
Arigatoni: A Simple Programmable Overlay Network

Didier Benza Michel Cosnard Luigi Liquori Marc Vesin

INRIA, France
[Didier.Benza,Michel.Cosnard,Luigi.Liquori,Marc.Vesin]@inria.fr

Abstract

We design a lightweight Overlay Network, called Ari-

gatoni, that is suitable to deploy the Global Comput-
ing Paradigm over the Internet. Communications over
the behavioral units of the model are performed by a
simple communication protocol. Basic Global Comput-
ers can communicate by first registering to a brokering
service and then by mutually asking and offering ser-
vices, in a way that is reminiscent to Rapoport’s “tit-
for-tat” strategy of cooperation based on reciprocity. In
the model, resources are encapsulated in the adminis-
trative domain in which they reside, and requests for
resources located in another administrative domain tra-
verse a broker-2-broker negotiation using classical PKI

mechanisms. The model is suitable to fit with var-
ious global scenarios from classical P2P applications,
like file sharing, or band-sharing, to more sophisticated
Grid applications, like remote and distributed big (and
small) computations, to possible, futuristic real migrat-
ing computations. Indeed, our model fits some of the
objectives suggested by the CoreGrid Network of Excel-
lence, as described in Schwiegelshohn et al. [?].

1. Introduction

This paper presents the first light-weight overlay
network called Arigatoni1 that is suitable to deploy,
via the Internet the Global Computing Communication
Paradigm, i.e., computation via a seamless, geograph-
ically distributed, open-ended network of bounded re-
sources owned by agents (called Global Computers)
acting with partial knowledge and no central coordi-
nation. The paradigm provides uniform services with
variable guarantees. Aggregating many Global Com-
puters sharing similar or different resources leads to a
Virtual Organization, sometimes called Overlay Com-
puter. Finally, organizing many Overlay Computers,

1The Arigatoni model, protocol and middleware, is copyrighted
by Luigi Liquori (INRIA) under the CECIL License.

using, e.g. tree- or graph-based topology leads to an
Overlay Network, i.e. the possibility of programming a
collaborative Global Internet over the plain Internet.

The main challenge in this research field is how sin-
gle resources, offered by the Global/Overlay Comput-
ers are discovered. The process is often called Re-
source Discovery : it requires an up-to-date information
about widely-distributed resources. This is a challeng-
ing problem for large distributed systems when tak-
ing into account the continuously changing state of re-
sources offered by Global/Overlay Computers and the
possibility of tolerating intermittent participation and
dynamically changing status/availability of the latter.

Entities in Arigatoni are organized in Colonies. A
colony is a simple virtual organization composed by ex-
actly one Leader, offering some broker-like services, and
some set of Individuals. Individuals are Global Com-
puters (think it as an Amoeba), or subcolonies (think
it as a Protozoa). Global Computers communicate by
first registering to the colony and then by mutually ask-
ing and offering services. The leader, called Global Bro-
ker analyzes service requests/responses, coming from
its own colony or arriving from a surrounding colony,
and routes requests/responses to other individuals. Af-
ter this discovery phase, individuals get in touch with
each other without any further intervention from the
system, in a P2P fashion.

Symmetrically, the leader of a colony can arbitrarily
unregister an individual from its colony, e.g., because of
its bad performance when dealing with some requests,
or because of its high number of “embarrassing”
requests for the colony. This mechanism/strategy
reminiscent of the Roman “do ut des”, is nowadays
called, in Game Theory, “tit-for-tat” [?]. This strategy
is commonly used in economics, social sciences, and
it has been implemented by a computer program as
a winning strategy in a chess-play challenge against
humans (see also the well known prisoner dilemma).
In computer science, the tit-for-tat strategy is the main
principle of Bittorrent P2P protocol [?]. Once a Global
Computer has issued a request for some services, the



system finds some Global Computers (or, recursively,
some subcolonies) that can offer the resources needed,
and communicates their identities to the (client) Global
Computer as soon as they are found.

The model also offers some mechanisms to dynam-
ically adapt to dynamic topology changes of the Over-
lay Network, by allowing an individual (Global Com-
puter or subcolony) to log/delog in/from a colony.
This essentially means that the process of routing re-
quest/responses may lead to failure, because some indi-
viduals delogged or because they are temporarily un-
available (recall that Individuals are not slaves) [?].
This may also lead to temporarily denials of service
or, more drastically, to the complete delogging of an
individual from a given colony in the case where the
former does not provide enough services to the latter.

Indeed, dealing only with Resource Discovery has
one important advantage: the complete generality and
independence of any given requested resource. Arigatoni

can fit with various scenarios in the Global Computing
arena, from classical P2P applications, like file- or band-
sharing, to more sophisticated Grid applications, like
remote and distributed big (and small) computations,
until possible, futuristic migration computations, i.e.
transfer of a non completed local run in another GCU,
the latter scenario being useful in case of catastrophic
scenarios, like fire, terrorist attack, earthquake, etc.,
in the vein of Global Programming Languages à la
Obliq [?] or Telescript [?].

