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Abstract. We illustrate a methodology for formalizing and reasoning about Abadi and Cardel-
li’s object-based calculi, in (co)inductive type theory, such as theCalculus of (Co)Inductive
Constructions, by taking advantage ofNatural Deduction Semanticsandcoinductionin com-
bination withweak Higher-Order Abstract Syntaxand theTheory of Contexts.

Our methodology allows to implement smoothly the calculi in the target metalanguage;
moreover, it suggests novel presentations of the calculi themselves. In detail, we present
a compact formalization of the syntax and semantics for the functional and the imperative
variants of theς-calculus. Our approach simplifies the proof of Subject Reduction theorems,
which are proved formally in the proof assistantCoq with a relatively small overhead.
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1. Introduction

In this paper, we present a methodology for formal reasoning aboutobject-
basedcalculi, aiming to take most advantage of the features offered by Logi-
cal Frameworks based oncoinductive type theories. We illustrate this method-
ology by means of an extensive case study, about Abadi-Cardelli’sς-calculus
(in both functional and imperative versions), using theCalculus of (Co)Indu-
ctive Constructions(CC(Co)Ind) in its Coq implementation (Coq, 2003).

There are several motivations for this work. First, in recent years much ef-
fort has been put in formalizingclass-basedobject-oriented languages (such
asJava, C++ andC#) in Coq, Isabelle andPVS (March́e et al., 2004; Klein
and Nipkow, 2003; Huisman, 2001; Van den Berg et al., 2001; Tews, 2000).
On the other hand,object-basedlanguages, such asSelf (Self, 2003) and
Obliq (Cardelli, 1995) have received little attention. We see this fact as a
serious gap, because most of the foundational calculi introduced for the math-
ematical analysis of the object-oriented paradigm are object-based (Abadi
and Cardelli, 1996; Fisher et al., 1994). Indeed, object-based languages sim-
plify and generalize class-based ones: they reduce classes to more primi-
tive notions, provide more flexible mechanisms, and can be even used as
intermediate code for the implementation of the latter.
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Secondly, formalizing and reasoning about object-based calculi in a Logi-
cal Framework is challenging from the point of view of program certification.
Often, object calculi summarize many different features usually found in sep-
arate languages: objects, variable bindings, closures, functional and impera-
tive method-update, stores, aliasing, circular pointers, types and subtyping,
all at once. This level of complexity has a bearing in proving properties about
the calculi: for instance, the property of Subject Reduction is much harder to
state and prove for object-based languages than for pure functional ones. It
is clear that this scenario can benefit from the use of Logical Frameworks:
on one hand, the rigorous encoding in a metalanguage forces to spell out in
full detail all aspects of the calculus, thus giving the possibility to identify
and fix problematic issues which are skipped on paper; on the other hand, the
encoding methodology may offer the occasion for reformulating the calculus
itself, which can be seen from novel, cleaner perspectives.

Now, a common problem is that encoding and reasoning about a formal
system in a Logical Framework, adds further complexity to already cumber-
some judgements and proofs. In order to be practically useful, therefore, it
is important that the formalization is as clean and compact as possible. A
typical example is the handling of bound variables: in spite of the fact that
α-equivalence is taken for granted on paper, it does not holde.g. in first-order
encodings, where one has to deal explicitly with different representations of
equivalent terms. Thus, an encoding of object-based calculi using traditional
first-order techniques, although feasible, is not satisfactory, as it would yield
a clumsy and unmanageable set of definitions, whose handling would add
further difficulties to the formal development.

Therefore, a “good” encoding methodology should strive for simplicity:
the overhead introduced by the formalization should be as low as possible.
This prerequisite allows for simplifying the formal proof of complex metathe-
oretical results, such as Subject Reduction. Ideally, most (if not all) details
implicitly taken for granted working with paper and pencil should be auto-
matically provided in the formal development. A way for pursuing this goal
is to internalizethese issuesin the metalanguage to the best extent, so that
all the burden of their management is delegated to the Logical Framework. In
the case of theς-calculus, since the target metalanguage is CC(Co)Ind, we have
aimed to take most advantage ofhypothetic-general judgments, coinduction
andweak higher-order abstract syntax(HOAS).

The first issue is that the semantics ofς-calculus is specified by means
of several sequent-style systems:à la Kahn’s Natural Semantics. Sequents
contain explicit structures such as typing environments, evaluation stacks,
stores, store-types, etc. A straightforward representation of these structures
as lists would lead to complicated judgments and proofs. Following (Burstall
and Honsell, 1990; Miculan, 1994), we use hypothetic-general judgmentsà la
Martin-Löf for internalizing those structures which obey to a stack-discipline.

paper.tex; 7/05/2006; 11:30; p.2



3

Hence, stacks and typing environments “disappear” from the formal judg-
ments and proofs, which in turn become fairly simpler than the original ones.
However, stack internalization comes not for free: we have to provide a differ-
ent management of closures. Far from being a problem, this suggests a novel
formulation innatural deductionstyle of theς-calculus, where closures are
managed more efficiently than in the original version. On the other hand,
stores are not stack-like structures, and hence cannot be internalized in an
intuitionistic framework such as CC(Co)Ind. Nevertheless, we try to reduce
their impact as much as possible.

A quite important consequence of having a store-based operational se-
mantics is that the typing of values is not trivial, due to the potential presence
of circular data structures (“pointer loops”) in stores. The solution devised in
(Abadi and Cardelli, 1996) is to usestore types, which are auxiliary structures
assigning a type to each location of a store compatibly with its content; how-
ever, these structures are not easy-to-use in proof assistant. Luckily, nowadays
type theories providecoinductionfor dealing with circular, non well-founded
entities (Giḿenez, 1995). Inspired by this feature, we elaborate an original
coinductive system for typing results without using store types, and instead
by recovering the types from the content of store locations. Using our system,
whose expressive power is equivalent to the original one, we simplify the
proof of Subject Reduction for the functional version of theς-calculus. (On
the other hand, we cannot avoid to use store types in the proof of Subject
Reduction for the imperative calculus, mainly because we cannot always
recover exactly the same type information along the computation since the
content of locations may change).

Finally, when we come to the implementation in CC(Co)Ind, we have to
face the problem of representing binders efficiently. To this end, one of the
most suited approaches ishigher-order abstract syntax(Pfenning and Elliott,
1988; Harper et al., 1993; Miculan, 1997). More precisely, since we work in
a type theory with induction, we useweakHOAS (Miculan, 1997; Honsell
et al., 2001b): binders are represented assecond-order term constructors,
taking as arguments functions over a parametric, open (i.e., non inductive)
type ofvariables. In this way,α-conversion of abstractions is automatically
ensured by the parametericity of the set of variables, still retaining the benefits
of inductive definitions and without the presence ofexotic terms(Despey-
roux et al., 1995). The main drawback of (weak) HOAS is that it is difficult
to reasonabout the encodings. For instance, for proving Subject Reduction
we have to prove several properties concerningvariable renaming, often by
induction over second-order terms. This is problematic, because CC(Co)Ind,
and similar type theories, are not expressive enough (Honsell et al., 2001a).
In order to overcome this problem, we have adopted theTheory of Contexts
(ToC) (Honsell et al., 2001a), a small set of axioms which can be added to the
existing logical framework (CC(Co)Ind, in this case) and which represent some
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basic and natural properties of variables and term contexts. These axioms
have been proved to be consistent with (classical) higher order logic (Bucalo
et al., 2006) (although their soundness in higher-order type theories is still
under investigation). The main advantage of this approach is that it requires a
very low mathematical and logical overhead: the arguments on paper can be
readily ported to the formal setting, and it can be used in many existing proof
environments without the need of any redesign of such systems.

To sum up, we present the first systematic formalization of (Abadi and
Cardelli’s) object-based calculi, in proof assistants based on type theories
(the closest works are (Laurent, 1997; Gillard, 2000), which deal with func-
tional semantics only, and (Hofmann and Tang, 2000), that does not formalize
the operational semantics directly). We believe that the work described in
this paper is an advancement both for the theory of object-based calculi and
the pragmatics of interactive proof theory within the current generation of
proof assistants. Their theoretical development and implementation will ben-
efit from complex case studies such as the present one, where we test the
applicability of advanced encoding and proof methodologies.

Synopsis. In Section 2 we recall the functional and imperative versions of
the ς-calculus. In Section 3 we reformulate these calculi, bearing in mind
the natural deduction approach and by taking advantage also of coinduction;
these new formulations are proved to be equivalent to the original ones. The
formalization inCoq of the new presentations, using weak Higher-Order
Abstract Syntax, is discussed in Section 4. The formal development of meta-
theoretic properties, such as Subject Reduction theorem, using the Theory of
Contexts, is presented in Section 5. Related work, conclusions and directions
for future work are in Section 6. Longer proofs are reported in Appendix A.

This paper is a revised and considerably extended version of two confer-
ence papers (Ciaffaglione et al., 2003a; Ciaffaglione et al., 2003b). TheCoq
code is available at (Ciaffaglione et al., 2005).

2. The ς-Calculus

The ς-calculus is a calculus of objects, introduced by Abadi and Cardelli as
the kernel of the languagesObliq (Cardelli, 1995) andSelf (Self, 2003). We
focus here on its (untyped)functionalandimperativevariants, both equipped
with first-order typingà la Curry (Abadi and Cardelli, 1996, Ch. 6, 10, 11).
We first describe the functionalfunς, then extend it to the imperativeimpς.

2.1. THE FUNς -CALCULUS

Syntax. The syntax of terms is given in Figure 1. Variables are taken from an
infinite setV ar = {x1, x2, . . . } of distinct symbols, ranged over byx, y, z.
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Term : a, b ::= x variable
[li = ς(xi)bi]i∈I object (li distinct)
a.l method invocation
a.l←ς(x)b method update

Figure 1. Syntax of the functional calculusfunς.

We give here a brief explanation of the intuitive meaning of the constructs.
An object is a collection ofcomponentsli=ς(xi)bi, i ∈ I, with distinct

method namesli and associated methodsς(xi)bi. The order of the com-
ponents does not matter; the locally bound variablexi (also called “self”)
denotes thehostobject, that is, the object containing the methods{li}i∈I .

Method invocationa.l, where the method namedl in a is ς(x)b, has the
intent of executing the method-bodyb with the parameterx bound to the host
objecta, then returning the result of the execution.

Method updatea.l←ς(x)b has here afunctionalmeaning: anewobject is
built via the up to date methods of the old object and the new methodς(x)b.

In all cases,ς acts as a binder:e.g., in ς(x).b, x is bound inb. Usual
conventions aboutα-conversion and free variables (denoted byFV(a)) apply.

Dynamic Semantics.The operational semantics offunς is expressed by a
big-step reduction relation (Kahn, 1987; Despeyroux, 1986), relating two
storesσ, σ′, a stackS, a terma, and a resultv:

σ·S ÀC a ; v·σ′

The intended meaning is that, starting with the storeσ (playing the role of a
heap) and the stackS, the terma reduces to a resultv, yielding an updated
storeσ′ and leaving the stackS unchanged in the process. More precisely,
the entities involved in the semantics belong to the following sorts:

Loc : ι ∈ Nat store location
Res : v ::= [li = ιi]i∈I result
Stack : S ::= (xi 7→vi)i∈I stack
Store : σ ::= (ιi 7→〈ς(xi)bi, Si〉)i∈I store

In this semantics, variables are never replaced by terms: they are associ-
ated to values,i.e. (object) results, by stacks. A result represents an object: it
is a collection of method labels together with the locations where the corre-
sponding(method) closuresare stored. Closures are pairs built by amethod
ς(xi)bi and a stackSi, such thatFV(ς(xi)bi) ⊆ dom(Si). Finally, loca-
tions are associated to closures bystores, which are (finite) functions. Unless
differently remarked, all theli, ιi, xi are distinct.
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∅ ÀC ♦
(Store·∅)

σ·S ÀC ♦ ι /∈ Dom(σ)
σ, ι 7→〈ς(x)b, S〉 ÀC ♦

(Store·ι) σ ÀC ♦
σ·∅ ÀC ♦

(Stack·∅)

σ·S ÀC ♦ x /∈ Dom(S) ∀i ∈ I : ιi ∈ Dom(σ)
σ·(S, x7→[li = ιi]i∈I) ÀC ♦

(Stack·Var)

Figure 2. Well-formedness for Store and Stack.

This semantics differs from the original one in (Abadi and Cardelli, 1996,
Chapter 6), where asubstitution-basedsemantics (i.e. without stacks and
stores) is given. We consider the finer-grained semantics presented in this
paper for several reasons. First, we do not need to define (and reason about)
any machinery for implementing substitution. Secondly, the given semantics
is closer to actual implementation techniques on register-based machines,
making explicit how stacks and stores are implemented; in this way, we
can reason at a deeper level of detail, exposing to the certification process
also aspects which would be swept under the carpet if we adopted a purely
functional approach. Third, it will be easier to extend the semantics to the
imperative features ofimpς, later on. Nevertheless, it is easy to see that our
presentation is equivalent to the original one (just erasing the extra structures).

In the following,ιi 7→〈ς(x)b, S〉ii∈I represents the store that maps the lo-
cationsιi to the closures〈ς(x)b, S〉i, for i ∈ I, andσ, ι 7→〈ς(x)b, S〉 denotes
the storeσ extended with〈ς(x)b, S〉 at locationι (fresh), andσ.ι←〈ς(x)b, S〉
replaces the content of the locationι of σ with 〈ς(x)b, S〉.

Stores and stacks are subject to well-formedness conditions, which are
represented by two auxiliary judgments,σ ÀC ♦ andσ·S ÀC ♦ (Figure 2).
The rules for the reduction judgment are given in Figure 3. In particular, the
functionalmethod update(Red·UpdF) allocates a fresh location for storing
the new method. (Thus the old location may become garbage, if there are no
other references to it, but in this paper we do not address garbage collection.)
Notice that an algorithm for reduction can be easily extracted from the rules.

Static Semantics. funς is equipped with a first-order typing system with
subtyping. The only type constructor is the one for object types,i.e.:

TType : A,B ::= [li:Ai]i∈I (li distinct)

so the only ground type is[ ], which can be used for building object types;
other ground types, ase.g. bool, nat, int, real, can be added at will.

