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Abstract

In this paper we develop the language theory underpinning the logical framework
PLF. This language features lambda abstraction with patterns and application via
pattern-matching. Reductions are allowed in patterns. The framework is partic-
ularly suited as a metalanguage for encoding rewriting logics and logical systems
where proof terms have a special syntactic constraints, as in term rewriting systems,
and rule-based languages. PLF is a conservative extension of the well-known Edin-
burgh Logical Framework LF. Because of sophisticated pattern matching facilities
PLF is suitable for verification and manipulation of HXML documents.

1 Introduction

History

Since the introduction of Logical Frameworks [6, 9], blending dependent
typed λ-calculi with rewriting systems has been a major challenge in the last
decades, see [16, 11, 18, 5, 7, 13]. Blending lambda calculi and rewrite rules
enhances the usability of the system as a metalanguage for logics. The expres-
siveness of the system does not increase, since already the Logical Framework
of [9] is a universal language for encoding formal systems. Clearly rewrite
systems can provide in many instances much more natural and transparent
encodings, thus improving the overall pragmatic usability of the system, and
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the possibility of automating decision procedures, such as checking and en-
coding equality.

The Pattern Logical Framework PLF

In this paper, we present an uniform framework based on a dependent
typed lambda calculus enriched with pattern matching in lambda abstrac-
tion, called PLF. In contrast to the simple λ-calculus, the pattern-matching
algorithm can either fire a substitution, or stick the computation unless fur-
ther substitution are provided. The following simple example illustrates the
point: M ≡ (λ(f y).y) x is stuck, but

(λ(f x).M) (f (f 3)) 7→→β 3

Furthermore, for a given pattern inside an abstraction, the user can explicitly
discriminate between variables that will be bound in the body, and variables
that can be bound in an external context containing the abstraction itself.
This freedom is particularly appreciated in patterns that evolve (by reduction
or substitution) during execution, e.g.

(λx.λP [x].N) M 7→β λP [M ].N

PLF extends the subsystem of [3] corresponding to LF in allowing reductions
inside patterns. As it is well-known, since the seminal work of [18], variables
in patterns can be bound only if they occur linearly and not actively (i.e. not
in functional position), hence extra care has to be payed when reductions are
allowed in patterns.

PLF as an untyped rule-based language

The first step to appreciate the framework is to play with the untyped
Rewriting calculus (RHO) [17]; is essentially the untyped alter ego of our PLF.
Thanks to its high-level pattern-matching features, the RHO is particularly
well-suitable for programming various transformations on HXML documents
(traversals, trees-transformations, etc.). Its design follows a longstanding re-
search on rule-based languages, like Elan, Maude, OBJ∗, ASF+SDF. Program-
ming by pattern-matching in the RHO allows us to implement a large collection
of rule-based systems and algorithms to manipulate or simply browse HXML
documents. Most of the systems presented in the workshop, like the one of
Ballis et al. [2, 1], or the one of Kirchner et al. [12], or the one of Lucas [15]
are rule-based systems, hence de facto they can be expressed in the Rewrit-
ing calculus. Also more complex systems employed to check legacy of HXML
code, like the one of Finkelstein [8], are “programmable” in the RHO. The
following simple example, written in the running syntax of the untyped PLF
interpreter [14], illustrates a function that recursively “navigates” web pages
trying to index a given page (in the following read a rewrite rule P->M as
an untyped PLF term, i.e. λP.M, and let any sequence of capital letters be a
variable, and let any other sequence be an algebraic constant):



LINK = rho.inria.fr;; http link to find

INDEX = L -> (ohyeahpleaseindex L);; simple function indexing L

LOAD = (gigi.inria.fr -> GIGI, function loading http pages

claude.inria.fr -> CLAU,

horatiu.inria.fr -> HORA)

four http pages

WWV = (html ((markup (markup pc),(href claude.inria.fr)),(markup (markup pc),(markup pc))));;

