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Abstract
The LFP Framework is an extension of the Harper-Honsell-
Plotkin’s Edinburgh Logical Framework LF with external pred-
icates. This is accomplished by defining lock type constructors,
which are a sort of �-modality constructors, releasing their ar-
gument under the condition that a possibly external predicate is
satisfied on an appropriate typed judgement. Lock types are de-
fined using the standard pattern of constructive type theory, i.e. via
introduction, elimination, and equality rules. Using LFP , one can
factor out the complexity of encoding specific features of logical
systems which are awkwardly encoded in LF, e.g. side-conditions
in the application of rules in Modal Logics, substructural rules as
in non-commutative Linear Logic, and pre- and post-conditions in
Hoare-like programming languages. Once these conditions have
been isolated, their verification can be delegated to an external
proof engine, in the style of Poincaré Principle. We investigate
and characterize the metatheoretical properties of the calculus un-
derpinning LFP , proving strong normalization, confluence, and
subject reduction. This latter property holds under the assumption
that predicates are well-behaved, i.e. closed under weakening, per-
mutation, substitution, and βL-reduction in the arguments.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

General Terms Theory, Verification

Keywords Type theory, Logical Frameworks

1. Introduction
The Edinburgh Logical Framework LF of [11] is a first-order con-
structive type theory. It was introduced as a general metalanguage
for logics as well as a specification language for generic proof-
development environments. In this paper, we consider an extension
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of LF with external predicates. This is accomplished by defining
lock type constructors, which are a sort of �-modality constructors
for building types of the shape LPN,σ[ρ], where P is a predicate on
type judgements.

Following the standard specification paradigm in Constructive
Type Theory, we define lock types using introduction, elimination,
and equality rules. Namely, we introduce a lock constructor for
building objects LPN,σ[M ] of type LPN,σ[ρ], via the introduction
rule (I) below. Correspondingly, we introduce an unlock destruc-
tor, UPN,σ[M ], and an elimination rule (E) which allows for the
elimination of the lock type constructor, under the condition that a
specified predicate P is verified, possibly externally, on an appro-
priate correct, i.e. derivable, judgement.

Γ `Σ M : ρ Γ `Σ N : σ

Γ `Σ LPN,σ[M ] : LPN,σ[ρ]
(I)

Γ `Σ M : LPN,σ[ρ]

Γ `Σ N : σ P(Γ `Σ N : σ)

Γ `Σ UPN,σ[M ] : ρ
(E)

The equality rule for lock types amounts to a lock reduction (L-
reduction), UPN,σ[LPN,σ[M ]] →L M , which allows the elimination
of a lock, in the presence of an unlock. The L-reduction combines
with standard β-reduction into βL-reduction.

LFP is parametric over a set of (well-behaved) predicates P ,
which are defined on derivable typing judgements of the form
Γ `Σ N : σ. The syntax of LFP predicates is not specified, with
the idea being that their truth is verified via an external call to a
logical system; one can view this externalization as an oracle call.
Thus, LFP allows for the invocation of external “modules” which,
in principle, can be executed elsewhere, and whose successful ver-
ification can be acknowledged in the system via L-reduction. Prag-
matically, lock types allow for the factoring out of the complexity
of derivations by delegating the {verification, computation} of such
predicates to an external proof engine or tool. Proof terms do not
contain explicit evidence for external predicates, but just record that
a verification has {to be, been} carried out. Thus, we combine the
reliability of formal proof systems based on constructive type the-
ory with the efficiency of other computer tools, in the style of the
Poincaré Principle [4].

In this paper, we develop the metatheory of LFP . Strong nor-
malization and confluence are proven without any assumptions on
predicates. For subject reduction, we require the predicates to be
well-behaved, i.e. closed under weakening, permutation, substitu-
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tion, and βL-reduction in the arguments. LFP is decidable, if the
external predicates are decidable.

Moreover, we sketch a library of external predicates, which we
use to present significant examples of encodings in LFP , which
are awkward in LF. In particular, we give smooth encodings of
side conditions in the rules of Modal Logics, in Natural Deduction
style, cf. [2, 8]. We also encode substructural logics, including
non-commutative Linear Logic, cf. [8, 21]. LFP further supports
natural dealing with program correctness and Hoare-like logics.
Capitalizing on the call to external logical systems via a simple
term application, LFP greatly simplifies the task of embedding
pre- and post-conditions in programming languages, providing a
smooth way for bridging the gap between proof assistants and
prototype programming languages. Our approach, via oracles, is
external (cf. [10] for a different, “internal” approach).

As far as expressivity is concerned, LFP is a stepping stone
towards a general theory of shallow vs. deep encodings, with our
encodings being shallow by definition. Clearly, by Church’s thesis,
all external decidable predicates in LFP can be encoded, possibly
with very deep encodings, in standard LF. It would be interesting
to state in a precise categorical setting the relationship between
such deep internal encodings and the encodings in LFP . LFP can
be viewed also as a neat methodology for separating the logical
contents from the verification, often cumbersome but ultimately
computable, of structural and syntactical properties.
Comparison with related work. The present paper continues the
research line of [13, 14], which present extensions of the original
Logical Framework LF, where a notion of β-reduction modulo a
predicate P is considered. These capitalize on the idea of stuck-
reductions in objects and types in the setting of higher-order term
rewriting systems, by Cirstea-Kirchner-Liquori [5, 7]. In [13, 14]
the dependent function type is conditioned by a predicate, and we
have a corresponding conditioned β-reduction, which fires when
the predicate holds on a {term, judgement}. In LFP , predicates
are external to the system and the verification of the validity of
the predicate is part of the typing system. Standard β-reduction
is recovered and combined with an unconditioned lock reduction.
The move of having predicates as new type constructors rather than
as parameters of Π’s and λ’s allows LFP to be a mere language
extension of standard LF. This simplifies the metatheory, while
providing a more modular approach.

Our approach generalizes and subsumes, in an abstract way,
other approaches in the literature, which combine internal and ex-
ternal derivations. And in many cases it can express and incorpo-
rate these alternate approaches. The relationships with the systems
of [5, 7, 13, 14], which combine derivation and computation, have
been discussed above. Systems supporting the Poincaré Principle
[4], or Deduction Modulo [9], where derivation is separated from
verification, can be directly incorporated in LFP . Similarly, we can
abstractly subsume the system presented in [6], which addresses a
specific instance of our problem: how to outsource the computation
of a decision procedure in Type Theory in a sound and principled
way via an abstract conversion rule.

The work presented here also has a bearing on proof irrelevance.
In [18], two terms inhabiting the same proof irrelevant type are set
to be equal. However, when dealing with proof irrelevance in this
way, a great amount of internal work is required, all of the relevant
rules have to be explicitly specified in the signature, in that the
irrelevant terms need to be derived in the system anyway. With our
approach, we move one step further, and we do away completely
with irrelevant terms in the system by simply delegating the task of
building them to the external proof verifier. We limit ourselves, in
LFP , to the recording, through a lock type, that one such evidence,
possibly established somewhere else, needs to be provided, making
our approach more modular.

In the present work, predicates are defined on derivable judge-
ments, and hence may, in particular, inspect the signature and the
context, which normal LF cannot. The ability to inspect the signa-
ture and the context is reminiscent of [19, 20], although in that ap-
proach the inspection was layered upon LF; in LFP it is integrated
in the system. This integration is closer to the approach of [16], but
more work needs to be done to compare precisely the expressive
powers.

Another interesting framework, which adds a layer on top of LF
is the Delphin system [22], providing a functional programming
language allowing the user to encode, manipulate, and reason over
dependent higher-order datatypes. However, also in this case the
focus is at the computational level inside the framework, rather
than at the capability of delegating the verification of predicates
to an external oracle.

LF with Side Conditions (LFSC), presented in [23], is more
reminiscent of our approach since “it extends LF to allow side con-
ditions to be expressed using a simple first-order functional pro-
gramming language”. Indeed, the author aims at factoring out of the
main proof the verifications of (complicated) side-conditions. Such
task is delegated to the type checker which runs the code associated
with the side-condition, verifying that it yields the expected output.
The proposed machinery is focused on providing improvements for
solvers related to Satisfiability Modulo Theories (SMT).
Synopsis. In Section 2, we present the syntax of LFP , the typ-
ing system, and the βL-reduction, together with the main meta-
theoretical properties of the system. In Section 3, we show how to
encode call-by-value λ-calculus, Modal Logics, and non-commuta-
tive Linear Logic. Conclusions and future work appear in Section 4.
In Appendix A, we collect complete definitions and proofs of the
properties of LFP , and proofs of the adequacy results.

