x , . . . ,w)
∈ Mat(K[x , . . . ,w ])

I Evaluate M1(P) and M2(P)

I Check if the ε-rank of M1(P) and M2(P)
drops.

General philosophy:
replace implicit equations by representation matrices whenever possible

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 23 / 28



The point in the curve intersection problem

Given a point P ∈ P3 and two parameterized surfaces S1 and S2,
test whether P ∈ S1 ∩ S2 or not.

I Compute an implicit equation
S1(x , y , z ,w) and S2(x , y , z ,w)
∈ K[x , . . . ,w ]

I Evaluate S1 and S2 at P

I Check if ‖S1(P)‖ < ε and
‖S2(P)‖ < ε

I Compute two representation matrices
M1(x , . . . ,w) and M2(x , . . . ,w)
∈ Mat(K[x , . . . ,w ])

I Evaluate M1(P) and M2(P)

I Check if the ε-rank of M1(P) and M2(P)
drops.

General philosophy:
replace implicit equations by representation matrices whenever possible

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 23 / 28



The point in the curve intersection problem

Given a point P ∈ P3 and two parameterized surfaces S1 and S2,
test whether P ∈ S1 ∩ S2 or not.

I Compute an implicit equation
S1(x , y , z ,w) and S2(x , y , z ,w)
∈ K[x , . . . ,w ]

I Evaluate S1 and S2 at P

I Check if ‖S1(P)‖ < ε and
‖S2(P)‖ < ε

I Compute two representation matrices
M1(x , . . . ,w) and M2(x , . . . ,w)
∈ Mat(K[x , . . . ,w ])

I Evaluate M1(P) and M2(P)

I Check if the ε-rank of M1(P) and M2(P)
drops.

General philosophy:
replace implicit equations by representation matrices whenever possible

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 23 / 28



The point in the curve intersection problem

Given a point P ∈ P3 and two parameterized surfaces S1 and S2,
test whether P ∈ S1 ∩ S2 or not.

I Compute an implicit equation
S1(x , y , z ,w) and S2(x , y , z ,w)
∈ K[x , . . . ,w ]

I Evaluate S1 and S2 at P

I Check if ‖S1(P)‖ < ε and
‖S2(P)‖ < ε

I Compute two representation matrices
M1(x , . . . ,w) and M2(x , . . . ,w)
∈ Mat(K[x , . . . ,w ])

I Evaluate M1(P) and M2(P)

I Check if the ε-rank of M1(P) and M2(P)
drops.

General philosophy:
replace implicit equations by representation matrices whenever possible

LUU BA Thang (INRIA) Matrix-Based Implicit Representations SAGA, Vilnius, 27-30 September 2011 23 / 28



The surface/surface intersection problem

Suppose given two parameterized surfaces:

P2 φ−→ P3 : (s : t : u) 7→ (f1 : . . . : f4)(s, t, u)

P2 ψ−→ P3 : (s : t : u) 7→ (g1 : . . . : g4)(s, t, u)

with ψ regular.

Ψ

Algorithm (Busé, Luu Ba): ”Compute” the intersection curve

I Build the representation matrix M(φ) of S1.

I Form the companion matrices A(t),B(t) of the matrix
M(φ)(g1(s, t, 1), . . . , g4(s, t, 1)).

I Compute the regular part A′(t)− sB ′(t) of the pencil A(t)− sB(t).

I Compute the determinant of the pencil A′(t)− sB ′(t)  Curves C in the
plane.

I Return the intersection curves {ψ(s, t, 1) : (s, t) ∈ C}.
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P2 ψ−→ P3 : (s : t : u) 7→ (g1 : . . . : g4)(s, t, u)

with ψ regular.

Ψ

Algorithm (Busé, Luu Ba): ”Compute” the intersection curve

I Build the representation matrix M(φ) of S1.

I Form the companion matrices A(t),B(t) of the matrix
M(φ)(g1(s, t, 1), . . . , g4(s, t, 1)).

I Compute the regular part A′(t)− sB ′(t) of the pencil A(t)− sB(t).

I Compute the determinant of the pencil A′(t)− sB ′(t)  Curves C in the
plane.

I Return the intersection curves {ψ(s, t, 1) : (s, t) ∈ C}.
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An example

I Suppose given two parameterized surfaces:

S1 :f1 = s2 + t2 + u2, f2 = 2su, f3 = 2st, f4 = s2 − t2 − u2

S2 :g1 = s3 + t3, g2 = stu, g3 = su2 + tu2, g4 = u3.

I The matrix representation of the sphere S1 gives −y 0 z x + w
0 −y −x + w −z
z x + w y 0

 .

I P ∈ S1 ∩ S2 iff P = (s3 + t3 : stu : su2 + tu2 : u3) and (s : t : u) is one of the
generalized eigenvalues of the polynomial matrix

M(s, t, u) =

 −stu 0 su2 + tu2 s3 + t3 + u3

0 −stu −s3 − t3 + u3 −su2 − tu2

su2 + tu2 s3 + t3 + u3 st 0

 .
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An example

I The points (s : t : u), u 6= 0, are correspondence to the set of the generalized
eigenvalues (s, t) ∈ C2 of the bivariate matrix M(s, t)

M(s, t) =

 −st 0 s + t s3 + t3 + 1
0 −st −s3 − t3 + 1 −s − t

s + t s3 + t3 + 1 st 0

 .

I M(s, t) = M3t
3 + M2t

2 + M1t + M0 and companion matrices

A(s) =

0@ 0 I 0
0 0 I

Mt
0 Mt

1 Mt
2

1A =

0BBBBBBBBBBBBB@

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 s −s 0 1 0 0 0
0 0 s3 + 1 0 −s 0 0 0 0
s −s3 + 1 0 1 0 s 0 0 0

s3 + 1 −s 0 0 −1 0 0 0 0

1CCCCCCCCCCCCCA
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An example

B(s) =

0BBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 −1 0 0

1CCCCCCCCCCCCA

Ψ

I The regular pencil part M1(s, t) = A1(s)− tB1(s) where

A1(s) =

0BBBBB@
1 0 s 0 1 0

−s3 + 1 0 1 0 0 0
−s3 + 1 0 0 −s 0 0

2s 0 0 1 s 0
0 0 0 0 0 1
0 1 0 −1 0 0

1CCCCCA ,B1(s) =

0BBBBB@
0 0 1 0 0 0
0 1 0 −1 0 0
s3 1 0 0 0 0
−s2 0 s 0 1 0

1 0 0 0 0 0
0 0 0 0 0 1

1CCCCCA .

I det(M1(s, t)) = −s6 − 2s3t3 + t2s2 + s2 + 2st − t6 + t2 + 1 is the equation
of the curve C in the parametric space corresponding to S1 ∩ S2 through the
regular map Ψ.
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Thank you for your attention
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