The type system is given by four judgments: well-formedness of the type
environmentE ÀC ♦, well-formedness of object typesE ÀC A, subtyping
E ÀC A <: B, and term typingE ÀC a : A, where the typing environment
E consists of assignments of (object) types to variables, each of the formx:A.
The rules for all the judgments are collected in Figures 4 and 5.
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σ·(S′, x7→v, S′′) ÀC ♦
σ·(S′, x7→v, S′′) ÀC x ; v·σ (Red·Var)

σ·S ÀC ♦ ∀i ∈ I : ιi /∈ Dom(σ)
σ·S ÀC [li = ς(xi)bi]i∈I ; [li = ιi]i∈I ·(σ, ιi 7→〈ς(xi)bi, S〉i∈I)

(Red·Obj)

σ·S ÀC a ; [li = ιi]i∈I ·σ′ j ∈ I σ′(ιj) = 〈ς(xj)bj , S
′〉

xj /∈ Dom(S′) σ′·(S′, xj 7→[li = ιi]i∈I) ÀC bj ; v·σ′′
σ·S ÀC a.lj ; v·σ′′ (Red·Sel)

σ·S ÀC a ; [li = ιi]i∈I ·σ′ ι′j /∈ Dom(σ′) j ∈ I

σ·S ÀC a.lj←ς(x)b ; [li = ιi, lj = ι′j ]
i∈I\{j}·(σ′, ι′j 7→〈ς(x)b, S〉)

(Red·UpdF)

Figure 3. Natural Operational Semantics forfunς.

∅ ÀC ♦
(Env·∅) E ÀC A x /∈ Dom(E)

E, x:A ÀC ♦
(Env·Var)

E ÀC ♦ ∀i ∈ I : E ÀC Ai li distinct
E ÀC [li:Ai]i∈I

(Type·Obj)

E ÀC A <: B E ÀC B <: C
E ÀC A <: C

(Sub·Trans)
E ÀC A

E ÀC A <: A
(Sub·Refl)

∀i ∈ I ∪ J : E ÀC Ai li distinct
E ÀC [li:Ai]i∈I∪J <: [li:Ai]i∈I

(Sub·Obj)

Figure 4. Auxiliary Typing judgments.

The subtyping relation induces the notion ofsubsumption: an object of
a given type also belongs to any supertype of that type and can subsume
objects in the supertype, because these have a more limited protocol. Corre-
spondingly, the rule(Sub·Obj) allows a longer object type to be a subtype of
a shorter one:[li:Ai]i∈I∪J <: [li:Bi]i∈I requiresAi ≡ Bi for all i ∈ I, i.e.
shared labels haveinvariant (i.e. neither covariant nor contravariant) associ-
ated types. This condition guarantees the soundness of the type discipline.

2.2. THE IMPς -CALCULUS

The imperative calculusimpς is a simple extension offunς with object cloning
in the syntax and few important modifications in the dynamic semantics to
take into account mutable state in objects. Indeed, the syntax ofimpς simply
extends that offunς (Figure 1) with the constructs in Figure 6, wherelet
bindsx in b.

The operational semantics is properly a modification and extension of that
of funς, see Figure 7. Notice that now the method update is animperative

paper.tex; 7/05/2006; 11:30; p.7



8

E ÀC a : A E ÀC A <: B
E ÀC a : B

(Val·Sub)
E′, x:A,E′′

ÀC ♦
E′, x:A,E′′

ÀC x : A
(Val·Var)

∀i ∈ I : E, xi:C ÀC bi : Ai

E ÀC [li = ς(xi)bi]i∈I : C
(Val·Obj)

E ÀC a : [li:Ai]i∈I j ∈ I
E ÀC a.lj : Aj

(Val·Sel)

E ÀC a : C E, x:C ÀC b : Aj j ∈ I

E ÀC a.lj←ς(x)b : C
(Val·Upd)

whereC ≡ [li:Ai]i∈I

Figure 5. Type System forfunς.

Term : a, b ::= . . . as infunς
clone(a) cloning
let x = a in b local declaration

Figure 6. Syntax of the imperative calculusimpς.

operation: itreplacesthe closure stored in the location pointed to byιj with
the new closure,withoutallocating a new location, thus returning a modified
object. Using this kind of update, it is possible to createpointer loops, i.e.
circular references among locations in the store.

EXAMPLE 1. Let us consider the following evaluation:

∅·∅ ÀC [l = ς(x)x.l←ς(y)x].l ; [l=0]·σ

Then, the storeσ def= 0 7→ 〈ς(y)x, (x7→[l=0])〉 “contains a loop, because it
maps the index0 to a closure that binds the variablex to a value that contains
index0. Hence an attempt to read out the result of[l = ς(x)x.l←ς(y)x].l
by “inlining” the store and stack mappings would produce the infinite term
[l = ς(y)[l = ς(y)...]]” (Abadi and Cardelli, 1996, pp 138-139). ut

Thecloningoperation builds a new object with the same labels and meth-
ods ofa. Thelet construct evaluates the terma, binds the result to a variablex,
and then evaluatesb with the variablex in the scope. This allows to have local
definitions and control the execution flow: for instance, sequential evaluation
can be defined asa; b , let x = a in b, wherex /∈ FV(b).

Finally, the type system forimpς extends that offunς with the following
two rules for the new constructs:

E ÀC a : C
E ÀC clone(a) : C

(Val·Clone)
E ÀC a : A E, x:A ÀC b : B

E ÀC let x = a in b : B
(Val·Let)
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(Red·Var), (Red·Obj), (Red·Sel): as infunς

σ·S ÀC a ; v′·σ′ σ′·(S, x7→v′) ÀC b ; v′′·σ′′
σ·S ÀC let x = a in b ; v′′·σ′′ (Red·Let)

σ·S ÀC a ; [li = ιi]i∈I ·σ′ ∀i ∈ I : ι′i /∈ Dom(σ′)
σ·S ÀC clone(a) ; [li = ι′i]

i∈I ·(σ′, ι′i 7→σ′(ιi)i∈I)
(Red·Clo)

σ·S ÀC a ; [li = ιi]i∈I ·σ′ j ∈ I

σ·S ÀC a.lj←ς(x)b ; [li = ιi]i∈I ·(σ′.ιj←〈ς(x)b, S〉)
(Red·UpdI)

Figure 7. Natural Operational Semantics forimpς.

2.3. TYPE SOUNDNESS

Type Soundness is a fundamental property of any typed calculus, ensuring
that “well-typed programs cannot go wrong”. In the present case, this means
that the evaluation of any well-typed and not diverging term offunς andimpς
will never invoke an undefined method (i.e. the runtime exceptionmessage-
not-foundis never raised). Type Soundness is an immediate consequence of
the Subject Reductiontheorem, which relates the dynamic semantics to the
static semantics, stating that the result produced by the evaluation of a term
can be given a type consistent with that of the term itself.

In order to state formally Subject Reduction, Abadi and Cardelli (Abadi
and Cardelli, 1996, Chapter 11) introduce a typing system for results; notice
that such a type system works for bothfunς and impς (taking into account
that impς add object cloning to the syntax), since the two calculi have the
same type rules for the common syntax expressions.

We recall that a result is essentially a list of pointers to store locations (on
a par with method labels); thus, in order to type a result, it is necessary to
type the contents of the locations it points to. Now, a location containing a
methodς(x).b can be given amethod typeM , which is a type of the form
[li:Bi]i∈I ⇒ Bj (wherej ∈ I); here,[li:Bi]i∈I is intended to be the type
of the bound variablex, andBj the type of thej-th method body. Hence, a
store can be given astore-typeΣ, which is a finite mapΣ ::= (ιi 7→Mi)i∈I ,
assigning a method type to each location.

The typing system for results and stores is composed by five judgments:
well-formedness of method typesM |= ♦ and store-typesΣ |= ♦, result
typing Σ |= v : A, store typingΣ |= σ, and stack typing (i.e. compatibility)
Σ |= S : E. The intended meaning of the main judgmentΣ |= v : A is that
the resultv is given the typeA, using the types assigned to locations byΣ.
More formally, using the projection functionsπi(a1, . . . , an) = ai (i ≤ n):

Σ |= v : A ⇐⇒ ∀ιi = π2(πi(v)) : Σ1(ιi) = A ∧ Σ2(ιi) = π2(πi(A))
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j ∈ I

[li:Bi]i∈I ⇒ Bj |= ♦
(Meth·Type)

Mi |= ♦ ∀i ∈ I

ιi 7→Mi
i∈I |= ♦

(Store·Type)

Σ |= ♦ ∀i ∈ I

Σ1(ιi) ≡ [li:Σ2(ιi)]i∈I

Σ |= [li = ιi]i∈I : [li:Σ2(ιi)]i∈I
(Res)

Σ |= Si : Ei ∀i ∈ I

Ei, xi:Σ1(ιi) ÀC bi : Σ2(ιi)
Σ |= ιi 7→〈ς(xi)bi, Si〉i∈I

(Sto·Typ)

Σ |= ♦
Σ |= ∅ : ∅ (Stk·∅)

x /∈ Dom(S) ∪ Dom(E) Σ |= S : E Σ |= v : A
Σ |= (S, x7→v) : (E, x:A)

(Stk·Var)

Figure 8. Typing system for results and stores.

whereΣ1,Σ2 are the “first” and “second” projections of store-types:

Σ1(ι) , [li:Bi]i∈I if Σ(ι) = [li:Bi]i∈I ⇒ Bj

Σ2(ι) , Bj if Σ(ι) = [li:Bi]i∈I ⇒ Bj

On the other hand, store typingΣ |= σ ensures that the content of every
store location inσ can be given the type assigned to the same location byΣ.
The rules for all these judgments are collected in Figure 8.

It is important to point out that store-types have been introduced for typing
results in presence of loops in the store (see Example 1). Due to loops, it is
not always possible to determine the type of a result by examining its sub-
structures recursively, that is, by recursively chasing pointers starting from
store locations pointed to by the original result (unless by using acoinductive
typing system, as in Section 3.4).

Another aspect offunς andimpς is that theminimum typeproperty does
not hold. This property states that if we derive a typeσ for a terma, then there
existsτ such thatτ can be assigned toa andτ <: σ. Store-types allow to
overcome the issue of the ambiguity of typing, by fixing a given “reference”
type for a store.

Finally, observe that type-sound computations must store in a location
only results compatible with the type given by the store-type; and notice that
store-types can be extended, but not overwritten.

DEFINITION 2 (Store-type extension).Σ′ is anextensionof Σ (Σ′ ≥ Σ) if
and only ifDom(Σ) ⊆ Dom(Σ′), and for allι ∈ Dom(Σ): Σ′(ι) = Σ(ι). ut

The following Subject Reduction Theorem holds for bothfunς andimpς.

THEOREM 3 (Subject Reduction).If E ÀC a : A, andσ·S ÀC a ; v·σ†,
andΣ |= σ, andDom(σ) = Dom(Σ), andΣ |= S : E, then there exist a type
A† and a store-typeΣ†, such thatΣ† ≥ Σ, andΣ† |= σ†, andDom(σ†) =
Dom(Σ†), andΣ† |= v : A†, andA† <: A. ut
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See (Abadi and Cardelli, 1996, Chapter 11) for the complete proof in the case
of impς; the proof forfunς is similar (and simpler).

COROLLARY 4 (Type Soundness).The reduction of a non diverging well-
typed term offunς and impς in a well-typed store cannot get stuck, and
produces a result of the expected type. ut

3. fun ς and imp ς in Natural Deduction Semantics

In this section we give an alternative presentation offunς and impς, in-
spired by the features of Logical Frameworks based on Type Theory. Fol-
lowing (Burstall and Honsell, 1990; Miculan, 1994), the various proof sys-
tems for static and dynamic semantics are reformulated innatural deduction
style,1 where all stack-like structures are distributed in the hypotheses of
proof derivations, and judgments and proofs are fairly simpler (at the expense
of introducing some auxiliary judgments). We refer to this setting asNatural
Deduction Semantics(NDS). Moreover, we present also acoinductivetyping
system for results, a further refinement which allows to avoid the use of store
types.

As usual in Natural Deduction, proof systems will be written in “vertical”
notation: the hypotheses of a derivationΓ ǸD J are distributed on the leaves
of the proof tree. (To save space, in the text we keep writing natural deduction
judgments in “horizontal”, sequent form.)

Syntax. In this section, we use the same syntax of the original presentation
(Section 2), with one important difference: we do not *enforce* at the syn-
tactic level that the labels in an object or in a type * are all different (we use a
pseudo syntax). In this way, the correspondence between these syntactic cate-
gories and the corresponding implementations in CC(Co)Ind will be simplified.
It is important to remark that * the well-formedness condition is enforced
explicitly in the rules of the static and dynamic semantics (rules (e·obj) and
(wt·obj)); for instance, a term[l=ς(x1)b1, l=ς(x2)b2] is syntactically correct,
but it cannot be typed not evaluated because typing and evaluation rules force
all method labels in a object be different.

3.1. DYNAMIC SEMANTICS

The judgmentσ·S ÀC a ; v·σ′ is translated asΓ ǸD eval(s, a, s′, v),
whereΓ denotes theproof derivation context(i.e. a set of assertions, of any

1 For our concerns, a “good” natural deduction system has essentially the same structural
rules of intuitionistic logic, that is weakening, contraction and permutation.
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x7→v
eval(s, x, s, v)

(e·var)

∀i ∈ I : ιi /∈ Dom(s)

(closed(xi))...
wrap(bi, bi) ∀i, j ∈ I, i 6= j : li 6= lj

eval(s, [li = ς(xi)bi]i∈I , (s, ιi 7→λxi.bi)i∈I , [li = ιi]i∈I)
(e·obj)

eval(s, a, s′, [li = ιi]i∈I) s′(ιj) = λx.bj

(x7→[li = ιi]i∈I)...
evalb(s′, bj , s

′′, v) (j ∈ I)
eval(s, a.lj , s

′′, v)
(e·call)

eval(s, a, s′, [li = ιi]i∈I)

(closed(x))...
wrap(b, b) ι′j 6∈ Dom(s′) (j ∈ I)

eval(s, a.l←ς(x)b, (s′, ι′j 7→λx.b), [li = ιi, lj = ι′j ]
i∈I\{j})

(e·updf)

eval(s, a, s′, v)
evalb(s, a, s′, v)

(e·ground)

(y 7→v)...
evalb(s, b, s′, v′)

evalb(s, b[y 7→ v], s′, v′)
(e·bind)

Figure 9. Natural Deduction Dynamic Semantics forfunς.

eval(s, a, s′, [li = ιi]i∈I)

(closed(x))...
wrap(b, b) (j ∈ I)

eval(s, a.lj←ς(x)b, (s′.ιj←λx.b), [li = ιi]i∈I)
(e·updi)

eval(s, a, s′, [li = ιi]i∈I) ∀i ∈ I : ι′i /∈ Dom(s′)
eval(s, clone(a), (s′, ι′i 7→s′(ιi)i∈I), [li = ι′i]

i∈I)
(e·clone)

eval(s, a, s′, v)

(x7→v)...
eval(s′, b, s′′, v′)

eval(s, let x = a in b, s′′, v′)
(e·let)

Figure 10. Natural Deduction Dynamic Semantics forimpς (alternative and additional rules).

judgment, which can be used as assumptions in the proof derivations), and
eval is a predicate defined on 4-tupleseval ⊆ Store×Term×Store×Res.

