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We propose an imperative version of the Rewriting-calculus, a calculus based on

pattern-matching, pattern-abstraction, and side-effects, which we call iRho.

We formulate a static and a big-step call-by-value operational semantics of iRho. The

operational semantics is deterministic, and immediately suggests how to build an

interpreter for the calculus. The static semantics is given via a first-order type system

based on a form of product-types, which can be assigned to terms like structures (i.e.,

records).

The calculus is à la Church, i.e., pattern-abstractions are decorated with the types of

the free variables of the pattern.

iRho is a good candidate for a core of a pattern-matching imperative language, where a

(monomorphic) typed store can be safely manipulated and where fixed-points are

built-in into the language itself.

Properties such as determinism of the interpreter and subject-reduction are completely

checked by a machine-assisted approach, using the Coq proof assistant. Progress and

decidability of type-checking are proved by pen and paper.

1. Introduction

The study of rewriting-based languages (e.g., Elan [Pro05], Maude [Mau05], ASF+SDF

[vDHK96,Asf05], OBJ∗ [Gog05]) is a promising line of research unifying the logic paradigm
with the functional paradigm.

Although rewriting-based languages are less popular than object-oriented languages
such as Java [Sun05], C# [Mic05], etc., for ordinary programming, they can serve as
common typed intermediate languages for implementing compilers for rewriting-based,
functional, object-oriented, logic, and other high-level modern languages.

Pattern-matching has been widely used in functional and logic programming (ML

[MTHM97, Cri05], Haskell [Jon03], Scheme [RK98], Curry [Han97], or Prolog [Kow79]);
it is generally considered to be a convenient mechanism for expressing complex require-



ments about the function’s argument, rather than a basis for an ad hoc paradigm of
computation.

One of the main advantages of rewriting-based languages is pattern-matching which al-
lows one to discriminate between alternatives. These languages permit non-determinism
in the sense that they can represent a collection of results. That is, pattern matching
need not to be exclusive, multiple branches can be “fired” simultaneously. An empty col-
lection of results represents an application failure, a singleton represents a deterministic
result, and a collection with more than one element represents a non-deterministic choice
between the elements of the collection.

This feature highlights a difference between functional languages featuring pattern
matching, such as ML, Haskell, and Scheme. It shares some similarities with backtracking
and exhaustive proof search in logic languages like Prolog. It is possible to make a product
of two functions having the same pattern; when the product is applied to an argument,
both functions will be fired. Optimistic and pessimistic operational semantics†, with a
fixed strategy, can then be imposed on the language by defining successful results as
products that have at least a component (respectively all the components) different from
error values. It should then be possible to obtain a logic language on top of this structure
by defining an appropriate strategy for backtracking. Useful applications lie in the field
of pattern recognition and manipulation of strings and trees.

The Rewriting-calculus (Rho) [CKL01b, CLW04] integrates matching, rewriting, and
functions in a uniform way; its abstraction mechanism is based on rewrite rule formation:
in a term of the form P _ A, one abstracts over the pattern P (instead over a simple
variable as in the Lambda-calculus). The Rewriting-calculus is a generalization of the
Lambda-calculus since one may choose the pattern P to be a variable. If an abstraction
P _ A is applied to the term B, then the evaluation mechanism is based on (1) bind the
free variables present in P to appropriate subterms of B building a substitution θ, and (2)
apply θ to A. Indeed, this binding is achieved by matching P againstB. In rewriting-based
languages, pattern matching can be “customizable” with more sophisticated matching
theories, e.g. building-in associativity and/or commutativity of equality.

The original Rho calculus is computationally complete, and, thanks to pattern-matching,
Lambda-calculus and fixed-points can be encoded and type-checked by using ad hoc pat-
terns. In fact, Rho is a direct generalization of the core of a typed (rewriting-based and
functional) programming language (of the ML∪Elan family) in which, roughly speaking,
an ML-like let becomes by default a let rec, by abstracting over a suitable pattern P ;
through pattern-matching, one can type-check many divergent terms.

One of the main features of the Rewriting-calculus is that it can deal with structuring
and destructuring structures, like lists (we record only the names of the constructor and
we discard those of the accessors). Since structures are built into the calculus, it follows
that the encoding of constructor/accessors is simpler than the standard encoding in the
Lambda-calculus. The Table 1 informally compares the untyped encoding of accessors in
the two formalisms.

† “Optimistic” means that, if a matching failure occurs, then the computation is not halted; this is in
contrast to a “pessimistic” machine, that “kills” the computation once a failure-value is produced.
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ops/form Rho-calculus Lambda-calculus

cons (cons X Y ) λX. λY. λZ. Z X Y

car (cons X Y ) _ X λZ. Z (λX. λY. X)

cdr (cons X Y ) _ Y λZ. Z (λX. λY. Y )

Table 1. Accessors and destructors in Rho/Lambda calculi

Original Contribution. This work presents the first version of the Imperative Rewriting-
calculus (iRho), an extension of Rho with references, memory allocation, and assignment
à la ML [FF89]. To our knowledge, no similar study exists in the literature. The iRho-
calculus is a powerful calculus, both at the syntactic and at the semantic level. It in-
cludes all the features of functional/rewriting-based languages with imperative aspects
and pattern-matching facilities.

The controlled use of references, in the style of the ML language [MTHM97] also gives
the user the programming ease and expressiveness that might not a priori be expected
from such a simple calculus.

The crucial ingredients of iRho are the combination of (i) modern and safe imperative
features, which give full control over the internal data-structure representation, and of
(ii) “matching power”, which provides the main Lisp-like operations, like cons/car/cdr.
The language iRho provides a good theoretical foundation for an emerging family of
languages combining rewriting, functions, and patterns with semi-structured XML-data
(e.g., XDUCE [Xdu05], CDUCE [Fri05]) or combining object-orientation and patterns with
semi-structured data (e.g., HYDROJ [LLC03]‡).

From Theory to Practice and Vice versa. We present static and dynamic semantics of
iRho. The dynamic semantics is given via a natural deduction system (big-step) [Mar84,
Mil87,Plo81,Tof87,Kah87,Plo04]. The formalization uses environments inside “closure-
values” to keep the value of free variables in function bodies, and a global store to
model the imperative traits. In this design phase we try to not forgot the needs and the
objectives of a future implementor of the language, i.e., a to build a sound machine (the
interpreter) with a sound type system (the type-checker), respecting the Milner’s slogan
that “well-typed programs do not go wrong”, and a bit of care on performances.

The static and dynamic semantics are suitable to be specified mathematically, to be
implemented with high-level programming languages, e.g. Bigloo [Ser05] (of the Scheme

family), and to be certified with a modern and semi-automatic proof assistant, e.g. Coq

[Log05].
With this goal in mind we have encoded in Coq the static and dynamic semantics

of iRho. All subtle aspects, which are usually “swept under the rug” on the paper, are
here highlighted by the rigid discipline imposed by the Logical Framework of Coq. This
process has often influence the design of the semantics. The continuous interplay between
mathematics and manual (i.e., pen and paper) vs. mechanical proofs, and prototype

‡ ...object-oriented pattern-matching naturally focuses on the essential information in a message and is

insensitive to inessential information...”
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implementations using high-level languages such as Scheme (and back) has been fruitful
since the very beginning of our project. Although our calculus is rather simple, we expect
in the near future to scale-up to larger projects, such as the certified implementation of
compilers for a programming language of the C family [CFCL+03,Ler05].

Therefore, the main contributions of this paper are as follows.

— We provide a typed framework that enhances the functional language Rho, with im-
perative features like referencing, dereferencing, and assignment operators, and we
enrich the type system with dereferencing-types and product-types. The resulting
calculus iRho is a good candidate for giving a semantics to a broad family of func-
tional, rewriting, and logic-based languages.

— We experiment an interesting “pattern”§ (in the sense of “The Gang of Four” [GHJT94])
called DIMPRO, a.k.a. Design-IMplement-PROve, to design safe software, which re-
spects in toto its mathematical and functional specifications. Essentially, we started
from a clean and elegant mathematical design, we continued with an implementation
of a prototype satisfying the design, and finally we completed it with a mechanical
certification of the mathematical properties of the design, by looking for the simplest
“adequacy” property of the related software implementation. These three phases are
strictly coupled and, very often, one particular choice in one phase induced a corre-
sponding choice in another phase, very often forcing backtracking.
Refinement of this process was done by iterating cycles until all the global properties
wanted are reached (the process is reminiscent of a fixed-point computation, or of a
B-refinement [Abr96]). All three phases have the same status, and each influences the
other.

Road Map. The paper is structured as follows. In Sections 2 and 3, we present respec-
tively the syntax and the operational semantics of the functional Rho and of the impera-
tive Rewriting-calculus iRho. Section 4 describes the type system. Section 5 presents the
metatheory for iRho. Section 6 contains various examples of terms, reductions, and type-
checking. Section 7 presents the formalization of iRho in Coq. Section 8 contains some
remarks about our methodology and describes some “views” of the Natural Semantics,
conclusions and further works.

The Coq encoding of the dynamic and static semantics (with their theorems) and the
prototype implementation of an interpreter in Bigloo can be found at: http://www-sop.
inria.fr/mirho/Luigi.Liquori/iRho/.

2. The Functional Rho

For pedagogical reasons we start by presenting the functional Rho. This will allow us
to introduce almost all the ingredients and the technicalities needed to scale-up to the
full imperative iRho. In a nutshell, Rho is a functional calculus with pattern-matching,

§ “A pattern is the abstraction from a concrete form which keeps recurring in specific non-arbitrary

contexts...” [RZ96].
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τ ::= b | τ _ τ | τ ∧ τ Types

∆ ::= ∅ | ∆, X:τ | ∆, f :τ Contexts

P ::= X | f P | P , P Patterns

A ::= a | X | P _∆ A | A A | A , A Terms

Fig. 1. Syntax of Rho

and can be seen as the kernel of any (statically typed) programming language based on
functions, term rewriting and pattern-matching; many term rewriting systems can be
encoded as well in iRho, (see [CLW04] for the exact class of term rewriting systems that
can be encoded). Since the presentation of Rho mimics our current implementation, we
make use of closures instead of meta substitutions.

2.1. Functional Syntax

Notational Conventions. We use the meta-symbols _ (function- and type-abstraction),
and “ ,” (structure operator), and the implicit • (application operator). We assume that
the application operator • associates to the left, while the other operators associate to
the right. The priority of • is higher than that of _ which is, in turn, of higher priority
than “ ,”.

