The surface/surface intersection problems by means of matrix-based representation

LUU BA Thang
(Joint work with Laurent Busé)

INRIA Sophia Antipolis

SAGA, Vilnius, 27-30 September 2011

Outline

(1) Matrix-based implicit representation

- Implicit representation matrices of rational surfaces
- Representation matrix of the intersection curve
(2) Pencil of matrices and the surface/surface intersection problem
- Reduction of a bivariate pencil of matrices
- The surface/surface intersection problem

Part I.1: Implicit Representation Matrices of Rational Surfaces

Motivations

- In geometric modeling, curves and surfaces are usually given under parameterized forms.
- An implicit representation is very useful in practice (e.g. decide if a point belongs to a curve or surface)

\Rightarrow Change of representation:

elimination theory, implicitization problem

The implicitization problem has become a very classical problem and several methods have been developed

- methods based on Gröbner basis computations: output a polynomial
- methods based on "resultant-like" computations: climinant matrices

Motivations

- In geometric modeling, curves and surfaces are usually given under parameterized forms.
- An implicit representation is very useful in practice (e.g. decide if a point belongs to a curve or surface)

\Rightarrow Change of representation:

elimination theory, implicitization problem

- The implicitization problem has become a very classical problem and several methods have been developed
- methods based on Gröbner basis computations: output a polynomial
- methods based on "resultant-like" computations: eliminant matrices

Matrix-based methods for implicitization

The main difficulty comes from the base points: points of the parameter space for which the parameterization is not well defined (typically division by zero).

- Resultant-based methods:
- parameterization without base point over a toric variety (A. Khetan)
- parameterization with prescribed base points (Busé, Eisenbud/Schreyer)
- Square matrices filled with syzygies:
- Sederberg-Chen: the case of plane curves
- Cox, Goldman and al.: moving planes and quadratics without base point
- Cox, D'Andrea, Busé : moving planes and quadratics with base points
- Non square matrices filled with approximation complexes:
- Busé, Chardin and Jouanolou: approximation complexes with less hypothesis, more general.

Matrix-based methods for implicitization

The main difficulty comes from the base points: points of the parameter space for which the parameterization is not well defined (typically division by zero).

- Resultant-based methods:
- parameterization without base point over a toric variety (A. Khetan)
- parameterization with prescribed base points (Busé, Eisenbud/Schreyer)
- Square matrices filled with syzygies:
- Sederberg-Chen: the case of plane curves
- Cox, Goldman and al.: moving planes and quadratics without base point - Cox, D'Andrea, Busé : moving planes and quadratics with base points
- Non square matrices filled with approximation complexes:
- Busé, Chardin and Jouanolou: approximation complexes with less hypothesis, more general

Matrix-based methods for implicitization

The main difficulty comes from the base points: points of the parameter space for which the parameterization is not well defined (typically division by zero).

- Resultant-based methods:
- parameterization without base point over a toric variety (A. Khetan)
- parameterization with prescribed base points (Busé, Eisenbud/Schreyer)
- Square matrices filled with syzygies:
- Sederberg-Chen: the case of plane curves
- Cox, Goldman and al.: moving planes and quadratics without base point
- Cox, D'Andrea, Busé : moving planes and quadratics with base points
- Non square matrices filled with approximation complexes
- Busé, Chardin and Jouanolou: approximation complexes with less hypothesis, more general

Matrix-based methods for implicitization

The main difficulty comes from the base points: points of the parameter space for which the parameterization is not well defined (typically division by zero).

- Resultant-based methods:
- parameterization without base point over a toric variety (A. Khetan)
- parameterization with prescribed base points (Busé, Eisenbud/Schreyer)
- Square matrices filled with syzygies:
- Sederberg-Chen: the case of plane curves
- Cox, Goldman and al.: moving planes and quadratics without base point
- Cox, D'Andrea, Busé : moving planes and quadratics with base points
- Non square matrices filled with approximation complexes:
- Busé, Chardin and Jouanolou: approximation complexes with less hypothesis, more general.

Matrix-based methods for implicitization

The main difficulty comes from the base points: points of the parameter space for which the parameterization is not well defined (typically division by zero).

- Resultant-based methods:
- parameterization without base point over a toric variety (A. Khetan)
- parameterization with prescribed base points (Busé, Eisenbud/Schreyer)
- Square matrices filled with syzygies:
- Sederberg-Chen: the case of plane curves
- Cox, Goldman and al.: moving planes and quadratics without base point
- Cox, D'Andrea, Busé : moving planes and quadratics with base points
- Non square matrices filled with approximation complexes:
- Busé, Chardin and Jouanolou: approximation complexes with less hypothesis, more general.

$$
\text { Parameterized form } \xrightarrow{\text { Matrix representation }} \text { Implicit equation }
$$

Syzygies of a parameterized surface

Consider a surface \mathcal{S} parameterized by:

$$
\begin{aligned}
\mathbb{P}_{\mathbb{K}}^{2} & \xrightarrow{\phi} \mathbb{P}_{\mathbb{K}}^{3} \\
\left(X_{1}: X_{2}: X_{3}\right) & \mapsto\left(f_{1}: f_{2}: f_{3}: f_{4}\right)\left(X_{1}, X_{2}, X_{3}\right)
\end{aligned}
$$

with $d:=\operatorname{deg}\left(f_{i}\right) \geq 1$. Assume that $\operatorname{gcd}\left(f_{1}, \ldots, f_{4}\right) \in \mathbb{K} \backslash\{0\}$.
The graded $\mathbb{K}\left[X_{1}, X_{2}, X_{3}\right]$-module of syzygies is

Syzygies of a parameterized surface

Consider a surface \mathcal{S} parameterized by:

$$
\begin{aligned}
\mathbb{P}_{\mathbb{K}}^{2} & \stackrel{\phi}{\mapsto} \mathbb{P}_{\mathbb{K}}^{3} \\
\left(X_{1}: X_{2}: X_{3}\right) & \mapsto\left(f_{1}: f_{2}: f_{3}: f_{4}\right)\left(X_{1}, X_{2}, X_{3}\right)
\end{aligned}
$$

with $d:=\operatorname{deg}\left(f_{i}\right) \geq 1$. Assume that $\operatorname{gcd}\left(f_{1}, \ldots, f_{4}\right) \in \mathbb{K} \backslash\{0\}$.
The graded $\mathbb{K}\left[X_{1}, X_{2}, X_{3}\right]$-module of syzygies is

$$
\left.\begin{array}{rl}
\mathscr{L}(\mathbf{f}):=\left\{\sum_{i=1}^{4} g_{i}\left(X_{1}, X_{2}, X_{3}\right)\right. & T_{i}
\end{array} \in \mathbb{K}\left[X_{1}, X_{2}, X_{3}\right]\left[T_{1}, T_{2}, T_{3}, T_{4}\right], ~ s u c h ~ t h a t ~ \sum_{i=1}^{4} g_{i}\left(X_{1}, X_{2}, X_{3}\right) f_{i}\left(X_{1}, X_{2}, X_{3}\right) \equiv 0\right\}
$$

Matrices of syzygies

For all integer $\nu \geq 0$, build the matrix $\mathbf{L}(\phi)_{\nu}$ as follows:

1. Compute a basis $L^{(1)}, \ldots, L^{\left(n_{\nu}\right)}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
2. $\mathbf{L}(\phi)_{\nu}$ is the matrix of coefficients of this basis, i.e.

$$
\left(\begin{array}{llll}
X_{1}^{\nu} & X_{1}^{\nu-1} X_{2} & \cdots & X_{3}^{\nu}
\end{array}\right) \mathbf{L}(\phi)_{\nu}=\left(\begin{array}{llll}
L^{(1)} & L^{(2)} & \cdots & L^{\left(n_{\nu}\right)}
\end{array}\right)
$$

Theorem (Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections. For all integer

$$
2(\mathbf{d}-1)-\operatorname{indeg}\left(\left(f_{1}, \ldots, f_{4}\right):\left(X_{1}, X_{2}, X_{3}\right)^{\infty}\right)
$$

the matrix $\mathbf{L}(\phi)_{\nu}$ is said to be a representation matrix of ϕ because:

- $\mathbf{L}(\phi)_{\nu}$ is generically full rank
- the rank of $\mathrm{L}(\phi)_{\nu}$ drops exactly on the surface $\mathcal{S}=\overline{\operatorname{Im}}(\phi)$
- the GCD of the maximal minors of $\mathbf{L}(\phi)_{\nu}$ is equal to $S\left(T_{1}, \ldots, T_{4}\right)^{\operatorname{deg}(\phi)}$ where S is an implicit equation of S.