An extended version of the present paper, including a canonical
version of LFP and more examples, appears in [15].

2. The Framework
The pseudo-syntax of LFP is presented in Figure 1. It is essentially
that of LF, with the addition, on families and objects, of a lock con-
structor, LPN,σ[−], and a corresponding lock destructor, UPN,σ[−],
on objects, both parametrized over a logical predicate P . The pred-
icate P ranges over a set of unary predicates, defined on derivable
type judgements of the form Γ `Σ N : σ. LFP is parametric over
a finite set of such predicates, the syntax of which, as they are ex-
ternal, is not specified. However, these predicates have to satisfy
certain conditions, which will be discussed below, in order to en-
sure subject reduction of the system.

Notational conventions and auxiliary definitions. Let T range over
any term of the calculus (kind, family, object). Let the symbol≡ de-
note syntactic identity on terms. The domain Dom(Γ) is defined as
usual. The definitions of free and bound variables, as well as substi-
tution are naturally extended for locked and unlocked types and ob-
jects. In particular, a substitution [M/x] on a term LPN,σ[T ] affects
T , N , and σ, i.e. (LPN,σ[T ])[M/x] = LPN [M/x],σ[M/x][T [M/x]],
and similarly for terms with the lock destructor. As usual, we sup-
pose that, in the context Γ, x:σ, the variable x does not occur free
in Γ or in σ. We will work modulo α-conversion and Barendregt’s
hygiene condition. All of the symbols can appear indexed.

The type system for LFP proves judgements of the shape:

Σ sig Σ is a valid signature
`Σ Γ Γ is a valid context in Σ

Γ `Σ K K is a kind in Γ and Σ
Γ `Σ σ : K σ has kind K in Γ and Σ
Γ `Σ M : σ M has type σ in Γ and Σ
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Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, c:σ Signatures
Γ ∈ C Γ ::= ∅ | Γ, x:σ Contexts
K ∈ K K ::= Type | Πx:σ.K Kinds

σ, τ, ρ ∈ F σ ::= a | Πx:σ.τ | σN | LPN,σ[ρ] Families
M,N ∈ O M ::= c | x | λx:σ.M |M N |

LPN,σ[M ] | UPN,σ[M ] Objects

Figure 1. LFP Syntax

(λx:σ.M)N →βL M [N/x] (β·Main)

UPN,σ[LPN,σ[M ]]→βL M (L·Main)

Figure 3. Main one-step-βL-reduction rules in LFP

In a typing judgement Γ `Σ T : T ′ (resp. Γ `Σ T ), T will
be referred to as the subject of that judgement. The typing rules of
LFP are presented in Figure 2. The rule (F ·Lock) is used to form a
lock type; the rule (O·Lock) is the corresponding introduction rule
for building objects of the lock type, while the rule (O·Unlock) is
the elimination rule. It applies only when the predicate P holds.

In LFP , we will have two types of reduction: standard β-
reduction and L-reduction. The latter allows to dissolve a lock,
in presence of a lock destructor (see Figure 3 for the main βL-
reduction rules on “raw terms”, and Figures 4–9 for the contextual
closure and βL-equivalence).

Here, we present the main properties of LFP (details and proofs
appear in Appendix A). Without any additional assumptions con-
cerning predicates, the type system is strongly normalizing and
confluent. The former follows from the strong normalization re-
sult for LF (see [11]), while the latter follows from strong normal-
ization and local confluence, using Newman’s Lemma. Weakening
and Permutation can be proven under the assumption that the predi-
cates are closed under weakening and permutation of the signature
and context, while Transitivity can be proven under the extra as-
sumption that the predicates are closed under substitution in the
argument (closure under substitution). For Subject Reduction, we
also require the predicates to be closed under βL-reduction in the
argument (closure under reduction). All of the above conditions
on predicates are collected in the definition of well-behaved predi-
cates:

Definition 1 (Well-behaved predicates). A finite set of predicates
{Pi}i∈I is well-behaved if each P in the set satisfies the following
conditions:

Closure under signature, context weakening and permutation.
If Σ and Ω are valid signatures with every declaration in Σ also
occuring in Ω, and Γ and ∆ are valid contexts with every dec-
laration in Γ also occuring in ∆, and P(Γ `Σ α) holds, then
P(∆ `Ω α) also holds.

Closure under substitution. If P(Γ, x:σ′,Γ′ `Σ N : σ) holds,
and Γ `Σ N ′ : σ′, then P(Γ,Γ′[N ′/x] `Σ N [N ′/x] :
σ[N ′/x]) also holds.

Closure under reduction. If P(Γ `Σ N : σ) holds and N →βL
N ′ (resp. σ →βL σ′) holds, then P(Γ `Σ N ′ : σ) (resp.
P(Γ `Σ N : σ′)) also holds.

Theorem 1. In LFP , the following properties hold:

Strong normalization.
1. If Γ `Σ K, then K is βL-strongly normalizing.
2. if Γ `Σ σ : K, then σ is βL-strongly normalizing.

3. if Γ `Σ M : σ, then M is βL-strongly normalizing.
Confluence. βL-reduction is confluent: if T →→βL T ′ and T →→βL T ′′,

then there exists T ′′′ such that T ′→→βL T ′′′ and T ′′→→βL T ′′′.
Transitivity. If predicates are well-behaved, then: if Γ, x:σ,Γ′ `Σ

α, and Γ `Σ N : σ, then Γ,Γ′[N/x] `Σ α[N/x].
Subject reduction. If predicates are well-behaved, then:

1. If Γ `Σ K and K →βL K′, then Γ `Σ K′.
2. If Γ `Σ σ : K and σ →βL σ′, then Γ `Σ σ′ : K.
3. If Γ `Σ M : σ and M →βL M ′, then Γ `Σ M ′ : σ.

2.1 The expressive power of LFP
Various natural questions arise as to the expressive power of LFP .
In this subsection, we only outline answers to some of these ques-
tions.
- LFP is decidable, if the predicates are decidable; this can be
proven as usual.
- If a predicate is definable in LF, i.e. it can be encoded via the
inhabitability of a suitable LF dependent type, then it is well-
behaved in the sense of Definition 1.
- All well-behaved r.e. predicates are LF-definable by Church’s
thesis. Of course, the issue is then on how “deep” the encoding
is. To give a more precise answer, we would need a more accurate
definition of “deep” and “shallow” encodings, which we still lack.
This paper can be seen as a stepping stone towards such a theory,
with our approach being “shallow” by definition, and the encodings
via Church’s thesis being potentially very, very deep.
- One may ask what the relation is between the LF encodings of,
say, Modal Logics, which are discussed in [2, 8], and the encodings
which appear in this paper (see Section 3.2 below). The former
essentially correspond to the internal encoding of the predicates
that are utilized in Section 3.2. In fact, one could express the
mapping between the two signatures as a forgetful functor going
from LFP judgements to LF judgements.
- Notice that, even when restricted to closed normal forms, so
as to be closed under substitution and reduction, well-behaved
predicates cannot be naturally encoded in pure LF. E.g. only an
infinite signature would allow an immediate encoding in LF of
the well-behaved predicate “M,N are two different closed normal
forms”.
- In order to deal in LFP with decidable predicates on open terms,
we need to introduce, as in Section 3.2, suitable constants together
with some auxiliary predicates, e.g non-occurrence of a constant or
closedeness.
- Finally, we can say that, as far as decidable predicates, LFP is
morally a conservative extension of LF. Of course, pragmatically,
it is very different, in that it allows for neat factoring out of the true
logical contents of derivations from the mere effective verification
of other, e.g. syntactical or structural properties. A feature of our
approach is that of making explicit such a separation.
- The main advantage of having externally verified predicates
amount to a smoother encoding (the signature is not cluttered by
auxiliary notions and mechanisms needed to implement the predi-
cate), allowing for the optimization of performance, if the external
system used to encode the predicate is an optimized tool, specifi-
cally designed for the issue at hand (e.g. analytic tableaux methods
for propositional formulæ).