The main ingredients of Arigatoni are one protocol,
the Global Internet Protocol, GIP, and three main units:
• A Global Computer Unit, GCU, i.e. the basic peer of
the Global Computer paradigm; typically it is a small
device, like a PDA, a laptop or a PC, connected via IP.
• A Global Broker Unit, GBU, is the basic unit
devoted to register and unregister GCUs, to receive
service queries from client GCUs, to contact potential
servants GCUs, to negotiate with the latter the given
services, to trust clients and servers, and to send
all the informations useful to allow the client GCU,
and the servants GCUs to be able to communicate.
Every GCU can register to only one GBU, so that
every GBU controls a colony of collaborating Global
Computers. Hence, communication intra-colony is
initiated via only one GBU, while communication inter-
colonies is initiated through a chain of GBU-2-GBU

message exchanges. In both cases, when a client GCU

receives an acknowledgment for a request service (with
related trust certificate) from the leader GBU, then the
client enjoys the service directly from the servant(s)
GCU, i.e. without a further mediation of the GBU itself.
• A Global Router Unit, GRU, is a simple basic unit that
is devoted to send and receive packets of the Global

Internet Protocol GIP and to forward the payload to the
units which is connected with this router. Every GCU

and every GBU have one personal GRU. The connection
between router and peer is ensured via suitable API.

Effective use of computational grids via Over-
lay Networks requires up-to-date information about
widely-distributed resources. This is a challenging
problem for very large distributed systems particularly
taking into account the continuously changing state of
the resources. Discovering dynamic resources must be
scalable in number of resources and users and hence, as
much as possible, fully decentralized. It should toler-
ate intermittent participation and dynamically chang-
ing status/availability.

The Arigatoni overlay network is, by construction,
independent from any given resource request. We
could envisage at least the following scenarios to be
completely full-fitted in our model (list not exhaustive)
• Ask for computational power (i.e. the Grid).
• Ask for memory space.
• Ask for bandwidth (i.e. VoIP).
• Ask for file retrieving (i.e. P2P).
• Ask for web service (i.e. Google).
• Ask for a computation migration (i.e. transfer one
partial run in another GCU saving the partial results,
as in a truly mobile ubiquitous computations).
• Ask for a Human Computer Interaction . . .

Our paper tries to fill some of the objectives fixed in
the seminal paper of [?], where the requirements and
the resource management for future generation Grids
are discussed. More generally, Arigatoni is parametric
in a given application, or universal in the sense of
Universal Turing Machine, or generic as the Von
Neumann Computer Model. Summarizing, the original
contributions of the paper are:
• A simple distributed communication model that is
suitable to make Resource Discovery transparent.
• A Global Internet Protocol that allows Global
Computers to negotiate resources.
• A complete independence of the classical scenarios
of the arena, i.e. Grid, file/band sharing, web services,
etc. This domain independence is a key feature of the
model and of the protocol, since it allows the Overlay
Network to be programmable.

We hope that Arigatoni could represent a little step
toward a natural integration of different scenarios
under the common paradigm of Global Computing.

Road Map. The paper is structured as follows:
Section 2 describes in an high level fashion, the Arigatoni

Overlay Network and its functional units. Section 3
presents one possible semantic of the three units (via
one “reference” implementation). Section 4 describes



N
etw

ork

IN
T

E
R

N
E

T

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
C

U
/G

R
U

G
B

U
/G

R
U

G
B

U
/G

R
U

G
B

U
/G

R
U

G
B

U
/G

R
U

N
etw

ork

N
etw

ork

N
etw

ork IP
 R

outer

IP
 R

outer

IP
 R

outer
IP

 R
outer

G
B

U
/G

R
U

Figure 1. ArigatoNet

the protocol used by all the units to communicate.
Section 5 puts Arigatoni@work in a Grid arena, while
Section 6 concludes. The companion papers [?, ?]
present an analysis of Resource Discovery, scalability
and experimental issues, simulations and performance
evaluation, and a semantic of the Virtual Organization.

2. Arigatoni Units: Informal Description

The Global Computer Unit (GCU) can be, e.g. a
cheap computer device composed by a small RAM-ROM-

HD memory capacity, a modest CPU, a ≥ 20 keystrokes
keyboard, a ≥ 1.5 inch screen, an IP connection, an
USB port, and very few programs installed inside (one
simple editor, one or two compilers, a mail client, a
mini browser, a GSM module, etc). Of course a GCU

can be a big computer or a PC-cluster. The operating
systems installed in the GCU is not important. The
computer should be able to work in Standalone Local
Mode for all the tasks that it could do locally or
in Global Mode, by first registering itself in Arigatoni,
and then by making a global request to the Overlay
Network. Figure ?? shows the Arigatoni Overlay

Network. The task of a GCU are:
• Discover, upon the physical arrival of the GCU in a
new colony, the address of a GBU (colony leader).
• Register/Unregister on the GBU, leader of the colony.
• Request some services to its GBU, and respond to
some requests from the GBU.
• Connect directly with the servant(s) GCU in a P2P

fashion, and offer/receive the service.
It is worth noticing that a GCU can also be a resource

provider. Hence, a GCU can also be a supercomputer,
a high performance parallel cluster, a large database
server, an high performance visualizer (e.g. connected
to a virtual reality center), or any particular resource
provider, that is linked to Internet. This symmetry is
another key feature of Arigatoni. We assume that every
GCU comes with its proper PKI certificate.