The rules foreval for funς andimpς are in Figure 9 and 10, respectively.
The intended meaning ofΓ ǸD eval(s, a, s′, v) is that, starting with the

stores and using the assumptions inΓ, the terma reduces to a resultv,
providing an updated stores′. The content of a stackS, i.e. the associa-
tions between variables and results, is represented by suitable assumptions
of the form “x7→v” in the proof contextΓ. These associations are created
as hypothetical premises local to sub-reductions, and are discharged in the
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conclusions of the rules, according to the practice of natural deduction style—
seee.g. rules(e·call) and(e·let). It is worth noticing that we do not need to
introduce the well-formedness judgments for stores and stacks (as in Fig-
ure 2), because the freshness of locally quantified variables (eigenvariables)
is automatically provided in NDS.

A direct consequence of the NDS approach is that closures cannot be
pairs 〈method, stack〉 anymore, because stacks are not “first-class” struc-
tures (such as terms or stores). The content of stacks is realised as assump-
tions in the proof context, which is a meta-level structure (i.e. of the metalan-
guage). Thus, we introduce the sorts ofclosure-bodiesandclosures:

Body : b ::= b | b[x7→v] Closure : c ::= λx.b

wherex is bound inb by b[x7→v] andλx.b (thus b[x7→v] is like a let for
results). A closure〈ς(x)b, (x1 7→v1, . . . , xn 7→vn)〉 is then represented by:

λx.b[x1 7→v1, . . . , xn 7→vn] : Closure

where the first (outmost) abstractionλx corresponds toς(x), and the follow-
ing ones bind all the free variables ofb to their corresponding results. For in-
stance, the evaluation of Example 1 is now represented as∅ ǸD eval(∅, [l =
ς(x)x.l←ς(y)x].l, s, [l=0]), wheres , 0 7→ λy.x[x7→[l=0]].

Closure evaluation occurs in the method invocation (rule(e·call)). Before
evaluating the inner term in a method-body, we have to add to the current
proof environment all the bindings recorded in the closure (and the fresh vari-
able representing the host object itself). This unfolding of closures is carried
out by the simple auxiliary judgmentevalb ⊆ Store×Body×Store×Res,
defined by mutual induction witheval (Figure 9).

Closure construction occurs in object creation and method updating (rules
(e·obj), (e·updf), (e·updi)). To build a closure, we have to gather from the
proof context all the values associated to the free variables appearing in the
method-body. This is carried out by the auxiliary judgmentwrap ⊆ Term×
Body (Figure 11). Informally,Γ ǸD wrap(b, b) means that “b is a closure-
body obtained by binding all free variables in the termb to their respective
results, which are inΓ”. In order to keep track of free variables in terms, we
need an extra judgmentclosed ⊆ Term, which formally means:

Γ ǸD closed(a) ⇐⇒ ∀x ∈ FV(a) : closed(x) ∈ Γ

and whose rules, completely syntax-directed, are in Figure 11. Operationally,
the rules forwrap allow for successively binding the free variables appearing
in a method-body(w·bind): at each step we choose any (free) variabley in
b, and bind it to the corresponding resultv, as stated inΓ. If the closureb
bindsall free variables ofb, then at each step a free variable ofb is marked as
“closed” by a local assumption. Eventually, we have enough assumptions to
be able to proveclosed(b), and thus we can apply the rule(w·ground).
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closed(b)
wrap(b, b)

(w·ground)
y 7→v y ∈ FV(b)

(closed(y))...
wrap(b, b)

wrap(b, b[y 7→ v])
(w·bind)

closed(a)
closed(clone(a))

(c·clone)
closed(a)
closed(a.l)

(c·call)
closed(a)

(closed(x))...
closed(b)

closed(let x = a in b)
(c·let)

∀i ∈ I

(closed(xi))...
closed(bi)

closed([li = ς(xi)bi]i∈I)
(c·obj)

closed(a)

(closed(x))...
closed(b)

closed(a.l←ς(x)b)
(c·upd)

Figure 11. Rules forwrap andclosed judgments.

Notice that the closures built bywrap are in generalsmaller than the
original ones (Figure 3), because only the free variables are recorded in a
closure (although in a non-deterministic order), not the whole current stack.

Adequacy. We prove now that the NDS presentation offunς and impς ’s
dynamic semantics corresponds faithfully to that of Sections 2.1 and 2.2.
First, we establish the relationship between contextsΓ and environmentsS
of the original setting, and between the two kinds of storess andσ.

DEFINITION 5. For Γ a context,S a stack,s, σ stores, we define:

Γ ⊆ S ⇐⇒ ∀x7→v ∈ Γ : x7→v ∈ S S ⊆ Γ ⇐⇒ ∀x7→v ∈ S : x7→v ∈ Γ
γ(S) ⇐⇒ {x7→S(x) | x ∈ Dom(S)}

s ' σ ⇐⇒ Dom(s) = Dom(σ) ∧
∀ιi ∈ Dom(s) : γ(Si), closed(xi) ǸD wrap(bi, bi),

wheres(ιi) = λxi.bi andσ(ιi) = 〈ς(xi)bi, Si〉

For b a closure-body, let us denote bystack(b) the set of bindings inb, and
by body(b) the inner body. These functions can be defined recursively onb:

stack(b) = ∅ stack(b[x 7→ v]) = stack(b) ∪ {x7→v}
body(b) = b body(b[x 7→ v]) = body(b)

LEMMA 6.

1. If σ·S ÀC a ; [li = ιi]i∈I ·σ′, then:

a) σ·S ÀC ♦, andDom(σ) ⊆ Dom(σ′), and∀i ∈ I : ιi ∈ Dom(σ′);

b) σ′·S ÀC ♦;
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c) ∀i ∈ I : σ′·Si ÀC ♦, whereσ′(ιi) = 〈ς(xi)bi, Si〉.

2. For a closure〈ς(x)b, S〉, there existsb such thatγ(S), closed(x) ǸD

wrap(b, b).

3. Letb ≡ b[x1 7→v1, . . . , xn 7→vn], and letΓ be a well-formed context. Then,
Γ ǸD evalb(s, b, s′, v) iff Γ, stack(b) ǸD eval(s, body(b), s′, v).
Proof.

1. a) By structural induction onσ·S ÀC a ; [li = ιi]i∈I ·σ′.

b) By structural induction onσ·S ÀC a ; [li = ιi]i∈I ·σ′, and pointa).

c) By pointb), and inspection on the derivation ofσ′·S ÀC ♦.

2. By induction onn = |S|, using the rules(w·ground) and(w·bind).

3. Direction (⇒) can be proved by structural induction on the derivation of
Γ ǸD evalb(s, b, s′, v), while (⇐) by induction onn. ut

Now we are ready to establish the adequacy of our NDS formulation of
dynamic semantics forfunς and impς. Let us say thatΓ is a well-formed
evaluation contextif it is functional with respect to the judgment “7→”; i.e. if
x7→v, x7→v′ ∈ Γ, thenv ≡ v′.

PROPOSITION 7 (Adequacy of dynamic semantics).
LetΓ be a well-formed evaluation context, andσ·S ÀC ♦.

1. LetΓ ⊆ S, ands ' σ. If Γ ǸD eval(s, a, s′, v), then there existsσ′,
such thatσ·S ÀC a ; v·σ′, ands′ ' σ′;

2. LetS ⊆ Γ andσ ' s. If σ·S ÀC a ; v·σ′, then there existss′, such
thatΓ ǸD eval(s, a, s′, v), andσ′ ' s′.

Proof.

1. By structural induction on the derivation ofΓ ǸD eval(s, a, s′, v). The
proof is immediate for the rules(e·var), (e·obj), (e·clone), (e·updf) and
(e·updi). The(e·let) rule requires to apply Lemma 6, points1.a and1.b,
while the(e·call) rule points3, 1.a and1.c of the same lemma.

2. By structural induction on the derivation ofσ·S ÀC a ; v·σ′. The rules
(Red·Var) and(Red·Clone) are addressed straightforwardly, while the
remaining ones via Lemma 6:(Red·Obj) and(Red·Upd) need point2,
(Red·Let) points1.a, 1.b, and(Red·Sel) points1.a, 1.c, and3. ut

3.2. STATIC SEMANTICS

The term typing judgmentE ÀC a : A is easily rendered in NDS asΓ ǸD

type(a,A), wheretype ⊆ Term× TType and the proof contextΓ contains
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J ⊆ I ∀i ∈ I : wt(Bi)
sub([li:Bi]i∈I , [li:Bi]i∈J)

(sub·obj)
sub(A,B) sub(B,C)

sub(A,C)
(sub·trans)

wt(A)
sub(A,A)

(sub·refl)
wt(A) x:A
type(x,A)

(t·var)
type(a, [li:Bi]i∈I)

type(clone(a), [li:Bi]i∈I)
(t·clone)

∀i ∈ I : wt(Bi)
∀i 6= j : li 6= lj
wt([li:Bi]i∈I)

(wt·obj)
type(a, [li:Bi]i∈I) j ∈ I

(x:[li:Bi]i∈I)...
type(b, Bj)

type(a.lj←ς(x)b, [li:Bi]i∈I)
(t·upd)

type(a,A)

(x:A)...
type(b, B)

type(let x = a in b, B)
(t·let)

wt([li:Bi]i∈I) ∀i ∈ I :

(xi:[li:Bi]i∈I)...
type(bi, Bi)

type([li = ς(xi)bi]i∈I , [li:Bi]i∈I)
(t·obj)

type(a,A) sub(A,B)
type(a,B)

(t·sub)
type(a, [li:Bi]i∈I) j ∈ I

type(a.lj , Bj)
(t·call)

Figure 12. Natural Deduction Static Semantics forimpς (funς ’s is a subset).

typing assignments to (free) variables, such asx:A. The judgments for well-
formedness of types and subtyping are easily recovered in this setting as well,
respectively aswt ⊆ TType andsub ⊆ TType × TType. The typing rules
in natural deduction forimpς, are given in Figure 12; clearly, the system for
funς is the same without rules(t·clone) and(t·let).

Notice that the well-formedness of the (distributed) typing environments
is ensured by the freshness of locally quantified variables (eigenvariables,
seee.g. the rules(t·let) and(t·obj)). The premisewt(A) in the rule(t·var)
ensures that non well-formed types possibly inΓ have no effect.

Adequacy. Let us say thatΓ is awell-formed typing contextif it is functional
with respect to the judgment “:”; i.e. if x:A, x:A′ ∈ Γ, thenA ≡ A′.

LEMMA 8. LetΓ be a well-formed typing context, andE such thatE ÀC ♦.

1. If E ÀC A <: B, thenE ÀC A andE ÀC B;

2. If E ÀC a : A, thenE ÀC A;

3. If Γ ǸD sub(A,B), thenΓ ǸD wt(A) andΓ ǸD wt(B);

4. If Γ ǸD type(a,A), thenΓ ǸD wt(A);

5. Γ ǸD wt(A) if and only ifE ÀC A;

6. Γ ǸD sub(A,B) if and only ifE ÀC A <: B.
Proof.

1. By structural induction on the derivation ofE ÀC A <: B.
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2. By structural induction onE ÀC a : A, and point1.

3. By structural induction onΓ ǸD sub(A,B).

4. By structural induction onΓ ǸD type(a,A), and point3.

5. By structural induction onΓ ǸD wt(A) andE ÀC A.

6. By structural induction onΓ ǸD sub(A,B) for direction (⇒); by struc-
tural induction onE ÀC A <: B and point5 for direction (⇐). ut

DEFINITION 9. For Γ a context,E a type environment, we define:

Γ ⊆ E ⇐⇒ ∀x:A ∈ Γ : x:A ∈ E E ⊆ Γ ⇐⇒ ∀x:A ∈ E : x:A ∈ Γ

PROPOSITION 10 (Adequacy of term typing).
LetΓ be a well-formed typing context, andE ÀC ♦.

1. If Γ ⊆ E, andΓ ǸD type(a,A), thenE ÀC a : A;

2. If E ⊆ Γ, andE ÀC a : A, thenΓ ǸD type(a,A).
Proof.

1. By structural induction on the derivation ofΓ ǸD type(a,A). The proof
is straightforward for rules(t·var), (t·clone) and(t·call). The remaining
rules need some of the auxiliary properties collected in Lemma 8:(t·let)
and(t·upd) require the point2, (t·obj) point4, and(t·sub) point6.

2. By structural induction on the derivation ofE ÀC a : A. The rules
(Val·Clone) and (Val·Sel) are addressed immediately, while the other
ones through Lemma 8:(Val·Let), (Val·Upd) and (Val·Obj) need the
point2, (Val·Sub) point6, and(Val·Var) points2 and5. ut

3.3. RESULT TYPING AND SUBJECTREDUCTION

The result typing judgmentΣ |= v : A is translated asΓ ǸD res(Σ, v, A),
whereres ⊆ SType × Res × TType, andSType is the sort of store-types,
i.e. finite maps from locations to method types, as stated in Section 2.3. The
intended meaning ofΓ ǸD res(Σ, v, A) is that the resultv is given the
type A, using the types assigned to locations by the store typeΣ. Due to
the correspondence with stores (which are not internalized), and differently
from typing environments, it is not possible to distribute in the contextΓ the
content of store types.