Matrices of syzygies

For all integer $\nu \geq 0$, build the matrix $\mathbf{L}(\phi)_{\nu}$ as follows:

1. Compute a basis $L^{(1)}, \ldots, L^{\left(n_{\nu}\right)}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
2. $\mathbf{L}(\phi)_{\nu}$ is the matrix of coefficients of this basis, i.e.

$$
\left(\begin{array}{llll}
X_{1}^{\nu} & X_{1}^{\nu-1} X_{2} & \cdots & X_{3}^{\nu}
\end{array}\right) \mathbf{L}(\phi)_{\nu}=\left(\begin{array}{llll}
L^{(1)} & L^{(2)} & \cdots & L^{\left(n_{\nu}\right)}
\end{array}\right)
$$

Theorem (Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections.
For all integer

$$
\nu \geq \mathbf{2}(\mathbf{d}-\mathbf{1})-\operatorname{indeg}\left(\left(f_{1}, \ldots, f_{4}\right):\left(X_{1}, X_{2}, X_{3}\right)^{\infty}\right)
$$

the matrix $\mathbf{L}(\phi)_{\nu}$ is said to be a representation matrix of ϕ because:

- $\mathrm{L}(\phi)_{\nu}$ is generically full rank
- the rank of $\mathbf{L}(\phi)_{\nu}$ drops exactly on the surface $\mathcal{S}=\overline{\operatorname{Im}}(\phi)$
- the GCD of the maximal minors of $\mathbf{L}(\phi)_{\nu}$ is equal to $S\left(T_{1}, \ldots, T_{4}\right)^{\operatorname{deg}(\phi)}$ where S is an implicit equation of S.

Matrices of syzygies

For all integer $\nu \geq 0$, build the matrix $\mathbf{L}(\phi)_{\nu}$ as follows:

1. Compute a basis $L^{(1)}, \ldots, L^{\left(n_{\nu}\right)}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
2. $\mathbf{L}(\phi)_{\nu}$ is the matrix of coefficients of this basis, i.e.

$$
\left(\begin{array}{llll}
X_{1}^{\nu} & X_{1}^{\nu-1} X_{2} & \cdots & X_{3}^{\nu}
\end{array}\right) \mathbf{L}(\phi)_{\nu}=\left(\begin{array}{llll}
L^{(1)} & L^{(2)} & \cdots & L^{\left(n_{\nu}\right)}
\end{array}\right)
$$

Theorem (Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections.
For all integer

$$
\nu \geq \mathbf{2}(\mathbf{d}-\mathbf{1})-\operatorname{indeg}\left(\left(f_{1}, \ldots, f_{4}\right):\left(X_{1}, X_{2}, X_{3}\right)^{\infty}\right)
$$

the matrix $\mathbf{L}(\phi)_{\nu}$ is said to be a representation matrix of ϕ because:

- $\mathbf{L}(\phi)_{\nu}$ is generically full rank
- the rank of $\mathrm{L}(\phi)_{\nu}$ drops exactly on the surface $\mathcal{S}=\overline{\operatorname{Im}}(\phi)$
- the GCD of the maximal minors of $\mathbf{L}(\phi)_{\nu}$ is equal to $S\left(T_{1}\right.$ where S is an implicit equation of S.

Matrices of syzygies

For all integer $\nu \geq 0$, build the matrix $\mathbf{L}(\phi)_{\nu}$ as follows:

1. Compute a basis $L^{(1)}, \ldots, L^{\left(n_{\nu}\right)}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
2. $\mathbf{L}(\phi)_{\nu}$ is the matrix of coefficients of this basis, i.e.

$$
\left(\begin{array}{llll}
X_{1}^{\nu} & X_{1}^{\nu-1} X_{2} & \cdots & X_{3}^{\nu}
\end{array}\right) \mathbf{L}(\phi)_{\nu}=\left(\begin{array}{llll}
L^{(1)} & L^{(2)} & \cdots & L^{\left(n_{\nu}\right)}
\end{array}\right)
$$

Theorem (Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections.
For all integer

$$
\nu \geq \mathbf{2}(\mathbf{d}-\mathbf{1})-\operatorname{indeg}\left(\left(f_{1}, \ldots, f_{4}\right):\left(X_{1}, X_{2}, X_{3}\right)^{\infty}\right)
$$

the matrix $\mathbf{L}(\phi)_{\nu}$ is said to be a representation matrix of ϕ because:

- $\mathbf{L}(\phi)_{\nu}$ is generically full rank
- the rank of $\mathbf{L}(\phi)_{\nu}$ drops exactly on the surface $\mathcal{S}=\overline{\operatorname{Im}}(\phi)$
where S is an implicit equation of S.

Matrices of syzygies

For all integer $\nu \geq 0$, build the matrix $\mathbf{L}(\phi)_{\nu}$ as follows:

1. Compute a basis $L^{(1)}, \ldots, L^{\left(n_{\nu}\right)}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
2. $\mathbf{L}(\phi)_{\nu}$ is the matrix of coefficients of this basis, i.e.

$$
\left(\begin{array}{llll}
X_{1}^{\nu} & X_{1}^{\nu-1} X_{2} & \cdots & X_{3}^{\nu}
\end{array}\right) \mathbf{L}(\phi)_{\nu}=\left(\begin{array}{llll}
L^{(1)} & L^{(2)} & \cdots & L^{\left(n_{\nu}\right)}
\end{array}\right)
$$

Theorem (Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections.
For all integer

$$
\nu \geq \mathbf{2}(\mathbf{d}-\mathbf{1})-\operatorname{indeg}\left(\left(f_{1}, \ldots, f_{4}\right):\left(X_{1}, X_{2}, X_{3}\right)^{\infty}\right)
$$

the matrix $\mathbf{L}(\phi)_{\nu}$ is said to be a representation matrix of ϕ because:

- $\mathbf{L}(\phi)_{\nu}$ is generically full rank
- the rank of $\mathbf{L}(\phi)_{\nu}$ drops exactly on the surface $\mathcal{S}=\overline{\operatorname{Im}}(\phi)$
- the GCD of the maximal minors of $\mathbf{L}(\phi)_{\nu}$ is equal to $S\left(T_{1}, \ldots, T_{4}\right)^{\operatorname{deg}(\phi)}$ where S is an implicit equation of \mathcal{S}.