CLAU = (html ((markup (markup pc),(markup pc)),(markup (href horatiu.inria.fr),(markup pc))));;

HORA = (html ((markup (href gigi.inria.fr),(markup pc)),(markup (markup pc),(markup pc))));;

GIGI = (html ((markup ((markup pc),(markup pc))),(markup ((markup pc),(href rho.inria.fr)))));;

[FINDLINK = (html BODY) -> (FIND BODY) find a LINK in a web page (recursively)

|

FIND = ( pc ->|, the core function

(markup X) -> (FIND X) ,

(href LINK) -> (INDEX LINK),

(href L\LINK) -> (FINDLINK (LOAD L)),

((href LINK) ,BODY) -> (INDEX LINK),

((href L\LINK),BODY) -> ((FINDLINK (LOAD L)),(FIND BODY)),

((markup X) ,BODY) -> ((FIND X) ,(FIND BODY)))

];;

(FINDLINK WWV);; calling FINDLINK on input WWV

In the rest of the paper, we show some classical HXML-oriented routines,
written in the RHO, that can be runned (in the “untyped’ mode”) and certified
in our PLF (using dependent type theory).

PLF as a type-based & pattern-matching based metalanguage

More interesting, the full framework features formal reasoning on the se-
mantics of the routines you have programmed. This can be done by using
meta-programming and dependent-types in PLF; in other words we can rea-
son about the meaning of an HXML routine and prove properties like the one
proving that the routine meets the specification, i.e. “it really does the job it
was conceived for”.

We present one crucial example of encoding, which capitalizes on patterns,
namely we completely formalize in the framework the operational semantics
of the Rewriting calculus (RHO). We formalize syntax and small-step oper-
ational semantics. The main advantages of using PLF instead of the orig-
inal Edinburgh Logical Framework LF is that PLF is equipped with built-in
pattern-matching facilities (a superset of the pattern-matching facilities of the
Rewriting Calculus). This permits to specify the target language using less
subcategories and, as a direct consequence, all proofs, like the crucial one of
Church Rosser becomes simpler in size and in complexity, since proofs terms
are smaller w.r.t. the equivalent ones in plain LF. This is one achievement of
the framework. A (functional) certified interpreter can be also extracted from
the specifications.

Sum up

Although the first part of the paper presenting PLF is “theoretically” dense
(the addiction of pattern-matching and rewriting-based features to the Logical
Framework is not so simple as one might imagine) we think that the second
part is more “easy to digest” for an HXML-acolyte. At the very end of the



story, programming and verifying HXML-oriented routines (and their inter-
preters) within the rule-based paradigm, using high-level pattern-matching
features offered by the Pattern Logical Framework (PLF), and running those
routines in the corresponding untyped Framework (RHO) is one of the main
challenges of this research vein and is it our humble opinion that this paper
completely fits the scope of the workshop.

Summarizing, PLF and its alter ego, the RHO adhere to the novel funda-
mental paradigm of programming with proofs, with a particular increasingly
interest on web applications.

The full meta-theory of PLF will appear in a companion paper [10].

2 The Pattern Logical Framework

We present the syntax of PLF, a logical framework with pattern-matching
features. Since patterns occurs as binders in abstractions, the types of the
“matchable” variable in the pattern are declared in suitable contexts, i.e. a
pattern abstraction has the form λP :∆.M , where ∆ contains the types of
the free-variables of P (bound in M). Therefore, the contexts defining the
types of the free variables of these patterns are given explicitly as part of the
abstraction. The context ∆ can discriminate on variables that are suitable
to be matched and variables that are not, the latter are de facto considered
as constants. This treatment of constants simplifies the presentation of the
system since constants are now considered as variables that cannot be bound.
This mechanism implies also that some patterns can evolve during reduction
via substitution; to do this in a sound way, the pair pattern-context must be
constrained to satisfy suitable restrictions.