The store compatibilityΣ |= σ is rendered ascomp ⊆ SType × Store:
if Γ ǸD comp(Σ, s), then the content of each location in the stores can be
given the type indicated byΣ. The relationext ⊆ SType×SType represents
the original extension relationΣ′ ≥ Σ over store-types. The simple rules for
res, comp, ext are collected in Figure 13.
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∀i ∈ I : Σ1(ιi) ≡ [li:Σ2(ιi)]i∈I wt([li:Σ2(ιi )]i∈I) ιi ∈ Dom(Σ)
res(Σ, [li = ιi]i∈I , [li:Σ2(ιi)]i∈I)

(t·res)

Dom(s) = Dom(Σ) ∀ιi ∈ Dom(s) : s(ιi) ≡ λx.b

(x:Σ1(ιi))...
typeb(Σ, b, Σ2(ιi))

comp(Σ, s)
(t·comp)

Dom(Σ) ⊆ Dom(Σ′) ∀ι ∈ Dom(Σ) : Σ′(ι) = Σ(ι)
ext(Σ′,Σ)

(t·ext)

type(b, A)
typeb(Σ, b, A)

(t·ground)
res(Σ, v, A)

(y:A)...
typeb(Σ, b, B)

typeb(Σ, b[y 7→ v], B)
(t·bind)

Figure 13. Natural Deduction Typing for results.

Notice that we do not need to represent explicitly the well-formedness of
store-types, because this property is managed implicitly (however, we must
check that store-types are well-formed types, seewt([li:Σ2(ιi )]i∈I) in the
premise of the rule(t·res)).

On the other hand, there is no “stack typing” judgment, since stacks and
type environments have vanished in the proof context. This information needs
to be recovered at the metalevel: in the statement of Subject Reduction, we
will require explicitly that variables and their results have coherent types.

Finally, we have to add a judgment for typing closure-bodies,i.e. typeb ⊆
SType × Body × TType (see Figure 13). The intended meaning ofΓ ǸD

typeb(Σ, b, A) is that the closure-bodyb (fetched from some location of a
stores, compatible withΣ) has typeA. The judgmenttypeb plays a role
similar to that ofevalb: it unravels the local bindings recorded in closure-
bodies. More precisely, we first add to the current proof environment (via the
rule(t·bind)) all the bindings recorded in the body (the judgmentres is used,
in turn, for typing the results found there); then, the inmost body can be typed
using the plaintype judgment (via the rule(t·ground)).

Adequacy. We address now the adequacy of NDS presentation of result
typing.

LEMMA 11. Let Γ be a well-formed typing context, andb the closure-body
b[x1 7→ v1, . . . , xn 7→vn]. ThenΓ ǸD typeb(Σ, b, A) can be derived if and
only if there existA1, . . . , An such that:

i) Γ, y1:A1, . . . , yn:An ǸD type(b, A), and
ii) Γ, y1:A1, . . . , yi:Ai ǸD res(Σ, vi+1, Ai+1) for everyi ∈ [0, n−1].
Proof.Direction (⇒) can be proved by structural induction on the deriva-

tion of Γ ǸD typeb(Σ, b, A); direction (⇐) by induction onn. ut
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PROPOSITION 12 (Adequacy of result typing).LetΓ be a well-formed typ-
ing context,E such thatE ÀC ♦, s andσ such thats ' σ, andΣ a store-type
such thatΣ ÀC ♦ andΓ ǸD wt(Σ1(ιi)) for all ιi ∈ Dom(Σ).

1. If Γ ǸD res(Σ, v, A) andΓ ǸD comp(Σ, s), thenΣ |= v:A andΣ |= σ;

2. If Σ |= v:A, Σ |= σ andDom(Σ)=Dom(σ), thenΓ ǸD res(Σ, v, A) and
Γ ǸD comp(Σ, s).
Proof.

1. By inspection on the hypothetical derivations. It is immediate to derive
Σ |= v:A using rule(Res). On the other hand, apply Lemma 11 (⇒) and
then the soundness of term typing (point1) for concludingΣ |= σ.

2. By inspection on the hypothetical derivations. We first deduceΓ ǸD

res(Σ, v, A) using rule(t·res), then apply the completeness of term typing
(point2) and Lemma 11 (⇐) for concludingΓ ǸD comp(Σ, s). ut

Subject Reduction.Now we can state and prove Subject Reduction for both
funς andimpς, using their NDS presentation. In stating the theorem, we have
to require a coherence between types and results associated to the variables
in the proof derivation contextΓ; this is essentially equivalent to the “stack
typing” judgment of (Abadi and Cardelli, 1996).

THEOREM 13 (Subject Reduction in NDS).
LetΓ be a well-formed typing and evaluation context, andΣ a store type such
that, for all x,w,B: if x7→w ∈ Γ andx:B ∈ Γ, thenΓ ǸD res(Σ, w, B).

If type(a,A), eval(s, a, t, v), andcomp(Σ, s) are derivable fromΓ, there
exist a typeA+ and a store-typeΣ+, such thatres(Σ+, v, A+), ext(Σ+,Σ),
comp(Σ+, t), andsub(A+, A) are derivable fromΓ.

Proof.By structural induction on the derivation ofΓ ǸD eval(s, a, t, v);
see Appendix A.1. ut

3.4. COINDUCTIVE RESULT TYPING AND SUBJECTREDUCTION

In this subsection we present an alternative and novel formulation of the
typing system for results, taking advantage of a further proof-theoretical tool
provided by modern type theories,i.e. coinduction.

As mentioned in Section 2, the typing of results is not trivial because of
potential circular structures in stores. The solution adopted in (Abadi and
Cardelli, 1996) is to use store types, which assign to each location a fixed
type, consistent with its content.

However, store types are list structures, which do not fit neatly in general-
purpose, non-substructural proof assistants. In practice, this means that the
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wt([li:Bi]i∈I) ∀i ∈ I : s(ιi) ≡ λx.bi

(cores(s, [li = ιi]i∈I , [li:Bi]i∈I))
(x:[li:Bi]i∈I)...

cotypeb(s, bi, Bi)
cores(s, [li = ιi]i∈I , [li:Bi]i∈I)

(t·cores)

type(b, B)
cotypeb(s, b, B)

(t·coground)
cores(s, v, C)

(y:C)...
cotypeb(s, b, B)

cotypeb(s, b[y 7→ v], B)
(t·cobind)

Figure 14. Coinductive Natural Deduction Result Typing forfunς.

handling of store-types makes statements and proofs of metatheoretical prop-
erties (such as Subject Reduction) even more complex. It is therefore natural
to ask whether, and when, is possible to get rid of these extra structures.

It turns out that we can always recover the types for a given result by
corecursivelylooking at its structure and the content of all the locations it
refers to, without the need of store types. To capture this process, we propose
here a system for result typing, which possibly admits non well-founded,
coinductivederivations. Using coinduction, we can build types for results
just by visiting the store and following the pointers it contains. The idea of
using coinductive rules for typing goes back to (Milner and Tofte, 1991), but
actually we have been inspired by modern type theories, such as CC(Co)Ind,
where coinduction is natively provided.

The coinductive result typing system consists of two predicatescores ⊆
Store × Res × TType andcotypeb ⊆ Store × Body × TType, with only
three rules (Figure 14). The intended meaning ofΓ ǸD cores(s, v, A) is
that the resultv, containing pointers to the stores, can be given the typeA.
Similarly, Γ ǸD cotypeb(s, b, B) means that the closure-bodyb, whereλx.b
is fetched in some location of the stores, has typeB.

Notice that in the rule(t·cores) the conclusion isdischargedas a local
assumption, which plays the role of the “coinductive hypothesis” and makes
the system coinductive. More precisely, the idea is that, in order to check
whether a resultv ≡ [li=ιi]i∈I can be given a type[li:Bi]i∈I , we have to
check that each method closureλx.bi (pointed to byιi) can be given the
type [li:Bi]i∈I ⇒ Bi. This means that we have to type the body of the
method in a context extended with the types of the “self” variablex, and
of each bound variabley in the closure. The type of the former is the same of
the host object—hence the assumptionx:[li:Bi]i∈I . Bound variables in clo-
sures are associated to results, thus their type can be inferred by usingcores
(co)recursively (see rulet·cobind). During this process, due to pointer loops
in the store, it may happen that we end up with the resultv we started from.
In this case, we can stop the typing deduction using the type we are trying
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to assign tov; to this end, the assertion we are proving has to beassumedin
the hypotheses. Notice that the application of the coinductive hypothesis is
always “guarded”, because it is discharged in the subderivation of a different
predicate (cotypeb), and thus at least one rule must be used.

EXAMPLE 14. Let us recall the store with a loop of Example 1, obtained by
the evaluation of a term with imperative update:

∅ ǸD eval(∅, [l = ς(x)x.l←ς(y)x].l, s ≡ 0 7→ λy.x[x7→[l=0]], [l=0])

Then, the result[l=0], pointing into the stores, can be given the type[l:[ ]]
by coinduction, as follows:2

(cores(s, [l = 0], [l:[ ]]))(1)
∆x,2

cotypeb(s, x, [ ])
(t·coground)

cotypeb(s, x[x7→[l=0]], [ ])
(t·cobind)(2)

cores(s, [l = 0], [l:[ ]])
(t·cores)(1)

where∆z,n stands for the derivation:

(z:[l:[ ]])(n)

type(z, [l:[ ]])
(t·var)

[l:[ ]] <: [ ]
type(z, [ ])

(t·sub)

On the other hand, fixed the storet ≡ 07→λx.x; 1 7→λy.x[x7→[l=0]], we
can give the result[m=1] the type[m:[ ]], by induction (notice the different
interdependence between the predicatescores andcotypeb, in the case):

∆x,2

cotypeb(t, x, [ ])
(t·coground)

cores(t, [l = 0], [l:[ ]])
(t·cores)(2)

∆x,1

cotypeb(t, x, [ ])
(t·coground)

cotypeb(t, x[x7→[l=0]], [ ])
(t·cobind)(1)

cores(t, [m = 1], [m:[ ]])
(t·cores) ut

It is important to point out that the types which can be inferred using the
coinductive approachcoincidewith those given using store types. In other
words, a resultv can be given a typeA in a stores, working with the (poten-
tially) coinductive typing system of Figure 14, if and only if, for some store
typeΣ compatible withs, v can be given the same typeA using the typing
system of Figure 13. Hence, the use of coinduction can be seen as a way for
internalizingstore types within the structure of typing proofs.

In particular, for a fixed store, different typings given by different store
types, correspond to structurally different derivations built usingcores.

2 As usual, local hypotheses are indexed with the rules they are discharged by.
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EXAMPLE 15. Let us consider the following evaluation of a nested object:

∅ ǸD eval(∅, [m = ς(x)[l = ς(y)y]], t ≡ 0 7→ λx.[l = λy.y], [m=0])

We can show that the result[m=0] can be given two different types[m:[ ]]
and[m:[l:[ ]]], which are even not comparable through subtyping:

∆y,1

type([l = λy.y], [l:[ ]])
(t·obj)(1)

[l:[ ]] <: [ ]
type([l = λy.y], [ ])

(t·sub)

cotypeb(t, [l = λy.y], [ ])
(t·coground)

cores(t, [m = 0], [m:[ ]])
(t·cores)

∆y,1

type([l = λy.y], [l:[ ]])
(t·obj)(1)

cotypeb(t, [l = λy.y], [l:[ ]])
(t·coground)

cores(t, [m = 0], [m:[l:[ ]]])
(t·cores) ut

Summing up, since we do not need store-types and all related machinery,
the coinductive typing system for results is very compact and quite simpler
than the original one (compare Figure 14 with Figures 8 and 13).

Adequacy. The adequacy of coinductive result typing, with respect to the
original system of Section 2.3, is not trivial, since we use coinduction and
do not have (explicit) store-types. We address this issue by establish a rela-
tionship between our NDS inductive and coinductive presentations of result
typing.

LEMMA 16. LetΓ be a well-formed typing context.

1. Letb ≡ b[x1 7→ v1, . . . , xn 7→vn]. ThenΓ ǸD cotypeb(s, b, A) if and only
if there existA1, . . . , An such thatΓ, y1:A1, . . . , yn:An ǸD type(b, A),
and for all i ∈ [0, n−1]: Γ, y1:A1, . . . , yi:Ai ǸD cores(s, vi+1, Ai+1).

2. If Γ ǸD res(Σ, v, A) andΓ ǸD comp(Σ, s), thenΓ ǸD cores(s, v, A).
Proof.

1. Direction (⇒) can be proved by structural induction on the derivation of
Γ ǸD cotypeb(s, b, A); direction (⇐) by induction onn.

2. By coinduction. We have to prove that, forιi ∈ π2(πi(v)), if Γ, x:A ǸD

typeb(Σ, s(ιi), Ai) thenΓ, cores(s, v, A);x:A ǸD cotypeb(Σ, s(ιi), Ai).
This can be proved by structural induction on the derivation ofΓ, x:A ǸD

typeb(Σ, s(ιi), Ai), and using the coinductive hypothesiscores(s, v, A),
whose application is guarded by constructors(t·cores), (t·cobind). ut
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In the following, for a resultv, we will denote byσ|v the fragment ofσ
reachable by following ((co)recursively) the references inv, and byΣI the
fragment ofΣ whose domain is restricted to{ιi | i ∈ I}.

PROPOSITION 17 (Adequacy of coinductive result typing).
LetΓ be a well-formed typing context, ands, σ such thats ' σ.

1. If Γ ǸD cores(s, v, A), then there exists a store-typeΣ, such thatΣ |=
v : A andΣ |= σ|v.

2. If Σ |= v : A, Σ |= σ, Dom(Σ)=Dom(σ) andΓ ǸD wt(Σ1(ιi)) for all
ιi ∈ Dom(Σ), thenΓ ǸD cores(s, v, A).

Proof.

1. By inspection on the hypothetical derivation. Letv ≡ [li=ιi]i∈I . The
store-typeΣ is built step by step as follows. First, the fragmentΣI is im-
mediately determined by looking atv; then,ΣI is extended by looking for
the results contained in the closure-bodies pointed to byv, and proceeding
(co)recursively. LetΣ be the store-type obtained in this way. By Lemma
16.1 (⇒), and soundness of term typing (Lemma 10.1), we deriveΣ |= σ|v.

