The surface/surface intersection problems by means of matrix-based representation

LUU BA Thang (Joint work with Laurent Busé)

INRIA Sophia Antipolis

SAGA, Vilnius, 27-30 September 2011

Matrix-based implicit representation

- Implicit representation matrices of rational surfaces
- Representation matrix of the intersection curve

Pencil of matrices and the surface/surface intersection problem

- Reduction of a bivariate pencil of matrices
- The surface/surface intersection problem

Part I.1 : Implicit Representation Matrices of Rational Surfaces

- In geometric modeling, curves and surfaces are usually given under parameterized forms.
- An implicit representation is very useful in practice (e.g. decide if a point belongs to a curve or surface)

 \Rightarrow Change of representation: elimination theory, implicitization problem

- The implicitization problem has become a very classical problem and several methods have been developed
 - methods based on Gröbner basis computations: output a polynomial
 - methods based on "resultant-like" computations: eliminant matrices

- In geometric modeling, curves and surfaces are usually given under parameterized forms.
- An implicit representation is very useful in practice (e.g. decide if a point belongs to a curve or surface)

 \Rightarrow Change of representation: elimination theory, implicitization problem

- The implicitization problem has become a very classical problem and several methods have been developed
 - methods based on Gröbner basis computations: output a polynomial
 - methods based on "resultant-like" computations: eliminant matrices

The **main difficulty** comes from the **base points**: points of the parameter space for which the parameterization is not well defined (typically division by zero).

- Resultant-based methods:
 - parameterization without base point over a toric variety (A. Khetan)
 - parameterization with prescribed base points (Busé, Eisenbud/Schreyer)
- Square matrices filled with syzygies:
 - Sederberg-Chen: the case of plane curves
 - Cox, Goldman and al.: moving planes and quadratics without base point
 - Cox, D'Andrea, Busé : moving planes and quadratics with base points
- Non square matrices filled with approximation complexes:
 - Busé, Chardin and Jouanolou: approximation complexes with less hypothesis, more general.

The **main difficulty** comes from the **base points**: points of the parameter space for which the parameterization is not well defined (typically division by zero).

Resultant-based methods:

- parameterization without base point over a toric variety (A. Khetan)
- parameterization with prescribed base points (Busé, Eisenbud/Schreyer)
- Square matrices filled with syzygies:
 - Sederberg-Chen: the case of plane curves
 - Cox, Goldman and al.: moving planes and quadratics without base point
 - Cox, D'Andrea, Busé : moving planes and quadratics with base points
- ▶ Non square matrices filled with approximation complexes:
 - Busé, Chardin and Jouanolou: approximation complexes with less hypothesis, more general.

The **main difficulty** comes from the **base points**: points of the parameter space for which the parameterization is not well defined (typically division by zero).

Resultant-based methods:

- parameterization without base point over a toric variety (A. Khetan)
- parameterization with prescribed base points (Busé, Eisenbud/Schreyer)

Square matrices filled with syzygies:

- Sederberg-Chen: the case of plane curves
- Cox, Goldman and al.: moving planes and quadratics without base point
- Cox, D'Andrea, Busé : moving planes and quadratics with base points
- Non square matrices filled with approximation complexes:
 - Busé, Chardin and Jouanolou: approximation complexes with less hypothesis, more general.

The **main difficulty** comes from the **base points**: points of the parameter space for which the parameterization is not well defined (typically division by zero).

Resultant-based methods:

- parameterization without base point over a toric variety (A. Khetan)
- parameterization with prescribed base points (Busé, Eisenbud/Schreyer)

Square matrices filled with syzygies:

- Sederberg-Chen: the case of plane curves
- Cox, Goldman and al.: moving planes and quadratics without base point
- Cox, D'Andrea, Busé : moving planes and quadratics with base points
- Non square matrices filled with approximation complexes:
 - Busé, Chardin and Jouanolou: approximation complexes with less hypothesis, more general.

The **main difficulty** comes from the **base points**: points of the parameter space for which the parameterization is not well defined (typically division by zero).

Resultant-based methods:

- parameterization without base point over a toric variety (A. Khetan)
- parameterization with prescribed base points (Busé, Eisenbud/Schreyer)

Square matrices filled with syzygies:

- Sederberg-Chen: the case of plane curves
- Cox, Goldman and al.: moving planes and quadratics without base point
- Cox, D'Andrea, Busé : moving planes and quadratics with base points
- Non square matrices filled with approximation complexes:
 - Busé, Chardin and Jouanolou: approximation complexes with less hypothesis, more general.

Consider a surface \mathcal{S} parameterized by:

(K algebraically closed field)

$$\mathbb{P}^2_{\mathbb{K}} \stackrel{\phi}{\longrightarrow} \mathbb{P}^3_{\mathbb{K}}$$

 $(X_1:X_2:X_3) \mapsto (f_1:f_2:f_3:f_4)(X_1,X_2,X_3)$

with $d := \deg(f_i) \ge 1$. Assume that $\gcd(f_1, \ldots, f_4) \in \mathbb{K} \setminus \{0\}$.

The graded $\mathbb{K}[X_1, X_2, X_3]$ -module of syzygies is

$$\mathscr{L}(\mathbf{f}) := \left\{ \sum_{i=1}^{4} g_i(X_1, X_2, X_3) \, T_i \in \mathbb{K}[X_1, X_2, X_3][T_1, T_2, T_3, T_4] \\ \text{such that } \sum_{i=1}^{4} g_i(X_1, X_2, X_3) f_i(X_1, X_2, X_3) \equiv 0 \right\}$$

(日) (同) (三) (三)

Consider a surface \mathcal{S} parameterized by:

(K algebraically closed field)

$$egin{array}{cccc} \mathbb{P}^2_{\mathbb{K}} & \stackrel{\phi}{ o} & \mathbb{P}^3_{\mathbb{K}} \ (X_1:X_2:X_3) & \mapsto & (f_1:f_2:f_3:f_4)(X_1,X_2,X_3) \end{array}$$

with $d := \deg(f_i) \ge 1$. Assume that $\gcd(f_1, \ldots, f_4) \in \mathbb{K} \setminus \{0\}$. The graded $\mathbb{K}[X_1, X_2, X_3]$ -module of syzygies is

$$\begin{split} \mathscr{L}(\mathbf{f}) &:= \left\{ \sum_{i=1}^4 g_i(X_1, X_2, X_3) \, \mathcal{T}_i \in \mathbb{K}[X_1, X_2, X_3][\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4] \\ \text{such that } \sum_{i=1}^4 g_i(X_1, X_2, X_3) f_i(X_1, X_2, X_3) \equiv 0 \right\} \end{split}$$

(日) (同) (三) (三)

For all integer $\nu \geq 0$, build the matrix $L(\phi)_{\nu}$ as follows:

- 1. Compute a basis $L^{(1)}, \ldots, L^{(n_{\nu})}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
- 2. $L(\phi)_{\nu}$ is the matrix of coefficients of this basis, i.e.

$$\begin{pmatrix} X_1^{\nu} & X_1^{\nu-1}X_2 & \cdots & X_3^{\nu} \end{pmatrix} \mathbf{L}(\phi)_{\nu} = \begin{pmatrix} L^{(1)} & L^{(2)} & \cdots & L^{(n_{\nu})} \end{pmatrix}$$

Theorem (Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections. For all integer

$$\nu \geq \mathbf{2}(\mathbf{d}-\mathbf{1}) - \mathsf{indeg}((f_1, \ldots, f_4) : (X_1, X_2, X_3)^{\infty})$$

- $L(\phi)_{\nu}$ is generically full rank
- the rank of $L(\phi)_{\nu}$ drops exactly on the surface $S = \overline{Im}(\phi)$
- ► the GCD of the maximal minors of L(φ)_ν is equal to S(T₁,..., T₄)^{deg(φ)} where S is an implicit equation of S.

For all integer $\nu \geq 0$, build the matrix $L(\phi)_{\nu}$ as follows:

- 1. Compute a basis $L^{(1)}, \ldots, L^{(n_{\nu})}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
- 2. $L(\phi)_{\nu}$ is the matrix of coefficients of this basis, i.e.

$$\begin{pmatrix} X_1^{\nu} & X_1^{\nu-1}X_2 & \cdots & X_3^{\nu} \end{pmatrix} \mathbf{L}(\phi)_{\nu} = \begin{pmatrix} L^{(1)} & L^{(2)} & \cdots & L^{(n_{\nu})} \end{pmatrix}$$

Theorem (Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections. For all integer

$$\nu \geq \mathbf{2}(\mathbf{d}-\mathbf{1}) - \mathsf{indeg}((f_1, \dots, f_4) : (X_1, X_2, X_3)^\infty)$$

- $L(\phi)_{\nu}$ is generically full rank
- the rank of $L(\phi)_{\nu}$ drops exactly on the surface $S = \overline{Im}(\phi)$
- ▶ the GCD of the maximal minors of L(φ)_ν is equal to S(T₁,..., T₄)^{deg(φ)} where S is an implicit equation of S.

For all integer $\nu \geq 0$, build the matrix $L(\phi)_{\nu}$ as follows:

- 1. Compute a basis $L^{(1)}, \ldots, L^{(n_{\nu})}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
- 2. $L(\phi)_{\nu}$ is the matrix of coefficients of this basis, i.e.

$$\begin{pmatrix} X_1^{\nu} & X_1^{\nu-1}X_2 & \cdots & X_3^{\nu} \end{pmatrix} \mathbf{L}(\phi)_{\nu} = \begin{pmatrix} L^{(1)} & L^{(2)} & \cdots & L^{(n_{\nu})} \end{pmatrix}$$

Theorem (Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections. For all integer

$$\nu \geq \mathbf{2}(\mathbf{d}-\mathbf{1}) - \mathsf{indeg}((f_1, \dots, f_4) : (X_1, X_2, X_3)^\infty)$$

- $L(\phi)_{\nu}$ is generically full rank
- the rank of $L(\phi)_{\nu}$ drops exactly on the surface $S = \overline{Im}(\phi)$
- ▶ the GCD of the maximal minors of L(φ)_ν is equal to S(T₁,..., T₄)^{deg(φ)} where S is an implicit equation of S.

For all integer $\nu \geq 0$, build the matrix $L(\phi)_{\nu}$ as follows:

- 1. Compute a basis $L^{(1)}, \ldots, L^{(n_{\nu})}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
- 2. $L(\phi)_{\nu}$ is the matrix of coefficients of this basis, i.e.

$$\begin{pmatrix} X_1^{\nu} & X_1^{\nu-1}X_2 & \cdots & X_3^{\nu} \end{pmatrix} \mathbf{L}(\phi)_{\nu} = \begin{pmatrix} L^{(1)} & L^{(2)} & \cdots & L^{(n_{\nu})} \end{pmatrix}$$

Theorem (Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections. For all integer

$$\nu \geq \mathbf{2}(\mathbf{d}-\mathbf{1}) - \mathsf{indeg}((f_1, \dots, f_4) : (X_1, X_2, X_3)^\infty)$$

- $L(\phi)_{\nu}$ is generically full rank
- the rank of $L(\phi)_{\nu}$ drops exactly on the surface $S = \overline{Im}(\phi)$
- ▶ the GCD of the maximal minors of L(φ)_ν is equal to S(T₁,..., T₄)^{deg(φ)} where S is an implicit equation of S.

For all integer $\nu \geq 0$, build the matrix $L(\phi)_{\nu}$ as follows:

- 1. Compute a basis $L^{(1)}, \ldots, L^{(n_{\nu})}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
- 2. $L(\phi)_{\nu}$ is the matrix of coefficients of this basis, i.e.

$$\begin{pmatrix} X_1^{\nu} & X_1^{\nu-1}X_2 & \cdots & X_3^{\nu} \end{pmatrix} \mathbf{L}(\phi)_{\nu} = \begin{pmatrix} L^{(1)} & L^{(2)} & \cdots & L^{(n_{\nu})} \end{pmatrix}$$

Theorem (Busé, Chardin, Jouanolou)

Assume that the base points are all locally complete intersections. For all integer

$$\nu \geq \mathbf{2}(\mathbf{d}-\mathbf{1}) - \mathsf{indeg}((f_1, \dots, f_4) : (X_1, X_2, X_3)^\infty)$$

- $L(\phi)_{\nu}$ is generically full rank
- the rank of $L(\phi)_{\nu}$ drops exactly on the surface $S = \overline{Im}(\phi)$
- the GCD of the maximal minors of L(φ)_ν is equal to S(T₁,..., T₄)^{deg(φ)} where S is an implicit equation of S.

Example of a Steiner surface

Example of a Steiner surface

Suppose given two parameterized surface S_1 and S_2 .

 $\mathcal{C}:=\mathcal{S}_1\cap\mathcal{S}_2$

M(x, y, z, w): Representation matrix of \mathcal{S}_1 and let

 $\Psi: \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^3_{\mathbb{C}}: (s:t:u) \mapsto (a(s,t,u):b(s,t,u):c(s,t,u):d(s,t,u))$

be a parameterization of S_2 . In M(x, y, z, w), substituting

$$x = a(s, t, u), y = b(s, t, u), z = c(s, t, u), w = d(s, t, u),$$

we get the matrix

 $\mathbb{M}(s, t, u) := M(\Psi(s, t, u)) = M(a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u)).$

 $\Rightarrow \mathbb{M}(s, t, u)$: Representation matrix of the intersection curve \mathcal{C} .