3. Pragmatics and Case Studies
In this section, we illustrate the pragmatics of using LFP as a
metalanguage by encoding some crucial case studies.

We focus on formal systems where derivation rules are subject
to side conditions which are either rather difficult or impossible
to encode naively in a type theory-based LF, due to limitations
of the latter or to the fact that they need to access the derivation
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Signature rules

∅ sig
(S·Empty)

Σ sig
`Σ K a 6∈ Dom(Σ)

Σ, a:K sig
(S·Kind)

Σ sig
`Σ σ:Type c 6∈ Dom(Σ)

Σ, c:σ sig
(S·Type)

Context rules

Σ sig

`Σ ∅
(C·Empty)

`Σ Γ
Γ `Σ σ:Type x 6∈ Dom(Γ)

`Σ Γ, x:σ
(C·Type)

Kind rules

`Σ Γ

Γ `Σ Type
(K·Type)

Γ, x:σ `Σ K

Γ `Σ Πx:σ.K
(K·Pi)

Family rules

`Σ Γ a:K ∈ Σ

Γ `Σ a : K
(F·Const)

Γ, x:σ `Σ τ : Type

Γ `Σ Πx:σ.τ : Type
(F·Pi)

Γ `Σ σ : Πx:τ.K Γ `Σ N : τ

Γ `Σ σN : K[N/x]
(F·App)

Γ `Σ ρ : Type Γ `Σ N : σ

Γ `Σ LPN,σ[ρ] : Type
(F·Lock)

Γ `Σ σ : K Γ `Σ K′ K=βLK
′

Γ `Σ σ : K′
(F·Conv)

Object rules

`Σ Γ c:σ ∈ Σ

Γ `Σ c : σ
(O·Const)

`Σ Γ x:σ ∈ Γ

Γ `Σ x : σ
(O·Var)

Γ, x:σ `Σ M : τ

Γ `Σ λx:σ.M : Πx:σ.τ
(O·Abs)

Γ `Σ M : Πx:σ.τ Γ `Σ N : σ

Γ `Σ M N : τ [N/x]
(O·App)

Γ `Σ M : ρ Γ `Σ N : σ

Γ `Σ LPN,σ[M ] : LPN,σ[ρ]
(O·Lock)

Γ `Σ M : LPN,σ[ρ]Γ `Σ N : σ P(Γ `Σ N : σ)

Γ `Σ UPN,σ[M ] : ρ
(O·Unlock)

Γ `Σ M : σ Γ `Σ τ : Type σ=βLτ

Γ `Σ M : τ
(O·Conv)

Figure 2. The LFP Type System

σ →βL σ′

Πx:σ.K →βL Πx:σ′.K
(K·Π1·βL)

K →βL K′

Πx:σ.K →βL Πx:σ.K′
(K·Π2·βL)

Figure 4. βL-context-closure on kinds

K →βL K′

K=βLK
′

(K·Main·EqβL)

K=βLK
(K·Refl·EqβL)

K=βLK
′

K′=βLK
(K·Sym·EqβL)

K=βLK
′ K′=βLK

′′

K=βLK
′′

(K·Trans·EqβL)

Figure 5. βL-equivalence on kinds
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σ →βL σ′

Πx:σ.τ →βL Πx:σ′.τ
(F·Π1·βL)

τ →βL τ ′

Πx:σ.τ →βL Πx:σ.τ ′
(F·Π2·βL)

σ →βL σ′

σN →βL σ′N
(F·App1·βL)

N →βL N ′

σN →βL σN ′
(F·App2·βL)

N →βL N ′

LPN,σ[ρ]→βL LPN′,σ[ρ]
(F·Lock1·βL)

σ →βL σ′

LPN,σ[ρ]→βL LPN,σ′ [ρ]
(F·Lock2·βL)

ρ→βL ρ′

LPN,σ[ρ]→βL LPN,σ[ρ′]
(F·Lock3·βL)

Figure 6. βL-context-closure on families

σ →βL σ′

σ=βLσ
′

(F·Main·EqβL)

σ=βLσ
(F·Refl·EqβL)

σ=βLσ
′

σ′=βLσ
(F·Sym·EqβL)

σ=βLσ
′ : K σ′=βLσ

′′

σ=βLσ
′′

(F·Trans·EqβL)

Figure 7. βL-equivalence on families

σ →βL σ′

λx:σ.M →βL λx:σ′.M
(O·λ1·βL)

M →βL M ′

λx:σ.M →βL λx:σ.M ′
(O·λ2·βL)

M →βL M ′

M N →βL M ′N
(O·App1·βL)

N →βL N ′

M N →βL M N ′
(O·App2·βL)

N →βL N ′

LPN,σ[M ]→βL LPN′,σ[M ]
(O·Lock1·βL)

σ →βL σ′

LPN,σ[M ]→βL LPN,σ′ [M ]
(O·Lock2·βL)

M →βL M ′

LPN,σ[M ]→βL LPN,σ[M ′]
(O·Lock3·βL)

N →βL N ′

UPN,σ[M ]→βL UPN′,σ[M ]
(O·Unlock1·βL)

σ →βL σ′

UPN,σ[M ]→βL UPN,σ′ [M ]
(O·Unlock2·βL)

M →βL M ′

UPN,σ[M ]→βL UPN,σ[M ′]
(O·Unlock3·βL)

Figure 8. βL-context-closure on objects

M →βL M ′

M=βLM
′

(O·Main·EqβL)

M=βLM
(O·Refl·EqβL)

M=βLM
′

M ′=βLM
(O·Sym·EqβL)

M=βLM
′ M ′=βLM

′′

M=βLM
′′

(O·Trans·EqβL)

Figure 9. βL-equivalence on objects
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context, the structure of the derivation itself or other structures and
mechanisms not available at the object level. This is the case for
substructural and program logics [1, 2, 8].

We have isolated a library of predicates on proof terms, whose
patterns frequently occur in the examples. There are two main
archetypes: the first states that a constant k occurs (with some
modality D) in subterms satisfying the decidable property C, while
the second states that free variables only occur (with some modality
D) in subterms satisfying the decidable property C. By D we mean
phrases such as: at least once, only once, as the rightmost, does not
occur, etc. C can refer to the syntactic form of the subterm or to that
of its type, the latter being the main reason for allowing predicates
in LFP to access the context. As a side remark, we notice that
often the constraints on the type of a subterm can be expressed as
constraints on the subterm itself by simply introducing suitable type
coercion constants. In [15], we present a basic library of auxiliary
functions, which can be used to introduce external predicates of the
above archetypes.

We start with the encoding of the well known case of untyped
λ-calculus, with a call-by-value evaluation strategy. This allows us
to illustrate also how to deal with free and bound variables. Then
we discuss modal logics and we give a sketch of how to encode the
non-commutative linear logic introduced in [21]. Another example,
on program logics à la Hoare, appears in [15].

We state adequacy theorems, whose proofs appear in Ap-
pendix A.

For the sake of simplicity, in the following examples, we use the
notations σ → τ for Πx:σ.τ if x /∈ Fv(τ), and σn+1 for the n-ary
abstraction σ → . . . → σ. Moreover, we will omit the type σ in
LPN,σ[M ], where it is clear from the context.

In the adequacy theorems, we will use the notion of judgement
in η-long normal form, defined as follows:

Definition 2 (Judgements in η-long normal form).
- An occurrence ξ of a constant or a variable in a term of
a LFP judgement is fully applied and unlocked with respect
to its type or kind Π #»x 1: #»σ 1.

#»L1[. . .Π #»xn: #»σn.
#»Ln[α] . . .], where

#»L1, . . . ,
#»Ln are vectors of locks, if ξ appears in contexts of the

form
#»U n[(. . . (

#»U 1[ξ
# »
M1]) . . .)

# »
Mn], where

# »
M1, . . . ,

# »
Mn,

#»U 1, . . . ,
#»U n have the same arities of the corresponding vectors of Π’s and
locks.
- A term T in a judgement is in η-lnf if T is in normal form and
every constant and variable occurrence in T is fully applied and
unlocked w.r.t. its classifier in the judgement.
- A judgement is in η-lnf if all terms appearing in it are in η-lnf.