The symbols A,B,C, . . . range over the set TA of terms, the symbols X,Y, Z, . . . ,
SELF, . . . ranges over the set X of variables (X ⊆ TA), the symbols a, b, c, . . . , f, . . . , cons,
true, false, not, and, or, dummy, . . . range over a set K of term-constants (K ⊆ TA). The
symbol P ranges over the set P of pseudo-patterns, (X ⊆ P). The symbol τ ranges over
the set Tτ of types, the symbol b ranges over the set of type-constants, the symbols Γ,∆
ranges over contexts. The symbols Av, Bv, Cv, . . . range over the set Val of values. We
sometimes write A for A1 · · ·An, for n ≥ 0. The symbol ≡ denotes syntactic equality.
The syntax of Rho is presented in Figure 1.

Types and Contexts. The symbol b denotes basic types, the arrow-type τ1 _ τ2 is the
type of pattern abstractions P _∆ A and the product-type τ1∧τ2 is the type of structure
terms (A1 , A2).

Patterns. An unrestricted use of patterns in lambda-abstraction may lead to a failure
of confluence in small-step semantics (see [Klo80]). To retain confluence, Vincent van
Oostrom [vO90] introduced a suitable syntactical condition on the formation of patterns,
called, the Rigid Pattern Condition (RPC), which (i) forces patterns to be “linear” (i.e.,
no double occurrences of free variables, thus avoiding, the pattern (f X X)), and (ii)
forbids “active” variables (thus avoiding the pattern (X P )).

Not all functional languages with pattern-matching apply the same restrictions con-
cerning linearity in patterns. For example Scheme accepts non-linear patterns, permitting
comparison of subparts of the datum (through eq?), while ML enforces linearity in pat-
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terns (but when guards can be used to test for equality between two parts of a data
structure). Haskell, because of its lazy evaluation strategy, accepts only patterns that are
linear. The solution we adopt in this formalization and implementation of the Rewriting-
calculus was influenced by the choice of the implementation language of our operational
semantics, namely Scheme. The specification of the matching algorithm in iRho accepts
non-linear patterns, and compares subparts of the datum (through ≡, implemented via
the primitive equiv? in Scheme). Confluence is preserved thanks to the call-by-value
strategy of the operational semantics.

The shape of patterns has been limited to algebraic terms and structures (i.e., no
function-as-pattern). This restriction is strictly related to the current software develop-
ment of our interpreter, and of the current mechanical development of the metatheory
underneath iRho and not to theoretical problems (see [BCKL03]).

Terms. The main intuitions behind the term syntax are as follows.

— (Variable and Constant) are exactly as in the Lambda-calculus with constants;
— (Structure) allows one to express lists, sets, objects, etc.;
— (Pattern Abstraction) allows one to match over patterns. This gives a conservative

extension of the simply-typed Lambda-calculus when the pattern is a simple variable,
i.e. λX:τ.A ' X _X:τ A; the context ∆ in the pattern abstraction records the types
of all the free variables of P (possibly bound in the body A). For example, the
accessors car (in a homogeneous list) can be written in Rho as follows:

car
4
= (cons XY) _∆ X with ∆ ≡ X:τ,Y:τ ′

— (Application) allows one to apply a pattern abstraction P _∆ A to an argument B,
which of course must match on P . The terms are reduced under a classical call-by-
value evaluation strategy; in the evaluation, the body of a pattern abstraction is not
evaluated until the function is called on a suitable value (i.e., pattern abstraction are
values). For example, (car (car (cons a b) c)) will reduce to a;

Observe that compared with “non-strategic” implementations of the Rewriting-calculus
[CKL01a,CKL01b,CKL02,BCKL03], the delayed matching-constraint
[P �∆ A].B, becomes now just syntactic sugar for (P _∆ A)B (omitted from the source
language but still present in the set of output values).

Values and Environments. The set Val of values, and the set of environments Env are
defined below:

Av ::= aAv | Av , Av | 〈P _∆ A � ρ〉 | 〈[P �∆ Av].B � ρ〉 Functional Values

Environments (denoted by ρ) are partial functions from the set of variables to the set
of values, i.e., ρ ∈ Env ' [X ⇒ Val]⊥. The extension of an environment is denoted by
ρ[X 7→ Av] and it is defined by:

ρ[X 7→ Av](Y ) 4
=

{
Av if X ≡ Y

ρ(Y ) otherwise
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Remark 1 (On Failure-values and Exceptions). “Failure-values” 〈[P �∆ Av].B �ρ〉
denote failures occurring when we cannot find a correct substitution θ on the free variables
of P such that θ(P ) ≡ Av; the environment ρ records the value of the free variables of
B. Failure-values are obtained during the computation when a matching failure occurs.
They can in principle be discarded, or caught by an exception handler (see [CKL02])
that can be implemented in the interpreter (see the discussion of future work below).

In this paper, for the sake of simplicity, we will not deal with pattern-mismatch errors
and pattern-exceptions (but this feature is available as an option in our interpreter).
In the examples of Section 6, when a computation terminates with success (i.e., not a
failure-value), all intermediate failure-values are simply discharged from the final output.
The interested reader can have a look at [CLW04] for necessary extensions/enhancements
of an operational semantics and for a suitable matching theory that automatically drops
failure-values.

2.2. The Rhosetta Stone

The Rewriting-calculus is known to be a conservative extension of the Lambda-calculus
[CKL01a,CK01]. Nevertheless, it is typically presented using an infix notation, using as
binder the meta-symbol “arrow” (_), instead of the prefix notation using as a binder the
meta-symbol “lambda” (λ) in conjunction with the meta-symbol “point” (.). Moreover,
since an abstraction can bind more than one variable, the type decoration of a pattern
is given by a “context” (∆) instead of a simple type. The rationale is:

λX:X:τ1︸ ︷︷ ︸
∆

.A ' X _∆ A variables as patterns

λ(f X Y ):X:τ1, Y :τ2︸ ︷︷ ︸
∆

.A ' (f X Y ) _∆ A algebraic patterns

Since the context ∆ declares the types of all the free variables of P , we have:

Fv(P _∆ A) 4
= Fv(A) \ Fv(P )

The other cases of the Fv definition are in Definition 1.

Let-like and conditionals. Let-like constructs can be generalized to include pattern by
viewing them as syntactic sugar for applications, i.e.

let P � A in B
4
= (P _ B)A

Conditionals can also be easily encoded in Rho, using pairing and application (true, and
false are constants), i.e.

neg
4
= (true _ false , false _ true)

if A thenB else C
4
= (true _ ((X _ B) dummy) , false _ ((X _ C) dummy))A

Observe that the then and the else branches are wrapped in a dummy abstraction, and
X is fresh in B and C, i.e., X 6∈ Fv(B) ∪ Fv(C).
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Context Syntax

∆ ::= ∅ | ∆, X:A | ∆, a:A

Rewriting-like Syntax

A ::= P _∆ A | A , B |

proj︷ ︸︸ ︷
((X1 , X2) _∆ X1,2) (A , B) | . . .

Lambda-like Syntax

A ::= λP :∆.A | λX:τ3.XA B︸ ︷︷ ︸
pair

|

proj︷ ︸︸ ︷
(λX:τ4.λY :τ3.Y X) pair λX1:τ1.λX2:τ2.X1,2︸ ︷︷ ︸

bool

| . . .

with ∆ ≡ X1:τ1, X1:τ2 and τ3 ≡ τ1 _ τ2 _ τ1,2 and τ4 ≡ τ3 _ τ1,2

Fig. 2. The Rhosetta (Functional) Stone

Pair encoding. It is also well-known that structures can be easily encoded in the Lambda-
calculus, using the standard pair-encoding.

The “Rhosetta” stone (presented in Figure 2) gives an intuitive comparison between
the Lambda-like notation and the Rewriting-like one, with a particular focus on the
pair/projection encoding.

2.3. Functional Operational Semantics

We define a big-step call-by-value operational semantics via a natural proof deduction
system. The purpose of the deduction system is to map every expression into a value,
which is an irreducible term in weak head-normal form. The semantics is defined via
three judgments, of the shapes:

ρ ` A ⇓val Av and ` 〈Av �Bv〉 ⇓call Cv and ρ ` 〈A �Av〉 ⇓match ρ
′

The first judgment evaluates a term in Rho, while the second applies a value to another,
producing a result value, and the last updates a correct environment obtained by match-
ing a term against a value. All the rules are presented in Figure 3 and 4, where the
symbol ? stands either for • or “ ,”. In a nutshell:

— (Red·Val) This rule evaluates every constant to itself;
— (Red·Var) This rule simply fetches the value of X into the environment;
— (Call·Struct) This rule applies every element of the structure-value to the argument

Cv;
— (Red·Fun) This rule evaluates a pattern abstraction to a closure;
— (Red·Applv) This rule first reduces the term A to a value Av, then evaluates the

argument B in Bv, and finally applies Av to Bv using the ⇓call judgment;
— (Call·Algbr) This rule builds an algebraic-value under the shape of an application in

weak head-normal form;
— (Call·FunOk) This rule first matches successfully P against Bv, and then evaluates

the body of the pattern abstraction A in the new environment calculated by ⇓match;
— (Call·FunKo) This rule applies when the match of P against Bv fails: a failure-value

is returned;
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Value Reduction ⇓val

ρ ` a ⇓val a
(Red·Val)

X ∈ Dom(ρ)

ρ ` X ⇓val ρ(X)
(Red·Var)

ρ ` A ⇓val Av ρ ` B ⇓val Bv

ρ ` A , B ⇓val Av , Bv

(Red·Struct)

ρ ` P _∆ A ⇓val 〈P _∆ A � ρ〉
(Red·Fun)

ρ ` A ⇓val Av ρ ` B ⇓val Bv ` 〈Av � Bv〉 ⇓call Cv

ρ ` A B ⇓val Cv

(Red·Applv)

Call Reduction ⇓call

` 〈f Av � Bv〉 ⇓call f Av Bv

(Call·Algbr)

` 〈Av � Cv〉 ⇓call Dv ` 〈Bv � Cv〉 ⇓call Ev

` 〈(Av , Bv) � Cv〉 ⇓call Dv , Ev

(Call·Struct)

ρ ` 〈P � Bv〉 ⇓match ρ′ ρ′ ` A ⇓val Av

` 〈〈P _∆ A � ρ〉 � Bv〉 ⇓call Av

(Call·FunOk)

@ρ′. ρ ` 〈P � Bv〉 ⇓match ρ′

` 〈〈P _∆ A � ρ〉 � Bv〉 ⇓call 〈[P �∆ Bv].A � ρ〉
(Call·FunKo)

` 〈〈[P �∆ Bv].A � ρ〉 � Cv〉 ⇓call 〈[P �∆ Bv].A � ρ〉
(Call·Wrong)

Fig. 3. Natural Functional Semantics

— (Call·Wrong) This rule applies a failure-value to a value; the failure-value is then
propagated;

— (Match·Const) Matching two equal constants does not modify the resulting environ-
ment;

— (Match·VarNew)(Match·VarEq) Matching a variable against a value produces an en-
vironment updated with the new binding, or the same environment if the variable is
already bound with exactly the same value;
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Matching Reduction ⇓match

ρ ` 〈a � a〉 ⇓match ρ
(Match·Const)

ρ(X) = ⊥

ρ ` 〈X � Av〉 ⇓match ρ[X 7→ Av]
(Match·VarNew)

ρ(X) = Av

ρ ` 〈X � Av〉 ⇓match ρ
(Match·VarEq)

ρ0 ` 〈A � Av〉 ⇓match ρ1 ρ1 ` 〈B � Bv〉 ⇓match ρ2

ρ0 ` 〈A ? B � Av ? Bv〉 ⇓match ρ2

(Match·Pair)

Fig. 4. Natural Matching Semantics

— (Match·Pair) Matching either an application or a structure (recall that ? ∈ {• , })
produces an environment resulting from the composition of two environments.