Example of a Steiner surface

Example of a Steiner surface

Part I.2: Representation matrix of the intersection curve

Representation matrix of the intersection curve

Suppose given two parameterized surface \mathcal{S}_{1} and \mathcal{S}_{2}.

$$
\mathcal{C}:=\mathcal{S}_{1} \cap \mathcal{S}_{2}
$$

$M(x, y, z, w)$: Representation matrix of \mathcal{S}_{1} and let $\psi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{3}:(s: t: u) \mapsto(a(s, t, u): b(s, t, u): c(s, t, u): d(s, t, u))$
be a parameterization of \mathcal{S}_{2}
In $M(x, y, z, w)$, substituting

$$
x=a(s, t, u), y=b(s, t, u), z=c(s, t, u), w=d(s, t, u),
$$

we get the matrix
$\mathbb{M}(s, t, u):=M(\Psi(s, t, u))=M(a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u))$.
$\Longrightarrow \mathbb{M}(s, t, u)$: Representation matrix of the intersection curve \mathcal{C}.

Representation matrix of the intersection curve

Suppose given two parameterized surface \mathcal{S}_{1} and \mathcal{S}_{2}.

$$
\mathcal{C}:=\mathcal{S}_{1} \cap \mathcal{S}_{2}
$$

$M(x, y, z, w)$: Representation matrix of \mathcal{S}_{1} and let

$$
\psi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{3}:(s: t: u) \mapsto(a(s, t, u): b(s, t, u): c(s, t, u): d(s, t, u))
$$

be a parameterization of \mathcal{S}_{2}.
In $M(x, y, z, w)$, substituting

$$
x=a(s, t, u), y=b(s, t, u), z=c(s, t, u), w=d(s, t, u),
$$

we get the matrix

\square
$\Longrightarrow \mathbb{M}(s, t, u)$: Representation matrix of the intersection curve \mathcal{C}.

Representation matrix of the intersection curve

Suppose given two parameterized surface \mathcal{S}_{1} and \mathcal{S}_{2}.

$$
\mathcal{C}:=\mathcal{S}_{1} \cap \mathcal{S}_{2}
$$

$M(x, y, z, w)$: Representation matrix of \mathcal{S}_{1} and let

$$
\psi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{3}:(s: t: u) \mapsto(a(s, t, u): b(s, t, u): c(s, t, u): d(s, t, u))
$$

be a parameterization of \mathcal{S}_{2}.
In $M(x, y, z, w)$, substituting

$$
x=a(s, t, u), y=b(s, t, u), z=c(s, t, u), w=d(s, t, u),
$$

we get the matrix

$$
\mathbb{M}(s, t, u):=M(\Psi(s, t, u))=M(a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u))
$$

$\Longrightarrow \mathbb{M}(s, t, u)$: Representation matrix of the intersection curve \mathcal{C}.

Representation matrix of the intersection curve

Suppose given two parameterized surface \mathcal{S}_{1} and \mathcal{S}_{2}.

$$
\mathcal{C}:=\mathcal{S}_{1} \cap \mathcal{S}_{2}
$$

$M(x, y, z, w)$: Representation matrix of \mathcal{S}_{1} and let

$$
\psi: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{3}:(s: t: u) \mapsto(a(s, t, u): b(s, t, u): c(s, t, u): d(s, t, u))
$$

be a parameterization of \mathcal{S}_{2}.
In $M(x, y, z, w)$, substituting

$$
x=a(s, t, u), y=b(s, t, u), z=c(s, t, u), w=d(s, t, u),
$$

we get the matrix

$$
\mathbb{M}(s, t, u):=M(\Psi(s, t, u))=M(a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u))
$$

$\Longrightarrow \mathbb{M}(s, t, u)$: Representation matrix of the intersection curve \mathcal{C}.

Representation matrix of the intersection curve

- For all point $\left(s_{0}: t_{0}: u_{0}\right) \in \mathbb{P}^{2}$ we have

$$
\operatorname{rank}\left(\mathbb{M}\left(s_{0}, t_{0}, u_{0}\right)\right)<\rho \text { iff }\left\{\begin{array}{l}
\Psi\left(s_{0}, t_{0}, u_{0}\right) \in \mathcal{S}_{1} \cap \mathcal{S}_{2} \tag{1}\\
\text { or } \\
\left(s_{0}: t_{0}: u_{0}\right) \text { is a base point of } \Psi .
\end{array}\right.
$$

where $\rho:=\operatorname{rank} \mathbb{M}(s, t, u)$.

Spectrum of $\mathbb{M}(s, t, u):=\left\{\left(s_{0}: t_{0}: u_{0}\right) \in \mathbb{P}^{2}: \operatorname{rank} \mathbb{M}\left(s_{0}, t_{0}, u_{0}\right)<\rho\right\}$ \Longrightarrow Snectrum of $\mathbb{M}(s, t, u)=$ the intersection locus of $\mathcal{S}_{1} \cap \mathcal{S}_{2}+$ the base
points of the parameterization ψ of S_{2}

Representation matrix of the intersection curve

- For all point $\left(s_{0}: t_{0}: u_{0}\right) \in \mathbb{P}^{2}$ we have

$$
\operatorname{rank}\left(\mathbb{M}\left(s_{0}, t_{0}, u_{0}\right)\right)<\rho \text { iff }\left\{\begin{array}{l}
\Psi\left(s_{0}, t_{0}, u_{0}\right) \in \mathcal{S}_{1} \cap \mathcal{S}_{2} \tag{1}\\
\text { or } \\
\left(s_{0}: t_{0}: u_{0}\right) \text { is a base point of } \Psi
\end{array}\right.
$$

where $\rho:=\operatorname{rank} \mathbb{M}(s, t, u)$.

Spectrum of $\mathbb{M}(s, t, u):=\left\{\left(s_{0}: t_{0}: u_{0}\right) \in \mathbb{P}^{2}: \operatorname{rank} \mathbb{M}\left(s_{0}, t_{0}, u_{0}\right)<\rho\right\}$
\Longrightarrow Spectrum of $\mathbb{M}(s, t, u) \equiv$ the intersection locus of $\mathcal{S}_{1} \cap \mathcal{S}_{2}+$ the base points of the parameterization Ψ of \mathcal{S}_{2}

Spectrum of the intersection matrix

Theorem (Busé,Luu Ba)

The spectrum of the matrix $\mathbb{M}(s, t, u)$ is an algebraic curve in \mathbb{P}^{2}, that is to say is equal to the zero locus of a homogeneous polynomial in $\mathbb{C}[s, t, u]$. In particular, there is no isolated points in the spectrum of $\mathbb{M}(s, t, u)$.

Figure: The plane curve \mathcal{C} corresponding to $\mathbf{S}_{1} \cap \mathbf{S}_{2}$

By dehomogenization ($u=1$), we obtain a bivariate polynomial matrix $\mathbb{M}(s, t, 1)$
Extract a pencil of $\mathbb{M}(s, t, 1)$ that yields a matrix representation of the intersection curve as a matrix determinant.

Part II.1: Reduction of a bivariate pencil of matrices

Spectrum of a bivariate polynomial matrix

Let $M(s, t)$ be a matrix of size $m \times n$ depending on the two variables s and t.
The spectrum of $M(s, t)$ is defined to be the set

$$
\left\{\left(s_{0}, t_{0}\right) \in \mathbb{K} \times \mathbb{K}: \operatorname{rank}\left(M\left(s_{0}, t_{0}\right)\right)<\rho\right\}
$$

where $\rho:=\operatorname{rank} M(s, t)$.

> The continuous part of the spectrum $4 \rightsquigarrow$ The one-dimensional roots of the system (2) $u \rightarrow$ The one-dimensional eigenvalues of the matrix $M(s, t)$.

- The discrete part of the spectrum u. The zero-dimensional roots of the system (2) \nrightarrow The zero-dimensional eigenvalues of the matrix $M(s, t)$.