3.1 The untyped λ-calculus
3.1.1 Free and bound variables.
Consider the well-known untyped λ-calculus:

M,N, . . . ::= x |M N | λx.M ,

with variables, application and abstraction. We model free variables
of the object language as constants in LFP , while retaining the
full Higher-Order-Abstract-Syntax (HOAS) approach for modeling
bindable and bound variables with variables of the metalanguage,
thus delegating to the latterα-conversion and capture-avoiding sub-
stitution. Such an approach allows us to abide by the “closure under
substitution” condition for external predicates, while retaining the
ability to handle “open” terms.

The abovementioned “bindable” variables must not be confused
neither with bound variables nor with free variables. For instance,
the λ-term x (where the variable is free) will be encoded by means
of the term `Σ(free n):term for a suitable (encoding of) natural
number n (see Definition 3 below). On the other hand the λ-term
λx.x (where the variable is obviously bound) will be encoded by

`Σ λx:term.x. However, when we “open” the abstraction λx.M ,
considering the body M , we will encode the latter as x:term `Σ

ε{x}(M), where ε{x} is the encoding function defined later in this
section. In this case x is a bindable variable.

Definition 3 (LFP signature Σλ for untyped λ-calculus).
nat, term : Type O : nat S : nat2

free : nat -> term app : term3 lambda : term2 -> term

We use the natural numbers as standard abbreviations for repeated
applications of S to 0. Given an enumeration {xi}i∈N\{0} of the
variables in the untyped λ-calculus, we put:

εX (xi) =

{
xi , if xi ∈ X
free(i), if xi 6∈ X

εX (MN) = (app εX (M) εX (N))

εX (λx.M) = (lambda λx:term.εX∪{x}(M))

where in the latter clause, x 6∈ X .

Theorem 2 (Adequacy of syntax). Given an enumeration {xi}i∈N\{0}
of the variables in the λ-calculus, the encoding function εX is a bi-
jection between the λ-calculus terms with bindable variables in
X and the terms M derivable in judgements Γ `Σλ M : term
in η-lnf, where Γ = {x : term | x ∈ X}. Moreover, the encod-
ing is compositional, i.e. for a term M , with bindable variables
in X = {x1, . . . , xk}, and N1, . . . , Nk, with bindable variables
in Y , the following holds: εX (M [N1, . . . , Nk/x1, . . . , xk]) =
εX (M)[εY(N1), . . . , εY(Nk)/x1, . . . , xk].

Proof. See Appendix A.2.1.

3.1.2 Untyped λ-calculus and call-by-value reduction
strategy.

The call-by-value (CBV) evaluation strategy can be specified by:

`CBV M = M
(refl)

`CBV N = M

`CBV M = N
(symm)

`CBV M = N `CBV N = P

`CBV M = P
(trans)

`CBV M = N `CBV M ′ = N ′

`CBV MM ′ = NN ′
(app)

v is a value

`CBV (λx.M)v = M [v/x]
(βv)

`CBV M = N

`CBV λx.M = λx.N
(ξv)

Definition 4 (LFP signature ΣCBV for λ-calculus CBV reduction).
We extend the signature of Definition 3 as follows:

triple : Type
〈 , , 〉 : term -> term2 -> term2 -> triple
eq : term -> term -> Type
refl : ΠM:term.(eq M M)
symm : ΠM:term.ΠN:term.(eq N M) -> (eq M N)
trans : ΠM:term.ΠN:term.ΠP:term.

(eq M N) -> (eq N P) -> (eq M P)
eq app : ΠM,N,M’,N’:term.

(eq M N) -> (eq M’ N’) -> (eq (app M M’) (app N N’))

betav : ΠM:term2.ΠN:term. LValN [(eq (app (lambda M) N) (M N))]

csiv : ΠM,N:term2.Πx:term.

Lξ〈x,M,N〉,triple[(eq (M x)(N x))->(eq (lambda M)(lambda N))]

where the predicates Val , ξ are defined as follows and triple is
the obvious type of triples of terms with types term, term2 and
term2:
- Val (Γ `Σ N:term) holds iff either N is an abstraction or N is a
constant (i.e. a term of the shape (free i));
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- ξ(Γ `Σ 〈x,M,N〉:triple) holds iff x is a constant (i.e. a term of
the shape (free i)), M and N are closed and x does not occur in
M and N.

Theorem 3 (Adequacy of CBV reduction). Given an enumeration
{xi}i∈N\{0} of the variables in the λ-calculus, there is a bijection
between derivations of the judgment `CBV M = N on terms with
no bindable variables in the CBV λ-calculus and proof terms h
such that `ΣCBV h : (eq ε∅(M) ε∅(N)) is in η-long normal form.

Proof. See Appendix A.2.2.

3.2 Substructural logics
In many formal systems, rules are subject to side conditions and
structural constraints on the shape of assumptions or premises.
Typical examples are the necessitation rule or the 2-introduction
rules in Modal logics (see, e.g., [1, 2, 8]).

For the sake of readability, in the following we will often use an
infix notation for encoding binary logic operators.

3.2.1 Modal Logics in Hilbert style.
In this example, we show how LFP allows to encode smoothly log-
ical systems with “rules of proof” as well as “rules of derivation”.
The former apply only to premises which do not depend on any as-
sumption, such as necessitation, while the latter are the usual rules
which apply to all premises, such as modus ponens. The idea is to
use suitable “lock types” in rules of proof and “standard” types in
the rules of derivation.

A1 : φ→ (ψ → φ)

A2 : (φ→ (ψ → ξ))→ (φ→ ψ)→ (φ→ ξ)

A3 : (¬φ→ ¬ψ)→ ((¬φ→ ψ)→ φ)

K : 2(φ→ ψ)→ (2φ→ 2ψ)

> : 2φ→ φ

4 : 2φ→ 22φ

MP :
φ φ→ ψ

ψ

NEC :
φ

2φ

Figure 10. Hilbert style rules for Modal Logic S4

By way of example, we give the signature for classical S4

(see Figure 11) in Hilbert style (see Figure 10), which features
necessitation (rule NEC in Figure 10) as a rule of proof. Due to
lack of space, we limit the encoding in Figure 11 to the most
significant cases. We make use of the predicate Closed (Γ `Σ

m:True (φ)), which holds iff “all free variables occurring in m
belong to a subterm which is typable with o”. This is precisely
what is needed to correctly encode the notion of rule of proof, if
o is the type of propositions. Indeed, if all the free variables of a
proof term satisfy such a condition, it is clear, by inspection of the
η-lnfs, that there cannot be free variables of type True (. . . ) in the
proof term, i.e. the encoded modal formula does not depend on any
assumption1 (see [15] for a formal specification of the predicate).
This example requires that predicates inspect the environment and
be defined on typed judgements, as indeed is the case in LFP . The
above predicate is well-behaved. As in the previous examples, we
ensure a sound derivation in LFP of a proof of 2φ, by locking the
type True(2φ) in the conclusion of NEC (see Figure 11).

1 Another way of specifying such a property is to require that “all free
variables occurring in m have a simple type over o”.

Adequacy theorems are rather trivial to state and prove; as usual
we define an encoding function εX on formulæ with free variables
in X as follows, representing atomic formulæ by means of LFP
metavariables:

• εX (x) = x, where x ∈ X ;
• εX (φ→ ψ) = εX (φ)→ εX (ψ);
• εX (¬φ) = ¬εX (φ);
• εX (2φ) = 2εX (φ).

Then, we can prove by structural induction on formulæ, the follow-
ing theorem:

Theorem 4 (Adequacy of S4 formulæ syntax). The encoding func-
tion εX is a bijection between the modal logic formulæ with free
variables in X and the terms φ derivable in judgements Γ `Σ2

φ : o in η-lnf, where Γ = {x : o | x ∈ X}. Moreover, the
encoding is compositional, i.e. for a formula φ, with free vari-
ables in X = {x1, . . . , xk}, and ψ1, . . . , ψk, with free vari-
ables in Y , the following holds: εX (φ[ψ1, . . . , ψk/x1, . . . , xk]) =
εX (φ)[εY(ψ1), . . . , εY(ψk)/x1, . . . , xk].