The natural operational semantics is deterministic and immediately suggests how to build
an interpreter. The standard first-order matching algorithm of [Hue76] is implemented
by a judgment ρ ` 〈A � Av〉 ⇓match ρ

′ that given an environment, a term and a value,
either enriches the environment or fails. However, the algorithm has been enhanced in
order to take into account the imperative features of the calculus.

Remark 2 (Optimistic vs. Pessimistic vs. Clean Machines). Our natural seman-
tics is “optimistic”, in the sense that, if a matching failure occurs, then the computation
is not halted and we explicitly list, in the final result, such a failure. Of course, other
choices are possible, such as the one of “killing” the computation once a failure-value is
produced, or “cleaning” all failure-values from the final result. The distinction is clearly
visible when dealing with structures, as shown in the following trivial example (we let
⇓opt

val – resp. ⇓pex
val – resp. ⇓clean

val , denote the optimistic – resp. pessimistic – resp. clean
machine)

...

∅ ` (3 _ 3 , 4 _ 4) 4 ⇓opt
val 〈[3 � 4].3 � ∅〉 , 4

...

∅ ` (3 _ 3 , 4 _ 4) 4 ⇓pex
val 〈[3 � 4].3 � ∅〉

...

∅ ` (3 _ 3 , 4 _ 4) 4 ⇓clean
val 4

We conclude with a simple example of a two functional evaluations.
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� 4

∅ ` 〈f � f〉 ⇓match ∅
∅ ` 〈X � 3〉 ⇓match ρ0

∅ ` 〈(f X) � (f 3)〉 ⇓match ρ0

ρ0 ` 〈3 � 3〉 ⇓match ρ0 ρ0 ` 3 ⇓val 3

` 〈〈(3 _ 3) � ρ0〉 � 3〉 ⇓call 3

ρ0 ` X ⇓val 3

ρ0 ` (3 _ 3) ⇓val 〈(3 _ 3) � ρ0〉

ρ0 ` (3 _ 3) X ⇓val 3

` 〈〈((f X) _ (3 _ 3) X) � ∅〉 � (f 3)〉 ⇓call 3

∅ ` ((f X) _ (3 _ 3) X) (f 3) ⇓val 3

and

� 2

∅ ` 〈f � f〉 ⇓match ∅
∅ ` 〈X � 4〉 ⇓match ρ1

∅ ` 〈(f X) � (f 4)〉 ⇓match ρ1

@ρ2. ρ1 ` 〈3 � 4〉 ⇓match ρ2

` 〈〈(3 _ 3) � ρ〉 � 4〉 ⇓call Av

ρ1 ` X ⇓val 4

ρ1 ` (3 _ 3) ⇓val 〈(3 _ 3) � ρ1〉

ρ1 ` (3 _ 3) X ⇓val Av

` 〈〈((f X) _ (3 _ 3) X) � ∅〉 � (f 4)〉 ⇓call Av

∅ ` ((f X) _ (3 _ 3) X) (f 4) ⇓val Av

Fig. 5. Natural Deduction of ((f X) _ (3 _ 3) X) (f 3) and ((f X) _ (3 _ 3) X) (f 4)

Example 1 (Two Functional Evaluations). Consider the following term in Rho:

((f X) _ (3 _ 3)X) (f 3) and ((f X) _ (3 _ 3)X) (f 4)

and let

� ≡ ∅ ` 〈((f X) _ (3 _ 3)X) � ∅〉 ⇓val 〈((f X) _ (3 _ 3)X) � ∅〉

4 ≡ ∅ ` (f 3) ⇓val (f 3)

2 ≡ ∅ ` (f 4) ⇓val (f 4)

Av ≡ 〈[3 � 4].3 � ρ〉 ρ0
4
= [X 7→ 3] ρ1

4
= [X 7→ 4]

The deduction trees are shown in Figure 5.

3. The Imperative Rewriting-calculus

3.1. Imperative Syntax

We introduce imperative features in our Rewriting-calculus, to yield the full iRho. We ex-
tend the syntax of terms by adding (de)referencing and assignment operators, by extend-
ing the set of values and contexts including references, by adding new reference-types, and
by recasting our natural semantics with store locations and environments [Tof87,FF89].
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τ ::= . . . as in Rho . . . | τ ref Types

∆ ::= . . . as in Rho . . . Contexts

P ::= . . . as in Rho . . . | ref P Patterns

A ::= . . . as in Rho . . . | ref A | A := A Terms

Fig. 6. Syntax of iRho

Syntax. The syntax of iRho (types, contexts, patterns and terms) is presented in Figure
3. Intuitively, iRho deals with references à la ML i.e.:

— (Ref-Terms) The term ref A is a referencing term (the-location-of); if A is a term of
type τ , then ref A is a pointer to A of type τ ref ;

— (Assignment-terms) The term A := B is an assignment operator, which returns as
result the value obtained by evaluating B.

As an immediate benefit of the built-in powerful new pattern-matching algorithm, the
classical dereferencing term (goto-memory), denoted by !A, where A is a pointer in the
store can be easily defined as follows (types are omitted):

!A 4
= (refX _ X)A

This is a nice feature with respect to functional core calculi, mixing imperative and
functional features, like, e.g. Caml.
Sequencing can be also defined in iRho as follows (types are omitted):

A ;B 4
= (X _ B)A X 6∈ Fv(B)

Issues related to garbage collection are out of the scope of this paper: new locations
created during reduction, via referencing (ref A), will remain in the store forever. In
principle, classical techniques of Ian Mason and Carolyn Talcott, and Greg Morrisset et
al. [MT92,MFH95] could be applied to iRho.

Values and Stores. The set of values is enriched by locations. The symbol ι ranges over
the set Loc of store locations, and the symbol σ ranges over the set of global stores Store.

Av ::= . . . as in Rho . . . | ι Imperative Values

Stores are partial functions from the set L of locations to the set of values i.e., σ ∈
Store ' [Loc ⇒ Val]⊥; we denote the extension of a store by σ[ι 7→ Av] with the
following meaning:

σ[ι 7→ Av](ι′)
4
=

{
Av if ι ≡ ι′

σ(ι′) otherwise

12



Value Reduction ⇓val

σ0 � ρ ` A ⇓val Av � σ1 σ1 � ρ ` B ⇓val Bv � σ2

σ0 � ρ ` A , B ⇓val Av , Bv � σ2

(Red·Struct)

ι /∈ Dom(σ1) σ0 � ρ ` A ⇓val Av � σ1

σ0 � ρ ` ref A ⇓val ι � σ1[ι 7→ Av]
(Red·Ref)

σ0 � ρ ` A ⇓val Av � σ1 σ1 � ρ ` B ⇓val Bv � σ2 σ2 ` 〈Av � Bv〉 ⇓call Cv � σ3

σ0 � ρ ` A B ⇓val Cv � σ3

(Red·Applv)

σ0 � ρ ` A ⇓val ι � σ1 ι ∈ Dom(σ1) σ1 � ρ ` B ⇓val Bv � σ2

σ0 � ρ ` A := B ⇓val Bv � σ2[ι 7→ Bv]
(Red·Ass)

Update of (Red·Val), (Red·Fun), (Red·Var) with the unused store parameter.

Call Reduction ⇓call

σ0 � ρ ` 〈P � Bv〉 ⇓match ρ′ σ0 � ρ′ ` A ⇓val Av � σ1

σ0 ` 〈〈P _∆ A � ρ〉 � Bv〉 ⇓call Av � σ1

(Call·FunOk)

σ0 ` 〈Av � Cv〉 ⇓call Dv � σ1 σ1 ` 〈Bv � Cv〉 ⇓call Ev � σ2

σ0 ` 〈(Av , Bv) � Cv〉 ⇓call Dv , Ev � σ2

(Call·Struct)

Update of (Call·FunKo), (Call·Algbr), (Call·Wrong) with the unused store parameter.

Matching Reduction ⇓match

ι ∈ Dom(σ) σ(ι) ≡ Av σ � ρ ` 〈P � Av〉 ⇓match ρ′

σ � ρ ` 〈ref P � ι〉 ⇓match ρ′
(Match·Ref)

Update of (Match·Const), (Match·Var), (Match·Pair) with the unused store parameter.