Spectrum of a bivariate polynomial matrix

Let $M(s, t)$ be a matrix of size $m \times n$ depending on the two variables s and t.
The spectrum of $M(s, t)$ is defined to be the set

$$
\left\{\left(s_{0}, t_{0}\right) \in \mathbb{K} \times \mathbb{K}: \operatorname{rank}\left(M\left(s_{0}, t_{0}\right)\right)<\rho\right\}
$$

where $\rho:=\operatorname{rank} M(s, t)$.

$$
\operatorname{Spectrum}(M(s, t)):=\left\{\left(s_{0}, t_{0}\right): \operatorname{det} M_{i_{1}, \ldots, i_{\rho}}^{j_{1}, \ldots, j_{\rho}}=0, \quad \begin{array}{l}
1 \leq i_{1}<\cdots<i_{\rho} \leq m \tag{2}\\
1 \leq j_{1}<\cdots<j_{\rho} \leq n
\end{array}\right\} .
$$

- The continuous part of the spectrum $\leftrightarrow \rightsquigarrow$ The one-dimensional roots of the system (2) $u \rightarrow$ The one-dimensional eigenvalues of the matrix $M(s, t)$.
- The discrete part of the spectrum $4 \rightsquigarrow$ The zero-dimensional roots of the system (2) $u \rightsquigarrow$ The zero-dimensional eigenvalues of the matrix $M(s, t)$.

Spectrum of a bivariate polynomial matrix

Let $M(s, t)$ be a matrix of size $m \times n$ depending on the two variables s and t.
The spectrum of $M(s, t)$ is defined to be the set

$$
\left\{\left(s_{0}, t_{0}\right) \in \mathbb{K} \times \mathbb{K}: \operatorname{rank}\left(M\left(s_{0}, t_{0}\right)\right)<\rho\right\}
$$

where $\rho:=\operatorname{rank} M(s, t)$.

$$
\operatorname{Spectrum}(M(s, t)):=\left\{\left(s_{0}, t_{0}\right): \operatorname{det} M_{i_{1}, \ldots, i_{\rho}}^{j_{1}, \ldots, j_{\rho}}=0, \quad \begin{array}{l}
1 \leq i_{1}<\cdots<i_{\rho} \leq m \tag{2}\\
1 \leq j_{1}<\cdots<j_{\rho} \leq n
\end{array}\right\} .
$$

- The continuous part of the spectrum $u \rightarrow$ The one-dimensional roots of the system (2) $u>$ The one-dimensional eigenvalues of the matrix $M(s, t)$.
- The discrete part of the spectrum $\mathrm{m} \rightarrow$ The zero-dimensional roots of the system (2) $u \rightsquigarrow$ The zero-dimensional eigenvalues of the matrix $M(s, t)$

Spectrum of a bivariate polynomial matrix

Let $M(s, t)$ be a matrix of size $m \times n$ depending on the two variables s and t.
The spectrum of $M(s, t)$ is defined to be the set

$$
\left\{\left(s_{0}, t_{0}\right) \in \mathbb{K} \times \mathbb{K}: \operatorname{rank}\left(M\left(s_{0}, t_{0}\right)\right)<\rho\right\}
$$

where $\rho:=\operatorname{rank} M(s, t)$.

$$
\operatorname{Spectrum}(M(s, t)):=\left\{\left(s_{0}, t_{0}\right): \operatorname{det} M_{i_{1}, \ldots, i_{\rho}}^{j_{1}, \ldots, j_{\rho}}=0, \quad \begin{array}{l}
1 \leq i_{1}<\cdots<i_{\rho} \leq m \tag{2}\\
1 \leq j_{1}<\cdots<j_{\rho} \leq n
\end{array}\right\} .
$$

- The continuous part of the spectrum $u \rightarrow$ The one-dimensional roots of the system (2) $u \rightsquigarrow$ The one-dimensional eigenvalues of the matrix $M(s, t)$.
- The discrete part of the spectrum $\leadsto \boldsymbol{m}$ The zero-dimensional roots of the system (2) $\rightsquigarrow>$ The zero-dimensional eigenvalues of the matrix $M(s, t)$.

Linearization of a bivariate polynomial matrix

Given an $m \times n$-matrix $M(s, t)=\left(a_{i, j}(s, t)\right)$ with $a_{i, j}(s, t) \in \mathbb{K}[s, t]$.

$$
M(s, t)=M_{d}(t) s^{d}+M_{d-1}(t) s^{d-1}+\ldots+M_{0}(t)
$$

where $M_{i}(t) \in \mathbb{K}[t]^{m \times n}$ and $d=\max _{i, j}\left\{\operatorname{deg}_{s}\left(a_{i, j}(s, t)\right)\right\}$.

The generalized companion matrices A, B of the matrix $M(s, t)$ are the matrices with coefficients in $\mathbb{K}[t]$ of size $((d-1) m+n) \times d m$ that are given by

Linearization of a bivariate polynomial matrix

Given an $m \times n$-matrix $M(s, t)=\left(a_{i, j}(s, t)\right)$ with $a_{i, j}(s, t) \in \mathbb{K}[s, t]$.

$$
M(s, t)=M_{d}(t) s^{d}+M_{d-1}(t) s^{d-1}+\ldots+M_{0}(t)
$$

where $M_{i}(t) \in \mathbb{K}[t]^{m \times n}$ and $d=\max _{i, j}\left\{\operatorname{deg}_{s}\left(a_{i, j}(s, t)\right)\right\}$.

The generalized companion matrices A, B of the matrix $M(s, t)$ are the matrices with coefficients in $\mathbb{K}[t]$ of size $((d-1) m+n) \times d m$ that are given by

$$
A=\left(\begin{array}{ccccc}
0 & I_{m} & \ldots & \ldots & 0 \\
0 & 0 & I_{m} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & I_{m} \\
M_{0}^{t}(t) & M_{1}^{t}(t) & \ldots & \ldots & M_{d-1}^{t}(t)
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
I_{m} & 0 & \ldots & \ldots & 0 \\
0 & I_{m} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & I_{m} & 0 \\
0 & 0 & \ldots & 0 & -M_{d}^{t}(t)
\end{array}\right)
$$

Property

There exists two unimodular matrices $E(s, t)$ et $F(s, t)$ with coefficients in $\mathbb{C}[s, t]$ and of size $d m$ and $(d-1) m+n$ respectively, such that

$$
E(s, t)(A(t)-s B(t)) F(s, t)=\left(\begin{array}{c|c}
{ }^{t} M(s, t) & 0 \tag{3}\\
\hline 0 & I_{m(d-1)}
\end{array}\right) .
$$

We provide a direct proof of:

Theorem (Kublanovskaya)

- $M_{2}(s, t)$ is a regular pencil and has only continuous spectrum coinciding with the continuous of spectrum of $M(s, t)$.
- The union of the discrete spectrum of the pencil $M_{1}(s, t)$ and $M_{3}(s, t)$ coincides with the discrete spectrum of $M(s, t)$.

Property

There exists two unimodular matrices $E(s, t)$ et $F(s, t)$ with coefficients in $\mathbb{C}[s, t]$ and of size $d m$ and $(d-1) m+n$ respectively, such that

$$
E(s, t)(A(t)-s B(t)) F(s, t)=\left(\begin{array}{c|c}
{ }^{t} M(s, t) & 0 \tag{3}\\
\hline 0 & I_{m(d-1)}
\end{array}\right) .
$$

We provide a direct proof of:

Theorem (Kublanovskaya)

$$
A(t)-s B(t) \leadsto\left(\begin{array}{ccc}
* & * & M_{3}(s, t) \\
* & M_{2}(s, t) & 0 \\
M_{1}(s, t) & 0 & 0
\end{array}\right)
$$

- $M_{2}(s, t)$ is a regular pencil and has only continuous spectrum coinciding with the continuous of spectrum of $M(s, t)$.
- The union of the discrete spectrum of the pencil $M_{1}(s, t)$ and $M_{3}(s, t)$ coincides with the discrete spectrum of $M(s, t)$.