2. By inspection on the hypothetical derivations. First apply the completeness
of inductive result typing (Lemma 10.4), then the completeness of term
typing (Lemma 10.2), and finally use Lemmas 16.1 and 16.2. ut

Subject Reduction with coinductive result typing.As we have seen, the coin-
ductive typing system for results can be used without loss of generality in
place of the more complex system based on store types. A natural question
is whether the coinductive system can be used for further simplifying the
statement and proof of Subject Reduction (Theorem 13), getting rid of store
types. The answer is yes, but only forfunς, and not forimpς.

The problem is that in a store-based semantics, Subject Reduction regards
not only the types of the starting term and its resulting value, but also the types
of starting and resulting stores. Store types represent exactly this information,
and in Theorem 13 the store type of the resulting store is an extension of the
starting ones. This means that the types given to locations must not change
during the computation, and when a new location is allocated, its type is
decided once and forever. This “type persistence” of locations cannot be en-
sured without store types in presence of in-place updates, as inimpς, because
in a given store, the very same result can be given different (and even not
comparable) types, as in Example 15. Thus, when a closure is overwritten by
a new one, the typing information we can recover coinductively from the new
content may be different from that of the old content, even if the new closure
can be given a type compatible with the old one. Store types circumvent this
issue by fixing a single “reference” type both for the old and the new closures.
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This difficulty (which actually is not proper of the coinductive typing
system, but is intrinsic to Subject Reduction property) does not arise when
locations are never overwritten, because in this case the type information we
can recover from the store does not change. This happens forfunς, where a
method update allocates anew location without erasing the old closure, and
thus the type information after an update is the same as before the update.
For these reasons, it is convenient to work with the coinductive system for
result typing, for proving properties regarding stores (such as Subject Reduc-
tion) for funς: actually, it allows us to build both recursiveand corecursive
derivations, thus providing an expressive and powerful proof tool.

Hence, forfunς, we can state Subject Reduction without mentioning store
types at all; all the typing information about a store is carried by the store
itself. Of course, similarly to Theorem 13, we have to require explicitly the
coherence between types and results associated to variables.

THEOREM 18 (Subject Reduction with coinductive result typing).
LetΓ be a well-formed typing and evaluation context such that, givenx,w,B:
if x7→w ∈ Γ andx:B ∈ Γ, thenΓ ǸD cores(s, w,B).

For a a term offunς, if type(a,A), andeval(s, a, t, v) are derivable from
Γ, there exists a typeA+, such thatcores(t, v, A+), and sub(A+, A) are
derivable fromΓ.

Proof.By structural induction on the derivation ofΓ ǸD eval(s, a, t, v);
see Appendix A.2. ut

4. Formalization of fun ς and imp ς in CC(Co)Ind

In this section, we discuss the encoding in CC(Co)Ind of the syntax, dynamic
semantics, term and result typing for bothfunς andimpς. For definiteness, we
work in theCoq V7.3 implementation of CC(Co)Ind, albeit the methodology
we follow can be applied in any similar Logical Framework.

Although the presentations given in Section 3 are simpler than the original
systems, their formalization in CC(Co)Ind is still a complex task, because we
have to face some subtle details which are left “implicit” on paper.

4.1. FORMALIZATION OF THE SYNTAX

Let us consider the syntax ofimpς, as that offunς is just a subset. Since this
calculus features binders, we choose to represent it by means ofsecond-order
abstract syntax, or weak HOAS(Miculan, 1997; Honsell et al., 2001a):

Parameter Var : Set.
Definition Lab := nat.
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Inductive Term: Set:= var: Var->Term
| obj: Obj->Term
| call: Term->Lab->Term
| upd: Term->Lab->(Var->Term)->Term
| clone: Term->Term
| let: Term->(Var->Term)->Term

with Obj: Set := obj_nil: Obj
| obj_cons: Lab->(Var->Term)->Obj->Obj.

Coercion var: Var>->Term.

Weak HOAS differs from “full” HOAS (Pfenning and Elliott, 1988), be-
cause in the latter object-level variables are considered as term placeholders
at the metalevel, thus disappearing from the encoding. For instance, in full
HOASlet should be represented aslet:Term->(Term->Term)->Term .
Due to its well-known advantages, full HOAS is the encoding methodology
of choice in non-inductive logical frameworks, such as the Edinburgh LF and
derivatives (e.g., Twelf), but it does not fit well in inductive logical frame-
works, such as CC(Co)Ind. The problem is that sinceTerm is an inductive
type, a functional argument (of typeTerm->Term ) can be defined by re-
cursion or case analysis overTerm. In this way, one could introduceexotic
terms (Despeyroux et al., 1995),i.e. CC(Co)Ind terms not corresponding to
any expression ofimpς. Exotic terms jeopardize the adequacy of encodings,
and therefore they would have to be ruled out by extra “well-formedness”
judgments, which in turn would complicate the whole encoding.

Using weak HOAS, we keep the advantage of using a metalevel abstrac-
tion, but we prevent the definition of functional arguments by recursion on
the inductive typeTerm. Therefore we replace the domain of functional
arguments with a parameterVar . The only terms which can inhabitVar
are the variables of the metalanguage. One may think ofVar as a set of
constants, namely the realnamesof the object variables (x1, x2, x3, . . . ).
These constants are ranged over by variables of the metalanguage. Metalevel
abstractions can be used for locally declaring new, fresh variables names, by
introducing corresponding metalevel variables of typeVar . The fact thatVar
is a parameter implies that ifx:Var appears in a termb, thenb must nec-
essarily be in the formb’(var(x)) , in which the object variablex occurs
only under the constructorvar . It is important to notice that the parameteric-
ity of Var makes it impossible to distinguish between variables, thus pro-
viding α-equivalence for free:(let a [x:Var]b(x)) is automatically
equal to(let a [y:Var]b(y)) .3

However, weak HOAS does not cater forsubstitutionof terms for variables
(differently from full HOAS). Far for being a problem, this fits perfectly the

3 A consequence of this is thatα-equivalence is not a provable property of the object
language in the logical framework, but it can be proved outside the LF (a meta-meta-property).
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needs for encoding the store-based semantics offunς and impς, which use
closures instead of substitutions of terms for variables.

Finally, notice that the constructorvar is declared as a coercion, thus it
may be omitted in the following; further, labels (i.e. names of methods) are
encoded as natural numbers.

Objects are represented by an ad hoc list-like typeObj . An alternative
definition could use directly the polymorphic lists ofCoq library, as follows:

| obj: (list (Lab*(Var->Term)))->Term

However, this definition would not allow to define some fundamental func-
tions required to complete the formalization (such as, for example, the oc-
currence of variables “∈”): although these functions are definible by recur-
sion on the structure of terms in our definition, using polymorphic lists their
specification would be recognized as “unguarded”.

Adequacy of the encoding (I).The adequacy of the syntax encoding can be
established using the arguments of the weak HOAS paradigm; seee.g. (Mic-
ulan, 1997; Miculan, 2001b; Honsell et al., 2001a). A complete treatment of
these techniques is out of the scope of this paper; we recall briefly the basic
ideas in the case of the syntax of terms, the other cases being similar.

Basically, the adequacy aims to establish a (compositional) bijection be-
tween object-language expressions of sortTerm, and meta-language terms
of typeTerm in canonical form. Usually, in standard first-order encodings of
higher-order calculi, the “canonical form” is the well-knownβ-normal form:
a term without unsolvedβ-redexes. This is not sufficient for weak HOAS
encodings, where we need to define a notion of canonical form also for the
typesVar andVar->Term (whose inhabitants may appear in terms of type
Term, due to the constructorsvar ande.g. let , respectively). SinceVar
is first-order and has no constructor, its terms in canonical form are only
variables (of the metalanguage). This means also that terms inVar have no
structure, and hence cannot be destructed byCases. Then, we can say that
the canonical terms of typeVar->Term are always abstractions[x:Var] t,
wheret itself is canonical (inTerm).4

ForX = {x1, . . . , xn} a finite set of variables, let us define:

TermX , {a | FV(a) ⊆ X}
ΞX , x1 : Var , . . . , xn : Var

TermX , {t | ΞX C̀C t : Term, t canonical}

Then, following (Miculan, 1997; Honsell et al., 2001a), it is easy to define
two encodinganddecodingfunctions:

4 The normalization requires a restricted form ofη-expansion, that is,M �

[x:Var](M x) . Although an algorithm for generalη-normalization in CC(Co)Ind is still
unknown, we think that this restricted form should be decidable.
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εX : TermX ->Term X δX : TermX -> TermX

such that the following property holds.

PROPOSITION 19 (Adequacy of syntax encoding).For X a finite set of va-
riables,εX , δX arecompositionalbijections, in the sense that ifa ∈ TermX,x

andb ∈ TermX , thenεX(a{b/x}) = εX,x(a){εX(b)/(var x) }.
Proof. By structural induction on terms of sortTerm, and on typings of

normal forms of typeTerm (Miculan, 1997; Honsell et al., 2001a). ut

4.2. FORMALIZATION OF DYNAMIC SEMANTICS

The judgmentseval andevalb are represented by two inductive predicates

eval : Store->Term->Store->Res->Prop
eval_b : Store->Body->Store->Res->Prop

whose rules are encoded using hypothetical-general judgmentsà la Martin-
Löf: since the derivation contexts of the proof systems in Figures 9 and 10
obey a stack-like allocation strategy, the assignment of results to variables
can be formalized through hypothetical premises, local to sub-reductions. On
the other hand, since stores cannot be distributed in the proof environment,
they are represented as lists of closures, where thei-th element of the list is
the closure associated to the locationιi. Each closure is simply a closure-body
abstracted with respect to the “self” variable:

Definition Loc:= nat.
Definition Res: Set:= (list (Lab*Loc)).
Inductive Body: Set:= ground: Term->Body

| bind: Res->(Var->Body)->Body.
Definition Cls: Set:= Var->Body.
Definition Store: Set:= (list Cls).

(Some simple functions are needed for manipulating these structures,e.g. for
extracting single lists from lists of pairs.) A stack is then a finite map asso-
ciating each declared variable to a result; therefore, it could be represented
as a functional relation,5 or, even better, as a functionstack:Var->Res
described by a finite set of assumptions of the form “(stack x)=v ” (where
“=” is Leibniz equality). Each of such assumptions corresponds to a binding
“x7→v” of the contextΓ; these assumptions are used in evaluating variables
(rulee_var ), and locally assumed when needed, as in the rulee_let :

5 Actually, in the original NDS approach within the Edinburgh LF, theeval judgment
itself should be used for representing these bindings (Burstall and Honsell, 1990). In CC(Co)Ind

we cannot useeval in place ofstack , due to the positivity restrictions of inductive types:
eval is inductive and the discharged hypotheses are in negative position.
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Parameter stack: Var->Res.
Mutual Inductive

eval: Store->Term->Store->Res->Prop:=
e_var: (s:Store;x:Var;v:Res)

(stack x)=(v)->(eval s x s v)
|...
|e_let: (s,s’,t:Store;a:Term;b:Var->Term;v,w:Res)

(eval s a s’ v)->
((x:Var)(stack x)=(v)->(eval s’(b x) t w))->
(eval s (let a b) t w)

with eval_b: Store->Body->Store->Res->Prop:= ...

In e_let rule, the “hole” ofb is filled with a fresh (i.e. locally quantified)
variablex associated tov . This rule points out why the weak HOAS approach
is well-suited for the store-based operational semantics: only substitution of
variables for variables is needed, which is automatically provided by the met-
alanguage. Similarly, the auxiliary judgmentwrap, needed for constructing
closures (Figure 11), can be formalized by an inductive predicate:

Parameter dummy: Var->Prop.
Inductive wrap : Term->Body->Prop:=

w_ground: (b:Term)(closed b)->(wrap b (ground b))
| w_bind : (b:Var->Term;c:Var->Body;xl:(list Var))

((z:Var)(dummy z)->(wrap (b z) (c z)))->
(y:Var;v:Res) (stack y)=(v) ->
(isin y (b y)) ->
(wrap (b y) (bind v c)).

Some explanations aboutwrap are in order. The judgmentdummy is the
usual workaround for negative occurrences ofclosed , and it is used to
represent the discharged hypothesisclosed(y) of rule (w·bind). The relation
closed can be represented efficiently as a functionclosed:Term->Prop ,
defined by recursion on the structure of terms, as in (Miculan, 2001b):

Fixpoint closed [t:Term]: Prop:= Cases t of
(var x) => (dummy x) |(obj ml) => (cld_obj ml)

|(call a l) => (closed a)
|(upd a l m) => (closed a) /\

((x:Var)(dummy x)->(closed (m x))) | ...
with cld_obj [ml:Obj]: Prop:= Cases ml of

(obj_nil) => True
|(obj_cons l m nl) => (cld_obj nl) /\

((x:Var)(dummy x)->(closed (m x)))

With this definition, an assertion(closed a):Prop can be reduced by
“Simpl ification” into a conjunction of similar assertions about simpler terms,
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which is easily dealt with using the tactics provided byCoq. The same tech-
nique can be used for defining the functionisin:Var->Term->Prop
(representing “x ∈ FV(a)”)

It is interesting to notice that metavariables are used with two different
meanings: either as “real” variables, associated to results bystack , or as
placeholders in the construction of closures (in this case marked asdummy;
see discussion in Subsection 5.1). As a consequence, we cannot have both
(stack y)=(v) and(dummy y) in the assumptions; indeed the assump-
tion (dummy z) is about a locally quantified, fresh variablez .

Finally, the assumptions in rulew_bind are enough to ensure also that
b:Var->Term is a “good context” fory , that is,y does not appear free in
b. Indeed, ify appeared free inb, then it would be free also in(b z) , and
eventually also in the termb’ , body of the method(b z) , which should
be provedclosed after an application ofw_ground . But (closed b’)
would not be provable, because we would needy to be marked asdummy,
which is not the case.