If we denote by φ1, . . . , φn ` φ the derivation of the truth of
a formula φ, depending on the assumptions φ1, . . . , φn, in the
Hilbert-style modal logic S4, the adequacy of our encoding can
then be stated by the following theorem:

Theorem 5 (Adequacy of S4 truth system in Hilbert-style). There
is a bijection between derivations φ1, . . . , φk ` φ in the Hilbert-
style S4 modal logic and proof terms h such that Γ `Σ h : (True
εX (φ1 → . . . → φk → φ)) in η-long normal form, where
X = {x1, . . . , xn} is the set of propositional variables occurring
in φ1, . . . , φk, φ and Γ = {x1 : o, . . . , xn : o}.

o : Type → : o3 ¬ : o2 2 : o2 True : o -> Type
A1 : Πφ,ψ:o. True(φ→(ψ→φ))
K : Πφ,ψ:o. True(2(φ→ψ)→(2φ→2ψ))
MP : Πφ:o.Πψ:o. True(φ) -> True(φ→ψ) -> True(ψ)
NEC : Πφ:o.Πm:True(φ). LClosedm [True(2φ)]

Figure 11. The signature Σ for classic S4 Modal Logic in Hilbert
style

3.2.2 Modal Logics S4 and S5 in Prawitz style.
In LFP , one can also accommodate other modal logics, such as
classical Modal Logics S4 and S5 in Natural Deduction style, as de-
fined by Prawitz, which have rules with rather elaborate restrictions
on the shape of subformulae where assumptions occur. Figure 12
shows some of the rules common to both systems and all specific
rules of S4 and S5. In order to illustrate the flexibility of the system,
the rule for S4 is given in the form which allows cut-elimination.
Figure 13 shows their encoding in LFP . Again, the crucial role is
played by a predicate, namely, Boxed ( ). The intended meaning is
that Boxed (Γ `Σ m: True(φ)) holds in the case of S4 iff the occur-
rences of free variables of m occur in subterms whose type has the
shape True(2ψ) or is o. In the case of S5 the predicate holds iff
the variables of m have type True(2ψ) or True(¬2ψ) or occur in
subterms whose type is o. It is easy to check that these predicates
are well behaved. Again, the “trick” to ensure a sound derivation in
LFP of a proof of 2φ is to lock appropriately the type True(2φ)
in the conclusion of the introduction rule BoxI (see Figure 13).

The problem of representing, in a sound way, modal logics in
logical frameworks based on type theory is well-known in the liter-
ature [1, 2, 8]. In our approach, we avoid the explicit introduction
in the encodings of extra-judgments and structures, as in [1, 2, 8],
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Γ ` φ Γ ` ψ

Γ ` φ ∧ ψ
(∧I)

Γ ` φ ∨ ψ Γ, φ ` ξ Γ, ψ ` ξ

Γ ` ξ
(∨E)

∆ ` 2Γ 2Γ ` φ

∆ ` 2φ
(2I · S4)

2Γ0,¬2Γ1 ` φ

2Γ0,¬2Γ1 ` 2φ
(2I · S5)

Γ ` 2φ

Γ ` φ
(2E · S4)

Γ ` 2φ

Γ ` φ
(2E · S5)

Γ,¬φ ` φ

Γ ` φ
(RAA)

Figure 12. Some Modal Logic rules (common and S4,5 rules) in
Natural Deduction style

o:Type and:o3 or:o3 →:o3 ¬:o2 2:o2

True : o -> Type
AndI : Πφ,ψ:o. True(φ) -> True(ψ) -> True(φ and ψ)

OrE : Πφ,ψ,ξ:o.True(φ or ψ)->(True(φ)->True(ξ))

->(True(ψ)->True(ξ))->True(ξ)
RAA : Πφ:o. (True(¬φ) -> True(φ)) -> True(φ)

BoxI : Πφ:o. Πm:True(φ). LBoxedm [True(2φ)]

BoxE : Πφ:o. Πm:True(2φ). True(φ)

Figure 13. The signature ΣS for classic S4 Modal Logic in LFP

by delegating such machinery to an external oracle by means of
locks.

For what concerns the adequacy of our encoding, we can state
Theorems 6 and 7 below. As in the previous case study, we first
define an encoding function εX on formulæ with free variables
in X as follows, representing atomic formulæ by means of LFP
metavariables:

• εX (x) = x, where x ∈ X ;
• εX (φ ∧ ψ) = εX (φ) and εX (ψ);
• εX (φ ∨ ψ) = εX (φ) or εX (ψ);
• εX (φ→ ψ) = εX (φ)→ εX (ψ);
• εX (¬φ) = ¬εX (φ);
• εX (2φ) = 2εX (φ).

Then, we can prove by structural induction on formulæ, the follow-
ing theorem:

Theorem 6 (Adequacy of S4/S5 formulæ syntax). The encod-
ing function εX is a bijection between the modal logic formulæ
with free variables in X and the terms φ derivable in judgements
Γ `Σ2 φ : o in η-lnf, where Γ = {x : o | x ∈ X}. More-
over, the encoding is compositional, i.e. for a formula φ, with free
variables in X = {x1, . . . , xk}, and ψ1, . . . , ψk, with free vari-
ables in Y , the following holds: εX (φ[ψ1, . . . , ψk/x1, . . . , xk]) =
εX (φ)[εY(ψ1), . . . , εY(ψk)/x1, . . . , xk].

The adequacy of the truth system of S4/S5 modal logic can then
be proved by structural induction on derivations of the judgment
Γ ` φ:

Theorem 7 (Adequacy of modal logic S4/S5). Given a set of
propositional variables X = {x1, . . . , xn} occurring in formulæ
φ1, . . . , φk, φ, there is a bijection between derivations of the judg-
ment {φ1, . . . , φk} ` φ in the S4/S5 modal logic and proof terms
h such that Γ `Σ h : (True εX (φ)) in η-long normal form, where
Γ = {x1 : o, . . . , xn : o, h1 : (True εX (φ1)), . . . , hk : (True εX
(φk))}.

3.2.3 Non-commutative linear logic (NCLL).
In this section we outline an encoding in LFP of a substructural
logic like the one presented in [21]. Take, for instance, the rules for
the ordered variables and the→→ introduction/elimination rules:

Γ; ·; z:A ` z:A
(ovar)

Γ; ∆; (Ω, z:A) `M :B

Γ; ∆; Ω ` λ>z:A.M :A→→B
(→→ I)

Γ; ∆1; Ω1 `M :A→→B Γ; ∆2; Ω2 ` N :A

Γ; (∆1 1 ∆2); (Ω1,Ω2) `M>N :B
(→→ E)

In this system “ordered assumptions occur exactly once and in the
order they were made”. In order to encode the condition about the
occurrence of z as the last variable in the ordered context in the
introduction rule, it is sufficient to make the observation that in an
LF-based logical framework this information is fully recorded in
the proof term. The last assumption made is the rightmost vari-
able, the first is the leftmost. Therefore, we can, in LFP , introduce
suitable predicates in order to enforce such constraints, without
resorting to complicated encodings. In the following, we present
an embedding of this ordered fragment of NCLL into LFP . Our
encoding is a shallow one in the sense that we are not interested in
representing explicitly the proof terms of the original system (see,
e.g., [21]). Hence, we represent only types as formulæ, discarding
terms. The encodings of rules→→ I and→→E are:

impRightIntro: ΠA,B:o.ΠM:(True A)->(True B).

LRightmost
M,(True A)−>(True B)

[(True (impRight A B))],
and
impRightElim: ΠA,B:o.(True (impRight A B))->(True A)->(True B)
[*** Alternative version:
impRightElim:ΠA,B:o.ΠM:(True (impRight A B)).ΠN:(True A).

LSep
〈M,N〉,(pair A B)

[(True B)],
where (pair A B) is the obious type of pairs of terms with types
(True (impRight A B)) and (True A), respectively, and the predicate
Sep(Γ ` 〈M, N〉:(pair A B)) holds iff M and N have no common variables of
type (True C) for some C. ***]
where True:o->Type is the truth judgment on formulæ (represented by
type o) and impRight:o3 represents the →→ constructor of right ordered
implications.