Property

There exists two unimodular matrices $E(s, t)$ et $F(s, t)$ with coefficients in $\mathbb{C}[s, t]$ and of size $d m$ and $(d-1) m+n$ respectively, such that

$$
E(s, t)(A(t)-s B(t)) F(s, t)=\left(\begin{array}{c|c}
{ }^{t} M(s, t) & 0 \tag{3}\\
\hline 0 & I_{m(d-1)}
\end{array}\right) .
$$

We provide a direct proof of:

Theorem (Kublanovskaya)

$$
A(t)-s B(t) \leadsto\left(\begin{array}{ccc}
* & * & M_{3}(s, t) \\
* & M_{2}(s, t) & 0 \\
M_{1}(s, t) & 0 & 0
\end{array}\right)
$$

- $M_{2}(s, t)$ is a regular pencil and has only continuous spectrum coinciding with the continuous of spectrum of $M(s, t)$. coincides with the discrete spectrum of $M(s, t)$.

Property

There exists two unimodular matrices $E(s, t)$ et $F(s, t)$ with coefficients in $\mathbb{C}[s, t]$ and of size $d m$ and $(d-1) m+n$ respectively, such that

$$
E(s, t)(A(t)-s B(t)) F(s, t)=\left(\begin{array}{c|c}
{ }^{t} M(s, t) & 0 \tag{3}\\
\hline 0 & I_{m(d-1)}
\end{array}\right) .
$$

We provide a direct proof of:

Theorem (Kublanovskaya)

$$
A(t)-s B(t) \leadsto\left(\begin{array}{ccc}
* & * & M_{3}(s, t) \\
* & M_{2}(s, t) & 0 \\
M_{1}(s, t) & 0 & 0
\end{array}\right)
$$

- $M_{2}(s, t)$ is a regular pencil and has only continuous spectrum coinciding with the continuous of spectrum of $M(s, t)$.
- The union of the discrete spectrum of the pencil $M_{1}(s, t)$ and $M_{3}(s, t)$ coincides with the discrete spectrum of $M(s, t)$.

Extracting the regular part and the discrete part

The $\Delta \mathrm{W}$ - Decomposition.
The decomposition of an univariate polynomial $M(t)$ of rank ρ under the form

$$
M(t) W(t)=[\Delta(t), 0],
$$

$W(t)$: an unimodular polynomial matrix,
$\Delta(t)$: a polynomial matrix of full column rank ρ.

- The $\Delta \mathrm{W}$ - Decomposition is much more complicated than LU (QR)-Decomposition.
- Reason: The operations of the transformation of $M(t)$ have been done over the polynomial ring $\mathbb{K}[t]$, not the field \mathbb{K}.

Extracting the regular part and the discrete part

The $\Delta \mathrm{W}$ - Decomposition.
The decomposition of an univariate polynomial $M(t)$ of rank ρ under the form

$$
M(t) W(t)=[\Delta(t), 0],
$$

$W(t)$: an unimodular polynomial matrix, $\Delta(t)$: a polynomial matrix of full column rank ρ.

- The $\Delta \mathrm{W}$ - Decomposition is much more complicated than LU (QR)-Decomposition.
- Reason: The operations of the transformation of $M(t)$ have been done over the polynomial ring $\mathbb{K}[t]$, not the field \mathbb{K}.

Extracting the regular part and the discrete part

The $\Delta \mathrm{W}$ - Decomposition.
The decomposition of an univariate polynomial $M(t)$ of rank ρ under the form

$$
M(t) W(t)=[\Delta(t), 0],
$$

$W(t)$: an unimodular polynomial matrix, $\Delta(t)$: a polynomial matrix of full column rank ρ.

- The $\Delta \mathrm{W}$ - Decomposition is much more complicated than LU (QR)-Decomposition.
- Reason: The operations of the transformation of $M(t)$ have been done over the polynomial ring $\mathbb{K}[t]$, not the field \mathbb{K}.

Extracting the regular part and the discrete part

The $\Delta \mathrm{W}$ - Decomposition.
The decomposition of an univariate polynomial $M(t)$ of rank ρ under the form

$$
M(t) W(t)=[\Delta(t), 0]
$$

$W(t)$: an unimodular polynomial matrix, $\Delta(t)$: a polynomial matrix of full column rank ρ.

- The $\Delta \mathrm{W}$ - Decomposition is much more complicated than LU (QR)-Decomposition.
- Reason: The operations of the transformation of $M(t)$ have been done over the polynomial ring $\mathbb{K}[t]$, not the field \mathbb{K}.

Algorithm for extracting the regular and discrete part

We start with a pencil $A(t)-s B(t), A(t), B(t)$: matrix of size $p \times q$ and $\rho=\operatorname{rank} A(t)$ via the classical $\Delta \mathrm{W}$ - Decomposition.

Algorithm for extracting the regular and discrete part

We start with a pencil $A(t)-s B(t), A(t), B(t)$: matrix of size $p \times q$ and $\rho=\operatorname{rank} A(t)$ via the classical $\Delta \mathrm{W}$ - Decomposition.

- Step 1
- $A(t) Q_{0}(t)=[\underbrace{\Delta_{0}(t)}_{\rho} \mid \underbrace{0}_{q-\rho}], \quad B(t) Q_{0}(t)=[\underbrace{B_{1,1}(t)}_{\rho} \mid \underbrace{B_{1,2}(t)}_{q-\rho}]$
- $P_{0}(t) B_{1,2}(t)=\left(\frac{B^{\prime}{ }_{1,2}(t)}{0}\right) ; B^{\prime}{ }_{1,2}(t)$ has full row rank.
- Matrices $A(t)$ and $B(t)$ are represented under the form

Algorithm for extracting the regular and discrete part

We start with a pencil $A(t)-s B(t), A(t), B(t)$: matrix of size $p \times q$ and $\rho=\operatorname{rank} A(t)$ via the classical $\Delta \mathrm{W}$ - Decomposition.

- Step 1
- $A(t) Q_{0}(t)=[\underbrace{\Delta_{0}(t)}_{\rho} \mid \underbrace{0}_{q-\rho}], \quad B(t) Q_{0}(t)=[\underbrace{B_{1,1}(t)}_{\rho} \mid \underbrace{B_{1,2}(t)}_{q-\rho}]$
- $P_{0}(t) B_{1,2}(t)=\left(\frac{B^{\prime}{ }_{1,2}(t)}{0}\right) ; B^{\prime}{ }_{1,2}(t)$ has full row rank.
- Matrices $A(t)$ and $B(t)$ are represented under the form

Algorithm for extracting the regular and discrete part

We start with a pencil $A(t)-s B(t), A(t), B(t)$: matrix of size $p \times q$ and $\rho=\operatorname{rank} A(t)$ via the classical $\Delta \mathrm{W}$ - Decomposition.