Suppose given two parameterized surface S_1 and S_2 .

 $\mathcal{C}:=\mathcal{S}_1\cap \mathcal{S}_2$

M(x, y, z, w): Representation matrix of S_1 and let

 $\Psi: \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^3_{\mathbb{C}}: (s:t:u) \mapsto (a(s,t,u):b(s,t,u):c(s,t,u):d(s,t,u))$

be a parameterization of \mathcal{S}_2 .

In M(x, y, z, w), substituting

$$x = a(s, t, u), y = b(s, t, u), z = c(s, t, u), w = d(s, t, u),$$

we get the matrix

 $\mathbb{M}(s, t, u) := M(\Psi(s, t, u)) = M(a(s, t, u), b(s, t, u), c(s, t, u), d(s, t, u)).$

 $\implies \mathbb{M}(s, t, u)$: Representation matrix of the intersection curve \mathcal{C} .

Suppose given two parameterized surface S_1 and S_2 .

 $\mathcal{C}:=\mathcal{S}_1\cap \mathcal{S}_2$

M(x, y, z, w): Representation matrix of S_1 and let

 $\Psi: \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^3_{\mathbb{C}}: (s:t:u) \mapsto (a(s,t,u):b(s,t,u):c(s,t,u):d(s,t,u))$

be a parameterization of S_2 . In M(x, y, z, w), substituting

$$x = a(s, t, u), y = b(s, t, u), z = c(s, t, u), w = d(s, t, u),$$

we get the matrix

 $\mathbb{M}(s,t,u) := M(\Psi(s,t,u)) = M(a(s,t,u),b(s,t,u),c(s,t,u),d(s,t,u)).$

 $\implies \mathbb{M}(s, t, u)$: Representation matrix of the intersection curve \mathcal{C} .

周 ト イ ヨ ト イ ヨ ト

Suppose given two parameterized surface S_1 and S_2 .

 $\mathcal{C}:=\mathcal{S}_1\cap\mathcal{S}_2$

M(x, y, z, w): Representation matrix of S_1 and let

 $\Psi: \mathbb{P}^2_{\mathbb{C}} \to \mathbb{P}^3_{\mathbb{C}}: (s:t:u) \mapsto (a(s,t,u):b(s,t,u):c(s,t,u):d(s,t,u))$

be a parameterization of S_2 . In M(x, y, z, w), substituting

$$x = a(s, t, u), y = b(s, t, u), z = c(s, t, u), w = d(s, t, u),$$

we get the matrix

$$\mathbb{M}(s,t,u) := M(\Psi(s,t,u)) = M(a(s,t,u),b(s,t,u),c(s,t,u),d(s,t,u)).$$

 $\implies \mathbb{M}(s, t, u)$: Representation matrix of the intersection curve C.

▶ For all point $(s_0 : t_0 : u_0) \in \mathbb{P}^2$ we have

$$\operatorname{\mathsf{rank}}(\mathbb{M}(s_0, t_0, u_0)) < \rho \text{ iff } \begin{cases} \Psi(s_0, t_0, u_0) \in \mathcal{S}_1 \cap \mathcal{S}_2 \\ \text{or} \\ (s_0 : t_0 : u_0) \text{ is a base point of } \Psi. \end{cases}$$
(1)

where $\rho := \operatorname{rank} \mathbb{M}(s, t, u)$.

Spectrum of $\mathbb{M}(s, t, u) := \{(s_0 : t_0 : u_0) \in \mathbb{P}^2 : \operatorname{rank}\mathbb{M}(s_0, t_0, u_0) < \rho\}$

 \implies Spectrum of $\mathbb{M}(s, t, u) \equiv$ the intersection locus of $S_1 \cap S_2$ + the base points of the parameterization Ψ of S_2

▶ For all point $(s_0 : t_0 : u_0) \in \mathbb{P}^2$ we have

$$\operatorname{\mathsf{rank}}(\mathbb{M}(s_0, t_0, u_0)) < \rho \text{ iff } \begin{cases} \Psi(s_0, t_0, u_0) \in \mathcal{S}_1 \cap \mathcal{S}_2 \\ \text{or} \\ (s_0 : t_0 : u_0) \text{ is a base point of } \Psi. \end{cases}$$
(1)

where $\rho := \operatorname{rank} \mathbb{M}(s, t, u)$.

Spectrum of $\mathbb{M}(s, t, u) := \left\{ (s_0 : t_0 : u_0) \in \mathbb{P}^2 : \mathsf{rank}\mathbb{M}(s_0, t_0, u_0) < \rho \right\}$

 \implies Spectrum of $\mathbb{M}(s, t, u) \equiv$ the intersection locus of $S_1 \cap S_2$ + the base points of the parameterization Ψ of S_2

Theorem (Busé,Luu Ba)

The spectrum of the matrix $\mathbb{M}(s, t, u)$ is an algebraic curve in \mathbb{P}^2 , that is to say is equal to the zero locus of a homogeneous polynomial in $\mathbb{C}[s, t, u]$. In particular, there is no isolated points in the spectrum of $\mathbb{M}(s, t, u)$.

Figure: The plane curve $\mathcal C$ corresponding to $\boldsymbol{S}_1\cap\boldsymbol{S}_2$

By dehomogenization (u = 1), we obtain a bivariate polynomial matrix $\mathbb{M}(s, t, 1)$

Extract a pencil of $\mathbb{M}(s, t, 1)$ that yields a matrix representation of the intersection curve as a matrix determinant.

Part II.1: Reduction of a bivariate pencil of matrices

Let M(s, t) be a matrix of size $m \times n$ depending on the two variables s and t.

The spectrum of M(s, t) is defined to be the set

 $\{(s_0, t_0) \in \mathbb{K} \times \mathbb{K} : \operatorname{rank}(M(s_0, t_0)) < \rho\}$

where $\rho := \operatorname{rank} M(s, t)$.

Spectrum
$$(M(s,t)) := \{(s_0, t_0) : \det M_{i_1, \dots, i_{\rho}}^{j_1, \dots, j_{\rho}} = 0, \quad \frac{1 \le i_1 < \dots < i_{\rho} \le m}{1 \le j_1 < \dots < j_{\rho} \le n} \}.$$
 (2)

- ► The continuous part of the spectrum ↔ The one-dimensional roots of the system (2) ↔ The one-dimensional eigenvalues of the matrix M(s, t).
- ► The discrete part of the spectrum ↔ The zero-dimensional roots of the system (2) ↔ The zero-dimensional eigenvalues of the matrix M(s, t).

▲ @ ▶ ▲ ≥ ▶ ▲

Let M(s, t) be a matrix of size $m \times n$ depending on the two variables s and t.

The spectrum of M(s, t) is defined to be the set

 $\{(s_0, t_0) \in \mathbb{K} \times \mathbb{K} : \operatorname{rank}(M(s_0, t_0)) < \rho\}$

where $\rho := \operatorname{rank} M(s, t)$.