2.1 PLF’s Terms

The first definition introduces the pseudo-syntax for kinds, families, objects
and contexts.

Definition 2.1 [PLF’s Pseudo-syntax]

Γ, ∆ ∈ C Γ ::= ∅ | Γ, x:K | Γ, x:A

K ∈ K K ::= Type | ΠM :∆.K

A, B, C, P,Q ∈ F A ::= x | ΠM :∆.A | λM :∆.A | A M

M, N, P, Q ∈ O M ::= x | λM :∆.M | M M

As usual, application associates to the right. Let “T” range over any term
in the calculus, and let the symbol “X” range over the set {λ, Π}. To ease
the notation, we write Xx:T1.T2 for Xx:(x:T1).T2 in case of a variable-pattern.



Intuitively, the context ∆ in λP :∆.M contains the type declarations of some
(but not all) of the free variables appearing in the pattern P . These variables
are bound in the (pattern and body of the) abstraction; the reduction of an
application (λP :∆.M) N strongly depends on the free-variables of P declared
in ∆, all the other variables being handled as constants. The free variables of
P not declared in ∆ are not bound in M but can be bound outside the scope
of the abstraction itself. For example, in the abstraction

λ(x y z):(y:w, z:w).M

the y and z variables (of type w) are bound in M , while the x variable (not
declared in the context) is considered as free (i.e. it is de facto handled as a
constant). As in ordinary systems dealing with dependent types, we suppose
that in the context Γ, x:T , the variable x does not appear free in Γ, and T .
Some remarks to understand this syntax are in order. The following predicates
characterize the set of legal/good patterns w.r.t. a given context.

Definition 2.2 [Safe Patterns]
A safe pattern is characterized by having no free variables in functional posi-
tion, and by its linearity. This can be carefully formalized, but for the purpose
of this paper we just write

SPC(P ; V)
4= ¬APC(P ; V) ∧ LPC(P ; V).

where P ∈ O, and V is a finite set of variables. This definition can be extended
point-wise to substitutions, families and kinds.

Given the above restrictions on objects occurring in patterns, we can thus
define a safe/legal PLF syntax as follows:

Definition 2.3 [PLF’s Safe Syntax]
A term in the PLF syntax is safe if any subterm XP :∆.T occurring in it is
such that

SPC(P ; Dom(∆)) ∧ SPC(T ; Dom(∆))

In the rest of the paper we shall consider only safe terms. The definition
of free variables needs to be customized as follows.

Definition 2.4 [Free Variables]
The set Fv of free variables is given by:

Fv(XT1:∆.T2)
4= (Fv(T1) ∪ Fv(T2) ∪ Fv(∆)) \ Dom(∆)

Fv(∆, x:T )
4= Fv(∆) ∪ (Fv(T ) \ Dom(∆))

The set Bv of bound variables of a term is the set of variables in the
term which are not free. Since we work modulo α-conversion, we suppose



that all bound variables of a term have different names and therefore, the
domains of all contexts are distinct. A suitable, intuitive, (re)definition of
simultaneous substitution application (denoted by θ) to deal with the new
forms of abstraction is assumed.

2.2 Operational Semantics

PLF features pattern abstractions whose application requires solving matching
problems. The matching algorithm is first-order, terminating, deterministic,
and works modulo α-conversion and Barendregt’s hygiene-convention. We
write θ for the successful output of Alg(P ·N ·V). It is presented in [10]. The
next definition introduces the classical notions of one-step, many-steps, and
congruence relation of →β.

Definition 2.5 [One/Many-Steps, Congruence]
Let θ = Alg(P ·N · Dom(∆)).