Finally, Rightmost (Γ `Σ M:(True A)->(True B)) is the predicate
checking that M is an abstraction in normal form (i.e., M≡ λz : (True A).M’
with M’ in normal form), and that the bound variable z occurs only once
and as the rightmost free one in M’.

Notice that in the encoding of rule →→E we have not enforced any
conditions on the free variables occurring in the involved terms. Indeed,
the requirement that the ordered contexts Ω1 and Ω2 do not have variables
in common will be stated by means of the following adequacy theorem:

Theorem 8 (Adequacy). Given a set of atomic formulæX = {P1, . . . , Pn},
occurring in formulæ A1, . . . , Ak, A, there is a bijection between deriva-
tions of the judgment A1, . . . , Ak ` A in non-commutative linear logic
and proof terms h such that ΓX , h1:(True εX (A1)), . . . , hk:(True εX (Ak))
` h : (True εX (A)) in η-long normal form, where the variables h1, . . . , hk
occur in h only once and in the order they are introduced in the derivation
context and ΓX is the context P1:o,...,Pn:o representing the object
language propositional formulæ P1, . . . , Pn.

Obviously, carrying out a deep embedding of the system, one could
enforce the condition about the variables occurring in the ordered contexts
by means of a suitable lock at the level of the proof terms (see, e.g., [15]).

As far as we know, this is the first example (see the discussion in,
e.g., [8]) of an encoding of non-commutative linear logic in an LF-like
framework.

4. Conclusions and Future Work
In this paper, we have presented an extension of the Edinburgh LF, which
internalizes external oracles in the form of a � modal type constructor.
Using LFP , we have illustrated how we can factor out the complexity of
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encoding logical systems which are awkward in LF, e.g. Modal Logics
and substructural logics, including non-commutative Linear Logic. More
examples appear in [15], and others can be easily carried out, e.g. LFP
within LFP .

We believe that LFP provides a modular platform that can streamline
the encoding of logics with arbitrary structural side-conditions in rules, e.g.
involving, say, the number of applications of specific rules. We just need to
extend the library of predicates.

In LFP , one can easily incorporate systems which separate derivation
and computation. E.g. the rule

A→ B A ≡ C C

B

in Deduction Modulo can be represented as:

⊇≡: ΠA,B,C:o.Πx:True(A→ B).Πy:True(C).L≡A,C [True(B)]

We believe that our framework can also be very helpful in modeling
dynamic and reactive systems: for example bio-inspired systems, where re-
actions of chemical processes take place only if some extra structural or
temporal conditions hold, or process algebras. Often, in the latter systems,
no assumptions can be made about messages exchanged through the com-
munication channels. Indeed, it could be the case that a redex, depending
on the result of a communication, can remain stuck until a “good” message
arrives from a given channel, firing in that case an appropriate reduction
(this is a common situation in many protocols, where “bad” requests are
ignored and “good ones” are served). Such dynamic (run-time) behavior
could hardly be captured by a rigid type discipline, where bad terms and
hypotheses are ruled out a priori ([17]).

The machinery of lock derivations is akin to δ-rules à la Mitschke,
see [3], when we take lock rules, at object level, as δ-rules releasing their
argument when the condition is satisfied. This connection can be pursued
further. For instance, we can use the untyped object language of LFP
to support the “design by contract” programming paradigm. We illustrate
this, using the predecessor function on natural numbers, which can be
applied only to positive arguments. This control can be expressed using
object level locks as λx:nat.Lx>0

x,nat[x− 1]. More generally, if we want
to enforce a pre-condition P on M and a post-condition Q on the result
of the computation FM , we can easily express it in LFP by means of
LPM [LQ

(FM)
[(FM)]].
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A. Appendix
A.1 Properties of LFP
Strong normalization.
In order to prove strong normalization of LFP , we will rely on the strong
normalization of LF, as proven in [12].

First, we will introduce the function −UL : LFP → LF, which maps
LFP terms into LF terms, by deleting the L and U symbols from an LFP
term, while preserving all of the relevant information, in the following
manner:

([[Type|a|c|x]])−UL = [[Type|a|c|x]],

([[Π|λ]]x:σ.T )−UL = [[Π|λ]]x:σ−UL.T−UL,

(T M)−UL = T−ULM−UL,

([[L|U ]]PN,σ [T ])−UL = (λxf :σ−UL.T−UL)N−UL,

where, in the last item, xf is a variable which does not have free occur-
rences in T . Here, it should be noticed that, although we have decided
to remove abstractions in families in LFP , we still, using −UL, translate
LFP -terms into full-fledged LF-terms, including those with abstractions in
families. This is required so that the N and σ, which index the L and U
symbols, are not lost. We can naturally extend −UL to signatures and con-
texts of LFP , obtaining signatures and contexts of LF:

(∅)−UL = ∅,
(Σ, a:K)−UL = Σ−UL, a−UL:K−UL,

(Σ, c:σ)−UL = Σ−UL, c−UL:σ−UL,

(∅)−UL = ∅,
(Γ, x:σ)−UL = Γ−UL, x−UL:σ−UL.

and then to judgements of LFP , obtaining judgements of LF:

(Σ sig)−UL = Σ−UL sig

(`Σ Γ)−UL = `Σ−UL Γ−UL,

(Γ `Σ K)−UL = Γ−UL `Σ−UL K
−UL,

(Γ `Σ σ : K)−UL = Γ−UL `Σ−UL σ
−UL : K−UL,

(Γ `Σ M : σ)−UL = Γ−UL `Σ−UL M
−UL : σ−UL.

With −UL defined in this way, we have the following claim:

Proposition 1. 1. If K=βLK
′ in LFP , then K−UL=βK

′−UL in LF.
2. If σ=βLσ

′ in LFP , then σ−UL=βσ
′−UL in LF.

3. If M=βLM
′ in LFP , then M−UL=βM

′−UL in LF.

Furthermore, the following proposition holds:

Proposition 2. The function −UL maps derivable judgements of LFP into
derivable judgements of LF.

Proof. By induction on the structure of the derivation of the LFP judge-
ment.

Next, we will denote the maximum number of β-reductions which
can be executed in a given (LF- or LFP -) term T as maxβ(T ). Notice
that L-reductions cannot create entirely new β-redexes, but can only “un-
lock” potential β-redexes of the form UPN,σ [LPN,σ [λx:τ.M ]]T , arriving at
λx:τ.M T . This redex will be present in (UPN,σ [LPN,σ [λx:τ.M ]]T )−UL.
Therefore, we have that, for any LFP -term T , it holds that maxβ(T ) ≤
maxβ(T−UL). As LF is strongly normalizing, we have that maxβ(T−UL)
is finite, therefore forcing maxβ(T ) into being finite, leading to the fol-
lowing proposition:

Proposition 3. Only finitely many β-reductions can occur within any LFP -
term.

Next, we notice that any LFP -term has only finitely many L-redexes
before any reductions take place, and that this number can be increased
only through β-reductions, and only by a finite amount per β-reduction.
However, if we were to have an LFP -term T which has an infinite reduction
sequence, then within this sequence, there would need to be infinitely many
L-reductions, since, due to Proposition 3, the number of β-reductions in

this sequence has to be finite. On the other hand, with the number of β-
reductions in the sequence being finite, it would not be possible to reach
infinitely many L-reductions, and such a term T cannot exist in LFP .
Therefore, we have the Strong Normalization theorem:

Theorem 9 (Strong normalization of LFP ). 1. If Γ `Σ K, then K is
βL-strongly normalizing.

2. if Γ `Σ σ : K, then σ is βL-strongly normalizing.
3. if Γ `Σ M : σ, then M is βL-strongly normalizing.

Confluence.
Since βL-reduction is strongly normalizing, in order to prove the conflu-
ence of the system, by Newman’s Lemma ([3], Chapter 3), it is sufficient to
show that the reduction on “raw terms” is locally confluent. First, we need
a substitution lemma, whose proof is routine:

Lemma 1 (Substitution lemma for local confluence). 1. If N →βL N ′,
then M [N/x]→→βLM [N ′/x].