Spectrum(
$$M(s, t)$$
) := { (s_0, t_0) : det $M_{i_1, \dots, i_{\rho}}^{j_1, \dots, j_{\rho}} = 0, \quad \frac{1 \le i_1 < \dots < i_{\rho} \le m}{1 < i_1 < \dots < i_{\rho} < m}$ }. (2)

► The continuous part of the spectrum ↔ The one-dimensional roots of the system (2) ↔ The one-dimensional eigenvalues of the matrix M(s, t).

► The discrete part of the spectrum ↔ The zero-dimensional roots of the system (2) ↔ The zero-dimensional eigenvalues of the matrix M(s, t).

Let M(s, t) be a matrix of size $m \times n$ depending on the two variables s and t.

The spectrum of M(s, t) is defined to be the set

 $\{(s_0, t_0) \in \mathbb{K} \times \mathbb{K} : \operatorname{rank}(M(s_0, t_0)) < \rho\}$

where $\rho := \operatorname{rank} M(s, t)$.

Spectrum(
$$M(s, t)$$
) := {(s_0, t_0) : det $M_{i_1, \dots, i_o}^{j_1, \dots, j_o} = 0, \quad \frac{1 \le i_1 < \dots < i_o \le m}{1 < j_1 < \dots < j_o \le m}$ }. (2)

► The continuous part of the spectrum ↔ The one-dimensional roots of the system (2) ↔ The one-dimensional eigenvalues of the matrix M(s, t).

► The discrete part of the spectrum ↔ The zero-dimensional roots of the system (2) ↔ The zero-dimensional eigenvalues of the matrix M(s, t).

▲ □ ► ▲ □ ► ▲

Let M(s, t) be a matrix of size $m \times n$ depending on the two variables s and t.

The spectrum of M(s, t) is defined to be the set

 $\{(s_0, t_0) \in \mathbb{K} \times \mathbb{K} : \operatorname{rank}(M(s_0, t_0)) < \rho\}$

where $\rho := \operatorname{rank} M(s, t)$.

Spectrum(
$$M(s, t)$$
) := {(s_0, t_0) : det $M_{i_1,...,i_{\rho}}^{j_1,...,j_{\rho}} = 0, \quad \frac{1 \le i_1 < \cdots < i_{\rho} \le m}{1 \le j_1 < \cdots < j_{\rho} \le m}$ }. (2)

- ► The continuous part of the spectrum ↔ The one-dimensional roots of the system (2) ↔ The one-dimensional eigenvalues of the matrix M(s, t).
- ► The discrete part of the spectrum ↔ The zero-dimensional roots of the system (2) ↔ The zero-dimensional eigenvalues of the matrix M(s, t).

Linearization of a bivariate polynomial matrix

Given an $m \times n$ -matrix $M(s,t) = (a_{i,j}(s,t))$ with $a_{i,j}(s,t) \in \mathbb{K}[s,t]$.

$$M(s,t) = M_d(t)s^d + M_{d-1}(t)s^{d-1} + \ldots + M_0(t)$$

where $M_i(t) \in \mathbb{K}[t]^{m \times n}$ and $d = \max_{i,j} \{ \deg_s(a_{i,j}(s,t)) \}$.

The generalized companion matrices A, B of the matrix M(s, t) are the matrices with coefficients in $\mathbb{K}[t]$ of size $((d-1)m+n) \times dm$ that are given by

$$A = \begin{pmatrix} 0 & l_m & \dots & 0 \\ 0 & 0 & l_m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & l_m \\ M_0^t(t) & M_1^t(t) & \dots & \dots & M_{d-1}^t(t) \end{pmatrix}, \quad B = \begin{pmatrix} l_m & 0 & \dots & \dots & 0 \\ 0 & l_m & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & l_m \\ 0 & 0 & \dots & 0 & -M_d^t(t) \end{pmatrix}$$

16 / 28

Linearization of a bivariate polynomial matrix

Given an $m \times n$ -matrix $M(s,t) = (a_{i,j}(s,t))$ with $a_{i,j}(s,t) \in \mathbb{K}[s,t]$.

$$M(s,t) = M_d(t)s^d + M_{d-1}(t)s^{d-1} + \ldots + M_0(t)$$

where $M_i(t) \in \mathbb{K}[t]^{m \times n}$ and $d = \max_{i,j} \{ \deg_s(a_{i,j}(s,t)) \}$.

The generalized companion matrices A, B of the matrix M(s, t) are the matrices with coefficients in $\mathbb{K}[t]$ of size $((d-1)m+n) \times dm$ that are given by

$$A = \begin{pmatrix} 0 & I_m & \dots & \dots & 0 \\ 0 & 0 & I_m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & I_m \\ M_0^t(t) & M_1^t(t) & \dots & \dots & M_{d-1}^t(t) \end{pmatrix}, \quad B = \begin{pmatrix} I_m & 0 & \dots & \dots & 0 \\ 0 & I_m & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & I_m & 0 \\ 0 & 0 & \dots & 0 & -M_d^t(t) \end{pmatrix}$$

Property

There exists two unimodular matrices E(s, t) et F(s, t) with coefficients in $\mathbb{C}[s, t]$ and of size dm and (d-1)m + n respectively, such that

$$E(s,t)(A(t) - sB(t))F(s,t) = \left(\frac{{}^{t}M(s,t) \mid 0}{0 \mid I_{m(d-1)}}\right).$$
(3)

We provide a direct proof of:

Theorem (Kublanovskaya)

$$A(t) - sB(t) \iff \begin{pmatrix} * & * & M_3(s,t) \\ * & M_2(s,t) & 0 \\ M_1(s,t) & 0 & 0 \end{pmatrix}$$

- ► M₂(s,t) is a regular pencil and has only continuous spectrum coinciding with the continuous of spectrum of M(s,t).
- ► The union of the discrete spectrum of the pencil M₁(s, t) and M₃(s, t) coincides with the discrete spectrum of M(s, t).

Image: A math a math
Property

There exists two unimodular matrices E(s, t) et F(s, t) with coefficients in $\mathbb{C}[s, t]$ and of size dm and (d-1)m + n respectively, such that

$$E(s,t)(A(t) - sB(t))F(s,t) = \left(\frac{{}^{t}M(s,t) \mid 0}{0 \mid I_{m(d-1)}}\right).$$
(3)

We provide a direct proof of:

Theorem (Kublanovskaya)

$$A(t) - sB(t) \iff \left(egin{array}{ccc} * & * & M_3(s,t) \ * & M_2(s,t) & 0 \ M_1(s,t) & 0 & 0 \end{array}
ight)$$

- ► M₂(s,t) is a regular pencil and has only continuous spectrum coinciding with the continuous of spectrum of M(s,t).
- ► The union of the discrete spectrum of the pencil M₁(s, t) and M₃(s, t) coincides with the discrete spectrum of M(s, t).