- Step 1
- $A(t) Q_{0}(t)=[\underbrace{\Delta_{0}(t)}_{\rho} \mid \underbrace{0}_{q-\rho}], B(t) Q_{0}(t)=[\underbrace{B_{1,1}(t)}_{\rho} \mid \underbrace{B_{1,2}(t)}_{q-\rho}]$
- $P_{0}(t) B_{1,2}(t)=\left(\frac{B^{\prime}{ }_{1,2}(t)}{0}\right) ; B^{\prime}{ }_{1,2}(t)$ has full row rank.
- Matrices $A(t)$ and $B(t)$ are represented under the form

$$
P_{0}(t) A(t) Q_{0}(t)=\left(\begin{array}{c|c}
A_{1,1}(t) & 0 \\
\hline A_{2}(t) & 0
\end{array}\right), \quad P_{0}(t) B(t) Q_{0}(t)=\left(\begin{array}{c|c}
B_{1,1}^{\prime}(t) & B_{1,2}^{\prime}(t) \\
\hline B_{2}(t) & 0
\end{array}\right)
$$

At the end of Step 1:

$$
P_{0}(t)(A(t)-s B(t)) Q_{0}(t)=\left(\begin{array}{c|c}
A_{1,1}(t)-s B_{1,1}^{\prime}(t) & -s B^{\prime}{ }_{1,2}(t) \\
\hline A_{2}(t)-s B_{2}(t) & 0
\end{array}\right)
$$

- Step 2
- Repeat the Step 1 for the pencil $A_{2}(t)-s B_{2}(t)$ until the step k where the matrix $A_{k+1}(t)$ is of full column rank.
- At the step k :

$$
P(t)(A(t)-s B(t)) Q(t)=\left(\begin{array}{c|c}
A_{k+1, k}(t)-s B_{k+1, k}^{\prime}(t) & M_{3}(s, t) \\
\hline A_{k+1}(t)-s B_{k+1}(t) & 0
\end{array}\right)
$$

- If the pencil $A_{k+1}(t)-s B_{k+1}(t)$ is not a regular pencil, repeat the above procedure to the transposed pencil $A_{k+1}^{t}(t)-s B_{k+1}^{t}(t)$.

At the end of Step 1:

$$
P_{0}(t)(A(t)-s B(t)) Q_{0}(t)=\left(\begin{array}{c|c}
A_{1,1}(t)-s B_{1,1}^{\prime}(t) & -s B_{1,2}^{\prime}(t) \\
\hline A_{2}(t)-s B_{2}(t) & 0
\end{array}\right)
$$

- Step 2
- Repeat the Step 1 for the pencil $A_{2}(t)-s B_{2}(t)$ until the step k where the matrix $A_{k+1}(t)$ is of full column rank.
- At the step k :

- If the pencil $A_{k+1}(t)-s B_{k+1}(t)$ is not a regular pencil, repeat the above procedure to the transposed pencil $A_{k+1}^{t}(t)-s B_{k+1}^{t}(t)$.

At the end of Step 1:

$$
P_{0}(t)(A(t)-s B(t)) Q_{0}(t)=\left(\begin{array}{c|c}
A_{1,1}(t)-s B_{1,1}^{\prime}(t) & -s B_{1,2}^{\prime}(t) \\
\hline A_{2}(t)-s B_{2}(t) & 0
\end{array}\right)
$$

- Step 2
- Repeat the Step 1 for the pencil $A_{2}(t)-s B_{2}(t)$ until the step k where the matrix $A_{k+1}(t)$ is of full column rank.
- At the step k :

$$
P(t)(A(t)-s B(t)) Q(t)=\left(\begin{array}{c|c}
A_{k+1, k}(t)-s B_{k+1, k}^{\prime}(t) & M_{3}(s, t) \\
\hline A_{k+1}(t)-s B_{k+1}(t) & 0
\end{array}\right)
$$

- If the pencil $A_{k+1}(t)-s B_{k+1}(t)$ is not a regular pencil, repeat the above procedure to the transposed pencil $A_{k+1}^{t}(t)-s B_{k+1}^{t}(t)$.

At the end of Step 1:

$$
P_{0}(t)(A(t)-s B(t)) Q_{0}(t)=\left(\begin{array}{c|c}
A_{1,1}(t)-s B_{1,1}^{\prime}(t) & -s B_{1,2}^{\prime}(t) \\
\hline A_{2}(t)-s B_{2}(t) & 0
\end{array}\right)
$$

- Step 2
- Repeat the Step 1 for the pencil $A_{2}(t)-s B_{2}(t)$ until the step k where the matrix $A_{k+1}(t)$ is of full column rank.
- At the step k :

$$
P(t)(A(t)-s B(t)) Q(t)=\left(\begin{array}{c|c}
A_{k+1, k}(t)-s B_{k+1, k}^{\prime}(t) & M_{3}(s, t) \\
\hline A_{k+1}(t)-s B_{k+1}(t) & 0
\end{array}\right)
$$

- If the pencil $A_{k+1}(t)-s B_{k+1}(t)$ is not a regular pencil, repeat the above procedure to the transposed pencil $A_{k+1}^{t}(t)-s B_{k+1}^{t}(t)$.

Algorithm for extracting the regular and discrete part

- At the end:

$$
A(t)-s B(t) \Longrightarrow\left(\begin{array}{c|c|c}
* & * & M_{3}(s, t) \\
\hline * & M_{2}(s, t) & 0 \\
\hline M_{1}(s, t) & 0 & 0
\end{array}\right)
$$

Part II.2: Applications to Intersection Problems

The point in the curve intersection problem

Given a point $P \in \mathbb{P}^{3}$ and two parameterized surfaces \mathcal{S}_{1} and \mathcal{S}_{2}, test whether $P \in \mathcal{S}_{1} \cap \mathcal{S}_{2}$ or not.

General philosophy:

replace implicit equations by representation matrices whenever possible

The point in the curve intersection problem

Given a point $P \in \mathbb{P}^{3}$ and two parameterized surfaces \mathcal{S}_{1} and \mathcal{S}_{2}, test whether $P \in \mathcal{S}_{1} \cap \mathcal{S}_{2}$ or not.

- Compute an implicit equation $S_{1}(x, y, z, w)$ and $S_{2}(x, y, z, w)$ $\in \mathbb{K}[x, \ldots, w]$

Evaluate S_{1} and S_{2} at P

- Compute two representation matrices $M_{1}(x, \ldots, w)$ and $M_{2}(x, \ldots, w)$ $\in \operatorname{Mat}(\mathbb{K}[x, \ldots, w])$
- Evaluate $M_{1}(P)$ and $M_{2}(P)$
- Check if the ϵ-rank of $M_{1}(P)$ and $M_{2}(P)$ drops.

General philosophy:
replace implicit equations by representation matrices whenever possible

The point in the curve intersection problem

Given a point $P \in \mathbb{P}^{3}$ and two parameterized surfaces \mathcal{S}_{1} and \mathcal{S}_{2}, test whether $P \in \mathcal{S}_{1} \cap \mathcal{S}_{2}$ or not.

- Compute an implicit equation $S_{1}(x, y, z, w)$ and $S_{2}(x, y, z, w)$ $\in \mathbb{K}[x, \ldots, w]$
- Evaluate S_{1} and S_{2} at P
- Check if $\left\|S_{1}(P)\right\|<\epsilon$ and $\left\|S_{2}(P)\right\|$
- Compute two representation matrices $M_{1}(x, \ldots, w)$ and $M_{2}(x, \ldots, w)$ $\in \operatorname{Mat}(\mathbb{K}[x, \ldots, w])$
- Evaluate $M_{1}(P)$ and $M_{2}(P)$
- Check if the ϵ-rank of $M_{1}(P)$ and $M_{2}(P)$ drops.