(i) The top-level rules are

(βp−Obj) (λP :∆.M) N →β Mθ

(βp−Fam) (λP :∆.A) N →β Aθ

(ii) Let C[−] denote a pseudo-context with a “single hole” inside, it is defined
as follows

C[−] ::= [−] | C[−]T | T C[−] | XP :∆.C[−] | XP :C[−].T | Γ, x:C[−]

and let C[T ] be the result of filling the hole with the term T . The
one-step evaluation 7→β is defined by the following inference rules

T1 →β T2

C[T1] 7→β C[T2]
(Ctx)

P →β Q SPC(Q; Dom(∆))

Fv(P ) ∩ Dom(∆) = Fv(Q) ∩ Dom(∆)

XP :∆.T 7→β XQ:∆.T
(CtxX)

The intended meaning of the (Ctx) rule is the usual one. Rule (CtxX)
forbids Kβ-reductions in patterns enforces the safe pattern condition in
both redex and the reduced term.

(iii) The many-step evaluation 7→→βp and the congruence relation =β are respec-
tively defined as the reflexive-transitive and reflexive-symmetric-transitive
closure of 7→βp .



Dependent Syntax

Γ ::= ∅ | Γ, x:K | Γ, x:A

K ::= Type | ΠM :∆.K

A ::= x | ΠM :∆.A | λM :∆.A | A M

M ::= x | λM :∆.M | M M

Safe Syntax

XM :∆.T ∈ C,K,F ,O =⇒

SPC(M ; ∆) ∧ SPC(T ; ∆)

Contexts rules

` ∅
(C·Empty)

` Γ Γ ` K x 6∈ Dom(Γ)

` Γ, x:K
(C·Kind)

` Γ Γ ` A : Type x 6∈ Dom(Γ)

` Γ, x:A
(C·Type)

Kind rules

` Γ

Γ ` Type
(K·Type)

Γ, ∆ ` M : A Γ, ∆ ` K

Γ ` ΠM :∆.K
(K·Pi)

Families rules

` Γ x:K ∈ Γ

Γ ` x : K
(F·Var)

Γ, ∆ ` M : B Γ, ∆ ` A : Type

Γ ` ΠM :∆.A : Type
(F·Pi)

Γ, ∆ ` M : B Γ, ∆ ` A : K

Γ ` λM :∆.A : ΠM :∆.K
(F·Abs)

Γ ` A : ΠN :∆.K Γ, ∆ ` N : B Γ ` M : B

Γ ` A M : (λN :∆.K) M
(F·Appl)

Γ ` A : K′ Γ ` K K =β K′

Γ ` A : K
(F·Conv)

Object rules

` Γ x:A ∈ Γ

Γ ` x : A
(O·Var)

Γ, ∆ ` M : B Γ, ∆ ` N : A

Γ ` λM :∆.N : ΠM :∆.A
(O·Abs)

Γ ` M : ΠP :∆.A Γ, ∆ ` P : B Γ ` N : B

Γ ` M N : (λP :∆.A) N
(O·Appl)

Γ ` M : A Γ ` B : Type A =β B

Γ ` M : B
(O·Conv)

Figure 1. PLF’s Type Rules

2.3 PLF’s Type System

PLF involves type judgments of the following shape:

` Γ Γ ` K Γ ` A : Type Γ ` M : A

In the type system rules of PLF (Figure 1) some rules are quite similar to the
ones of the classical logical framework, but others deserve a brief explanation:

• The (F·Abs), (O·Abs) rules deal with λ-abstractions in which we bind over
(non trivial) patterns; this rule requires that the pattern and the body of
the abstraction are typable in the extended context Γ, ∆.

• The (F·Appl), (O·Appl) rules, give a type to an application; this type con-
trasts with classical type systems which utilize meta-substitutions. Suitable
applications of (F·Conv), (O·Conv) rule can reduce this type.

• The (K·Pi), (F·Pi) rules, give a type to a kind and family products. As for
λ-abstractions we require that the pattern and the body of the abstraction
are typable in the extended context Γ, ∆.