< ロ > < 同 > < 三 > < 三

Property

There exists two unimodular matrices E(s, t) et F(s, t) with coefficients in $\mathbb{C}[s, t]$ and of size dm and (d-1)m + n respectively, such that

$$E(s,t)(A(t) - sB(t))F(s,t) = \left(\frac{{}^{t}M(s,t) \mid 0}{0 \mid I_{m(d-1)}}\right).$$
(3)

We provide a direct proof of:

Theorem (Kublanovskaya)

$$A(t) - sB(t) \iff \left(egin{array}{ccc} * & * & M_3(s,t) \ * & M_2(s,t) & 0 \ M_1(s,t) & 0 & 0 \end{array}
ight)$$

- ► M₂(s, t) is a regular pencil and has only continuous spectrum coinciding with the continuous of spectrum of M(s, t).
- ► The union of the discrete spectrum of the pencil M₁(s, t) and M₃(s, t) coincides with the discrete spectrum of M(s, t).

< ロ > < 同 > < 三 > < 三

Property

There exists two unimodular matrices E(s, t) et F(s, t) with coefficients in $\mathbb{C}[s, t]$ and of size dm and (d-1)m + n respectively, such that

$$E(s,t)(A(t) - sB(t))F(s,t) = \left(\frac{{}^{t}M(s,t) \mid 0}{0 \mid I_{m(d-1)}}\right).$$
(3)

We provide a direct proof of:

Theorem (Kublanovskaya)

$$A(t) - sB(t) \iff \begin{pmatrix} * & * & M_3(s,t) \\ * & M_2(s,t) & 0 \\ M_1(s,t) & 0 & 0 \end{pmatrix}$$

- ► M₂(s, t) is a regular pencil and has only continuous spectrum coinciding with the continuous of spectrum of M(s, t).
- ► The union of the discrete spectrum of the pencil M₁(s, t) and M₃(s, t) coincides with the discrete spectrum of M(s, t).

• • • • • • • • • • • •

The decomposition of an univariate polynomial M(t) of rank ho under the form

 $M(t)W(t) = [\Delta(t), 0],$

W(t): an unimodular polynomial matrix, $\Delta(t)$: a polynomial matrix of full column rank ρ .

- ► The ∆ W Decomposition is much more complicated than LU (QR)-Decomposition.
- ▶ Reason: The operations of the transformation of M(t) have been done over the polynomial ring K[t], not the field K.

The decomposition of an univariate polynomial M(t) of rank ρ under the form

 $M(t)W(t) = [\Delta(t), 0],$

W(t): an unimodular polynomial matrix, $\Delta(t)$: a polynomial matrix of full column rank ρ .

- ► The ∆ W Decomposition is much more complicated than LU (QR)-Decomposition.
- ▶ Reason: The operations of the transformation of M(t) have been done over the polynomial ring K[t], not the field K.

The decomposition of an univariate polynomial M(t) of rank ρ under the form

 $M(t)W(t) = [\Delta(t), 0],$

W(t): an unimodular polynomial matrix, $\Delta(t)$: a polynomial matrix of full column rank ρ .

- The Δ W Decomposition is much more complicated than LU (QR)-Decomposition.
- ▶ Reason: The operations of the transformation of M(t) have been done over the polynomial ring K[t], not the field K.

The decomposition of an univariate polynomial M(t) of rank ρ under the form

 $M(t)W(t) = [\Delta(t), 0],$

W(t): an unimodular polynomial matrix, $\Delta(t)$: a polynomial matrix of full column rank ρ .

- The Δ W Decomposition is much more complicated than LU (QR)-Decomposition.
- ▶ Reason: The operations of the transformation of M(t) have been done over the polynomial ring K[t], not the field K.

18 / 28

We start with a pencil A(t) - sB(t), A(t), B(t): matrix of size $p \times q$ and $\rho = \operatorname{rank} A(t)$ via the classical Δ W - Decomposition.

► Step 1

•
$$A(t)Q_0(t) = [\Delta_0(t) \mid \bigcup_{\rho \to \rho}], \quad B(t)Q_0(t) = [B_{1,1}(t) \mid B_{1,2}(t)]$$

•
$$P_0(t)B_{1,2}(t) = \left(\frac{B'_{1,2}(t)}{0}\right); B'_{1,2}(t)$$
 has full row rank.

• Matrices A(t) and B(t) are represented under the form

4 D b 4 🗐 b 4 E b

19 / 28

We start with a pencil A(t) - sB(t), A(t), B(t): matrix of size $p \times q$ and $\rho = \operatorname{rank} A(t)$ via the classical Δ W - Decomposition.

Step 1

•
$$A(t)Q_0(t) = [\underbrace{\Delta_0(t)}_{\rho} | \underbrace{0}_{q-\rho}], \quad B(t)Q_0(t) = [\underbrace{B_{1,1}(t)}_{\rho} | \underbrace{B_{1,2}(t)}_{q-\rho}]$$

•
$$P_0(t)B_{1,2}(t) = \left(\frac{B'_{1,2}(t)}{0}\right); B'_{1,2}(t)$$
 has full row rank.

• Matrices A(t) and B(t) are represented under the form

We start with a pencil A(t) - sB(t), A(t), B(t): matrix of size $p \times q$ and $\rho = \operatorname{rank} A(t)$ via the classical Δ W - Decomposition.

Step 1

•
$$A(t)Q_0(t) = [\underbrace{\Delta_0(t)}_{\rho} | \underbrace{0}_{q-\rho}], \quad B(t)Q_0(t) = [\underbrace{B_{1,1}(t)}_{\rho} | \underbrace{B_{1,2}(t)}_{q-\rho}]$$

•
$$P_0(t)B_{1,2}(t) = \left(\frac{B'_{1,2}(t)}{0}\right); B'_{1,2}(t)$$
 has full row rank.

• Matrices A(t) and B(t) are represented under the form

We start with a pencil A(t) - sB(t), A(t), B(t): matrix of size $p \times q$ and $\rho = \operatorname{rank} A(t)$ via the classical Δ W - Decomposition.

Step 1

•
$$A(t)Q_0(t) = [\Delta_0(t) \mid \bigcup_{q-\rho}], \quad B(t)Q_0(t) = [B_{1,1}(t) \mid B_{1,2}(t)] = [B_{1,1}(t) \mid B_{1,2}(t)]$$

•
$$P_0(t)B_{1,2}(t) = \left(\frac{B'_{1,2}(t)}{0}\right); B'_{1,2}(t)$$
 has full row rank.