Fig. 7. Natural Imperative Semantics

3.2. Imperative Operational Semantics

As in the functional case, we define an “optimistic” big-step operational semantics. Again,
the chosen strategy is call-by-value, and the semantics is defined via three judgments of
the shape:

σ � ρ ` A ⇓val Av � σ′ and σ ` 〈Av �Bv〉 ⇓call Cv � σ′ and σ � ρ ` 〈A �Av〉 ⇓match ρ
′

13



The main difference with respect to the functional calculus Rho is that all judgments
have as premise a global store σ, which can be modified and returned as a result. In the
case of ⇓val and ⇓call, a store σ is given as input, and a (possibly modified) store σ′ is
returned as output. In the ⇓match rule, a store σ is needed as input since our matching
algorithm allows to match a referencing terms ref A to a pointer-variable, such as in:

[ι0 7→ 3] � [Y 7→ ι0] ` (refX _X:b X)Y ⇓val 3 · [ι0 7→ 3]

The rules of the dynamic semantics are defined in Figure 7. In a nutshell:

— (Red·{v,Applv,Var,Fun,Struct}) All those rules essentially behave as in the func-
tional case, with the exception that the store parameter is propagated over the judg-
ments in the premises and in the conclusion;

— (Red·Ref) This rule first reduces A into a value, and then stores it into a “fresh”
location ι;

— (Red·Ass) This rule performs assignment: first we reduce the receiver A into an (ex-
isting) memory location, then we reduce the expression B (to be assigned) to a value,
and finally we give as result the value produced by B, and a new store which performs
the modification in situ;

— (Call·{FunOk,Struct,FunKo,Algbr,Wrong}) Those rules present no surprise with re-
spect to the corresponding rules in Rho; the only difference lies in the store propa-
gation from the input of the conclusion (through the premises) to the output of the
conclusion (value · store);

— (Match·{Const,VarNew,VarEq,Pair}) All the matching judgments of Figure 4 are
still valid by adding an (unused) extra parameter σ;

— (Match·Ref) This rule is the only matching rule which needs a store as an input
argument ; it first fetches the value Av in the store σ, at the location ι, and then
calls the matching of the pattern P against the value Av. An example of imperative
pattern-matching is:

[ι0 7→ 3] � ∅ ` 〈refX � ι0〉 ⇓match [X 7→ 3]

This pattern-matching rule allows to consider the dereferencing term !A the status of
simple sugar in iRho.

Observe that the following rule that first reduces A into a location-value ι, and then
return the value stored at ι is admissible:

σ0 � ρ ` A ⇓val ι � σ1 ι ∈ Dom(σ1)

σ0 � ρ ` !A ⇓val σ1(ι) � σ1

(Red·Deref)

We conclude with a simple example of an imperative evaluation.

Example 2 (An Imperative Evaluation). Take the imperative term:

((f (X ,Y )) _ (3 _ X := !Y ) !X) (f(ref 3 , ref 4))

with σ0
4
= [ι0 7→ 3][ι1 7→ 4], and σ1

4
=σ0[ι0 7→ 4], and ρ0

4
= [X 7→ ι0][Y 7→ ι1]. The

deduction tree is shown in Figure 8.
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ι0 ∈ Dom(σ0)

σ0 � ρ0 ` X ⇓val ι0 � σ0

σ0 � ρ0 ` Y ⇓val ι1 � σ0

σ0 � ρ0 ` !Y ⇓val 4 � σ0

σ0 � ρ0 ` X := !Y ⇓val 4 � σ1

σ0 � ρ0 ` 〈3 � 3〉 ⇓match ρ0

σ0 ` 〈〈3 _ X := !Y � ρ0〉 � 3〉 ⇓call 4 � σ1

σ0 � ρ0 ` !X ⇓val 3 � σ0

σ0 � ρ0 ` 3 _ X := !Y ⇓val 〈3 _ X := !Y � ρ0〉 � σ0

σ0, ρ0 ` (3 _ X := !Y ) !X ⇓call 4 � σ1

σ0 � ∅ ` 〈(f (X , Y )) � (f (ι0 , ι1))〉 ⇓match ρ0

σ0 � ∅ ` 〈〈((f (X , Y )) _ (3 _ X := !Y ) !X) � ∅〉 � (f (ι0 , ι1))〉 ⇓call 4 � σ1

∅ � ∅ ` (f (ref 3 , ref 4)) ⇓val (f (ι0 , ι1)) � σ0

∅ � ∅ ` ((f (X , Y )) _ (3 _ X := !Y ) !X) ⇓val 〈((f (X , Y )) _ (3 _ X := !Y ) !X) � ∅〉 � ∅

∅ � ∅ ` ((f (X , Y )) _ (3 _ X := !Y ) !X) (f (ref 3 , ref 4)) ⇓val 4 � σ1

Fig. 8. Natural Deduction of ((f (X , Y )) _ (3 _ X := !Y ) !X) (f (ref 3 , ref 4))

4. The Type System

In this section, we present a type system for iRho. We use, as usual, type checking to
catch some errors before run-time evaluation. In the following section, we present a rich
collection of (typable) examples, namely decision procedures, meaningful objects, fixed-
points, and term rewriting systems. The type system can be extended with a subtyping
relation, or with bounded-polymorphism, to capture the behavior of structures-as-objects,
and object-oriented features. With respect to previous type systems for the (functional)
Rho [CKL01b, CKL02, BCKL03, CLW04], structures can now have different types, i.e.,
thanks to the following typing rule which is new with respect to the previous typed
formulations of the Rewriting-calculus

Γ
À
A : τ1 Γ

À
B : τ2

Γ
À
A ,B : τ1 ∧ τ2

(Term·Struct)

Reminiscent of a record-types discipline, the type τ1 ∧ τ2 is suitable for heterogeneous
structures, like lists, ordered sets, or objects. This enhancement gives a more flexible type
discipline, where the product-type τ1∧ τ2 reflects the implicit non-commutative property
of “ ,” in the term “A ,B”, i.e., “A ,B” does not behave necessarily as “B ,A”. This
modification greatly improves expressiveness with respect to previous typing disciplines
on the Rewriting-calculus [CLW04], in the sense that it gives a type to terms that will
not be stuck at run-time, but it complicates the metatheory and the mechanical proof
development. The main enhancement with respect to previous versions of the Rewriting-
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calculus [BCKL03], is that here the elements of the structure are not forced to have the
same type. This introduces a simple, although non-orthodox, notion of object-type.

The type system
À

is algorithmic: the type rules are deterministic and suggest two
decidable procedures for type-reconstruction and type-checking. We say that a set of rules
specifies a deterministic typing algorithm if the type rules are syntax-directed, and each
rule satisfies the sub-formula property (all the formulas appearing in the premise of a
rule are sub-formulas of those appearing in the conclusion).

The main complication in the type system lies in applying a structure to an argu-
ment, thus producing a structure-value by dispatching the argument to all the pattern
abstractions contained in the structure.

The structure-value will be typed with a product-type containing all the components of
the structure. As a simple example, if we apply a structure (with type (b1 _ b2)∧ (b1 _
b3)) to an argument of type b1, we would obtain as result a structure-value of type b2∧b3.
To capture this behavior (which is a direct consequence of dispatching application into
structures), we need the partial function arr on types, which transforms a product-type
into a function-type:

arr(τ1 _ τ2)
4
= τ1 _ τ2

arr(τ1 ∧ τ2) 4
= τ3 _ (τ4 ∧ τ5)

{
if arr(τ1) ≡ τ3 _ τ4
and arr(τ2) ≡ τ3 _ τ5

Therefore, the type system of iRho derives judgments of the shape:

Γ Γ̀ ok Γ τ̀ τ : ok Γ v̀ Av : τ

Γ ρ̀ ρ : Γ′ Γ σ̀ σ : Γ′ Γ
P̀
P : τ Γ

À
A : τ

which denote well-typed contexts, types, values, environments, stores, patterns, and
terms, respectively. In the following, we let the symbol α range over X ∪ K. The typing
rules for patterns and terms are presented in Figure 9. Note that the following rule is
admissible. It says that if A is a pointer to an object of type τ , then its access in memory,
denoted by !A, has type τ .

Γ
À
A : τ ref

Γ
À

!A : τ
(Term·Deref)

In what follows, we give a review of the most intriguing type-checking rules.

— (Patt·Start), (Term·Start) Those rules fetch from the context the correct type of vari-
ables and constants, respectively;

— (Patt·Struct), (Term·Struct) Those rules assign a product-type to a structure which
records the type of both elements;

— (Patt·Algbr), (Term·Appl) Those rules deal with application. We discuss the applica-
tion term-term, the pattern-pattern being similar. The application rule is the usual
one can expect for an algorithmic version of a type system; note that before applying
terms, we need to transform the type τ1 of A into an arrow type, since it could happen
that A is a structure containing more branches of the same domain type;
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Pattern Rules

Γ1, α:τ, Γ2 Γ̀ ok

Γ1, α:τ, Γ2 P̀ α : τ
(Patt·Start)

Γ P̀ P1 : τ1 Γ P̀ P2 : τ2

Γ P̀ P1 , P2 : τ1 ∧ τ2

(Patt·Struct)

arr(τ1) ≡ τ2 _ τ3 Γ P̀ a P : τ1 Γ P̀ P : τ2

Γ P̀ a P P : τ3

(Patt·Algbr)

Term Rules

Γ1, α:τ, Γ2 Γ̀ ok

Γ1, α:τ, Γ2 À α : τ
(Term·Start)

Γ À A : τ

Γ À ref A : τ ref
(Term·Ref)

Γ À A : τ ref Γ À B : τ

Γ À A := B : τ
(Term·Assign)

Γ À A : τ1 Γ À B : τ2

Γ À A , B : τ1 ∧ τ2

(Term·Struct)

arr(τ1) ≡ τ2 _ τ3

Γ À A : τ1 Γ À B : τ2

Γ À A B : τ3

(Term·Appl)

Dom(∆) = Fv(P )

Γ, ∆ P̀ P : τ1 Γ, ∆ À A : τ2

Γ À P _∆ A : τ1 _ τ2

(Term·Abs)

Fig. 9. Well Formed Pattern and Terms

— (Term·Abs) In this rule we note that the context ∆ is charged in the premises, using
the decidable function Fv(P ); the context Γ gives types only for algebraic constants;

— (Term·Assign) This rule deals with assignment: the only possible choice is to assign
to an expression A, of type τ ref , an object B of type τ ;

— (Term·Ref) This rule says that, if an object A has type τ , then a pointer to this
object, denoted by ref A, has type τ ref.