Syntax and Operational Semantics

P ::= x | A | P _ M

A ::= f | A P

M ::= P | M M

(P _ M) N →ρ Mθ with θ = Alg(P ·N · Fv(P ))

(M1 ,M2) M3 →δ (M1 M3 ,M2 M3)

N.B. both (M1 ,M2) and →δ are derivable

Syntactic Categories

o : Type

Operations (we short on for o → . . . → o︸ ︷︷ ︸
n times

and XC[x]:(x:on) for XC[xon ] )

Alg : o2 Rew : o2 → o App : o3 Pair : o3

Judgments

= : o → o → Type

Rewriting encoding J− K : Rho ⇒ PLF

Jx K 4= x

J f K 4= Alg f

JA P K 4= App JA K J P K

JP _ M K 4= Rew (λJP K:∆. JM K) ∆ 4=Fv(P ):o

JM N K 4= App JM K J N K

JM ,N K 4= Rew (λx:o. Pair (App JM Kx) (App JN Kx))

Axioms and Rules

Eqrefl Eqsymm Eqtrans Eqctx as in the lambda calculus encoding (see [9])

Rho : Πr:o2. Πa:o. App (Rew r) a = r a

Eta : Πx:o. Rew (λy:o. App x y) = x

Xi : Πr:o2. Πs:o2. (Πa:o. r a = s a) → Rew r = Rew s

Delta : ΠRew (λx:o. Pair (App yo x) (App zo x)). Πa:o.

App (Rew (λx:o. Pair (App y x) (App z x))) a =

Rew (λv:o. Pair (App (App y a) v) (App (App z a) v))

Figure 2. Classical RHO Encoding using PLF as a Metalanguage

3 Examples

3.1 PLF as a metalanguage

Readers familiar with the activity of encoding systems in LF will surely ap-
preciate the usability of this metalanguage and will play with it providing
only one, crucial example, namely the encoding of the untyped alter ego of
PLF i.e. the RHO in PLF. This example illustrates how patterns can safely



relace sub-categories and coercions in the encoding of syntax. The Rewriting
calculus [4,5], is a simple higher-order calculus where functions can be applied
only upon reception of an argument whose “pattern” matches with the one
explicitly declared in the function itself. This allows to represents naturally
classical lambda calculus and many term rewriting systems. What makes the
rewriting calculus appealing for reasoning on the web is precisely its founda-
tional features that allow us to represent the atomic actions (i.e. rules) and
the chaining of these actions (i.e. strategies) in order to achieve a global goal
like, for example, transforming semi-structured data, extracting informations
or inferring new ones. As the matching mechanism of the calculus can be
parameterized by a suitable matching theory, this allows us for example to
express in a precise way how the semi-structured data should be matched.
The encoding in PLF is shown in Figure 2. We omit adequacy results.

We conclude by recalling that the sophisticated shapes of patterns and the
built-ins pattern matching facilities make PLF (and its extensions) suitable for
modeling regular languages, theory of functions, and term rewriting systems
that are the engine of many HXML manipulations.

3.2 PLF as a rule based language

We present some HXML-oriented routines, written in the untyped PLF, i.e.
the RHO [14], that can be either run and certified in our PLF interpreter [14].
In Figure 3, the first example find in an HXML catalogue the n-th item, the
second example selects all the Italians items, the third example translates all
the Italians items in the catalogue into French ones, and the last example drop
all the Italians items.

3.3 During the workshop

During the workshop (when showing the encoding of the Rewriting calculus in
PLF), Shriram Krishnamurthi raised an interesting question about the strong
normalization of the type system of PLF. Since PLF is a direct derivate of the
rewriting calculus, and since the latter has another type system that does not
normalize (see e.g. [5]), the question was pertinent. The strong normalization
result of the PLF type system is showed in a companion technical paper [10].
The encoding was about the dynamic semantics of the untyped Rewriting
calculus. We can encode also one of the many different type systems for the
Rewriting calculus, e.g. the one presented in [14].