The Global Broker Unit (GBU) is devoted to:
• Discover, the address of another super GBU, repre-
senting the superleader of the supercolony, where the
GBU’s colony is embedded. We assume that every GBU

comes with its proper PKI certificate. The policy to
accept or refuse the registration of an individual with
a different PKI are left open to the level of security re-
quested by the colony.
• Register/Unregister the proper colony on the leader
GBU which manages the supercolony.
• Register/Unregister clients and servants GCU in its
local base of Global Computers. We assume by defini-
tion that every GCU can register to at most one GBU.
• Acknowledge the request of service of the client GCU.
• Discover the resources that satisfy the GCU’s request
in its local base (local colony) of GCU.
• Delegate the request to a GBU leader of another
colony.
• Perform a combination of the above two actions.
• Deal with all PKI intra- and inter-colony policies.
• Notify, to the client GCU or to a delegating GBU, the
servant(s) GCUs that have accepted to serve its request,
or notify a failure of the request.

Every GCU in the colony sends its request to the GBU

which is the leader of the colony. There are different
scenarios concerning service discovery, namely:
• The broker finds all the resource(s) needed to satisfy
the requested services of the GCU client locally in
the intranet. Then, it will send all the information
necessary to make the GCU client able to communicate
with the GCU servants. This notification will be
encoded using the GIP protocol. Then, the GCU client
will directly talk with GCU servant(s).
• The broker did not find all the resource(s) in the
local intranet. In this case it will forward and delegate
the request to another broker. To do this, it must first



register the whole colony to another supercolony.
• A combination of steps 1 + 2 could be envisaged
depending on the capability of the GBU to combine
resources that it manages and resources coming from a
delegate GBU.
• After a fixed timeout period, or when all delegate
GBUs failed to satisfy the delegated request, the broker
will notify to the GCU client the refusal of service
requested by the GCU client.

The Global Router Unit (GRU) implements all the
low level network routines, those which really have
access to the IP network. It is the only unit which
effectively runs the GIP protocol. The GRU can be
implemented as a small daemon which runs on the
same device as a GCU or a GBU, or as a shared library
dynamically linked with a GCU or a GBU. The GRU is
devoted to the following tasks:
• Upon the initial startup of a GCU it helps to register
the unit with one GBU.
• It checks the well-formedness and forwards GIP

packets across the Arigatoni toward their destinations.
GIP packets encode the requests of a GCU or a GBU.
• Upon the initial startup of a GBU it helps the unit
with several other GBUs that it knows or discovers.

Resource Discovery. The are mostly three mecha-
nisms of Resource Discovery in Arigatoni, namely:
• The process of a GBU to find and negotiate resources
to serve a GCU’s request in its own colony.
• The process of a GCU to discover a GBU, upon phys-
ical insertion in a colony.
• The process of a GBU to discover other friend GBU,
upon physical insertion in the Overlay Network.

3. Arigatoni’s Units: Formal Description

We present a prototype implementation of the three
units of Arigatoni. As any pseudocode, this encoding
does not bring into light all the details which are
usually swept under the carpet. We try to get
the encoding as clean and compact as possible, by
abstracting as much as possible on all “bureaucracy”
concerning synchronization between processes.

In what follows, everything in italic denotes a con-
stant; in particular, MyId denotes the name of the
current unit (like, e.g. this in object-oriented lan-
guages), and MyGRU denotes the name of the Global
Router which is uniquely attached, via API to MyId ,
and MyPKI denotes my security certificate, and MyRes

denotes the set of resources that the individual can of-
fer to the community. Those values are packaged in a

record (the identity card) called MyCard . The inparal-
lel...with...endinparallel control structure allows two
or many processes to be executed concurrently and in-
dependently [?,?].

The GCU’s Semantics is described in the pseudo-code
in Figure ??. The key functions of the algorithm are
explained below. It is composed by four processes:
• Un/Registering: implements the un/registration
of a GCU to a GBU leader of a given colony.
• Basic shell: read-eval-print loop. In the case of a
local failure of a request, if the GCU is working in global
mode, then the request is forwarded to the GBU leader
of the colony.
• Global GBU Listening: listens for any communica-
tion (service request/response) from the GBU.
• Global GCU Listening: deals with the (P2P like)
interaction between GCUs. This interaction takes place
after a clear phase of negotiation with the GBU.

We let the following variables shared by all pro-
cesses, via classical semaphores à la Dijkstra:
• GBU holds all the security and network informations
of the leader of the colony.
• GlobalMode is true iff the GCU works in global mode.
• RegMode is true if and only if the GCU has been regis-
tered in a given colony. Until registered, the GCU must
keep the dialog with the GBU.

A short explanation of the GCU pseudocode follows.
• Discover(MyCard ) discovers the GBU leader of the
colony, where the GCU is going to connect.
• ServiceReg(MyCard ,GBU,LOGIN) tries to register
the GCU to GBU on the local colony. The registration
can fail depending of different parameters (like the
fact that the PKI is not trustful, or that the GCU will
offer insufficient resources to the colony, etc.); this
function will set RegMode to true.
• ServiceReg(MyCard ,GBU,LOGOUT) unregisters the
GCU to the GBU leader of the local colony he is actually
connected; the GCU will now work in local standalone
mode; this function will set RegMode to false.
• ListenLocal() waits for a request from local API.
• LocalServe(Data) executes the Data on the local
machine. It can fail.
• PackScenario(Data) encodes the scenario request
with the Data to be sent, in the payload part of the
GIP protocol, within the service request.
• ServiceRequest(MyCard ,GBU,MetaData) sends a
request of service to the leader GBU.
• LocalReply(Response) forwards locally Response.
• ListenGBU() waits for a request from the GBU.
• CanHelp(MetaData) checks if the request can be served.
• ServiceResponse(MyCard ,GBU,COMMAND) answer to
the GBU concerning the requested service.