2. If M →βL M ′, then M [N/x]→→βLM ′[N/x].

Hence we have Local Confluence:

Lemma 2 (Local confluence of LFP ). βL-reduction is locally confluent,
i.e.:
if T →βL T ′ and T →βL T ′′, then there exists a T ′′′, such that
T ′→→βL T ′′′ and T ′′→→βL T ′′′.

Proof. By simultaneous induction on the two derivations T →βL T ′ and
T →βL T ′′. All the cases for T kind or family, as well as most of the cases
for T object are proven trivially, using the induction hypotheses. Here we
will show only the cases involving base reduction rules:

1. Let us have, by the base reduction rule (β·Main), (λx:σ.M)N →βL
M [N/x]. Let us also have that (λx:σ.M)N →βL (λx:σ′.M)N ,
from σ →βL σ′, by the reduction rules (O·λ1·βL) and (O·App1·βL).
In this case, we will show that the required conditions are met for
M ′′′ ≡ M [N/x]. Indeed, by the definition of →→βL, we have that
M [N/x]→→βLM [N/x], and also, by the reduction rule (β·Main),
we have that (λx:σ′.M)N →βL M [N/x], effectively having
(λx:σ′.M)N→→βLM [N/x].

2. Let us have, by the base reduction rule (β·Main), (λx:σ.M)N →βL
M [N/x]. Let us also have that (λx:σ.M)N →βL (λx:σ.M ′)N ,
fromM →βL M ′, by the reduction rules (O·λ2·βL) and (O·App1·βL).
In this case, we will show that the required conditions are met for
M ′′′ ≡ M ′[N/x]. By (β·Main), we have (λx:σ.M ′)N →βL
M ′[N/x], from which we obtain (λx:σ.M ′)N→→βLM ′[N/x],
while we obtain that M [N/x]→→βLM ′[N/x] from part 2 of Lemma
1.

3. Let us have, by the base reduction rule (β·Main), (λx:σ.M)N →βL
M [N/x]. Let us also have that (λx:σ.M)N →βL (λx:σ.M)N ′,
fromN →βL N ′, by the reduction rule (O·App2·βL). In this case, we
will show that the required conditions are met for M ′′′ ≡ M [N ′/x].
By the reduction rule (β·Main), we have that (λx:σ.M)N ′ →βL
M [N ′/x], from which we obtain (λx:σ.M)N ′→→βLM ′[N/x],
while we obtain that M [N/x]→→βLM [N ′/x] from part 1 of Lemma
1.

4. Let us have, by the base reduction rule (L·Main),UPN,σ [LPN,σ [M ]]→βL
M , and, also, that UPN,σ [LPN,σ [M ]] →βL UPN′,σ [LPN,σ [M ]], from
N →βL N ′, by the reduction rule (O·Unlock1·βL). In this case,
we will show that the required conditions are met for M ′′′ ≡ M .
By the definition of →→βL, we have that M→→βLM , which leaves
us with needing to show that UP

N′,σ [LPN,σ [M ]]→→βLM . This we
obtain by the following sequence of reductions: from N →βL N ′,
which we have as an induction hypothesis, using the reduction rule
(O·Lock1·βL), we obtain that LPN,σ [M ] →βL LPN′,σ [M ], and
from this, using the reduction rule (O·Unlock3·βL), we obtain
that UP

N′,σ [LPN,σ [M ]] →βL UPN′,σ [LP
N′,σ [M ]], from which we fi-

nally obtain that UP
N′,σ [LP

N′,σ [M ]] →βL M , by the reduction rule
(L·Main), effectively showing that UP

N′,σ [LPN,σ [M ]]→→βLM . The
remaining subcases are handled very similarly.
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Having proven local confluence, finally, from Theorem 9, Lemma 2 and
Newman’s Lemma, we obtain the confluence theorem for LFP :

Theorem 10 (Confluence of LFP ). βL-reduction is confluent, i.e.:
if T →→βL T ′ and T →→βL T ′′, then there exists a T ′′′, such that T ′→→βL T ′′′
and T ′′→→βL T ′′′.

Subject reduction.
Lemma 3 (Auxiliary properties).

Equivalence of products. If Πx:σ.T=βLT
′′, then T ′′ ≡ Πx:σ.′T ′, for

some σ′, T ′, such that σ′=βLσ, and T ′=βLT .
Equivalence of locks. If LPN,σ [ρ]=βLθ, then θ ≡ LP

N′,σ′ [ρ
′], for some

N ′, σ′, and ρ′, such that N ′=βLN , σ′=βLσ, and ρ′=βLρ.
Removal of locks. If Γ `Σ LPN,σ [M ] : LPN,σ [ρ], then Γ `Σ M : ρ.

The following property follows directly from the typing and conversion
rules, using item 1 of Lemma 3:

Proposition 4 (Abstraction typing). If Γ `Σ λx:σ.M : Πx:σ.τ , then
Γ, x:σ `Σ M : τ .

By induction on the structure of the derivation, we obtain:

Proposition 5 (Subderivation, part 1).

1. Any derivation of `Σ ∅ has a subderivation of Σ sig.
2. Any derivation of Σ, a:K sig has subderivations of Σ sig and `Σ K.
3. Any derivation of Σ, f :σ sig has subderivations of Σ sig and `Σ

σ:Type.
4. Any derivation of `Σ Γ, x:σ has subderivations of Σ sig, `Σ Γ, and

Γ `Σ σ:Type.
5. Any derivation of Γ `Σ α has subderivations of Σ sig and `Σ Γ.
6. Given a derivation D of the judgement Γ `Σ α, and a subterm

occurring in the subject of this judgement, there exists a derivation of a
judgement having this subterm as a subject.

Proposition 6 (Weakening and permutation). If predicates are closed un-
der signature/context weakening and permutation, then:

1. If Σ and Ω are valid signatures, and every declaration occurring in Σ
also occurs in Ω, then Γ `Σ α implies Γ `Ω α.

2. If Γ and ∆ are valid contexts w.r.t. the signature Σ, and every declara-
tion occurring in Γ also occurs in ∆, then Γ `Σ α implies ∆ `Σ α.

Proposition 7 (Subderivation, part 2). If predicates are closed under sig-
nature/context weakening and permutation, then:

1. If Γ `Σ σ : K, then Γ `Σ K.
2. If Γ `Σ M : σ, then Γ `Σ σ : Type.

Proposition 8 (Transitivity). If predicates are closed under signature/context
weakening and permutation and under substitution, then:
if Γ, x:σ,Γ′ `Σ α, and Γ `Σ N : σ, then Γ,Γ′[N/x] `Σ α[N/x].

Proposition 9 (Unicity of types and kinds). If predicates are closed under
signature/context weakening and permutation and under substitution, then:
if Γ `Σ T : T1 and Γ `Σ T : T2, then Γ `Σ T1=βLT2.

Finally, we have Subject Reduction:

Theorem 11 (Subject reduction of LFP ). If predicates are well-behaved,
then:

1. If Γ `Σ K, and K →βL K′, then Γ `Σ K′.
2. If Γ `Σ σ : K, and σ →βL σ′, then Γ `Σ σ′ : K.
3. If Γ `Σ M : σ, and M →βL M ′, then Γ `Σ M ′ : σ.

Proof. Here we prove Subject Reduction of a slightly extended type system.
We consider the type system in which the rules (F ·Lock), (O·Lock), and
(O·Unlock) all have an additional premise Γ `Σ σ : Type, while the rule
(O·Unlock) also has another additional premise Γ `Σ LPN,σ [ρ] : Type,
as shown in Figure 14.

The proof proceeds by simultaneous induction on the derivation of
Γ `Σ M and M →βL M ′. Here we will show only the cases in
which the base reduction rules are used, and one of the cases for which
the well-behavedness of predicates is a requirement, while the other cases

Γ `Σ ρ : Type Γ `Σ N : σ Γ `Σ σ : Type

Γ `Σ LPN,σ[ρ] : Type
(F·Lock)

Γ `Σ M : ρ Γ `Σ N : σ Γ `Σ σ : Type

Γ `Σ LPN,σ[M ] : LPN,σ[ρ]
(O·Lock)

Γ `Σ N : σ Γ `Σ σ : Type P(Γ `Σ N : σ)
Γ `Σ M : LPN,σ[ρ] Γ `Σ LPN,σ[ρ] : Type

Γ `Σ UPN,σ[M ] : ρ
(O·Unlock)

Figure 14. An extension of LFP typing rules required for Subject
Reduction

are handled either similarly or trivially, mostly by using the induction
hypotheses.