Another interesting question, raised by Anthony Finkelstein, was about
the need of fixpoints and recursive functions in web verification routines. The
answer was suggested by Jan Scheffczyk and myself: very often we would need
to verify some properties in a web page and recursively in all pages pointed by
the page itself via href (like in the example presented in the Introduction); in
this case, the presence of recursion via a fixpoint may be definitively useful.



*** Some list of numbers ***

ZERO = 0;; ONE = (succ 0);; TWO = (succ ONE);; THREE = (succ TWO);;

FOUR = (succ THREE);; FIVE = (succ FOUR);; SIX = (succ FIVE);; SEVEN = (succ SIX);;

EIGHT = (succ SEVEN);; NINE = (succ EIGHT);; TEN = (succ NINE);;

*** Some list of friends ***

ME = (person ((first luigi) ,(last liquori) ,(sex m),(empl inria) ,(nat it) ,(cat ONE)));;

YOU = (person ((first jessica) ,(last rabbit) ,(sex f),(empl disney) ,(nat usa),(cat TWO)));;

SHE = (person ((first helene) ,(last kirchner),(sex f),(empl cnrs) ,(nat fr) ,(cat ZERO)));;

HIM = (person ((first claude) ,(last kirchner),(sex m),(empl inria) ,(nat fr) ,(cat FOUR)));;

HER = (person ((first uma) ,(last thurman) ,(sex f),(empl hollywd) ,(nat usa),(cat FIVE)));;

BIG = (person ((first bg) ,(last sidharth),(sex m),(empl birla) ,(nat in) ,(cat SIX)));;

HEAD = (person ((first moreno) ,(last falaschi),(sex m),(empl siena) ,(nat it) ,(cat TWO)));;

BOSS = (person ((first furio) ,(last honsell) ,(sex m),(empl udine) ,(nat it) ,(cat ONE)));;

JEFE = (person ((first maria) ,(last alpuente),(sex f),(empl valencia),(nat es) ,(cat ZERO)));;

GURU = (person ((first salvador),(last lucas) ,(sex m),(empl papaya) ,(nat es) ,(cat ONE)));;

*** The DB ***

DB = (group (ME,YOU,SHE,HIM,HER,BIG,HEAD,BOSS,JEFE,GURU,nil));;

*** FINDN: Find in a DB the nth Element in a xml catalogue ***

[FINDN = ((0,nil) -> fail, ((succ N),(group nil)) -> fail,

((succ 0),(group (X,Y))) -> X, ((succ N),(group (X,Y))) -> (FINDN (N,(group Y))))];

(FINDN (THREE,DB));;

*** SELECTIT: Select in a DB the all the items of "it" nationality ***

[SELECTIT =

((group (nil)) -> (nil),

(group ((person (X, (nat it) ,V)),Z)) -> ((person (X,(nat it) ,V)),

(SELECTIT (group Z))),

(group ((person (X,\(nat it) ,V)),Z)) -> (SELECTIT (group Z)))];;

(SELECTIT DB);;

*** NOITWFR Translate all the ‘‘it’’ items into ‘‘fr’’ items ***

[NOITWFR = ((group (nil)) -> (nil),

(group ((person (X,(nat it),V)),Z)) -> (NOITWFR (group Z)),

(group ((person (X,(nat \it),V)),Z)) -> (group ((person (X,(nat fr),V)),

(NOITWFR (group Z)))))];;

(NOITWFR DB);;

*** DROPIT: Kill in a DB the all the items of "it" nationality ***

[DROPIT = ((group (nil)) -> (nil),

(group ((person (X, (nat it),V)),Z)) -> (DROPIT (group Z)),

(group ((person (X,Y\(nat it),V)),Z)) -> ((person (X,Y,V)),(DROPIT (group Z))))];;

(DROPIT DB);;

Figure 3. Four examples using the Untyped PLF(i.e. the RHO) as Rule-based Lan-
guage
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