4.1. Extra Typing Rules

The presentation of the type system is completed by five complementary judgments of
the shape:

Γ Γ̀ ok, and Γ τ̀ τ : ok, and Γ v̀ Av : τ and Γ ρ̀ ρ : Γ′ and Γ σ̀ σ : Γ′

denoting well-formed contexts, types, values, environments, and stores. Those judgments
are necessary when we encode iRho in the Logical Framework of Coq. The type rules of
those five new judgments are really much more intuitive and they do not need any par-
ticular comment. It is worth noting that also rule (Value·Algbr) needs a transformation
step for product-types into arrow-types. Also interesting are the (Value·Clos) and the
(Value·Fail) rules, since the inferred type for the environment ρ is “charged” into the
derivation for the pattern abstraction. All extra rules are presented in Figure 10.
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Context Rules

∅ Γ̀ ok
(Ctx·Axiom)

Γ Γ̀ ok b 6∈ Dom(Γ)

Γ, b:ok Γ̀ ok
(Ctx·Type)

χ 6∈ Dom(Γ) Γ τ̀ τ : ok Γ Γ̀ ok

Γ, χ:τ Γ̀ ok
(Ctx·Var/Const)

Type Rules

Γ1, b:ok, Γ2 Γ̀ ok

Γ1, b:ok, Γ2 τ̀ b : ok
(Type·Start)

Γ τ̀ τ : ok

Γ τ̀ τ ref : ok
(Type·Ref)

Γ τ̀ τ1 : ok Γ τ̀ τ2 : ok

Γ τ̀ τ1 _ τ2 : ok
(Type·Arrow)

Γ τ̀ τ1 : ok Γ τ̀ τ2 : ok

Γ τ̀ τ1 ∧ τ2 : ok
(Type·Struct)

Value Typing

Γ1, a:τ, Γ2 Γ̀ ok

Γ1, a:τ, Γ2 v̀ a : τ
(Value·Start1)

Γ1, ι:τ ref , Γ2 Γ̀ ok

Γ1, ι:τ ref , Γ2 v̀ ι : τ ref
(Value·Start2)

Γ v̀ Av : τ1 Γ v̀ Bv : τ2

Γ v̀ Av , Bv : τ1 ∧ τ2

(Value·Struct)

arr(τ1) ≡ τ2 _ τ3

Γ v̀ a Av : τ1 Γ v̀ Bv : τ2

Γ v̀ a Av Bv : τ3

(Value·Algbr)

Γ ρ̀ ρ : Γ′

Γ′
P̀ P _∆ A : τ1 _ τ2

Γ v̀ 〈P _∆ A � ρ〉 : τ1 _ τ2

(Value·Clos)

Γ v̀ Av : τ1 Γ ρ̀ ρ : Γ′

Γ′
P̀ P _∆ B : τ1 _ τ2

Γ v̀ 〈 [P �∆ Av].B � ρ〉 : τ2

(Value·Fail)

Store Typing Environment Typing

Γ[ι:τ ]
4
=

{
Γ, ι:τ if ι 6∈ Dom(Γ)

Γ if ι:τ ∈ Γ
Γ[X:τ ]

4
=

{
Γ, X:τ if X 6∈ Dom(Γ)

Γ if X:τ ∈ Γ

Γ Γ̀ ok

Γ σ̀ ∅ : Γ
(Store·Axiom)

Γ Γ̀ ok

Γ ρ̀ ∅ : Γ
(Env·Axiom)

Γ σ̀ σ : Γ′ Γ′[ι:τ ] Γ̀ ok

Γ v̀ ι : τ ref Γ v̀ Av : τ

Γ σ̀ σ[ι 7→ Av] : Γ′[ι:τ ]
(Store·Loc)

Γ ρ̀ ρ : Γ′ Γ′[X:τ ] Γ̀ ok

Γ À X : τ Γ v̀ Av : τ

Γ ρ̀ ρ[X 7→ Av] : Γ′[X:τ ]
(Env·Var)

Fig. 10. Extra Typing Rules
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5. Metatheory

In this section we present the main properties of iRho, as follows.

1 Natural Semantics for ⇓val is deterministic;
2 Type-checking with

À
is unique;

3 Subject-reduction holds (i.e., types are preserved under reduction);
4 Type-soundness holds (i.e., the type system preserves the evaluator from “stuck”

states);
5 Both Type-checking and Type-reconstruction are decidable.

The most crucial proofs have been done by a mechanical development using the proof
assistant Coq [LS05]. Some of this development is presented in detail in Section 7. We
start with a natural definition of free variables.

Definition 1 (Free variables Fv ).

Fv(a) 4
= ∅

Fv(X) 4
= {X}

Fv(!A) 4
= Fv(A)

Fv(ref A) 4
= Fv(A)

Fv(P _∆ A) 4
= Fv(A) \ Fv(P )

Fv(AB) 4
= Fv(A) ∪ Fv(B)

Fv(A ,B) 4
= Fv(A) ∪ Fv(B)

Fv(A := B) 4
= Fv(A) ∪ Fv(B)

Then, we prove that our natural semantics is deterministic.

Theorem 2 (Deterministic Semantics). For all term A, and environment ρ, and
store σ:

1 If σ1 � ρ ` A ⇓val Av � σ2, and σ1 � ρ ` A ⇓val Bv � σ3, then Av ≡ Bv, and σ2 ≡ σ3;
2 If σ1 ` 〈Av � Bv〉 ⇓call Cv � σ2, and σ1 ` 〈Av � Bv〉 ⇓call Dv � σ3, then Cv ≡ Dv, and
σ2 ≡ σ3;

3 If σ � ρ1 ` 〈P �Av〉 ⇓match ρ2, and σ � ρ1 ` 〈P �Av〉 ⇓match ρ3, then ρ2 ≡ ρ3.

Proof. By Coq.

The type system presentation is syntax directed, hence it directly suggest how to build an
algorithm, hence it enjoys the nice property of uniqueness of typing; a software prototype
of a simple type-checker can be found in the web-appendix [LS05]).

Theorem 3 (Uniqueness of Typing). If Γ
À
A : τ , then τ is unique.

Proof. By Coq.

The following definition splits the typed context into two sub-contexts, the former record-
ing types assigned to locations, and the latter recording types assigned to variables; it
will be useful in the subject-reduction theorem.

Definition 4 (Coherence). The context Γ is coherent with a store σ, and an environ-
ment ρ, denoted by

Γ `coh σ � ρ
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if there exist two sub-contexts Γ1, and Γ2, such that Γ1,Γ2 ≡ Γ, and Γ1 σ̀ σ : Γ1, and
Γ2 ρ̀ ρ : Γ2.

Subject-reduction for open terms is preliminary for subject-reduction for closed terms.

Theorem 5 (Subject-reduction for Open Terms). If σ1 � ρ1 ` A ⇓val Av � σ2, and
Γ1 `coh σ1 � ρ1, and Γ1 À

A : τ , then there exists Γ2, which extend Γ1, such that
Γ2 `coh σ2 � ρ1, and Γ2 v̀ Av : τ .

Proof. By Coq.

The following result is crucial to state type soundness.

Theorem 6 (Subject-reduction for Closed Terms). If ∅ � ∅ ` A ⇓val Av � σ, and
∅

À
A : τ , then there exists Γ, such that Γ `coh σ � ∅, and Γ v̀ Av : τ .

Proof. By Coq.

The reduction rules for the operational semantics given in Figure 7 readily suggest how
an interpreter for iRho can be defined. Run-time errors for this interpreter correspond to
stuck-states when using the rules to evaluate a closed expression.

An inspection of the three judgments of the operational semantics shows that there
are only few ways in which evaluation may get “stuck”:

(⇓val) This judgment gets stuck when we access a variable not defined in the environment,
when the evaluation of A in A := B gives a fresh location (i.e., not in the current
used store), or if one premise in some judgment gets stuck;

(⇓call) This judgment gets stuck when the we try to apply a location-value to a value
(e.g. 〈ι �Av〉), or if one premise in some judgment gets stuck;

(⇓match) This judgment gets stuck when we try to match a pattern against a value with
a different (unmatchable) shape, e.g. 〈(P Q) � (A ,B)〉, etc.

The following soundness theorem proves the absence of such errors in the evaluation of
a well-typed closed expression.

Theorem 7 (Progress/Type-soundness).

Let A be a closed term such that ∅
À
A : τ is derivable, and let C[·] be any context.

(Progress)

— if A ≡ C[X], then there exists σ, and ρ, such that σ � ρ ` X ⇓val ρ(X), and
ρ(X) 6= ⊥;

— if A ≡ C[B := C], then there exists σ1, and ρ, such that σ1 � ρ ` B ⇓val ι � σ2, and
ι ∈ Dom(σ2);

(⇓call) If A ≡ C[BC], then there exists σ1, and ρ, such that σ1 � ρ ` B ⇓val Bv � σ2, and
Bv 6≡ ι;

(⇓match) If A ≡ C[BC], then there exists σ1, and ρ, such that σ1 � ρ ` B ⇓val 〈P _∆

D � ρ1〉 � σ2, and σ2 � ρ ` C ⇓val Cv � σ3, and P will successfully match with Cv.
(Type-soundness)

If ∅
À
A : τ , then ∅ � ∅ ` A ⇓val Av, for some Av.
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Proof.

(Progress)
(⇓val)if A has a variable X as a sub-expression, then, by well-typedness of the sub-

expressions, environment and store, ρ(X) 6= ⊥. If A has an assignment B := C as
a sub-expression, then, by well-typedness of the sub-expressions, environment and
store, B evaluates to ι � σ2 and ι ∈ Dom(σ2).

(⇓call)Similarly, if A has an application BC as a sub-expression, then by well-typedness
of the sub-expressions, environment and store, the evaluation of B is not a location.

(⇓match)Again, if A has an application BC as a sub-expression, then by well-typedness
of the sub-expressions, environment and store, the evaluation of B leads to a closure-
value 〈P _∆ D � ρ1〉, and the pattern P has a shape that can overlap with Cv (the
latter obtained by the evaluation of C).

(Type-soundness)
Immediate from Progress and from Subject-reduction Theorem.

We conclude with some decidability results.

Theorem 8. Given a closed expression A, the following propositions are decidable:

1 (Type-checking) It is decidable if there exists a type τ such that ∅
À
A : τ ;

2 (Type-reconstruction) It is decidable if, for a given τ , is it true that ∅
À
A : τ .

Proof.

1Figure 11 gives the sketch of a recursive algorithm for building τ , or returning false

if it does not exist.
2We use the previous algorithm for type reconstruction (Figure 11). By uniqueness of
typing, Γ

À
A : τ if and only if τ is equivalent to the type found for A.

Theorem 9 (Soundness and Completeness of iType). For a closed A, and a given
∆, iType(ε;A) = τ , if and only if ε

À
A : τ is derivable.

Proof. Both parts can be easily proved by induction on the structure of A.