inparallel
while true do // Registration loop
GBU = Discover(MyCard )
case (GlobalMode,RegMode) is
(true ,false ):
ServiceReg(MyCard ,GBU,LOGIN)

(false ,true ):
ServiceReg(MyCard ,GBU,LOGOUT)

otherwise: // Do nothing
endcase

endwhile
with
while true do // Shell loop
Data = ListenLocal()
Response = LocalServe(Data)
case (Response,GlobalMode,RegMode) is
(login ,-,-): // Open global mode
GlobalMode = true

(logout ,-,-): // Close global mode
GlobalMode = false

(fail ,true ,true ): // Ask to the GBU
MetaData = PackScenario(Data)
ServiceRequest(MyCard ,GBU,MetaData)

otherwise: LocalReply(Response)
endcase

endwhile
with
while RegMode do // Global GBU listening
MetaData = ListenGBU()
case MetaData.OPE is
SREG : // GBU responds if it accepts my registration
if CanJoin(MetaData)
then RegMode = true
endif

if CanLeave(MetaData)
then RegMode = false
endif

SREQ : // GBU is asking for some resources
if CanHelp(MetaData)
then ServiceResponse(MyCard ,GBU,ACC )
else ServiceResponse(MyCard ,GBU,REJ )
endif

SRESP ://GBU responds if it has found some resources
if CanServe(MetaData)
then Peers = GetPeers(MetaData)

Response = GlobalServe(MyCard ,
Peers,MetaData)

ServiceResponse(MyCard ,GBU,DONE )
LocalReply(Response)

else LocalReply(fail )
endif

endcase
endwhile

with
while RegMode do // Global GCU listening
MetaData = ListenGCU()
if Verify(MetaData)
then Data = UnPackScenario(MetaData)

Response = LocalServe(Data)
if Response == fail
then ServiceResponse(MyCard ,GBU,ERR )
else ServiceResponse(MyCard ,GBU,DONE )

SendResult(MyCard ,GCU,Response)
endif

else ServiceResponse(MyCard ,GBU,SPOOF )
endif

endwhile
endinparallel

Figure 2. GCU pseudocode

• CanServe(MetaData) analyzes the request.
• GetPeers(MetaData) fetch some candidates peers.
• GlobalServe(MyCard ,Peers,Data) forwards the
request to the peers that the GBU found in his colony.
The request will be processed remotely.
• CanJoin/CanLeave(MetaData) checks if the GCU

can join/leave the colony.
• ListenGCU() waits for a request from GCU.
• Verify(MetaData) verifies if the request is well
formed. It also verifies the PKI of the GCU, or it checks
if the demanded service was already asked, etc.
• UnPackScenario(MetaData) decodes the scenario
request from the Data received in the payload part of
the GIP protocol, within the service request.
• SendResult(MyCard ,GBU,Response) sends the
results of the request to the requesting GCU.

The GRU’s Semantics is described below.

while true do
inparallel
GIPacket = ListenLocal() // Local listening
Route(MyCard ,MyPeerCard ,GIPacket)

with
GIPacket = ListenGlobal() // Global listening
if GIPacket.TTL != 0
then GIPacket.TTL --

Deliver(MyCard ,MyPeerCard ,GIPacket)
endif

endinparallel
endwhile

The key functions of the algorithm are explained
below. Let MyPeerCard denotes the name of the
GCU (resp. GBU) which is uniquely attached, via a
suitable API to the GRU, denoted by MyCard . This
unit is the only units that de facto understands the
GIP protocol; it will deals with Resource Discovery
(function Discover() of the GCU (resp. GBU). The
TTL slot in a GIP packet will be used to count the
maximum number of hops from one unit to another:
this value is useful to limit the number of request
forwarded from one GBU to another one. This field
help the GRU to discard some packets (typically service
request) that “surfs” the Overlay Network looking for
some “charitable” GCU that could help him.
• ListenLocal()waits for a request from the local API.
• ListenGlobal() waits for a request from Arigatoni.
• Route(MyCard ,MyPeerCard ,GIPacket) routes a GIP

packet to its destination (defined in the GIPacket).
• Deliver(MyCard ,MyPeerCard ,GIPacket) unpacks
and delivers a GIP packet to the peer (GCU or GBU) to
which the GRU is uniquely attached.

The GBU’s Semantics is described in the pseudo-code
in Figure ??. The key functions of the algorithm are
explained below. It is composed by five processes:
• Un/Registering: implements the (un)registration
of a GBU to a leader-GBU of a given supercolony.



inparallel
while true do // Registration loop
GBU = Discover(MyCard )
case (GlobalMode,RegMode) is
(true ,false ):
ServiceReg(MyCard ,GBU,LOGIN)

(false ,true ):
ServiceReg(MyCard ,GBU,LOGOUT)

otherwise: // Do nothing
endcase

endwhile
with
while true do // Shell loop
Data = ListenLocal()
Response = LocalServe(Data)
case (Response,GlobalMode,RegMode) is
(login ,-,-): // Open global mode
GlobalMode = true

(logout ,-,-): // Close global mode
GlobalMode = false

(fail ,true ,true )://To ask something you and for you
MetaData = PackScenario(Data)
ServiceRequest(MyCard ,MyCard ,MetaData)

otherwise: LocalReply(Response)
endcase

endwhile
with
while true do // Intra-colony listening
MetaData = ListenPeer()
PushHistory(MetaData)
case MetaData.OPE is
SREG : // A GCU is asking for (un)registration
Update(Colony,MetaData)