• Matrices A(t) and B(t) are represented under the form

$$P_0(t)A(t)Q_0(t) = egin{pmatrix} A_{1,1}(t) & 0 \ A_2(t) & 0 \end{pmatrix}, \ \ P_0(t)B(t)Q_0(t) = egin{pmatrix} B'_{1,1}(t) & B'_{1,2}(t) \ B_2(t) & 0 \end{pmatrix}$$

$$P_0(t)(A(t) - sB(t))Q_0(t) = igg(rac{A_{1,1}(t) - sB_{1,1}'(t) \mid -sB_{1,2}'(t)}{A_2(t) - sB_2(t) \mid 0}igg)$$

- Step 2
 - Repeat the Step 1 for the pencil A₂(t) sB₂(t) until the step k where the matrix A_{k+1}(t) is of full column rank.
 - At the step k:

$$P(t)(A(t) - sB(t))Q(t) = \left(\begin{array}{c|c} A_{k+1,k}(t) - sB'_{k+1,k}(t) & M_3(s,t) \\ \hline A_{k+1}(t) - sB_{k+1}(t) & 0 \end{array}\right)$$

If the pencil A_{k+1}(t) − sB_{k+1}(t) is not a regular pencil, repeat the above procedure to the transposed pencil A^t_{k+1}(t) − sB^t_{k+1}(t).

- ∢ ∃ ▶

$$P_0(t)(A(t) - sB(t))Q_0(t) = igg(rac{A_{1,1}(t) - sB_{1,1}'(t) \mid -sB_{1,2}'(t)}{A_2(t) - sB_2(t) \mid 0}igg)$$

- Step 2
 - Repeat the Step 1 for the pencil A₂(t) sB₂(t) until the step k where the matrix A_{k+1}(t) is of full column rank.
 - At the step k:

$$P(t)(A(t) - sB(t))Q(t) = \left(\begin{array}{c|c} A_{k+1,k}(t) - sB'_{k+1,k}(t) & M_3(s,t) \\ \hline A_{k+1}(t) - sB_{k+1}(t) & 0 \end{array}\right)$$

If the pencil A_{k+1}(t) − sB_{k+1}(t) is not a regular pencil, repeat the above procedure to the transposed pencil A^t_{k+1}(t) − sB^t_{k+1}(t).

4 D N 4 B N 4 B N

$$P_0(t)(A(t) - sB(t))Q_0(t) = igg(rac{A_{1,1}(t) - sB_{1,1}'(t) \mid -sB_{1,2}'(t)}{A_2(t) - sB_2(t) \mid 0}igg)$$

- Step 2
 - Repeat the Step 1 for the pencil A₂(t) sB₂(t) until the step k where the matrix A_{k+1}(t) is of full column rank.
 - At the step k:

$$P(t)(A(t) - sB(t))Q(t) = \left(\frac{A_{k+1,k}(t) - sB'_{k+1,k}(t) \mid M_3(s,t)}{A_{k+1}(t) - sB_{k+1}(t) \mid 0}\right)$$

▶ If the pencil $A_{k+1}(t) - sB_{k+1}(t)$ is not a regular pencil, repeat the above procedure to the transposed pencil $A_{k+1}^t(t) - sB_{k+1}^t(t)$.

(日) (同) (日) (日)

$$P_0(t)(A(t) - sB(t))Q_0(t) = igg(rac{A_{1,1}(t) - sB_{1,1}'(t) \mid -sB_{1,2}'(t)}{A_2(t) - sB_2(t) \mid 0}igg)$$

- Step 2
 - Repeat the Step 1 for the pencil A₂(t) sB₂(t) until the step k where the matrix A_{k+1}(t) is of full column rank.
 - At the step k:

$$P(t)(A(t) - sB(t))Q(t) = \left(\frac{A_{k+1,k}(t) - sB'_{k+1,k}(t) \mid M_3(s,t)}{A_{k+1}(t) - sB_{k+1}(t) \mid 0}\right)$$

If the pencil A_{k+1}(t) − sB_{k+1}(t) is not a regular pencil, repeat the above procedure to the transposed pencil A^t_{k+1}(t) − sB^t_{k+1}(t).

4 D b 4 🗐 b 4

20 / 28

► At the end:

$$A(t) - sB(t) \Longrightarrow egin{pmatrix} st & st & M_3(s,t) \ \hline st & M_2(s,t) & 0 \ \hline M_1(s,t) & 0 & 0 \ \end{pmatrix}$$

Part II.2: Applications to Intersection Problems

- Compute an implicit equation $S_1(x, y, z, w)$ and $S_2(x, y, z, w)$ $\in \mathbb{K}[x, \dots, w]$
- Evaluate S_1 and S_2 at P
- Check if $||S_1(P)|| < \epsilon$ and $||S_2(P)|| < \epsilon$

- Compute two representation matrices $M_1(x, ..., w)$ and $M_2(x, ..., w) \in Mat(\mathbb{K}[x, ..., w])$
- Evaluate $M_1(P)$ and $M_2(P)$
- ► Check if the *e*-rank of M₁(P) and M₂(P) drops.

• • • • • • • • • • • • •

General philosophy:

replace implicit equations by representation matrices whenever possible

- Compute an implicit equation $S_1(x, y, z, w)$ and $S_2(x, y, z, w)$ $\in \mathbb{K}[x, \dots, w]$
- Evaluate S₁ and S₂ at P
- Check if $||S_1(P)|| < \epsilon$ and $||S_2(P)|| < \epsilon$

- Compute two representation matrices $M_1(x, ..., w)$ and $M_2(x, ..., w) \in Mat(\mathbb{K}[x, ..., w])$
- Evaluate $M_1(P)$ and $M_2(P)$
- ▶ Check if the *e*-rank of M₁(P) and M₂(P) drops.

General philosophy:

replace implicit equations by representation matrices whenever possible

< ロ > < 同 > < 三 > < 三

- Compute an implicit equation $S_1(x, y, z, w)$ and $S_2(x, y, z, w)$ $\in \mathbb{K}[x, \dots, w]$
- Evaluate S_1 and S_2 at P
- Check if $||S_1(P)|| < \epsilon$ and $||S_2(P)|| < \epsilon$

- Compute two representation matrices $M_1(x, ..., w)$ and $M_2(x, ..., w) \in Mat(\mathbb{K}[x, ..., w])$
- Evaluate $M_1(P)$ and $M_2(P)$
- ► Check if the *\epsilon*-rank of M₁(P) and M₂(P) drops.

< ロ > < 同 > < 三 > < 三

General philosophy:

replace implicit equations by representation matrices whenever possible

- Compute an implicit equation $S_1(x, y, z, w)$ and $S_2(x, y, z, w)$ $\in \mathbb{K}[x, \dots, w]$
- Evaluate S_1 and S_2 at P
- Check if $||S_1(P)|| < \epsilon$ and $||S_2(P)|| < \epsilon$

- Compute two representation matrices $M_1(x, ..., w)$ and $M_2(x, ..., w) \in Mat(\mathbb{K}[x, ..., w])$
- Evaluate $M_1(P)$ and $M_2(P)$
- Check if the *ϵ*-rank of M₁(P) and M₂(P) drops.