6. Examples

To simplify the derivations, types are omitted. The first example type-checks the above
imperative term of Example 2. The second example deals with structures and normalized-
types. The third example evaluates a more complicated imperative term, and the last
example shows static and dynamic description of a simple functional fixed-point. When
no ambiguity will arise we use the following syntactic sugar for multiple assignments:

(X1 ; . . . ;Xn) := (A1 ; . . . ;An) 4
= X1 := A1 ; . . . ;Xn := An
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iType(A; Γ)
4
= match A with

X/a ⇒ τ if X/a:τ ∈ Γ

A1 , A2 ⇒ iType(A1; Γ) ∧ iType(A1; Γ)

if iType(P ; Γ, ∆) 6= false 6= iType(A1; Γ, ∆)

P _∆ A1 ⇒ iType(P ; Γ, ∆) _ iType(A1; Γ, ∆)

if iType(P ; Γ, ∆) 6= false 6= iType(A1; Γ, ∆)

A1 A2 ⇒ τ2

if iType(A1; Γ) = τ1 _ τ2 and iType(A2; Γ) = τ1

⇒ false

iTCheck(A; Γ; τ)
4
= if iType(A; Γ) = τ then true else false

Fig. 11. The Algorithms iType and iTCheck

Γ, ∆ À f : (b ref ∧ b ref ) _ b

Γ, ∆ À X , Y : b ref ∧ b ref

Γ, ∆ À (f (X , Y )) : b

Γ, ∆ À Y : b ref

Γ, ∆ À !Y : b

Γ, ∆ À X : b ref

Γ, ∆ À X := !Y : b

Γ À ((f (X , Y )) _∆ (3 _∅ X := !Y ) !X) : b _ b

Γ, ∆ À f : (b ref ∧ b ref ) _ b

Γ, ∆ À ref 3 , ref 4 : b ref ∧ b ref

Γ À (f (ref 3 , ref 4)) : b

Γ À ((f (X , Y )) _∆ (3 _∅ X := !Y ) !X) (f (ref 3 , ref 4)) : b

Fig. 12. Type-checking of Example 2

Γ, ∆ À X : b ref

Γ, ∆ À Y : b ref

Γ, ∆ À X , !Y : b ref ∧ b ref

Γ, ∆ À X : b ref

Γ, ∆ À !Y : b

Γ, ∆ À X := !Y : b

Γ À (X , Y ) _∆ X := !Y : (b ref ∧ b ref ) _ b

Γ, ∆ À X : b ref

Γ, ∆ À Y : b ref

Γ, ∆ À X , Y : b ref ∧ b ref Γ, ∆ À Y : b ref

Γ À (X , Y ) _∆ Y : (b ref ∧ b ref ) _ b

Γ À ((X , Y ) _∆ X := !Y , (X , Y ) _∆ !Y ) : (b ref ∧ b ref ) _ b ∧ (b ref ∧ b ref ) _ b

arr((b ref ∧ b ref ) _ b ∧ (b ref ∧ b ref ) _ b) ≡ (b ref ∧ b ref ) _ (b ∧ b)

Γ À (ref a , ref b) : b ref ∧ b ref

Γ À ((X , Y ) _∆ X := !Y , (X , Y ) _∆ !Y ) (ref a , ref b) : b ∧ b

Fig. 13. Type-checking of ((X , Y ) _∆ X := !Y , (X , Y ) _∆ Y ) (a , b)

6.1. Basic Examples

Example 3 (Type Checking). The type checking of the Example 2 is presented in
Figure 12, where
Γ ≡ b:ok, 3:b, 4:b, f :(b ref ∧ b ref ) _ b, and ∆ ≡ X:b ref , Y :b ref .22



nnf1
4
=

p _ p ,

(not (not X)) _ !(SELFX) ,

(not (or (X , Y))) _ (and (!(SELF (not X)))) , !(SELF (not Y)) ,

(not (and (X , Y))) _ (or (!(SELF (not X)))) , !(SELF (not Y)) ,

(and (X , Y)) _ (and !(SELF X) , !(SELFY)) ,

(or (X , Y)) _ (or (!(SELFX) , !(SELF Y)))


nnf1

4
=

p _ p ,

(not (B1 , ref (not (B2 , X)))) _ !(SELF (!X)) ,

(not (B1 , ref (or (B2 , X , Y)))) _ (and (ref false ,

!(SELF (ref (not (ref false , X)))) ,

!(SELF (ref (not (ref false , Y)))) ,

(not (B1 , ref (and (B2 , X , Y)))) _ (or (ref false ,

!(SELF (ref (not (ref false , X)))) ,

!(SELF (ref (not (ref false , Y)))) ,

(and (B , X , Y)) _ if (neg ref B) then

(B , X , Y) := (true , !(SELF (!X)) , !(SELF (!Y)))

else (and (B , X , Y)) ,

(or (B , X , Y)) _ if (neg ref B) then

(B , X , Y) := (true , !(SELF (!X)) , !(SELF (!Y)))

else (or (B , X , Y))



Fig. 14. Imperative Encoding with(out) Sharing

Example 4 (Structures and Normalized-types). Let Γ ≡ b:ok, a:b, b:b and ∆ ≡
X:b ref , Y :b ref . A derivation for

((X ,Y ) _∆ X := !Y , (X ,Y ) _∆ Y ) (a , b)

is shown in Figure 13.

6.2. More Tricky Examples

Example 5 (Negation Normal Form).
This function (computing a negation normal form) is used in implementing decision
procedures, present in almost all model checkers. The processed input is an implication-
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free language of formulas with generating grammar:

φ ::= p | (and (φ , φ)) | (or (φ , φ)) | (notφ)

We present two imperative encodings: in the first, the function is shared via a pointer
and recursion is achieved via dereferencing. In the second, formulas are shared too with
back-pointers to shared sub-trees. The variable “SELF” plays the role of the metavariable
“self” (or “this”) common in object-orientation. Then we type-check the encodings. For
the sake of readability, all type decorations inside terms are omitted.

(Imperative, I) this encoding uses a variable SELF which contains a pointer to the
recursive code: here the recursion is achieved directly via pointer dereferencing, as-
signment and classical imperative fixed-point in order to implement recursion. Given
the constant dummy, the function nnf1 is defined as in Figure 14: and the imperative
encoding is the following:

let SELF � ref dummy in let NNF = nnf1 in SELF := NNF; (NNFφ)

(Imperative-with-Sharing, IS) this encoding uses a variable SELF which contains a
pointer to the recursive code and a flag pointer to a boolean value associated to
each node: all flag pointers are initially set to false; each time we scan a (possibly)
shared formulas we set the corresponding flag pointer to true. The grammar of shared
formulas is as follows:

bool ::= true | false

flag ::= bool ref

ψ ::= ref φ

φ ::= p | (and (flag , ψ , ψ)) | (or (flag , ψ , ψ)) | (not (flag , ψ))

Given the constant dummy, the function nnf2 is defined as in Figure 14 and the
imperative encoding is the following:

let SELF � ref dummy in let NNF = nnf2 in SELF := NNF; (NNFψ)

(Typing The Imperative Encodings) If b is the type of formulas φ, and b ref is the
type of the shared formulas ψ, and ∧6τ 4= τ ∧ . . . ∧ τ︸ ︷︷ ︸

n

, and τ1
4
= b _ b, and τ2

4
= b ref _

b ref , then it is easy to verify that the following judgments are derivable (we let
Γ1

4
= dummy: ∧6 τ1,SELF: ∧6 τ1 ref , and Γ2

4
= dummy: ∧6 τ2,SELF: ∧6 τ2 ref ):

(I) Γ1, X: ∧6 τ1,NNF: ∧6 τ1 ` NNF(φ) : ∧6b

(IS) Γ2, X: ∧6 τ2,NNF: ∧6 τ2 ` NNF(ψ) : ∧6b ref

Example 6 (Simple First-order Fixed-point [CLW04]). The type systems of iRho

do not obey the classical property that “well-typed programs normalize”. More precisely,
non-termination can be encoded in our calculus thanks to ad hoc patterns. We present
here a term inspired by the classical Ω term of the untyped Lambda-calculus. Let Γ ≡
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Γ, ∆ À fix : (b _ b) _ b

Γ, ∆ À X : b _ b

Γ, ∆ À (fix X) : b

Γ, ∆ À X : b _ b

Γ, ∆ À (fix X) : b

Γ, ∆ À X (fix X) : b

Γ À Ω : b _ b

Γ, ∆ À fix : (b _ b) _ b

Γ, ∆ À Ω : b _ b

Γ, ∆ À (fix Ω) : b

Γ À Ω (fixΩ) : b

∞
∴

∅ ` Ω (fixΩ) ⇓val segmentation fault

Fig. 15. One Fixed-point

fix:(b _ b) _ b, and ∆ ≡ X:b _ b. A derivation for Ω 4
= (fixX) _∆ (X (fixX)) is shown

in Figure 15. It is easy to verify that our interpreter diverges on this term.

Remark 3 (On let rec and Fixed-points). Fixed-points and let rec definitions are
introduced using the well-known result of Nax Paul Mendler [MPC86, Men87]. When
introducing recursive definitions in the typed Lambda-calculus, the strong normalization
is no longer enforced by typing, if the type constructors do not satisfy a positiveness
condition.

This condition forces an algebraic constructor to be typed without negative occurrences
of recursive (potentially infinite) entities; in our case, the involved algebraic constructor
fix (see Example 6) does not satisfy the above condition, since it is applied to a recursive
object represented by the SELF variable. This condition is also enforced in the Calculus
of Inductive Constructions (see [Gim98]), which is the basis of the Coq proof assistant.
The condition avoids inconsistencies in the system itself, such as proving the Russell
Paradox ; termination issues are essentials in Curry-Howard based proof assistants. The
same problem also appears in programming languages: for instance, in Caml, one can
define a recursive function without using the keyword let rec.

There are many techniques to efficiently and effectively implement recursive definitions
in call-by-value functional languages: among them, it is worth to notice the “in-place
update tricks” outlined by Guy Cousineau et al. [CCM87], and the more recent tech-
niques due by Gérard Boudol and Pascal Zimmer [BZ02], and by Tom Hirschowitz et
al. [HLW03], or the Peter Landin’s classical trick [Lan64].

7. Formalization in Coq

In the previous sections, we have given a mathematical presentation of iRho suited to
an encoding in Coq. The formalization of iRho in the specification language of the proof
assistant is nevertheless a complex task, since we have to face many subtle details which
are left implicit on paper. Here we will just briefly discuss the most interesting aspects
of this development.
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Variable basic : Set. Variable eqbasic : basic -> basic -> bool. Variable var : Set.
(* Bricks *)

Variable boperator: Set. Variable eqvar : var -> var -> bool. Variable sbrk : store -> loc.
Definition env := (PartialFunction var value). Definition envt := (PartialFunction var type).
Definition store := (PartialFunction loc value). Definition storet := (PartialFunction loc type).
Definition loc := nat. Definition values := (list value).
Inductive type : Set := Basic : basic -> type (* Types *)

| FunType : type -> type -> type
| ProdType : type -> type -> type
| RefType : type -> type.