SREQ : // A GCU is asking for some request
SubColony = SelectPeers(Colony,MetaData)
if SubColony == {} // Broadcast inter
then

ServiceRequest(MyCard ,GBU,MetaData)
endif
foreach Peer in SubColony do //Broadcast intra
ServiceRequest(MyCard ,Peer,MetaData)

endforeach

SRESP : // A GCU responds to a request
Sort&PushPeers4Id(MetaData)

endcase
endwhile

with
while true do // Spooling Peers4Id
foreach (Id,Peers) in Peers4Id do
if Timeout(Id)
then ServiceResponse(MyCard ,{},NOTIME )
else if Satisfy(Peers,History(Id))

then
ServiceResponse(MyCard ,

GetBestPeers4Id(Id),DONE )
endif

endif
PopPeers4Id(Id)

endforeach
endwhile

with
while RegMode do // Inter-colony listening
MetaData = ListenGBU()
PushHistory(MetaData)
case MetaData.OPE is
SREG : // Registration inter GBU
case MetaData.ROLE is
LEADER ://A GBU is trying to register in a leaderGBU
if CanJoin(MetaData)
then RegMode = true
endif
if CanLeave(MetaData)
then RegMode = false
endif
INHABITANT ://AGBU is asking for (un)registration
Update(Colony,MetaData)

SREQ :
... as for SREQ intra-colony

SRESP : // A leader GBU responds to a request
Sort&PushPeers4Id(MetaData)
endcase

endcase
endwhile

endinparallel

Figure 3. GBU pseudocode

• Basic shell: read-eval-print loop. The GBU itself can
work in local standalone mode (i.e. it does not forward
any requests to other brokers), or in global mode (any
request that cannot be completely served intra-colony
is forwarded to the leader-GBU of the supercolony).
• Spool: associative list composed by an unique iden-
tifier of a service request and a list of GCUs that have
accepted to serve the task associated with the identifier.
• Intra-colony Listening: listens for any communi-
cation (service request or service response) from the
local colony.
• Inter-colony Listening: deals with the interac-
tion between the leader-GBU of the colony and the
superleader-GBU of the supercolony where the colony
is registered: this interaction takes place after a clear
phase of negotiation between both leaders of colonies.

We assume, that the following variables are shared
by all processes, via classical semaphores à la Dijkstra:
• Colony is the set of colony’s inhabitants.
• Peers4Id is a dictionary of the shape [(Id,
Peers)]* denoting, for each service request Id, the
list of potential Peers that have accepted to serve Id.

• History is a dictionary of the shape [(Id,
MetaData)]*, where MetaData contains all the infor-
mations about the kind of request.
• GlobalMode is true if and only if the GCU works in
global mode; is false otherwise.
• RegMode is true iff the GCU has been registered in a
given colony; it holds false otherwise. Unless unregis-
tered, the GCU must keep the dialog with the GBU.
• GBU holds all the security and network informations
of the leader of the colony.

A short explanation of the GBU pseudocode follows.
• Discover(MyCard ) discovers the leader-GBU, upon
physical/logical insertion in the Overlay Network.
• ListenPeer() waits for a request from an individual
of the colony.
• PushHistory(MetaData) push the pair (Id,
MetaData) on the History dictionary (Id is contained
in MetaData as well).
• SelectPeers(Colony,MetaData) performs a static
analysis about the possibility to fully satisfy the service
request inside the local colony, i.e. without forwarding
the request out of the colony; if the function returns {},



Figure 4. A GIP packet on UDP or TCP

then the request a priori cannot be satisfied internally.
• Sort&PushPeers4Id(MetaData) inserts and sort the
peers of GetPeers(MetaData) in the list of peers iden-
tified by Peers4Id(GetId(MetaData)): sorting is done
following ad hoc criteria w.r.t. the resources requested
for a given scenario.
• Update(Population,MetaData) logs and delogs one
GCU (resp. GBU), whose coordinates are contained in
MetaData, from the colony (denoted by Population);
the criteria of logging/delogging depend on the secu-
rity policy the colony has adopted.
• Timeout(Id) is true when a service request, labeled
with a given Id, oversize a fixed time of waiting.
• Satisfy(Peers,History(Id)) checks for a service
request Id (in History), the Peers capabilities.
• GetBestPeers4Id(Id) selects the “best” peers for
the request with Id key, from a list of potential peers:
the selection criteria depends, among others, on the
peculiar scenario we are dealing with.
• PopPeers4Id(ID) pops the pair (ID,PEERS) in the
Peers4Id dictionary.
• CanJoin(MetaData) checks if the GBU can join the
colony; it also verifies that the registration does not in-
duce cycles in the colony the GBU he is trying to join.

4. The GIP Protocol

For obvious lack of space, many details of the
protocol are left implicit. As shown in Figure ??, the
GIP packet resides in the payload of a UDP datagram,
or eventually of a TCP packet. We let the common
datatypes, like Byte, Int, Bool, Set, etc. plus the
Variable-Length (recursive)-type Vlt defined as follows.

Definition 1 (Vlt Type) Any element of type Vlt
has the following two fields:
1) LENGTH : Int is the length of the Payload in bytes.
2) PAYLOAD : Vlt contains the data to be interpreted.