The remaining rules ofeval are simple; both the functional and the im-
perative method update can be easily formalized (Ciaffaglione et al., 2005).
We discuss here only the rule for method selection, which needseval_b for
evaluating a closure body, after that the closure is retrieved from the store:

e_call: (s,s’,t:Store;a:Term;v,w:Res;c:Cls;l:Lab)
(eval s a s’ v)->(In l (proj_lab_res v))->
(store_nth (loc_in_res v l s’) s’)=(c)->
((x:Var)(stack x)=(v)->(eval_b s’ (c x) t w))->
(eval s (call a l) t w)

store_nth and loc_in_res implement the dereferencing of locations
in stores, and the lookup of locations in results, respectively. The closure so
obtained isc , whose body is evaluated byeval_b after that a local variable
x , denoting “self”, is associated to (the implementation of) the host object.
The two rules foreval_b are simple:

e_ground: (s,t:Store;a:Term;v:Res)
(eval s a t v)->(eval_b s (ground a) t v)

| e_bind: (s,t:Store;c:Var->Body;v,w:Res)
((y:Var)(stack y)=(v)->(eval_b s (c y) t w))->
(eval_b s (bind v c) t w).

Adequacy of the encoding (II).We state now the adequacy of the formaliza-
tion of dynamic semantics. As for terms, it is easy to define suitable encoding
functions for the syntactic classes introduced in this subsection (locations,
results, method bodies, closures and stores). We will keep denoting all these
functions byεX , which map abstract entities (with free variables inX) to
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CC(Co)Ind terms of the corresponding type (with free variables inΞX ). As
a difference, the encoding map for results does not need theX parameter.
Moreover, we define the encoding map for the proof contextΓ. Let Γ =
{x1 7→v1, . . . , xn 7→vn} be a well-formed evaluation context; then, we define:

εX(∅) , ∅ εX(Γ, x7→v) , εX(Γ), s:(stack x)= εX(v) (1)

PROPOSITION 20. Let X be a finite set of variables. Leta ∈ TermX ,
s, s′ ∈ StoreX , v ∈ ResX , b ∈ BodyX , and let Γ be a well-formed
evaluation context such that, for allx7→v ∈ Γ: {x} ∪ FV(v) ⊆ X. Then:

Γ ǸD eval(s, a, s′, v) ⇐⇒ ΞX , εX(Γ) C̀C : (eval εX(s) εX(a) εX(s′) ε(v))
Γ ǸD evalb(s, b, s′, v) ⇐⇒ ΞX , εX(Γ) C̀C : (eval εX(s) εX(b) εX(s′) ε(v))

Proof.Direction (⇒) can be proved by mutual induction on the derivations
of eval(s, a, s′, v) andeval(s, b, s′, v); direction (⇐) by mutual induction on
the syntax of proof terms. ut

4.3. FORMALIZATION OF TERM TYPING

Term types are defined as lists of pairs of labels and types:

Inductive TType: Set:= mk:(list(Lab*TType))->TType.

In principle, this definition does not prevent to define illegal types,i.e. with
duplicated labels. The check about their well-formedness is performed by the
predicatewt:TType->Prop , whose definition is easy and omitted here.

The term typing judgmenttype is encoded by a judgmenttype:Term->
TType->Prop . In principle, we could represent assignments of types to
variables by means of assumptions of the form(type (var x) A) , but
this would forbid to definetype as an inductive predicate, due to the usual
positivity constraints. Thus, typing of variables is represented by a specific
judgmenttypenv , which acts astype , but restricted to variables:

Parameter typenv: Var->TType->Prop.
Hypothesis typenv_sub: (x:Var; A,B:TType)

(typenv x A)->(sub A B)->(typenv x B).

Sincetypenv is a restricted version oftype , it must satisfy the same prop-
erties, such as subtyping (represented by the hypothesistypenv_sub ) and
non-functionality (hence it cannot be a function of typeVar->TType ).

The typing of terms is defined by mutual induction with the typing of
objects; notice that we need to carry along the whole (object) type (C, below)
while we scan the list of methods forming the objects, and type each method:
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Mutual Inductive type: Term->TType->Prop:=
t_sub: (a:Term;A,B:TType)

(type a A)->(sub A B)->(type a B)
| t_obj: (ml:Obj;A:TType)

(type_obj A (obj ml) A)->(type (obj ml) A) |...
with type_obj: TType->Term->TType->Prop:=

t_nil: (A:TType)
(type_obj A (obj(obj_nil))(mk(nil(Lab*TType))))

| t_cons: (A,B,C:TType;ml:Object;l:Lab;m:Var->Term)
(pl:(list(Lab*TType)))
(type_obj C (obj ml) A)->
(list_from_type A)=(pl)->
((x:Var)(typenv x C)->(type (m x) B))-> ...
(type_obj C (obj (obj_cons l m ml))

(mk (cons (l,B) pl))).

We omit here the encoding ofsub , which formalizes the subtype predicate.
Just notice that the formulation of the rule(sub·obj) “on paper” (in Figure
12), hides the possibility ofpermutatingthe component pairs of object types,
and does not address explicitly theinvarianceof types associated to identical
labels. Therefore, in order to formalize this rule in a Logical Framework, it
is necessary to characterize in a completely detailed way permutation and in-
variance. However, since the formal treatment of subtyping is neither central
in the economy of the proof of Subject Reduction, nor problematic, we refer
the interested reader to the discussion in (Ciaffaglione, 2003).

Adequacy of the encoding (III).As in the previous subsection, the encoding
map is extended straightforwardly to types, which we will keep denoting by
ε : TType->TType . Moreover, we have to extend the previous definition of
encoding map for proof contexts (equation (1)) to the case of type assignment:

εX(Γ, x:A) , εX(Γ), t x:(typenv x ε(A))

Notice that, althoughtypenv is a relation, the set of typing assumptions
corresponding to aΓ is always functional (i.e., for eachx ∈ dom(Γ), there is
exactly one assumptionh:(typenv x A) ).

PROPOSITION 21. Let X be a finite set of variables. Leta ∈ TermX ,
A ∈ Type, and letΓ be a well-formed typing context such that, for allx7→v ∈
Γ : {x} ∪ FV(v) ⊆ X. Then:

Γ ǸD type(a,A) ⇐⇒ ΞX , εX(Γ) C̀C : (type εX(a) ε(A))
Proof. Direction (⇒) can be proved by induction on the derivation of

type(a,A), while (⇐) by induction on the syntax of the (normalized) proof
term. ut
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4.4. FORMALIZATION OF RESULT TYPING WITH STORE TYPES

The judgmentres of Subsection 3.3 is easily rendered by means of an in-
ductive predicateres . The key issue in encoding the result typing system of
Figure 13 is that we have to formalize store-types,e.g. as lists of type pairs:

Definition SType: Set:= (list (TType*TType)).

These lists need to be managed by means of a bunch of functions (whose
definition is omitted here: see (Ciaffaglione et al., 2005)) to play the role of
store-types. The system of Figure 13 is then easily rendered in CC(Co)Ind: the
encoding ofext andcomp is straightforward; however,res needs an auxiliary
inductive judgment (resaux ), since we must carry along the whole (result)
type (A, below) while we scan and type (the components of) results:

Inductive resaux: SType->TType->Res->TType->Prop:=
t_void: (S:SType;A:TType)

(resaux S A (nil(Lab*Loc))(mk(nil(Lab*TType)))) |
t_step: (S:SType;A,B,C:TType;v:Res;i:Loc;l:Lab)

(pl:(list (Lab*TType))) (type_from_lab A l)=C->
(stype_nth_1 i S)=(A)->(stype_nth_2 i S)=(C)->
(resaux S A v B)->(list_from_type B)=pl-> ...
(resaux S A (cons (l,i) v) (mk (cons (l,C) pl))).

Definition res: SType->Res->TType->Prop:=
[S:SType;v:Res;A:TType] (resaux S A v A).

Inductive type_b: SType->Body->TType->Prop:=
t_ground: (S:SType;b:Term;A:TType)

(type b A)->(type_b S (ground b) A) |
t_bind: (S:SType;b:Var->Body;A,B:TType;v:Res)

(res S v A)->
((x:Var)(typenv x A)->(type_b S (b x) B))->
(type_b S (bind v b) B).

As for term typing, the adequacy of result typing can be easily established.

4.5. FORMALIZATION OF COINDUCTIVE RESULT TYPING

The judgmentscores andcotypeb of Subsection 3.4 are rendered by means
of two mutually definedcoinductivepredicates (althoughcotypeb is intrinsi-
cally inductive). The encoding of the rules of Figure 14 needs an auxiliary
coinductive judgment (coaux ), similarly to the treatment ofres above:

CoInductive coaux: TType->Store->Res->TType->Prop:=
t_void: (A:TType;s:Store)

(coaux A s (nil(Lab*Loc)) (mk(nil(Lab*TType)))) |
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t_step: (A,B,C:TType;s:Store;pl:(list(Lab*TType)))
(v:Res;i:Loc;c:Cls;l:Lab) (store_nth i s)=(c)->
((x:Var)(typenv x C)->(cotype_b s (c x) B))->
(coaux C s v A)->(list_from_type A)=pl->...->
(coaux C s (cons (l,i) v) (mk (cons (l,B) pl)))

with cotype_b: Store->Body->TType->Prop:=
t_coground: (s:Store;b:Term;A:TType)

(type b A)->(cotype_b s (ground b) A) |
t_cobind: (s:Store;b:Var->Body;A,B:TType;v:Res)

((x:Var)(typenv x A)->(cotype_b s (b x) B))->
(coaux A s v A)->(cotype_b s (bind v b) B).

Definition cores: Store->Res->TType->Prop:=
[s:Store;v:Res;A:TType] (coaux A s v A).

Apparently, the coinductive (discharged) hypothesis in(t·cores, Figure 14)
disappears from this encoding: it is not in the rulet step. In fact, this is not
the case: sincecoaux is coinductive, when we have to prove a goal of the
form (coaux ...) we can assume it in the hypotheses using theCofix
tactic. So the discharged coinductive hypothesis is available “for free”.

Adequacy of the encoding (IV).The adequacy of the encoding of the coin-
ductive system for result typing is more subtle than the previous ones. Clearly,
a derivationΓ ǸD cores(s, v, A) should be represented by a coinductive
term of type(cores s v A) , that is (coaux A s v A) . However,
(proof) terms inhabiting coinductive types are subject to precise and stringent
well-formedness conditions (Coq, 2003).

PROPOSITION 22. Let X be a finite set of variables. Leta ∈ TermX ,
A ∈ Type, v ∈ ResX , and letΓ be a well-formed context such that, for all
x7→w ∈ Γ : {x} ∪ FV(w) ⊆ X. Then:

Γ ǸD cores(s, v, A)⇔ ΞX , εX(Γ) C̀C : (coaux ε(A) ε(s) εX(a) ε(A)).
Proof. Direction (⇒) can be proved by induction on the derivation of

Γ ǸD cores(s, v, A). In particular, when the last rule applied is(t·cores)
(and the object type is not empty), the corresponding proof term is:

CoFix p.{p : (coaux A s a A)
:= (t_step ? ? A s ... Q(p) ...)}

whereQ(p) is the proof term of type(x:Var)(typenv x C)->
(cotype b s (c x) B) , encoding the subderivation:

Γ, x:A, cores(s, v, A) ǸD cotypeb(s, bi, Bi)

which exists by inductive hypothesis. The resulting circular proof term is
well-formed because the occurrence ofp is guarded bycotype_b . Part (⇐)
can be proved by induction on the syntax of the (normalized) proof term.ut
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5. Metatheory of fun ς and imp ς in Coq

One of the main applications of the formalizations offunς and impς, is the
proof in Coq of fundamental properties,e.g. type soundness and behavioral
equivalence of objects. In this section we illustrate the formal proof of the
fundamentalSubject Reductionproperty, already proved on paper in Section
3 in its NDS version. As mentioned in Section 2, Subject Reduction implies
immediately the type soundness of type discipline.

We consider Subject Reduction for both the original and the coinductive
systems for result typing of Figures 13 and 14, encoded inCoq in subsections
4.4 and 4.5, respectively. In subsection 5.1 we formalize Theorem 13, and
point out some interesting aspects common to both the two versions of result
typing, such as the application of theTheory of Contexts. In subsection 5.2
we formalize Theorem 18, and focus on the peculiar aspects and benefits
provided by the coinductive result typing system.

5.1. SUBJECTREDUCTION WITH STORE TYPES

Subject Reduction in NDS (Theorem 13) can be readily formalized inCoq:

Theorem SR:(s,t:Store;a:Term;v:Res;A:TType;S:SType)
(eval s a t v)->(type a A)->(comp S s)->
((x:Var;w:Res;B:TType)(stack x)=(w)/\(typenv x B)->

(res S w B))->
(EX C:TType | (EX T:SType |
(res T v C)/\(ext T S)/\(comp T t)/\(sub C A))).

Notice that the proof contextΓ, containing stacks and typing assertions, “dis-
appears” from the statement: it is implicitly dealt with by the proof assistant.
The proof is by structural induction on the derivation(eval s a t v) .
Many technical lemmata about operational semantics, term and result typing
have been needed. These lemmata are relatively compact and easy to prove,
essentially because the object system is in natural deduction, and weak HOAS
gives usα-equivalence for free (so we do not have to face the usual problems
of first-order encodings, such as de Bruijn indexes or name-carrying syntax).