Definition operator := boperator * type.
Inductive pattern : Set := POpe : operator -> (list pattern) -> pattern (* Patterns *)

| PVar : var -> type -> pattern
| PCons : pattern -> pattern -> pattern
| PRef : pattern -> pattern.

Definition patterns := (list pattern).
Inductive expr : Set := Ope : operator -> expr (* Expressions *)

| Var : var -> expr
| Abs : pattern -> expr -> expr
| App : expr -> expr -> expr
| Cons : expr -> expr -> expr
| Assign : expr -> expr -> expr
| Ref : expr -> expr
| Deref : expr -> expr.

Inductive value : Set := VOpe : operator -> (list value) -> value (* Values *)
| Loc : loc -> value
| Pair : value -> value -> value
| Closure : pattern -> expr -> env -> value
| Wrong : pattern -> value -> expr -> env -> value.

Fig. 16. Semantics Domains in Coq

The encoding of iRho in Coq rephrases naturally the previous sections. Adequacy of
the Coq encoding with respect to the mathematical presentation is proved by pen and
paper.

A well-known problem we have to deal with is the encoding of the _-binder. Binders
are known to be difficult to encode in proof assistants; our encoding was essentially based
on closures, i.e., pairs <pattern abstraction · environment>. Environments are partial
functions from variables to values. Substitution is replaced by a simple look-up in the
environment; variable scoping, and all name-related matters are simply ignored. This
technique is widely used in efficient implementations of functional languages, and greatly
simplifies mechanical metatheory.

7.1. Syntactic and Semantics Structures

The signature of the encoding of iRho is therefore presented in Figure 16. We comment
on the most interesting choices:

— An ad hoc type var is introduced for variables; the only terms which can inhabit
var are the variables in the logical framework. Thus, α-equivalence on terms is im-
mediately inherited from the metalanguage, together with induction and recursion
principles;

— Another ad hoc type boperator is introduced for algebraic constants; algebraic con-
stants come with their types, so giving the category operator as a pair boperator∗type;

— Locations loc are faithfully represented by natural numbers;
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Mutual Inductive eval : expr -> env -> store -> value -> store -> Prop := (* Eval *)
...
| evalApp : (F:expr)(e:env)(s:store)(f:value)(s1:store)

(eval F e s f s1) -> (A:expr)(a:value)(s2:store)
(eval A e s1 a s2) -> (v:value)(s3:store)
(call f a s2 v s3) ->
(eval (App F A) e s v s3)

| evalRef : (A:expr)(e:env)(s:store)(a:value)(s1:store)
(eval A e s a s1) -> (i:loc)
(i=(sbrk s1)) ->
(eval (Ref A) e s (Loc i) (extend_store s1 i a))

| evalDeref : (A:expr)(e:env)(s:store)(i:loc)(s1:store)
(eval A e s (Loc i) s1) -> (v:value)
((s1 i)=(Some value v)) ->
(eval (Deref A) e s v s1)

| evalAssign : (A:expr)(e:env)(s:store)(i:loc)(v:value)(s1:store)
(eval A e s (Loc i) s1) -> (B:expr)(s2:store)
(eval B e s1 v s2) -> (old:value)
((s1 i)=(Some value old)) ->
(eval (Assign A B) e s v (extend_store s2 i v))

with call : value -> value -> store -> value -> store -> Prop :=Eval (* Call *)
...
| callClosureOK : (P:pattern)(v:value)(s:store)(e,e’:env)

(match P v s e e’) -> (B:expr)(r:value)(s1:store)
(eval B e’ s r s1) ->
(call (Closure P B e) v s r s1).

Inductive match : pattern -> value -> store -> env -> env -> Prop := (* Match *)
...
| matchCons: (left:pattern)(car:value)(s:store)(e,e’:env)

(match left car s e e’) -> (right:pattern)(cdr:value)(r:env)
(match right cdr s e’ r) ->
(match (PCons left right) (Pair car cdr) s e r)

| matchRef: (i:loc)(s:store)(v:value)
((s i)=(Some value v)) -> (x:pattern)(e,r:env)
(match x v s e r) ->
(match (PRef x) (Loc i) s e r).

Fig. 17. Sketch of Natural Imperative Semantics in Coq

— (Un)typed environments (env and envt) and (un)typed stores (store and storet) are
partial functions from var/loc to the sets value/type;

— A special variable sbrk denotes a function that, for any store, gives the topmost
unused location: the sbrk variable is essential when we are looking to extend the
store with fresh locations during new allocations (via the operator ref );

— Types type needs no special comments: they are implemented with an inductive
datatype; patterns pattern, expressions expr, and values value are implemented also
by an inductive datatype.

7.2. Natural Semantics

As we said in the previous section, the natural semantics is given by means of two
mutually recursive functions, namely, eval and call, and a third function match devoted
to calculate matching; they are sketched in Figure 17. The web-appendix [LS05] contains
all the encoding of the natural semantics. No rule presents surprises compared to rules in
Natural Semantics (i.e., we get adequacy almost directly): this is a positive consequence
of our DIMPRO pattern. We comment on the most interesting choices:

— (evalApp) This rule is an “ASCII-clone” of the (Red·Applv) natural semantic rule;
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Inductive TypeCheckPattern : envt -> pattern -> envt -> type -> Prop :=(* Type-check for patt. *)
...
| tcPOpCons : (E,E1:envt)(op:operator)(lp:patterns)(t:type)

(TypeCheckPattern E (POp op lp) E1 t) -> (t1,t2:type)
(NormalizeFunType t (FunType t1 t2)) -> (P:pattern)(E2:envt)
(TypeCheckPattern E1 P E2 t1) ->
(TypeCheckPattern E (POp op (cons P lp)) E2 t2).

Inductive TypeCheckExpr : envt -> expr -> type -> Prop := (* Type-check for expressions *)
...
| tcApp : (E:envt)(F:expr)(t:type)

(TypeCheckExpr E F t) -> (t1,t2:type)
(NormalizeFunType t (FunType t1 t2)) -> (A:expr)
(TypeCheckExpr E A t1) ->
(TypeCheckExpr E (App F A) t2)

| tcRef : (E:envt)(A:expr)(t:type)
(TypeCheckExpr E A t) ->
(TypeCheckExpr E (Ref A) (RefType t))

| tcDeref : (E:envt)(A:expr)(t:type)
(TypeCheckExpr E A (RefType t)) ->
(TypeCheckExpr E (Deref A) t)

| tcAssign : (E:envt)(A:expr)(t1:type)
(TypeCheckExpr E A (RefType t1)) -> (B:expr)(t2:type)
(TypeCheckExpr E B t1) ->
(TypeCheckExpr E (Assign A B) t1).

Mutual Inductive TypeOf : storet -> value -> type -> Prop := (* Type-check for values *)
...
| toClosure : (S:storet)(e:env)(E:envt)

(AbstractEnv S e E) -> (P:pattern)(B:expr)(t1,t2:type)
(TypeCheckExpr E (Abs P B) (FunType t1 t2)) ->
(TypeOf S (Closure P B e) (FunType t1 t2))

with AbstractEnv : storet -> env -> envt -> Prop := (* Coh. env-type via coh. store-type *)
...
| aeExtend : (S:storet)(e:env)(E:envt)

(AbstractEnv S e E) -> (v:value)(t:type)
(TypeOf S v t) -> (x:var)
(AbstractEnv S (extend_env e x v) (extend_envt E x t)).

Definition AbstractStore: storet -> store -> storet -> Prop := (* Coh. store-type *)
[S1:storet][s:store][S2:storet]

(((i:loc)(v:value) (s i)=(Some value v) ->
(EX t:type | ((S2 i)=(Some type (RefType t)) /\ (TypeOf S1 v t) )))

/\ ((i:loc) (s i)=(None value) -> (S2 i)=(None type))).
Definition FixAbstract: env -> store -> envt -> storet -> Prop := (* Coh. env-type-store *)
[e:env][s:store][E:envt][S:storet] ((AbstractEnv S e E) /\ (AbstractStore S s S)).

Fig. 18. Sketch of Type-checking Rules in Coq

— (evalRef) This rule encodes the semantic rule (Red·Ref). Observe the use of the
sbrk function, which extends a given store (partial function), via the (here omitted)
auxiliary function extend store;

— ((evalDeref)) This rule first verifies that the required location belongs to the store-
domain (recall that stores are partial functions), and then directly accesses the store
leaving the store itself unmodified;

— (evalAssign) This rule first evaluates the lvalue and the rvalue, then verifies that the
location corresponding to the lvalue defined in the store, and finally modifies the store
in situ;

— (callclosureOK), (matchCons) Again another two clones of the (Call·FunOK) (resp.
(Match·Pair) natural semantic rules;

— (matchRef) This rule first verifies that the given location i has some meaning in the
store s, and then matches the x pattern in (PRef x) against (Loc i).
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7.3. Type System

The encoding of the type system is rather straightforward, again as a consequence of
our DIMPRO pattern. The encoding is comprised of three inductive functions, namely
TypeCheckPattern, TypeCheckExpr, and TypeOf, to type-check patterns, terms and val-
ues, respectively. The latter function needs two important auxiliary functions, namely
AbstractEnv, and AbstractStore, to keep consistency between types environments (Γ)
and typed stores (σ). We discuss the most intriguing rules presented in Figure 18.

— (tcPOpCons), (tcApp) Those rules encode the type-checking rule for patterns (Patt·Algbr),
and terms (Term·Appl), respectively: they make use of the function NormalizeFunType

which behaves as a coercion to a functional type;
— (tcRef), (tcDeref), (tcAssign) Those rules encode the type rules (Type·Ref), (Type·Deref),

and (Type·Assign): they just mimic the corresponding rules in natural semantics;
— (aeExtend) This rule is the counterpart of the judgment ρ̀ (see Subsection 4.1) that

assigns a type (i.e., a context) to an untyped environment; to ease the proof devel-
opment, the encoding makes use of two different partial functions, namely envt and
storet, to give a type to untyped environments and store; this “nuance” disappears
in the typing rule, where a context Γ binds variables and/or locations to types; a
coherence theorem (see Section 5) bridges the gap from mathematical presentation
to the encoding;

— (toClosure) This rule faithfully encodes rule (Value·Clos) (see Subsection 4.1);
— (FixAbstract) This definition is crucial to establish a coherence relation between

(un)typed environments and (un)typed stores.