General philosophy:
replace implicit equations by representation matrices whenever possible

The point in the curve intersection problem

Given a point $P \in \mathbb{P}^{3}$ and two parameterized surfaces \mathcal{S}_{1} and \mathcal{S}_{2}, test whether $P \in \mathcal{S}_{1} \cap \mathcal{S}_{2}$ or not.

- Compute an implicit equation $S_{1}(x, y, z, w)$ and $S_{2}(x, y, z, w)$ $\in \mathbb{K}[x, \ldots, w]$
- Evaluate S_{1} and S_{2} at P
- Check if $\left\|S_{1}(P)\right\|<\epsilon$ and $\left\|S_{2}(P)\right\|<\epsilon$
- Compute two representation matrices $M_{1}(x, \ldots, w)$ and $M_{2}(x, \ldots, w)$ $\in \operatorname{Mat}(\mathbb{K}[x, \ldots, w])$
- Evaluate $M_{1}(P)$ and $M_{2}(P)$
- Check if the ϵ-rank of $M_{1}(P)$ and $M_{2}(P)$ drops.

General philosophy:
replace implicit equations by representation matrices whenever possible

The point in the curve intersection problem

Given a point $P \in \mathbb{P}^{3}$ and two parameterized surfaces \mathcal{S}_{1} and \mathcal{S}_{2}, test whether $P \in \mathcal{S}_{1} \cap \mathcal{S}_{2}$ or not.

- Compute an implicit equation $S_{1}(x, y, z, w)$ and $S_{2}(x, y, z, w)$ $\in \mathbb{K}[x, \ldots, w]$
- Evaluate S_{1} and S_{2} at P
- Check if $\left\|S_{1}(P)\right\|<\epsilon$ and $\left\|S_{2}(P)\right\|<\epsilon$
- Compute two representation matrices $M_{1}(x, \ldots, w)$ and $M_{2}(x, \ldots, w)$ $\in \operatorname{Mat}(\mathbb{K}[x, \ldots, w])$
- Evaluate $M_{1}(P)$ and $M_{2}(P)$
- Check if the ϵ-rank of $M_{1}(P)$ and $M_{2}(P)$ drops.

General philosophy:

replace implicit equations by representation matrices whenever possible

The surface/surface intersection problem

Suppose given two parameterized surfaces:

$$
\begin{aligned}
& \mathbb{P}^{2} \xrightarrow{\phi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(f_{1}: \ldots: f_{4}\right)(s, t, u) \\
& \mathbb{P}^{2} \xrightarrow{\psi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(g_{1}: \ldots: g_{4}\right)(s, t, u)
\end{aligned}
$$

with ψ regular.

Algorithm (Busé, Luu Ba): "Compute" the intersection curve

The surface/surface intersection problem

Suppose given two parameterized surfaces:

$$
\begin{aligned}
& \mathbb{P}^{2} \xrightarrow{\phi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(f_{1}: \ldots: f_{4}\right)(s, t, u) \\
& \mathbb{P}^{2} \xrightarrow{\psi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(g_{1}: \ldots: g_{4}\right)(s, t, u)
\end{aligned}
$$

with ψ regular.

Algorithm (Busé, Luu Ba): "Compute" the intersection curve

- Build the representation matrix $\mathbf{M}(\phi)$ of \mathcal{S}_{1}.
- Form the companion matrices $A(t), B(t)$ of the matrix
- Compute the regular part $A^{\prime}(t)-s B^{\prime}(t)$ of the pencil $A(t)-s B(t)$
- Compute the determinant of the pencil $A^{\prime}(t)-s B^{\prime}(t) \rightsquigarrow$ Curves \mathcal{C} in the plane
- Return the intersection curves

The surface/surface intersection problem

Suppose given two parameterized surfaces:

$$
\begin{aligned}
& \mathbb{P}^{2} \xrightarrow{\phi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(f_{1}: \ldots: f_{4}\right)(s, t, u) \\
& \mathbb{P}^{2} \xrightarrow{\psi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(g_{1}: \ldots: g_{4}\right)(s, t, u)
\end{aligned}
$$

with ψ regular.

Algorithm (Busé, Luu Ba): "Compute" the intersection curve

- Build the representation matrix $\mathbf{M}(\phi)$ of \mathcal{S}_{1}.
- Form the companion matrices $A(t), B(t)$ of the matrix $\mathbf{M}(\phi)\left(g_{1}(s, t, 1), \ldots, g_{4}(s, t, 1)\right)$.
- Compute the regular part $A^{\prime}(t)-s B^{\prime}(t)$ of the pencil $A(t)-s B(t)$
- Compute the determinant of the pencil $A^{\prime}(t)-s B^{\prime}(t) \rightsquigarrow$ Curves \mathcal{C} in the plane
> Return the intersection curves

The surface/surface intersection problem

Suppose given two parameterized surfaces:

$$
\begin{aligned}
\mathbb{P}^{2} \xrightarrow{\phi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(f_{1}: \ldots: f_{4}\right)(s, t, u) \\
\mathbb{P}^{2} \xrightarrow{\psi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(g_{1}: \ldots: g_{4}\right)(s, t, u)
\end{aligned}
$$

with ψ regular.

Algorithm (Busé, Luu Ba): "Compute" the intersection curve

- Build the representation matrix $\mathbf{M}(\phi)$ of \mathcal{S}_{1}.
- Form the companion matrices $A(t), B(t)$ of the matrix $\mathbf{M}(\phi)\left(g_{1}(s, t, 1), \ldots, g_{4}(s, t, 1)\right)$.
- Compute the regular part $A^{\prime}(t)-s B^{\prime}(t)$ of the pencil $A(t)-s B(t)$.
- Compute the determinant of the pencil $A^{\prime}(t)-s B^{\prime}(t) \rightsquigarrow$ Curves \mathcal{C} in the plane.
- Return the intersection curves

The surface/surface intersection problem

Suppose given two parameterized surfaces:

$$
\begin{aligned}
\mathbb{P}^{2} \xrightarrow{\phi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(f_{1}: \ldots: f_{4}\right)(s, t, u) \\
\mathbb{P}^{2} \xrightarrow{\psi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(g_{1}: \ldots: g_{4}\right)(s, t, u)
\end{aligned}
$$

with ψ regular.

Algorithm (Busé, Luu Ba): "Compute" the intersection curve

- Build the representation matrix $\mathbf{M}(\phi)$ of \mathcal{S}_{1}.
- Form the companion matrices $A(t), B(t)$ of the matrix $\mathbf{M}(\phi)\left(g_{1}(s, t, 1), \ldots, g_{4}(s, t, 1)\right)$.
- Compute the regular part $A^{\prime}(t)-s B^{\prime}(t)$ of the pencil $A(t)-s B(t)$.
- Compute the determinant of the pencil $A^{\prime}(t)-s B^{\prime}(t) \rightsquigarrow$ Curves \mathcal{C} in the plane.

The surface/surface intersection problem

Suppose given two parameterized surfaces:

$$
\begin{aligned}
& \mathbb{P}^{2} \xrightarrow{\phi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(f_{1}: \ldots: f_{4}\right)(s, t, u) \\
& \mathbb{P}^{2} \xrightarrow{\psi} \mathbb{P}^{3}:(s: t: u) \mapsto\left(g_{1}: \ldots: g_{4}\right)(s, t, u)
\end{aligned}
$$

with ψ regular.