The drawback is that most LFs do not provide a sufficient support for
reasoning about HOAS encodings (Despeyroux et al., 1995; Honsell et al.,
2001b). For example, recursion and induction principles over higher-order
terms (i.e. terms with “holes”) are usually not available. An important family
of properties which cannot be proved in CC(Co)Ind are therenaming lemmata,
such as the following preservation of typing under variable renaming:

Lemma rename_term: (m:Var->Term;A,B:TType;x,y:Var)
(typenv x A) -> (typenv y A)->
(type (m x) B) -> (type (m y) B).
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In other words, the expressive power of LFs is limited, when it comes to
reason on formalizations in (weak) HOAS. In recent years, there has been
a lot of research about programming with, and reasoning about, datatypes in
higher-order abstract syntax, and various approaches have been proposed; see
e.g. (Hofmann, 1999; Fiore et al., 1999; Despeyroux and Leleu, 2001; Gab-
bay and Pitts, 2002; Honsell et al., 2001b; Momigliano and Ambler, 2003).
Now, a general approach, in Logics, for increasing the expressive power of
a logical system, is to take a suitable (and consistent) set of fundamental
properties asaxioms. This is the approach of theTheory of Contexts(ToC),
an axiomatization capturing some basic and natural properties of(variable)
namesandterm contexts(Honsell et al., 2001a; Scagnetto, 2002). The Theory
of Contexts consists in four axioms (indeed, axiom schemata):

freshness:(called also “unsaturation”)∀M,∃x : x 6∈ FV(M): it captures
the idea that a term cannot contain all the variables at once;

decidability of equality over variables: ∀x, y : x = y ∨ x 6= y. In a clas-
sical framework, this axiom is just an instance of the Law of Excluded
Middle; we need it because CC(Co)Ind is intuitionistic;

β-expansion: ∀M,∀x,∃N(·) : x 6∈ FV(N(·)) ∧M = N(x);

extensionality: ∀M(·), N(·),∀x : x 6∈ {FV(M(·), N(·))} ∧M(x) = N(x)
⇒ M(·) = N(·). This means that two term contexts are equal if they
are equal when applied to a fresh variablex. Together withβ-expansion,
extensionality allows to reason about higher-order terms.6

In principle, these properties can be “plugged in” an existing proof environ-
ment (such asCoq) without requiring any redesign of the system. Several
case studies about untyped and simply typedλ-calculus,π-calculus, and Mo-
bile Ambients (Miculan, 2001a; Scagnetto and Miculan, 2002; Honsell et al.,
2001b; Ciaffaglione and Scagnetto, 2003) have shown that these axioms yield
a smooth handling of corecursion schemata in HOAS, with a small overhead.

For these reasons, the use of ToC seems to be natural also for reasoning
aboutfunς andimpς, in Coq. In fact, the present formal development is the
first application of this methodology to the object-oriented paradigm.

It turns out that the above properties are fully satisfactory for dealing
with higher-order terms such as methods, closures and local declarations.
For instance, the proof of the aboverename term requires the use of the
“decidability”, “β-expansion” and “extensionality” axioms.

However, in order to be useful for reasoning onfunς andimpς, the “fresh-
ness” axiom has to be slightly modified with respect to its original formu-
lation, similarly to what happens in other typed languages (Miculan, 2001a;

6 From an operational point of view, extensionality is the restricted form ofη-equivalence
needed for calculating the canonical forms of weak HOAS encodings; see Section 4.1.
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Scagnetto and Miculan, 2002). The fact is that, in the NDS system (Section
3), (fresh) variables may have two different meanings: either associated to re-
sults (Figures 9 and 10), or just place-holders, in the construction of closures
(Figure 11). In the first case the new variable is associated both to a result
and to a type, by thestack and typenv maps. In the second case, it is
marked asdummy, because it does not carry any information about results.
Thus, we observe a “regularity” of proof contexts: for each variablex, there
is always the assumption(typenv x A) for some well-formedA, and,
either(stack x)=v for somev , or (dummy x) . The unsaturation axiom
has to respect this regularity: a fresh variable cannot be generated without this
information. This is reflected by assumingtwo forms of unsaturation:

Axiom unsat_typenv:(A:TType)(wt A) ->
(EX x | (dummy x)/\(typenv x A)).

Axiom unsat_res: (S:SType;v:Res;A:TType)(wt A) ->
(res S v A)->(EX x | (stack x)=v/\(typenv x A)).

A typical use ofunsat_typenv is for proving that the type of a method-
body is preserved by closure construction:

Lemma wpt:(A:TType;m:Var->Term;c:Cls;x:Var;S:SType)
(type (m x) A))->(wrap (m x) (c x)))-> ...
(type_b S (c x) A).

In unsat_res , the premise(res S v A) ensures the consistency be-
tween results and types (to be associated to the same variable): it can be seen
as the counterpart of the original “stack typing” judgment of Figure 8.

Finally, some remarks about the consistency of the axioms are in order.
Proving the consistency of this particular version of the Theory of Contexts,
within the CC(Co)Ind type theory, is out of the scope of this paper. The original
ToC is known to be consistent with respect to (classical) higher-order logics;
see (Hofmann, 1999; Bucalo et al., 2006) for a (non-trivial) construction of a
model. We expect that a similar model can be defined for validating the two
unsaturation axioms we have used in this paper. However, it is interesting
future work checking if these models can be used for interpreting a theory of
dependent types with coinduction, like CC(Co)Ind. This task seems not quite
easy, since giving a model to CC(Co)Ind alone is not trivial. Alternatively, one
can try to give a syntactic proof of soundness (i.e. strong normalization) of
the Calculus of (Coinductive) Constructions with the Theory of Contexts.

5.2. SUBJECTREDUCTION WITH COINDUCTIVE RESULT TYPING

Subject Reduction with coinduction, stated forfunς as Theorem 18, is formal-
ized as follows, and proved by structural induction on(eval s a t v) :
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Theorem SR: (s,t:Store;a:Term;v:Res;A:TType)
(eval s a t v)->(type a A)->
((x:Var;w:Res;B:TType)(stack x)=(w)/\(typenv x B)->

(cores s w B))->
(EX C:TType | (cores t v C)/\(sub C A)).

It is important to notice that the use of the coinductive system of Figure 14
leads to a proof for the constructs offunς considerably simpler than the
proof (discussed in the previous subsection) based on the original system of
Figure 13. In this perspective, some remarkable aspects are the following.

Proofs about thecores predicate can be carried out inCoq via the
Cofix tactic: that is, we build infinitely regressive proofs assuming the thesis
as an extra hypothesis, provided its application is guarded by introduction
rules (Giḿenez, 1995) (see Example 14). This internal approach turns out
to be very successful, because coinductive proofs do not need to be exhibited
beforehand, but can be built incrementally using quite direct tactics. This cor-
responds to say that we do not have to exhibit a suitable store type beforehand,
but we can discover the type of each location only if and when needed.

Special care has to be devoted to the proof that the evaluation of terms
does not modify the store, that is Lemma 30.(i) in Appendix A.2. As in similar
cases (Honsell et al., 2001b), the inductive principle overeval andeval_b
given byCoq is too weak, since one needs a stronger version for dealing with
the locally created names (such ase.g. in e_call ). The stronger principle is
validated by the model of ToC, and in fact, it can be derived from the standard
one using the axioms of ToC (Scagnetto and Miculan, 2002; Ciaffaglione
and Scagnetto, 2003). Hence, we can prove directly Lemma 30.(i) using the
axioms of ToC and existing induction principles.

It is worthwhile noticing that in the proofs with coinductive result typing
we can reuse with little effort several (patterns of) proofs (previously) de-
veloped for the original result typing. Namely, all those ones not requiring
an explicit inspection on the structure of the involved store-types; in such a
case, simply we either keep proofs carried out by induction on the structure of
results or convert them into coinductive proofs on the structure of derivations.

The benefits of the coinductive approach can be better appreciated by con-
sidering the proofs which must deal with store-types. Tipically, these proofs
are carried out reasoning by simultaneous induction over both the structure
(and the content) of stores and store-types. It is apparent that such proofs
become much simpler when we have to deal just with stores.

6. Conclusion

In this paper, we have presented a case study in formal reasoning about
object-based calculi with binders in Type Theory-based Logical Frameworks.
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Our experiment has been carried out on both a functional and an imperative
object calculus; we have used the Calculus of (Co)Inductive Constructions
as logical framework, implemented in theCoq system as proof assistant. As
an example of application of the formalization, we have internally proved the
property of Subject Reduction, for both calculi.

Our aim was to illustrate the benefits of taking as much as possible advan-
tage of the proof theoretical techniques provided by modern type theories,
such as Natural Deduction Semantics and Coinduction, in combination with
Higher-Order Abstract Syntax and the Theory of Contexts.

The reformulation in Natural Deduction style of the systems defining se-
mantics and typings of the calculi, has allowed to represent stacks and typing
contexts by means of hypothetical premises. Therefore, in the subsequent
formalization, stacks and typing contexts are implicitly dealt with by the
metalanguage, and hence judgments and proofs have become fairly simpler
than traditional ones in Natural Semantics.

Furthermore, the use of Coinduction has suggested a novel, simpler typing
system for results which does not require extra structures as store types, thus
simplifying further the encoding.

Weak HOAS allows to deal with binders without having to encode neither
α-equivalence (which is inherited from the metalanguage), nor substitution
(which is not required by the calculi). A consequence of these choices is that
closures are treated more efficiently than in the original system (although in
a bit more complicated way).

In order to gain the extra expressive power required for proving Subject
Reduction, we have added the axioms of the Theory of Contexts to our en-
coding. In our opinion, this is an acceptable price to pay, because the use of
weak HOAS has a direct impact on the complexity of proofs, and in par-
ticular it allows for a simpler and smoother formal treatment of complex
(meta)propertiesw.r.t. first-order techniques, as de Bruijn indexes or explicit
names. On the other hand, the Theory of Contexts can be plugged in existing
LFs without requiring any redesign of these metalogical systems.

From this experience, we can affirm that the methodology we have chosen
is well-suitedw.r.t. the proof practice, also in the challenging case of an
object-oriented calculus, because it reduces considerably the length and the
complexity of proofs. In particular, since weak HOAS does not provide auto-
matically general substitution, this methodology seems best suited for dealing
with store-oriented semantics, such as semantics with method closures, where
just a simple treatment of theα-equivalence is required.

6.1. RELATED WORK

Formalization of Object Calculi. To our knowledge, this is the first sys-
tematic formalization of the theory and meta-theory of Abadi and Cardelli’s
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object-based calculi in Logical Frameworks based on Type Theory. The clos-
est work are (Laurent, 1997; Gillard, 2000; Hofmann and Tang, 2000), but
we are not aware of a complete formal approaches to calculi with imperative
features as our.

In (Laurent, 1997), the functional calculusOb1<:µ is specified in the Cen-
taur system using traditional first-order techniques and basic Natural Seman-
tics; this encoding is then automatically translated inCoq, and finally the
type soundness ofOb1<:µ is proved in the proof assistant.

(Gillard, 2000) considers a functionalς-calculus extended with concurrent
primitives, using de Bruijn indexes for dealing with bound variables with Gor-
don and Melham’s approach toα-conversion for defining a generic second
order binder (like in (Norrish, 2003)). On one hand, this methodology allows
for using automatic tools (such as Centaur), but on the other hand it suffers
the usual drawbacks of first-order encodings. This is the reason why in the
present paper we have striven for more advanced encoding techniques, aiming
to a more sophisticated treatment of environment and binders. We believe that
our approach pays off when it comes to prove theorems interactively, even if
full automatized support is still under development.

(Hofmann and Tang, 2000) presents a formalization of Abadi and Leino’s
AL logic (an axiomatic semantics analogous to Hoare logic) for an imperative
object-based calculus similar toimpς, in theLEGOandPVSproof assistants.
The syntax is represented using HOAS, whereas the operational semantics
is not formalized directly. Instead, the assertions of AL are encoded, using
a shallow, direct embedding inhigher-order logic à la System F. Each in-
ference rule of AL is then taken as axiom. This approach is quite different
from ours. The encoding is simplified because operational semantics is not
formalized, thus avoiding the need of formalizing locations and stores, but at
the same time the possibility of proving properties such as Type Soundness
and Subject Reduction is lost. Moreover, since all the rules are taken as ax-
ioms, an external proof of soundness is needed, such as that in (Hofmann and
Tang, 2001), relying on a semantic argument in presheaf categories. However,
the comparison between these two approaches is interesting future work; for
instance, it would be interesting to encode the AL logic using Hofmann and
Tang’s approach in our formalization, and to formally validate AL rules with
respect to the operational semantics.

Linear Logical Frameworks. Since the explicit management of bulky list-
like structures in judgments is unwieldy, one key point of the NDS approach
is to delegate as much as possible the management of stacks and typing struc-
tures to the meta-level proof context. However, the structural features of Nat-
ural Deduction prevent us to internalize also thestore. As shown by (Miller,
1994; Chirimar, 1995), stores can be neatly internalized inlinear logical
frameworks, such as Forum or LLF (Cervesato and Pfenning, 2002). How-
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ever, these systems do not provide a native support for coinduction, nor they
are known, widespread and supported as intuitionistic ones. For these reasons,
in this paper we have preferred to work in a more traditional intuitionistic
type theory, namely CC(Co)Ind; we leave for future work the investigation of
the meta-theory of HOAS encodings in linear logical frameworks.

Another possibility is to use Felty’s eleganttwo-levelapproach for en-
coding sub-structural logics within CC(Co)Ind (Felty, 2002), in the tradition
of (McDowell and Miller, 1997). In this approach the metalanguage is used
for representing thesequentsof the logics, and all the peculiar structural
rules one possibly needs. Therefore, besides the known judgments (typing,
evaluation, etc), one has to introduce a further meta-judgment which repre-
sents the sequent itself. A first problem is that all the rules for the logical
constructors already present at the meta-level must be replicated at the speci-
fication level; thus, the automatizing tactics ofCoq would not work anymore.
Another drawback is that one would get again “sequents”, that is judgments
crammed with lists of propositions, which are not easy to deal with. So this
approach, although feasible in theory, is in contrast with the choices taken
in this work, aiming to exploit every feature the metalanguage gives us. We
leave the formalization ofς-calculi in Felty’s approach as future work.

Coinductive Typing Systems.Coinductive typing systems date back to (Mil-
ner and Tofte, 1991) in functional languages with fixpoints, whose values
(closures) may be not well-founded. There are some similarities with our
work, but here values are always finite entities; instead, potential loops may
arise due to pointers to the store. Another distinguishing fact is that we deal
with a different paradigm (i.e. object-oriented), which we consider at a low,
implementation-oriented level. Thus, the calculus is considerably more com-
plex than Milner-Tofte’s, and extra structures (i.e. the store) are used to man-
age efficiently closures, like a compiler for a register machine would do.

Milner-Tofte’s work has been implemented in Isabelle/HOL through an
impredicative, higher-order encoding of greatest fixed points (Frost, 1995).
On the converse, we use the native coinductive features provided by CC(Co)Ind

as primitive constructors. This different approach to coinduction has a great
benefit on the interactive practice: Frost reports that “4/5 of the work was
about the management of fixed points” (It has to be said, however, that in
current versions of Isabelle support for coinduction has much improved since
then, so the overhead would be not so big). Moreover, bisimulations had to
be provided explicitly beforehand, whereas we can build them implicitly, in
due course, using specialized tactics. The native support for coinduction was
actually one of the arguments for choosing CC(Co)Ind.
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6.2. OTHER FUTURE WORK

An obvious possible future work is to experiment further with the formal-
ization carried out so far,e.g. for proving other (meta)properties offunς and
impς: behavioural equivalences of objects, or the formal equivalence between
the two encodings for result typing, as stated on paper in Section 3.4.