イロト イ団ト イヨト イヨト

General philosophy:

replace implicit equations by representation matrices whenever possible

- Compute an implicit equation $S_1(x, y, z, w)$ and $S_2(x, y, z, w)$ $\in \mathbb{K}[x, \dots, w]$
- Evaluate S_1 and S_2 at P
- Check if $||S_1(P)|| < \epsilon$ and $||S_2(P)|| < \epsilon$

- Compute two representation matrices $M_1(x, ..., w)$ and $M_2(x, ..., w) \in Mat(\mathbb{K}[x, ..., w])$
- Evaluate $M_1(P)$ and $M_2(P)$
- ► Check if the *\epsilon*-rank of M₁(P) and M₂(P) drops.

General philosophy:

replace implicit equations by representation matrices whenever possible

イロト イ団ト イヨト イヨト

Suppose given two parameterized surfaces:

$$\mathbb{P}^2 \xrightarrow{\phi} \mathbb{P}^3 : (s:t:u) \mapsto (f_1:\ldots:f_4)(s,t,u)$$

$$\mathbb{P}^2 \xrightarrow{\psi} \mathbb{P}^3 : (s:t:u) \mapsto (g_1:\ldots:g_4)(s,t,u)$$

with ψ regular.

Algorithm (Busé, Luu Ba): "Compute" the intersection curve

- Build the representation matrix $M(\phi)$ of S_1 .
- Form the companion matrices A(t), B(t) of the matrix M(φ)(g₁(s, t, 1), ..., g₄(s, t, 1)).
- Compute the regular part A'(t) sB'(t) of the pencil A(t) sB(t).
- Compute the determinant of the pencil A'(t) − sB'(t) → Curves C in the plane.

Return the intersection

Suppose given two parameterized surfaces:

$$\mathbb{P}^2 \xrightarrow{\phi} \mathbb{P}^3 : (s:t:u) \mapsto (f_1:\ldots:f_4)(s,t,u)$$

$$\mathbb{P}^2 \xrightarrow{\psi} \mathbb{P}^3 : (s:t:u) \mapsto (g_1:\ldots:g_4)(s,t,u)$$

with ψ regular.

• Build the representation matrix $\mathbf{M}(\phi)$ of \mathcal{S}_1 .

- Form the companion matrices A(t), B(t) of the matrix $\mathbf{M}(\phi)(g_1(s, t, 1), \dots, g_4(s, t, 1)).$
- Compute the regular part A'(t) sB'(t) of the pencil A(t) sB(t).
- Compute the determinant of the pencil A'(t) − sB'(t) → Curves C in the plane.
- ▶ Return the intersection curves $\{\psi(s, t, 1) : (s, t) \in C\}$.

Suppose given two parameterized surfaces:

$$\mathbb{P}^2 \xrightarrow{\phi} \mathbb{P}^3 : (s:t:u) \mapsto (f_1:\ldots:f_4)(s,t,u)$$

$$\mathbb{P}^2 \xrightarrow{\psi} \mathbb{P}^3 : (s:t:u) \mapsto (g_1:\ldots:g_4)(s,t,u)$$

with ψ regular.

- Build the representation matrix $\mathbf{M}(\phi)$ of \mathcal{S}_1 .
- Form the companion matrices A(t), B(t) of the matrix M(φ)(g₁(s, t, 1), ..., g₄(s, t, 1)).
- Compute the regular part A'(t) sB'(t) of the pencil A(t) sB(t).
- Compute the determinant of the pencil A'(t) − sB'(t) → Curves C in the plane.
- ▶ Return the intersection curves $\{\psi(s, t, 1) : (s, t) \in C\}$.

Suppose given two parameterized surfaces:

$$\mathbb{P}^2 \xrightarrow{\phi} \mathbb{P}^3 : (s:t:u) \mapsto (f_1:\ldots:f_4)(s,t,u)$$

$$\mathbb{P}^2 \xrightarrow{\psi} \mathbb{P}^3 : (s:t:u) \mapsto (g_1:\ldots:g_4)(s,t,u)$$

with ψ regular.

- Build the representation matrix $\mathbf{M}(\phi)$ of \mathcal{S}_1 .
- Form the companion matrices A(t), B(t) of the matrix M(φ)(g₁(s, t, 1), ..., g₄(s, t, 1)).
- Compute the regular part A'(t) sB'(t) of the pencil A(t) sB(t).
- Compute the determinant of the pencil $A'(t) sB'(t) \rightsquigarrow$ Curves C in the plane.
- ▶ Return the intersection curves $\{\psi(s, t, 1) : (s, t) \in C\}$.

Suppose given two parameterized surfaces:

$$\mathbb{P}^2 \xrightarrow{\phi} \mathbb{P}^3 : (s:t:u) \mapsto (f_1:\ldots:f_4)(s,t,u)$$

$$\mathbb{P}^2 \xrightarrow{\psi} \mathbb{P}^3 : (s:t:u) \mapsto (g_1:\ldots:g_4)(s,t,u)$$

with ψ regular.

- Build the representation matrix $\mathbf{M}(\phi)$ of \mathcal{S}_1 .
- Form the companion matrices A(t), B(t) of the matrix M(φ)(g₁(s, t, 1), ..., g₄(s, t, 1)).
- Compute the regular part A'(t) sB'(t) of the pencil A(t) sB(t).
- Compute the determinant of the pencil A'(t) − sB'(t) → Curves C in the plane.
- ▶ Return the intersection curves $\{\psi(s, t, 1) : (s, t) \in C\}$.

Suppose given two parameterized surfaces:

$$\mathbb{P}^2 \xrightarrow{\phi} \mathbb{P}^3 : (s:t:u) \mapsto (f_1:\ldots:f_4)(s,t,u)$$

$$\mathbb{P}^2 \xrightarrow{\psi} \mathbb{P}^3 : (s:t:u) \mapsto (g_1:\ldots:g_4)(s,t,u)$$

with ψ regular.

- Build the representation matrix $\mathbf{M}(\phi)$ of \mathcal{S}_1 .
- Form the companion matrices A(t), B(t) of the matrix M(φ)(g₁(s, t, 1), ..., g₄(s, t, 1)).
- Compute the regular part A'(t) sB'(t) of the pencil A(t) sB(t).
- Compute the determinant of the pencil A'(t) − sB'(t) → Curves C in the plane.
- Return the intersection curves $\{\psi(s, t, 1) : (s, t) \in C\}$.