Algorithm (Busé, Luu Ba): "Compute" the intersection curve

- Build the representation matrix $\mathbf{M}(\phi)$ of \mathcal{S}_{1}.
- Form the companion matrices $A(t), B(t)$ of the matrix $\mathbf{M}(\phi)\left(g_{1}(s, t, 1), \ldots, g_{4}(s, t, 1)\right)$.
- Compute the regular part $A^{\prime}(t)-s B^{\prime}(t)$ of the pencil $A(t)-s B(t)$.
- Compute the determinant of the pencil $A^{\prime}(t)-s B^{\prime}(t) \rightsquigarrow$ Curves \mathcal{C} in the plane.
- Return the intersection curves $\{\psi(s, t, 1):(s, t) \in \mathcal{C}\}$.

An example

- Suppose given two parameterized surfaces:

$$
\begin{aligned}
& \mathbf{S}_{1}: f_{1}=s^{2}+t^{2}+u^{2}, f_{2}=2 s u, f_{3}=2 s t, f_{4}=s^{2}-t^{2}-u^{2} \\
& \mathbf{S}_{2}: g_{1}=s^{3}+t^{3}, g_{2}=s t u, g_{3}=s u^{2}+t u^{2}, g_{4}=u^{3}
\end{aligned}
$$

- The matrix representation of the sphere \mathbf{S}_{1} gives

generalized eigenvalues of the polynomial matrix

An example

- Suppose given two parameterized surfaces:

$$
\begin{aligned}
& \mathbf{S}_{1}: f_{1}=s^{2}+t^{2}+u^{2}, f_{2}=2 s u, f_{3}=2 s t, f_{4}=s^{2}-t^{2}-u^{2} \\
& \mathbf{S}_{2}: g_{1}=s^{3}+t^{3}, g_{2}=s t u, g_{3}=s u^{2}+t u^{2}, g_{4}=u^{3}
\end{aligned}
$$

- The matrix representation of the sphere \mathbf{S}_{1} gives

$$
\left(\begin{array}{cccc}
-y & 0 & z & x+w \\
0 & -y & -x+w & -z \\
z & x+w & y & 0
\end{array}\right)
$$

generalized eigenvalues of the polynomial matrix

An example

- Suppose given two parameterized surfaces:

$$
\begin{aligned}
& \mathbf{S}_{1}: f_{1}=s^{2}+t^{2}+u^{2}, f_{2}=2 s u, f_{3}=2 s t, f_{4}=s^{2}-t^{2}-u^{2} \\
& \mathbf{S}_{2}: g_{1}=s^{3}+t^{3}, g_{2}=s t u, g_{3}=s u^{2}+t u^{2}, g_{4}=u^{3}
\end{aligned}
$$

- The matrix representation of the sphere \mathbf{S}_{1} gives

$$
\left(\begin{array}{cccc}
-y & 0 & z & x+w \\
0 & -y & -x+w & -z \\
z & x+w & y & 0
\end{array}\right)
$$

- $P \in \mathbf{S}_{1} \cap \mathbf{S}_{2}$ iff $P=\left(s^{3}+t^{3}: s t u: s u^{2}+t u^{2}: u^{3}\right)$ and $(s: t: u)$ is one of the generalized eigenvalues of the polynomial matrix

$$
M(s, t, u)=\left(\begin{array}{cccc}
-s t u & 0 & s u^{2}+t u^{2} & s^{3}+t^{3}+u^{3} \\
0 & -s t u & -s^{3}-t^{3}+u^{3} & -s u^{2}-t u^{2} \\
s u^{2}+t u^{2} & s^{3}+t^{3}+u^{3} & s t & 0
\end{array}\right)
$$

An example

- The points $(s: t: u), u \neq 0$, are correspondence to the set of the generalized eigenvalues $(s, t) \in \mathbb{C}^{2}$ of the bivariate matrix $M(s, t)$

$$
M(s, t)=\left(\begin{array}{cccc}
-s t & 0 & s+t & s^{3}+t^{3}+1 \\
0 & -s t & -s^{3}-t^{3}+1 & -s-t \\
s+t & s^{3}+t^{3}+1 & s t & 0
\end{array}\right) .
$$

- $M(s, t)=M_{3} t^{3}+M_{2} t^{2}+M_{1} t+M_{0}$ and companion matrices

An example

- The points $(s: t: u), u \neq 0$, are correspondence to the set of the generalized eigenvalues $(s, t) \in \mathbb{C}^{2}$ of the bivariate matrix $M(s, t)$

$$
M(s, t)=\left(\begin{array}{cccc}
-s t & 0 & s+t & s^{3}+t^{3}+1 \\
0 & -s t & -s^{3}-t^{3}+1 & -s-t \\
s+t & s^{3}+t^{3}+1 & s t & 0
\end{array}\right) .
$$

- $M(s, t)=M_{3} t^{3}+M_{2} t^{2}+M_{1} t+M_{0}$ and companion matrices

$$
A(s)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
M_{0}^{t} & M_{1}^{t} & M_{2}^{t}
\end{array}\right)=\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & s & -s & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & s^{3}+1 & 0 & -s & 0 & 0 & 0 & 0 \\
s & -s^{3}+1 & 0 & 1 & 0 & s & 0 & 0 & 0 \\
s^{3}+1 & -s & 0 & 0 & -1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

An example

$B(s)=\left(\begin{array}{ccccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0\end{array}\right)$

- The regular pencil part $M_{1}(s, t)=A_{1}(s)-t B_{1}(s)$ where

- $\operatorname{det}\left(M_{1}(s, t)\right)=-s^{6}-2 s^{3} t^{3}+t^{2} s^{2}+s^{2}+2 s t-t^{6}+t^{2}+1$ is the equation of the curve \mathcal{C} in the parametric space corresponding to $S_{1} \cap S_{2}$ through the regular map ψ

An example

$$
B(s)=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0
\end{array}\right)
$$

- The regular pencil part $M_{1}(s, t)=A_{1}(s)-t B_{1}(s)$ where

$$
A_{1}(s)=\left(\begin{array}{cccccc}
1 & 0 & s & 0 & 1 & 0 \\
-s^{3}+1 & 0 & 1 & 0 & 0 & 0 \\
-s^{3}+1 & 0 & 0 & -s & 0 & 0 \\
2 s & 0 & 0 & 1 & s & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 & 0 & 0
\end{array}\right), B_{1}(s)=\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
s^{3} & 1 & 0 & 0 & 0 & 0 \\
-s^{2} & 0 & s & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

- $\operatorname{det}\left(M_{1}(s, t)\right)=-s^{6}-2 s^{3} t^{3}+t^{2} s^{2}+s^{2}+2 s t-t^{6}+t^{2}+1$ is the equation of the curve \mathcal{C} in the parametric space corresponding to $S_{1} \cap S_{2}$ through the regular map Ψ

An example

$$
B(s)=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0
\end{array}\right)
$$

- The regular pencil part $M_{1}(s, t)=A_{1}(s)-t B_{1}(s)$ where

$$
A_{1}(s)=\left(\begin{array}{cccccc}
1 & 0 & s & 0 & 1 & 0 \\
-s^{3}+1 & 0 & 1 & 0 & 0 & 0 \\
-s^{3}+1 & 0 & 0 & -s & 0 & 0 \\
2 s & 0 & 0 & 1 & s & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 & 0 & 0
\end{array}\right), B_{1}(s)=\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
s^{3} & 1 & 0 & 0 & 0 & 0 \\
-s^{2} & 0 & s & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

- $\operatorname{det}\left(M_{1}(s, t)\right)=-s^{6}-2 s^{3} t^{3}+t^{2} s^{2}+s^{2}+2 s t-t^{6}+t^{2}+1$ is the equation of the curve \mathcal{C} in the parametric space corresponding to $S_{1} \cap S_{2}$ through the regular map Ψ.

Thank you for your attention