The fields of the GIP protocol are:
• VNUMB : Int: version number of the protocol.
• TTL : Int: “time to live” of the packet protocol
introduced to avoid that packets “lives” too much in
the Network jumping from one GBU to another GBU.
• ROLE : Bool: the role of the sender of the packet,
either a LEADER or INHABITANT.
• CMD : 2Byte command carried by the packed. It is
composed by the two subfields SERVICE,VALUE : Byte.

• OPE : Vlt describes, for each command, a particular
operation and its parameters.
• OPT? : Bool indicates that options are present at the
end of the GIP packet.
• OPT : Vlt describes the optional fields.

For each command described in the CMD field,
the OPE field contains, in its payload field, all data
necessary to perform the command. For lack of space,
we only describe the CMD and the OPE fields.

The CMD Field. The GIP allows the three services,
namely SREG, SREQ, and SRESP.
• (SREG : Byte,VALUE : Byte), a.k.a. Service Register is
used for the registration of either a GCU to a GBU, or a
GBU (leader of a subcolony working in local mode) to
another GBU leader of another colony that physically
(or logically) contains the subcolony. Registration is
acknowledged by both units. Values are:
· LOGIN applies when a GCU wants to register to a GBU,
or when a GBU (representing a subcolony) wants to
register to another GBU.
· LOGOUT applies when a GCU wants to unregister to a
GBU or when a GBU (representing a subcolony) wants
to unregister to another GBU.
· LOGGED applies when a GBU notifies a successful
registration to an individual.
· UNLOGGED applies when a GBU notifies a failed
registration to an individual.
• (SREQ : Byte,VALUE : Byte), a.k.a. Service Request is
sent by a GCU in global mode to request a service to
its GBU. A GBU in global mod forwards this request to
another super GBU, in case it did not find in its own
colony all the needed resources to serve the request.
A GBU also can sends this request to every registered
inhabitant of his colony, namely GCUs or GBUs leader
of some subcolonies. Every bit of VALUE represents any
possible distributed resource that can be asked, i.e.:
· (bit 0) CPU: we ask for computational power.
· (bit 1) MEM: we ask for memory space.
· (bit 2) DATA: we ask for some (distributed) files.
· (bit 3) BAND: we ask for some bandwidth (the GCU

is usually an ISP).
· (bit 4) WEB: we ask for web services.
· (bit 5) RUN: we ask to abort a run, pack everything
(complete dump of the registers, stack, etc.) in a
closure and migrate somewhere the computation.
· (bit 6): left for future use.
· (bit 7): parity bit.

Of course, a combination of different requests can be
done, like the following one that ask for CPU, Memory,
Data, and Bandwidth like in 1 1 1 1 0 0 0 0 .
• (SRESP : Byte,VALUE : Byte), a.k.a. Service Response
is sent by a GCU to a GBU, to answer a received SREQ.



It is also exchanged between two GBUs or from a GBU

to a GCU, following the reverse path of the SREQ. It
indicates whether or not the individual may process
the request of the leader GBU. A service response is
also exchanged between two GCU when one servant GCU

acknowledge the reception of the request from a client
GCU, or to inform the client that it has to wait since
the request is still processing on the servant, or to send
the result or informations on how to retrieves the result
to the client. Possible kinds of values are
· ACC: the request is accepted. Sent by a GBU to the
individual which transmitted the request.
· REJ: the request cannot be processed. Sent by a GBU

to the individual which transmitted the request.
· DONE: the request has been processed. Sent by an
individual to the GBU, leader of the colony.
· ERR: the request has been processed, but some errors
occurs (i.e. a core dump in a run). Sent by an
individual to the GBU, leader of the colony.
· SPOOF: the request cannot be processed, because
of some problems in the authentication. Sent by an
individual to the GBU, leader of the colony.
· NOTIME: the request has expired its time-frame. Sent
by the GBU to individuals of its colony.
· RES: the request is processed and the result is going
to be transmitted. Sent by an individual to the GBU,
leader of the colony.

The OPE Field. The OPE field of type Vlt is used to
encode in its payload part all the information necessary
to execute the command.
• For an SREQ command:
· ID :4Byte is the unique ID identifying the request
carried by this command. This field is created by the
original individuals which emitted the request and is
left unchanged by all the nodes forwarding the request.
· CARD:Vlt contains all the informations necessary for
the exchange between the client and a servant (i.e.
Protocol, IP Address, Port number, PKI, etc.).
· REQNUMB:Int is the number of request units follow
in the packet. This number must not be equal to zero.
· REQDATA:Vlt∗ (a list of Vlt) describes all informations
necessary to deal with a simple request.
• For an SRESP command:
· ID :4Byte contains the unique ID identifying the
request carried by this command.
· CARD:Vlt contains all the informations necessary for
the exchange between the client and a servant (i.e.
Protocol, IP Address, Port number, PKI, etc.).
· RET:Vlt contains the result of the request.

Figure 5. Scenario for Seismic Monitoring

5. Scenario for Seismic Monitoring

John, chief engineer of the SeismicDataCorp Com-
pany, Taiwan, on board of the seismic data collector
ship, has to decide on the next data collect campaign.
For this he would like to process the 100 TeraBytes of
seismic data that have been recorded on the data mass
recorder located in the offshore data repository of the
company to be processed and then analyzed.

He has written the processing program for modeling
and visualizing the seismic cube using some parallel
library like e.g. MPI or PVM: his program can be
distributed over different machines that will compute
a chunk of the whole calculus; however, the amount
of computation is so big that a supercomputer and a
cluster of PC has to be rented by the SeismicDataCorp
company. John will ask also for bandwidth in order to
get rid of any bottleneck related to the big amount of
data to be transferred.