Suppose given two parameterized surfaces:

$$\begin{aligned} \mathbf{S}_1 : & f_1 = s^2 + t^2 + u^2, f_2 = 2su, f_3 = 2st, f_4 = s^2 - t^2 - u^2 \\ \mathbf{S}_2 : & g_1 = s^3 + t^3, g_2 = stu, g_3 = su^2 + tu^2, g_4 = u^3. \end{aligned}$$

The matrix representation of the sphere S₁ gives

$$\begin{pmatrix} -y & 0 & z & x+w \\ 0 & -y & -x+w & -z \\ z & x+w & y & 0 \end{pmatrix}.$$

▶ $P \in S_1 \cap S_2$ iff $P = (s^3 + t^3 : stu : su^2 + tu^2 : u^3)$ and (s : t : u) is one of the generalized eigenvalues of the polynomial matrix

$$M(s,t,u) = \begin{pmatrix} -stu & 0 & su^2 + tu^2 & s^3 + t^3 + u^3 \\ 0 & -stu & -s^3 - t^3 + u^3 & -su^2 - tu^2 \\ su^2 + tu^2 & s^3 + t^3 + u^3 & st & 0 \end{pmatrix}.$$

< ロ > < 同 > < 三 > < 三

Suppose given two parameterized surfaces:

$$\begin{aligned} \mathbf{S}_1 : & f_1 = s^2 + t^2 + u^2, f_2 = 2su, f_3 = 2st, f_4 = s^2 - t^2 - u^2 \\ \mathbf{S}_2 : & g_1 = s^3 + t^3, g_2 = stu, g_3 = su^2 + tu^2, g_4 = u^3. \end{aligned}$$

 \blacktriangleright The matrix representation of the sphere \boldsymbol{S}_1 gives

$$\begin{pmatrix} -y & 0 & z & x+w \\ 0 & -y & -x+w & -z \\ z & x+w & y & 0 \end{pmatrix}.$$

▶ $P \in S_1 \cap S_2$ iff $P = (s^3 + t^3 : stu : su^2 + tu^2 : u^3)$ and (s : t : u) is one of the generalized eigenvalues of the polynomial matrix

$$M(s,t,u) = \begin{pmatrix} -stu & 0 & su^2 + tu^2 & s^3 + t^3 + u^3 \\ 0 & -stu & -s^3 - t^3 + u^3 & -su^2 - tu^2 \\ su^2 + tu^2 & s^3 + t^3 + u^3 & st & 0 \end{pmatrix}.$$

(日) (同) (日) (日)

Suppose given two parameterized surfaces:

$$\begin{aligned} \mathbf{S}_1 : & f_1 = s^2 + t^2 + u^2, f_2 = 2su, f_3 = 2st, f_4 = s^2 - t^2 - u^2 \\ \mathbf{S}_2 : & g_1 = s^3 + t^3, g_2 = stu, g_3 = su^2 + tu^2, g_4 = u^3. \end{aligned}$$

 \blacktriangleright The matrix representation of the sphere \boldsymbol{S}_1 gives

$$\left(\begin{array}{cccc} -y & 0 & z & x+w \\ 0 & -y & -x+w & -z \\ z & x+w & y & 0 \end{array}\right).$$

▶ $P \in S_1 \cap S_2$ iff $P = (s^3 + t^3 : stu : su^2 + tu^2 : u^3)$ and (s : t : u) is one of the generalized eigenvalues of the polynomial matrix

$$M(s,t,u) = \begin{pmatrix} -stu & 0 & su^2 + tu^2 & s^3 + t^3 + u^3 \\ 0 & -stu & -s^3 - t^3 + u^3 & -su^2 - tu^2 \\ su^2 + tu^2 & s^3 + t^3 + u^3 & st & 0 \end{pmatrix}.$$

(日) (同) (三) (三)

The points (s : t : u), u ≠ 0, are correspondence to the set of the generalized eigenvalues (s, t) ∈ C² of the bivariate matrix M(s, t)

$$M(s,t) = \begin{pmatrix} -st & 0 & s+t & s^3+t^3+1 \\ 0 & -st & -s^3-t^3+1 & -s-t \\ s+t & s^3+t^3+1 & st & 0 \end{pmatrix}$$

• $M(s,t) = M_3 t^3 + M_2 t^2 + M_1 t + M_0$ and companion matrices

26 / 28

The points (s : t : u), u ≠ 0, are correspondence to the set of the generalized eigenvalues (s, t) ∈ C² of the bivariate matrix M(s, t)

$$M(s,t) = \left(egin{array}{cccc} -st & 0 & s+t & s^3+t^3+1 \ 0 & -st & -s^3-t^3+1 & -s-t \ s+t & s^3+t^3+1 & st & 0 \end{array}
ight)$$

• $M(s,t) = M_3t^3 + M_2t^2 + M_1t + M_0$ and companion matrices

26 / 28

• The regular pencil part $M_1(s,t) = A_1(s) - tB_1(s)$ where

$$A_{1}(s) = \begin{pmatrix} 1 & 0 & s & 0 & 1 & 0 \\ -s^{3} + 1 & 0 & 1 & 0 & 0 & 0 \\ -s^{3} + 1 & 0 & 0 & -s & 0 & 0 \\ 2s & 0 & 0 & 1 & s & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 & 0 \end{pmatrix}, B_{1}(s) = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ s^{3} & 1 & 0 & 0 & 0 & 0 \\ -s^{2} & 0 & s & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

▶ det(M₁(s, t)) = -s⁶ - 2s³t³ + t²s² + s² + 2st - t⁶ + t² + 1 is the equation of the curve C in the parametric space corresponding to S₁ ∩ S₂ through the regular map Ψ.

LUU BA Thang (INRIA)

• The regular pencil part $M_1(s, t) = A_1(s) - tB_1(s)$ where

b det(M₁(s, t)) = -s⁶ - 2s³t³ + t²s² + s² + 2st - t⁶ + t² + 1 is the equation of the curve C in the parametric space corresponding to S₁ ∩ S₂ through the regular map Ψ.

LUU BA Thang (INRIA)

• The regular pencil part $M_1(s, t) = A_1(s) - tB_1(s)$ where

$$A_1(s) = \begin{pmatrix} 1 & 0 & s & 0 & 1 & 0 \\ -s^3 + 1 & 0 & 1 & 0 & 0 & 0 \\ -s^3 + 1 & 0 & 0 & -s & 0 & 0 \\ 2s & 0 & 0 & 1 & s & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 & 0 \end{pmatrix}, B_1(s) = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ s^3 & 1 & 0 & 0 & 0 & 0 \\ -s^2 & 0 & s & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

det(M₁(s, t)) = -s⁶ - 2s³t³ + t²s² + s² + 2st - t⁶ + t² + 1 is the equation of the curve C in the parametric space corresponding to S₁ ∩ S₂ through the regular map Ψ.

LUU BA Thang (INRIA)
Thank you for your attention