1. We have that Γ `Σ λx:σ.M N : τ [N/x], by the type system rule
(O·App), from Γ `Σ λx:σ.M : Πx:σ.τ , and Γ `Σ N : σ, and
that (λx:σ.M)N →βL M [N/x] by the reduction rule (β·Main).
From Proposition 4, we get that Γ, x:σ `Σ M : τ , and from this and
Γ `Σ N : σ, we obtain the required Γ `Σ M [N/x] : τ [N/x], by an
application of Proposition 8.

2. We have that Γ `Σ UPN,σ [LPN,σ [M ]] : ρ, by the type system rule
(O·Unlock), from Γ `Σ LPN,σ [M ] : LPN,σ [ρ], Γ `Σ N : σ, Γ `Σ

σ : Type, and P(Γ `Σ N : σ), and that UPN,σ [LPN,σ [M ]] →βL M
by the reduction rule (L·Main),. Here, we obtain the required Γ `Σ

M : ρ directly, using the last two items of Lemma 3.
3. We have that Γ `Σ UPN,σ [M ] : ρ, by the type system rule (O·Unlock),

from Γ `Σ M : LPN,σ [ρ], Γ `Σ LPN,σ [ρ] : Type, Γ `Σ N : σ, Γ `Σ

σ : Type, and P(Γ `Σ N : σ), and that UPN,σ [M ] →βL UPN,σ′ [M ],
by the reduction rule (O·Unlock2), from σ →βL σ′. First, from the
induction hypothesis we have that Γ `Σ σ′ : Type, and we also have,
from σ →β : σ′, that σ=βLσ

′. From this, using Γ `Σ N : σ, and
the type system rule (O·Conv), we obtain that Γ `Σ N : σ′. Next,
since Γ `Σ LPN,σ [ρ] : Type could only have been obtained by the type
system rule (F ·Lock), from Γ `Σ ρ : Type and Γ `Σ N : σ, and
since we have Γ `Σ N : σ′, we obtain that Γ `Σ LPN,σ′ [ρ] : Type.
From this, given σ=βLσ

′, using the reduction rule (F ·Lock2·βL),
we obtain that LP

N,σ′ [ρ] →βL LPN,σ′ [ρ], and since we already have
that Γ `Σ M : LPN,σ [ρ], we can use the type system rule (O·Conv)

to obtain Γ `Σ M : LP
N,σ′ [ρ]. Finally, by the well-behavedness

requirements for the predicates, we have that P(Γ `Σ N : σ′)
holds, and we can now use the type system rule (O·Unlock) to ob-
tain the required Γ `Σ UPN,σ′ [M ] : ρ. Here, we can notice that there
are steps in this proof (in which we obtain Γ `Σ σ′ : Type, and
Γ `Σ LPN,σ [ρ] : Type), which could not have been made had the
original system not been extended for this theorem.

Now, we can prove straightforwardly that Γ `Σ α in the extended
system if and only if Γ `Σ α in the original LFP system (i. e. that
the judgements that these two systems derive are, in fact, the same), by
induction on the length of the derivation, With this, given that we have
proven Subject Reduction of the extended system, we obtain that Subject
Reduction also holds in the original LFP system.

A.2 Proofs of adequacy theorems
A.2.1 Proof of Theorem 2.
Proof. The injectivity of εX follows by a straightforward inspection of
its definition, while the surjectivity follows by defining the “decoding”
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function δX :

δX ((free i)) = xi

δX (xi) = xi

δX ((app M N)) = δX (M) δX (N)

δX (lambda M) = λx.δX∪{x}(M x)

Given the characterisation of the η-long normal forms and the types of the
constructors introduced in Σλ, it is easy to see that δX is total and well
defined. Notice that it is not possible to derive a η-long normal form of
type term containing a U -term, since no constructors in Σλ use L-types.
Finally, by induction on the structure of M , it is possible to check that
δX (εX (M)) = M and that εX is compositional.

A.2.2 Proof of Theorem 3.
Proof. We define an encoding function ε=∅ by induction on derivations of
the form `CBV M = N (on terms with no bindable variables) as follows:

• if∇ is the derivation

`CBV M = M

then ε=∅ (∇) = (refl ε∅(M)):(eq ε∅(M) ε∅(M));
• if∇ is the derivation with (symm) as last applied rule, then, by induc-

tive hypothesis, there is a term h such that`ΣCBV h : (eq ε∅(N) ε∅(M)).
Hence, ε=∅ (∇) = (symm ε∅(M) ε∅(N) h):(eq ε∅(M) ε∅(N));
• if ∇ is the derivation with (trans) as last applied rule, then, by

inductive hypothesis, there are terms h and h’ such that `ΣCBV
h : (eq ε∅(M) ε∅(N)) and `ΣCBV h′ : (eq ε∅(N) ε∅(P )). Hence,
ε=∅ (∇) = (trans ε∅(M) ε∅(N) ε∅(P ) h h′):(eq ε∅(M) ε∅(P ));
• if ∇ is the derivation with (eq app) as last applied rule, then, by

inductive hypothesis, there are terms h and h’ such that `ΣCBV
h : (eq ε∅(M) ε∅(N)) and `ΣCBV h′ : (eq ε∅(M

′) ε∅(N
′)).

Thus, ε=∅ (∇) = (eq app ε∅(M) ε∅(N) ε∅(M
′) ε∅(N

′) h h′):
(eq (app ε∅(M) ε∅(M

′)) (app ε∅(N) ε∅(N
′)));

• if∇ is the derivation
v is a value

`CBV (λx.M)v = M [v/x]

then
ε=∅ (∇) = UVal

ε∅(v),term
[(betav (λx : term.ε{x}(M)) ε∅(v))]: (eq (app

(lambda λx : term.ε{x}(M)) ε∅(v)) ((λx : term.ε{x}(M))(ε∅(v))))
(notice the presence of the unlock operator in front of the LFP encod-
ing: this is possible thanks to the fact that we know by hypothesis that
v is a value, whence the predicate Val holds on `CBV ε∅(v) : term);
• if ∇ is the derivation with (ξv) as last applied rule, then, by inductive

hypothesis, there is a term h such that`ΣCBV h : (eq ε∅(M) ε∅(N))2.
So,
ε=∅ (∇) = (Uξ

T,triple[(csiv λx:term.ε{x}(M) λx:term.ε{x}(N) ε∅(x))]

h): (eq (lambda λx:term. ε{x}(M)) (lambda λx:term.ε{x}(N))),
where T is the triple 〈ε∅(x), (λx:term.ε{x}(M)), (λx:term.ε{x}(N))〉.

The injectivity of ε=∅ follows by a straightforward inspection of its defini-
tion, while the surjectivity follows by defining the “decoding” function δ∅
by induction on the derivations of the shape `ΣCBV h:(eq M N) in η-long
normal form. Since all the cases are rather straightforward, we analyze only
the definition concerning the main rule (βv), since it involves an external
predicate. So, if we derive from ΣCBV a proof term h in η-long normal
form such as UVal

N,term[betav M N]:(eq (app (lambda M) N) (M N)),
then the predicate Val (`ΣCBV N : term) must hold, hence N is encoding
the value δ∅(N). Hence, the decoding of h is the following derivation:

δ∅(N) is a value

`CBV δ∅((lambda M))δ∅(N) = δ∅(M N)

2 Notice that the object variable x occurring in M and N is represented
by a constant ((free k) for the natural k such that x ≡ xk) here, since
the encoding function takes the empty set as the set of bindable variables.
Instead, in the next line, the encoding function will take {x} as the set of
bindable variables, yielding an encoding of x through a metavariable x of
the metalanguage of LFP .

since δ∅((lambda M)) ≡ λx.δ{x}((M x)) and δ∅(M N) ≡ δ{x}(M x)[δ∅(N)/x]
(by induction on the structure of M), we are done. Therefore, it is easy to
verify by induction on η-long normal forms that δ=

∅ is well defined and
total. Another easy induction proves that δ=

∅ is the inverse function of ε=∅ ,
so the latter is bijective.
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