Then, the processed data should be analyzed using
the Virtual Reality Center, (VRC) based in Houston,
U.S.A. by a specialist team and the resulting recom-
mendations for the next data collect campaign have to
be sent to John. As such:
1) John logs on the Arigatoni Overlay Network in a
given colony in Taiwan, and sends a quite complicated
service request in order for the data to be processed us-
ing his own code. Usually the GBU leader of the colony
will receive and process the request.
2) If the Resource Discovery performed by the GBU

succeeds, i.e. a supercomputer and a cluster and an
ISP are found, then the data are transferred at a very
high speed and the “Sinfonia” begins.
3) John will also ask (in the GIP query) to the GCU con-
taining the seismic data to dispatch suitable chunks of
data to the supercomputer and the cluster designated
by the GBU to perform some pieces of computation.
4) John will also ask (in the GIP query) to the global



supercomputer the task of collecting all intermediate
results so calculating the final result of the computa-
tion, like a “Maestro di Orchestra”.
5) The processed data are then sent from the super-
computer, via the high speed ISP to the Houston center
for being visualized and analyzed.
6) Finally, the specialist team’s recommendations will
be sent to John’s laptop.

This scenario is pictorially presented in Figure ??
(we suppose a number of subcolonies with related lead-
ers GBU, all registered as individuals to a superleader-
GBU (for example the John’s GBU could be elected as
the superleader). For simplify security issues, all GBU’s
are trusted using the same PKI, making de facto in
common all resources of their colonies.

6. Related and Future Work

Related work. Many technologies, algorithms, and
protocols have been proposed recently on Resource
Discovery in Overlay Networks. Some of them focus on
Grid or P2P applications, but none of those targets the
full generality of the Arigatoni. Our model deals only
on generic Resource Discovery for building an Overlay
Network of Global Computers, structured in a Virtual
Organization with clear and distinct roles between
leader and individuals. This section briefly discusses
some of the closest technologies and architectures found
recently in the literature.

The Globus Toolkit [?], is an open source set of
technology, protocols, middleware, used for building
Grid systems and applications. Possible applications
range from sharing computing power to distributed
databases in a heterogeneous overlay network, where
security is taken seriously into account. The toolkit in-
cludes stand alone software for security, information in-
frastructure, resource management, data management,
communication, fault detection, and portability. The
analogies with the Arigatoni model lies in the Com-
munity Scheduler Framework component and the Web
Service Grid Resource Allocation and Management of
the toolkit concerning the Resource Discovery, and the
Globus Teleoperations Control Protocol to allows units
to cooperate (analogy with our GIP protocol).

Puppin et al. [?,?], following the lines of [?], designed
and implemented a super-peer overlay network, using
the Globus technology, as a trade-off between totally
distributed systems and cache based services. Their
network shares some similarities with our tree-based
architecture of the Virtual Organization induced by the
Arigatoni model, especially in case of network with no-
redundancy.

Promoted by Sun, the JXTA [?] technology is a set of

open peer-to-peer protocols that enable any device to
communicate, collaborate and share resources. After a
peer discovery process, any peer can interact directly
with other peers. Hence the overlay network of peers
induced by the JXTA technology is flat. In fact the main
concern of Arigatoni model is Resource Discovery, while
the main concern of the JXTA technology is to offer
some tools to implement a P2P model. In Arigatoni,
any individual first asks to the GBU leader of the
colony it belongs and then collaborates with any peers
suggested by the GBU. Consequently, the JXTA flat set
of individuals is replaced in Arigatoni by a hierarchy of
colonies, and subcolonies, that can dynamically change
upon registration or unregistration of the different
individuals, i.e. the topology induced by the model is
a dynamic tree. Moreover, Arigatoni focuses on the
evolution/devolution of colonies and the mechanism
of resource discovery, while JXTA technology allows
peers to communicate using an already existing overlay
network of peers. Arigatoni aims are dynamicity of
the overlay network while JXTA aims are freedom of
connectivity between peers. Finally peers in the JXTA

architecture come with their proper JXTA-ID (logical
JXTA peers addressing) while Arigatoni relies on the
more conventional IP addresses. As such, a peer in
a JXTA network is uniquely identified by its peer ID

allowing the peer to be addressed independently of its
physical addresses.

NaradaBrokering [?] is an open-source, distributed
messaging infrastructure based on the Publish/Sub-
scribe paradigm. A broker distributes and routes
messages, while working with multiple underlying
communication protocols. The broker network in
NaradaBrokering is based on hierarchical, cluster-based
structure which can support large heterogeneous client
configurations. The routing of events within the
substrate is very efficient since for every event, the
associated targeted brokers are usually the only ones
involved in dissemination. Furthermore, every broker
computes the shortest path to reach target destinations
while eschewing links and brokers that have failed
or are suspected to fail. Various data structures
are used to encode topic descriptors in order to
implement efficient search procedures. Arigatoni is
very complementary to NaradaBrokering since it mainly
concentrates on Resource Discovery and peer selection
based on service requests.

The OurGrid architecture [?] is oriented to share
computational power and does not match with the
complete genericity of Arigatoni. From this point of view
Arigatoni is a generalization of the OurGrid architecture.
Arigatoni is based on the formal model of colonies, the
dynamic tree of brokers and a trade off between P2P



and Grid models thanks to an extended version of the
Publish/Subscribe paradigm.