7.4. Some Metatheory in Coq

The following theorems collect some results we proved in Coq on the dynamic and on
the static semantics: we refer to Section 5 for the the full metatheory, and to [LS05] for
its complete mechanical counterparts.

Theorem 10 (Coq’s Run-Time Galleria).
1 Lemma LowerWhenSbrk : (s:store)(i:loc) (* writable store for sbrk *)

i=(sbrk s) -> (a:value)
(Lower s (extend_store s i a)).

2 Lemma NoGarbageCollection : (E:expr)(e:env)(s:store)(v:value)(s1:store) (* store grows *)
(eval E e s v s1) -> (LowerDomain s s1).

3 Lemma match_deterministic : (P:pattern)(v:value)(s:store)(e:env)(e1:env)
(match P v s e e1) -> (e2:env) (* algo pattern-matching *)
(match P v s e e2) -> (e1=e2).

4 Theorem eval_deterministic : (A:expr)(e:env)(s:store)(v1:value)(s1:store) (* algo eval *)
(eval A e s v1 s1) -> (v2:value)(s2:store)
(eval A e s v2 s2) -> ((v1=v2) /\ (s1=s2)).

5 Theorem call_deterministic: (v1,v2:value)(s:store)(r1:value)(s1:store) (* algo call *)
(call v1 v2 s r1 s1) -> (r2:value)(s2:store)
(call v1 v2 s r2 s2) -> ((r1=r2) /\ (s1=s2)).

Theorem 11 (Coq’s Compile-Time Galleria).
1 Lemma NormalizeFunType_deterministic: (t,t1:type) (* arr-function is deterministic *)

(NormalizeFunType t t1) -> (t2:type)
(NormalizeFunType t t2) -> (t1=t2).
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2 Lemma TypeCheckPattern_deterministic: (E:envt)(P:pattern)(E1:envt)(t1:type)
(TypeCheckPattern E P E1 t1) -> (E2:envt)(t2:type) (* algo type-check pattern *)
(TypeCheckPattern E P E2 t2) -> ((E1=E2) /\ (t1=t2)).

3 Lemma TypeCheckExpr_deterministic: (E:envt)(A:expr)(t1:type) (* algo type-check expr *)
(TypeCheckExpr E A t1) -> (t2:type)
(TypeCheckExpr E A t2) -> (t1=t2).

4 Lemma open_subject_reduction_match: (P:pattern)(v:value)(s:store)(e,e’:env)
(match P v s e e’) -> (E:envt)(S:storet) (* SR for open expr match*)
(FixAbstract e s E S) -> (E1:envt)(t1:type)
(TypeCheckPattern E P E1 t1) -> (TypeOf S v t1) -> (AbstractEnv S e’ E1).

5 Lemma open_subject_reduction: (A:expr)(e:env)(s:store)(v:value)(s2:store)
(eval A e s v s2) -> (E:envt)(S:storet) (* SR for open expr eval *)
(FixAbstract e s E S) -> (t:type)
(TypeCheckExpr E A t) -> (EX S2:storet | ((Coherent s S s2 S2) /\ (TypeOf S2 v t))).

6 Theorem subject_reduction: (A:expr)(v:value)(s2:store) (* SR for closed expr *)
(eval A env_init store_init v s2) -> (t:type)
(TypeCheckExpr envt_init A t) ->
(EX S2:storet | ((Coherent store_init storet_init s2 S2) /\ (TypeOf S2 v t))).

Since data-structures for stores, environments, terms, values, and types are isomorphic
in “mathematics” and in Coq, the adequacy result comes directly as a matter of fact. To
resume, we label with a “

√
” all theorems proved by the proof assistant Coq.

(Determinism)
√

If σ � ρ ` A ⇓val A
′
v � σ′, and σ � ρ ` A ⇓val A

′′
v � σ′′, then A′

v ≡ A′′
v , and

σ′ ≡ σ′′;
(Unique Type)

√
If Γ

À
A : τ , then τ is unique;

(Coherence)
√
σ �ρ `coh Γ if there exist two sub-contexts Γ1, and Γ2, such that Γ1,Γ2 ≡

Γ, and Γ σ̀ σ : Γ1, and Γ ρ̀ ρ : Γ2;
(Subject-reduction)

√
If ∅

À
A : τ , and ∅ � ∅ ` A ⇓val Av � σ, then there exists Γ′ which

extend Γ, such that Γ′
σ̀ σ : ok, and Γ′

v̀ Av : τ .
(Type-soundness) If ∅

À
A : τ , then ∅ � ∅ ` A ⇓call Av, for some Av;

(Type-checking) It is decidable if there exists a type τ such that ∅
À
A : τ ;

(Type-reconstruction) It is decidable if, for a given τ , is it true that ∅
À
A : τ .

8. Conclusions, Related, Future

In this paper, we have presented a formal development of the theory of iRho, a typed
rewriting-based calculus featuring term-rewriting, pattern-matching on imperative terms,
structures, functions, and side-effects. We mix rewriting (for rule-based languages), with
functions (for functional languages), structures (for logic-like languages) and safe imper-
ative structures, all “glued” by a pattern-matching algorithm that takes into account the
imperative features. To our knowledge, no similar study can be found in the literature.

We presented a clean and compact formalization of iRho in the proof assistant Coq.
The Subject-reduction theorem, which is particularly tricky on paper, was proved in
Coq with relatively little effort. The full proof development amounts approximately to
43Kbyte and the size of the .vo file is approximately 1Mbyte, working with CoqV7.2.

During development we often had the feeling that the mathematical design was driven
both by the machine assisted certification and by the software implementation, and that
the feedback between those three phases (usually considered distinct) was crucial in order
to make safe software and safe theory.

The lesson learned with iRho was that the hand of the math’s designer must be in strict
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contact with the hand of the software’s designer, which, in turn, must be in strict contact
with the hand of the proof’s certifier. Our recipe probably suggests a new schema, or
“pattern”, in the sense of “The Gang of Four” [GHJT94], for design-implement-certify
safe software. This could be subject of future work. Our software interpreter is surely
a good test of the “methodology”. More generally, this methodology could be applied
in the setting of raising quality software to the highest levels of the Common Criteria,
CC [Com05] (from EAL5 to EAL7), or level five of the Capability Maturity Model, CMM.
We schedule in our agenda to “formalize” our novel pattern DIMPRO, in the folklore
of “design pattern”, hoping that it would be useful to the community developing safe
software for crucial applications.

Related Some implementations of the untyped Rewriting-calculus (uRho) can be found
in the literature. Among them we distinguish:

— RhoStratego [Str03] is an implementation of an early version of the uRho [CK01],
written in the strategic language Stratego [Str05]. The implementation tests strategic
programming with higher-order functional programming;

— Rogue [SS05] is another implementation of a dialect of the uRho [CK01]: this im-
plementation is very interesting since some imperative features are added to the
language, e.g. reading and writing “attributes” of expressions and a fixed strategy.
Rogue has an interesting application, namely, it is the implementation language for
building a new Validity Checker based on the CVC [SBD02] infrastructure;

— JRho [FM02] is a Java prototype of uRho [CK01], using the TOM pattern-matching
compiler [MRV03].

Future The iRho calculus is suitable for extension with more powerful pattern-matching
algorithms, and more sophisticated type systems capturing all modern object-oriented
features, both class-based and prototype-based ones. Among the possible developments,
we identify the following.

— To add an exception handling mechanism, following the lines of [CKL02]; this would
leads to modify static and dynamic semantics.

— To add a subtyping relation; this would allow one to type-check considerably more
programs in iRho, by enhancing the type system with bounded polymorphism and
object-types, together with the design of a type inference algorithm.

— To enhance the calculus with garbage collection: today, new locations created during
reduction remain in the store forever; extending the calculus with suitable modern
exception mechanisms would be also worth studying.

— To analyze, perhaps using abstract interpretation or static analysis techniques, the
possibility to statically catch some pattern-matching failures.

— To enhance our matching algorithm with residuation and narrowing, in the style of
the functional-logic programming language Curry by Michael Hanus [Han97].

— To add some ad hoc XML primitives to iRho.
— To enhance our proof development, in order to reach software extraction via Coq; this

would be particularly appealing, since it would eliminate one cycle in our DIMPRO

pattern.
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— To conceive, following the “design pattern” jargon, the pattern DIMPRO.
— To apply DIMPRO to the design of a simple compiler from iRho toward an abstract

machine, like JVM, or .NET, or to a variant of a Landin’s machine [BZ02].
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P. Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory. Bibliopolis,

Naples, 1984.

Maude Team. The Maude Home Page, 2005. http://maude.cs.uiuc.edu/.

N. P. Mendler. Inductive Definition in Type Theory. PhD thesis, Cornell University, Ithaca,

USA, 1987.

J. G. Morrisett, M. Felleisen, and R. Harper. Abstract Models of Memory Management. In In

Proc. of FPCA, pages 66–77. The ACM Press, 1995.

Microsoft. The C# Home Page, 2005. http://msdn.microsoft.com/vcsharp/.

R. Milner. CS 3 Language Semantics. Course notes, LFCS, University of Edinburgh, 1986-87.

N. P. Mendler, P. Panangaden, and R. L. Constable. Infinite Objects in Type Theory. In Proc.

of LICS, pages 249–255, 1986.

P.E. Moreau, C. Ringeissen, and M. Vittek. The Tom Home Page, 2003. http://tom.loria.fr/.

I. A. Mason and C. L. Talcott. References, Local Variables and Operational Reasoning. In In

Proc. of LICS, pages 66–77, 1992.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised).

MIT Press, 1997.

G. D. Plotkin. A Structured Approach to Operational Semantics. Technical Report DAIMI

FN-19, Aarhus University, 1981.

G. D. Plotkin. The Origins of Structural Operational Semantics. J. Log. Algebr. Program.,

60-61:3–15, 2004.

Protheo Team. The Elan Home Page, 2005. http://elan.loria.fr.

J. Rees (eds.) R. Kelsey, W. Clinger. Revised5 Report on the Algorithmic Language Scheme.

Higher-Order and Symbolic Computation, 11(1), 1998. Also in ACM SIGPLAN Notices, Vol.

33, No. 9, 1998.

33
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