In [?], a P2P approach for Resource Discovery in
Grid environments is proposed. The authors present a
framework that drives a design of any Resource Dis-
covery architecture. In [?], non-uniform information
dissemination protocols are used to efficiently propa-
gate information to distributed repositories, without
requiring flooding or centralized approaches. Results
indicate a significant reduction in the overhead com-
pared to uniform dissemination to all repositories.

In [?], a semantic Resource Discovery in the Grid is
proposed using a P2P network to distribute and query
to the resource catalog. Each peer can provide resource
descriptions and background knowledge, and each peer
can query the network for existing resources.

In [?], the authors investigate the applicability
of a structured overlay network for the discovery of
Grid resources based on the P-GRID overlay network
and presents experimental results from a large-scale
deployment on PlanetLab [?]. We do believe that our
approach is complementary to this overlay network
in the sense that it provides the necessary basic
infrastructure necessary to a real deployment of the
overlay network itself. Moreover, our work abstract on
which kind of resource the overlay network is playing
with; pragmatically, this work could be useful for Grid,
or for distributed file/band sharing, or for more evolved
scenarios like mobile and distributed object-oriented
computation in the style of the language Obliq [?].

However, all these papers propose high level mech-
anisms or algorithms and do not address the full gen-
erality of Arigatoni.

Future work. We are improving our model with
several new features, such as the possibility to ask
a certain number of instances of a service (i.e., the
system should find the specified number of GCUs
capable of providing that service), or the possibility
to embed services in conjunctions (i.e., the services in
a conjunction should be provided by the same GCU),
or load balancing issues. We are working on the
implementation of a real prototype and the subsequent
deployment on the PlanetLab experimental platform,
and/or on GRID5000, the platform available at the
INRIA. As part of our ongoing research, we are also
working on a more complete statistical study of our
system, based on more elaborate statistical models and
realistic assumptions. Future works will also focus on
security issues as for example using many PKI instead
of a unique PKI, the study of trust models based on
reputation and more advanced security models and
techniques.

Acknowledgments. We warmly thanks Nicolas
Bonneau for the careful reading of the paper. This
work is supported by Aeolus FP6-2004-IST-FET
Proactive.

References

[1] BitTorrent, Inc. The Bittorrent Home Page. http:

//www.bittorrent.com.
[2] L. Cardelli. A language with distributed scope.

Computing Systems, 8(1):27–59, 1995.
[3] R. Chand, M. Cosnard, and L. Liquori. Resource

Discovery in the Arigatoni Overlay Network. In
I2CS: International Workshop on Innovative Internet
Community Systems, volume LNCS. Springer, 2006.
To appear. Also available as RR INRIA 5928.

[4] Community Grid Labs. Narada Brokering Home Page.
http://www.naradabrokering.org/.

[5] M. Cosnard, L. Liquori, and R. Chand. Virtual
Organizations in Arigatoni. DCM: International
Workshop on Developpment in Computational Models.
Electr. Notes Theor. Comput. Sci., 2006. To appear.

[6] Globus Alliance. Globus Home Page. http://www.

globus.org/.
[7] M. Hauswirth and R. Schmidt. An Overlay Network

for Resource Discovery in Grids. In Proc. of Inter-
national Workshop on Database and Expert Systems
Applications, DEXA, pages 343–348. IEEE, 2005.

[8] F. Heine, M. Hovestadt, and O. Kao. Towards
Ontology-Driven P2P Grid Resource Discovery. In
Proc. of International Workshop on Grid Computing,
GRID, pages 76–83. IEEE/ACM, 2004.

[9] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[10] A. Iamnitchi, I. T. Foster, and D. Nurmi. A Peer-
to-Peer Approach to Resource Location in Grid Envi-
ronments. In Proc. of High Performance Distributed
Computing, HPDC, page 419, 2002.

[11] V. Iyengar, S. Tilak, M. J. Lewis, and N. B. Abu-
Ghazaleh. Non-Uniform Information Dissemination
for Dynamic Grid Resource Discovery. In Proc. of
Network Computing and Applications, NCA. IEEE,
2004.

[12] JXTA Community. JXTA Home Page. http://www.

jxta.org/.
[13] R. Milner. A Calculus of Communicating Systems.

Springer, 1980.
[14] D. P. S. Moncelli, R. Baraglia, N. Tonellotto, and

F. Silvestri. A Grid Information Service Based on
Peer-to-Peer. In Proc. of Euro-Par, pages 454–464,
2005.

[15] OurGrid Project. OurGrid Home Page. http://www.

ourgrid.org.
[16] Planet Lab Consortium. Planet Lab Home Page.

http://www.planet-lab.org/.
[17] D. Puppin, F. Silvestri, and D. Laforenza. Component

Metadata Management and Publication for the Grid.
In Proc. of ITCC, pages 187–192, 2005.



[18] A. Rapoport. Mathematical models of social interac-
tion. In Handbook of Mathematical Psychology, vol-
ume II, pages 493–579. John Wiley and Sons, 1963.

[19] U. Schwiegelshohn, R. Yahyapour, and P. Wieder.
Resource Management for Future Generation Grids.
Technical Report TR-0005, CoreGRID, 2005.

[20] J. White. Telescript technology: the foundation for the
electronic marketplace. White Paper. General Magic,
Inc., 1994.

[21] B. Yang and H. Garcia-Molina. Designing a Super-
Peer Network. In Proc. of ICDE, 2003.