We think that the presented approach can be applied also to other object-
based calculi,e.g. those featuringobject extension(Fisher et al., 1994).

A promising application of the formalizations is thecertificationof tools,
such as interpreters, compilers and type-checkers. Some results in this direc-
tion, usingCoq andIsabelle, are the certification of compilers for an imper-
ative language (Bertot, 1998) and Java (Strecker, 2002). However, none of
these works adopts higher-order abstract syntax for dealing with binders: we
believe that the use of Natural Deduction Semantics and HOAS can simplify
these advanced tasks in the case of languages with binders.

On a theoretical side, it is interesting future work to investigate how the
current Theory of Contexts can be generalized to subsume uniformly the sev-
eral variants used in the case studies about typed languages, such as ours or
(Miculan, 2001a), where we had to modify slightly the unsaturation axiom.

Since the Theory of Contexts has been proved to be so useful, it is high
time to consider seriously all the proof-theoretical issues concerning type the-
ories. In particular, a syntactic proof of soundness (i.e. strong normalization)
of the Calculus of (Coinductive) Constructions with the Theory of Contexts
should be pursued; then, the Theory of Contexts could be internalized in the
proof assistant, yielding an integratedCoq-ToC system.
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Appendix

A. Subject Reduction Theorem

We document here the proof of Subject Reduction in Natural Deduction Se-
mantics (Theorem 13), and with coinductive result typing (Theorem 18). We
will write oftenA for Γ ǸD A, andB ǸD A for Γ,B ǸD A, whereΓ is a
well-formed (evaluation and typing) context.

LEMMA 23 (Typing system for terms).

(var) : type(x,A) ⇒ ∃B : TType :
(x:B ∈ Γ) ∧ sub(B,A)

(obj) : type([li = ς(xi)bi]i∈I , A) ⇒ ∃B : TType :
type([li = ς(xi)bi]i∈I , B) ∧ sub(B,A)

(call) : type(a.l, A) ⇒ ∃B : TType :
type(a,B) ∧B ≡ [l:Bl, . . .] ∧ sub(Bl, A)

(upd) : type(a.l←ς(x)b, A) ⇒ ∃B : TType :
type(a,B) ∧ sub(B,A) ∧B ≡ [l:Bl, . . .]∧
x:B ǸD type(b, Bl)

(clone) : type(clone(a), A) ⇒ ∃B : TType :
type(a,B) ∧ sub(B,A)

(let) : type(let(a, λx.b), A) ⇒ ∃B,C : TType :
type(a,C) ∧ sub(B,A) ∧ x:C ǸD type(b, B)

(bd·weak) : x:A ǸD type(b, C) ∧ sub(B,A) ⇒ x:B ǸD type(b, C)
Proof.By structural induction on the (first) hypothesis. ut

A.1. SUBJECTREDUCTION IN NDS (IMPς )

LEMMA 24 (Result typing).

(i) ext(Σ,Σ)
(ii) ext(Σ′′,Σ′) ∧ ext(Σ′,Σ) ⇒ ext(Σ′′,Σ)

(iii) res(Σ, v, A) ∧ ext(Σ′,Σ) ⇒ res(Σ′, v, A)

LEMMA 25 (Objects).

(i) A ≡ [li:Bi]i∈I ⇒ res((Σ, ιi 7→(A⇒ Bi))i∈I , [li = ιi]i∈I , A)

(ii) A ≡ [li:Bi]i∈I ∧ type([li = ς(xi)bi]i∈I , A)∧
closed(xi) ǸD wrap(bi, bi)i∈I ∧ comp(Σ, s) ⇒
comp((Σ, ιi 7→(A⇒ Bi))i∈I , (s, ιi 7→λxi.bi)i∈I)

Proof.(i) By the rule(t·res). (ii) By induction on the object typeA. ut
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LEMMA 26 (Method invocation).

comp(Σ, s) ∧ s(ιi) = λx.b ⇒ x:Σ1(ιi) ǸD typeb(Σ, b, Σ2(ιi))
Proof.By inspection on the rule(t·comp). ut

LEMMA 27 (Imperative method update).

(i) : x:A ǸD type(b, B) ∧ closed(x) ǸD wrap(b, b)∧
(∀x,w,C : (x7→w, x:C ∈ Γ)⇒ Γ ǸD res(Σ, w, C))⇒
x:A ǸD typeb(Σ, b, B)

(ii) : comp(Σ, s) ∧ x:Σ1(ιi) ǸD typeb(Σ, b, Σ2(ιi)) ⇒
comp(Σ, (s.ιi←λx.b))

Proof. (i) By structural induction onclosed(x) ǸD wrap(b, b). (ii) By
the rule(t·comp) and point(i). ut

LEMMA 28 (Cloning).

(i) : res(Σ, [li = ιi]i∈I , A) ⇒
res((Σ, ι′i 7→Σ(ιi))i∈I , [li = ι′i]

i∈I , A)
(ii) : comp(Σ, s) ⇒

comp((Σ, ι′i 7→Σ(ιi))i∈I , (s, ι′i 7→s(ιi))i∈I)
Proof. (i) By induction on the result[li = ιi]i∈I . (ii) By induction on the

store-type fragmentι′i 7→Σ(ιi)i∈I . ut

THEOREM 29 (Subject Reduction in NDS,impς). LetΓ be well-formed:

Γ ǸD type(a,A) ∧ Γ ǸD eval(s, a, t, v) ∧ Γ ǸD comp(Σ, s) ∧
(∀x,w,C : (x7→w, x:C ∈ Γ)⇒ Γ ǸD res(Σ, w, C)) ⇒
∃A+:TType, Σ+:SType : Γ ǸD res(Σ+, v, A+) ∧ Γ ǸD ext(Σ+,Σ) ∧
Γ ǸD comp(Σ+, t) ∧ Γ ǸD sub(A+, A)

Proof.By structural induction on the derivation ofΓ ǸD eval(s, a, t, v).
The rules(e·call) and (e·bind) require amutualstructural induction argu-
ment, namely a stronger induction schema valid also for the predicateevalb,
which is the counterpart ofeval for closure-bodies.

(e·var). By hypothesistype(x,A) and:

x7→v
eval(s, x, s, v)

(e·var)

From Lemma 23.(var), there existsB such thatx:B ∈ Γ andsub(B,A).
ChooseA+ := B andΣ+ := Σ.

Sincex7→v ∈ Γ, by the fourth hypothesis of the theorem we can derive
res(Σ+, v, A+). We haveext(Σ+,Σ+) by Lemma 24.(i) andcomp(Σ+, s)
by hypothesis, thus concluding.
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(e·obj). By hypothesistype([li = ς(xi)bi]i∈I , A) and:

∀i ∈ I : ιi /∈ Dom(s)

(closed(xi))...
wrap(bi, bi)

eval(s, [li = ς(xi)bi]i∈I , (s, ιi 7→λxi.bi)i∈I , [li = ιi]i∈I)
(e·obj)

By Lemma 23.(obj), there exists[li:Bi]i∈I such that:

type([li = ς(xi)bi]i∈I , [li:Bi]i∈I) (2)

andsub([li:Bi]i∈I , A).
ChooseA+ := [li:Bi]i∈I andΣ+ := Σ, (ιi 7→(A+ ⇒ Bi))i∈I .

We haveres(Σ+, [li = ιi]i∈I , A+) by Lemma 25.(i), and it is immedi-
ate thatext(Σ+,Σ). Then, sincecomp(Σ, s) and (2), we apply the Lemma
25.(ii), thus concludingcomp(Σ+, (s, ιi 7→λxi.bi)i∈I).

(e·call). By hypothesistype(a.lj , A) and:

eval(s, a, s′, [li = ιi]i∈I) s′(ιj) = λx.bj

(x7→[li = ιi]i∈I)...
evalb(s′, bj , s

′′, v) j ∈ I

eval(s, a.lj , s
′′, v)

(e·call)

By Lemma 23.(call), there exists[lj :Bj , . . .] such thattype(a, [lj :Bj , . . .])
and sub(Bj , A). Sinceeval(s, a, s′, [li = ιi]i∈I), by inductive hypothesis
there existC,Σ′ such that:

(a). res(Σ′, [li = ιi]i∈I , C);
(b). ext(Σ′,Σ);
(c). comp(Σ′, s′);
(d). sub(C, [lj :Bj , . . .]).

Among the premises of the rule(e·call), we havej ∈ I, s′(ιj) = λx.bj and:

x7→[li = ιi]i∈I
ǸD evalb(s′, bj , s

′′, v) (3)

Moreover, we haveC ≡ [lj :Bj , . . .] from (d), thusΣ′(ιj) = (C ⇒ Bj), and
so, by(c) and Lemma 26:

x:C ǸD typeb(Σ′, bj , Bj) (4)

We deduce(∀x,w,C : (x7→w, x:C ∈ Γ) ⇒ Γ ǸD res(Σ′, w, C)) from the
fourth hypothesis of the theorem and Lemma 24.(iii). Then, since (3), (4) and
(c), we can apply the mutual induction hypothesis, thus concluding there exist
A+,Σ+ such thatres(Σ+, v, A+) andext(Σ+,Σ′) andcomp(Σ+, s′′) and
sub(A+, Bj). We finish by transitivity ofext (Lemma 24.(ii)) and transitivity
of subtyping.
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(e·updi). By hypothesistype(a.l←ς(x)b, A) and:

eval(s, a, s′, [li = ιi]i∈I)

(closed(x))...
wrap(b, b) (j ∈ I)

eval(s, a.l←ς(x)b, (s′.ιj←λx.b), [li = ιi]i∈I)
(e·updi)

By Lemma 23.(upd), there exists[lj :Bj , . . .] ≡ B such thattype(a,B),
sub(B,A) andx:B ǸD type(b, Bj). Sinceeval(s, a, s′, [li = ιi]i∈I), we
can apply the inductive hypothesis, and deduce there existC,Σ′ such that:

(a). res(Σ′, [li = ιi]i∈I , C);
(b). ext(Σ′,Σ);
(c). comp(Σ′, s′);
(d). sub(C,B); that is,C ≡ [lj : Bj , . . .].

ChooseA+ := C andΣ+ := Σ′.
By Lemma 23.(bd·weak) we obtainx:C ǸD type(b, Bj); that is, using

(a) andj ∈ I:

x:Σ+
1 (ιj) ǸD type(b, Σ+

2 (ιj)) (5)

Next we derive(∀x,w,C : (x7→w, x:C ∈ Γ) ⇒ Γ ǸD res(Σ+, w, C))
from the fourth hypothesis of the theorem and Lemma 24.(iii). Then, because
closed(x) ǸD wrap(b, b) and (5), by Lemma 27.(i):

Γ, x:Σ+
1 (ιj) ǸD typeb(Σ+, b, Σ+

2 (ιj)) (6)

Since(c) we apply the Lemma 27.(ii), deriving comp(Σ+, (s′.ιj←λx.b)),
and conclude by transitivity of subtyping.

(e·clone). By hypothesistype(clone(a), A) and:

eval(s, a, s′, [li = ιi]i∈I) ∀i ∈ I : ι′i /∈ Dom(s′)
eval(s, clone(a), (s′, ι′i 7→s′(ιi)i∈I), [li = ι′i]

i∈I)
(e·clone)

By Lemma 23.(clone), there existsB such thattype(a,B) andsub(B,A).
Sinceeval(s, a, s′, [li = ιi]i∈I), we can apply the inductive hypothesis, thus
deducing there existC,Σ′ such that:

(a). res(Σ′, [li = ιi]i∈I , C);
(b). ext(Σ′,Σ);
(c). comp(Σ′, s′);
(d). sub(C,B).

ChooseA+ := C andΣ+ := Σ′, (ι′i 7→Σ′(ιi))i∈I .
We deduceext(Σ+,Σ) andsub(A+, A) by transitivity ofext and subtyp-

ing. Then we haveres(Σ+, [li = ι′i]
i∈I , A+) from (a) and Lemma 28.(i),

andcomp(Σ+, (s′, ι′i 7→s′(ιi)i∈I)) using(c) and Lemma 28.(ii).
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(e·let). By hypothesistype(let(a, λx.b), A) and:

eval(s, a, s′, v)

(x7→v)...
eval(s′, b, s′′, v′)

eval(s, let(a, λx.b), s′′, v′)
(e·let)

From Lemma 23.(let), there existB,C such thattype(a,C), andx:C ǸD

type(b, B), andsub(B,A). Sinceeval(s, a, s′, v), by inductive hypothesis
there existD,Σ′ such that:

(a). res(Σ′, v, D);
(b). ext(Σ′,Σ);
(c). comp(Σ′, s′);
(d). sub(D,C).

Sincex:C ǸD type(b, B) and (d), we use Lemma 23.(bd·weak) for de-
riving x:D ǸD type(b, B). Next we deduce(∀x,w,C : (x7→w, x:C ∈
Γ) ⇒ Γ ǸD res(Σ′, w, C)) from (a) and Lemma 24.(iii). Then, because
x7→v ǸD eval(s′, b, s′′, v′), we apply again the induction hypothesis, thus
obtainingE,Σ′′ such thatres(Σ′′, v′, E) andext(Σ′′,Σ′) andcomp(Σ′′, s′′)
andsub(E,B).

ChooseA+ := E, Σ+ := Σ′′, and conclude by transitivity ofext and
subtyping.

(e·ground). By hypothesistypeb(Σ, ground(a), A) and:

eval(s, a, s′, v)
evalb(s, ground(a), s′, v)

(e·ground)

The assertiontypeb(Σ, ground(a), A) has to be derived by means of the
rule (t·ground), namely fromtype(a,A): therefore, by induction, there exist
A+,Σ+ such thatres(Σ+, v, A+) and ext(Σ+,Σ) and comp(Σ+, s′) and
sub(A+, A).

(e·bind). By hypothesistypeb(Σ, bind(v, λy.b), A) and:

(y 7→v)...
evalb(s, b, s′, v′)

evalb(s, bind(v, λy.b), s′, v′)
(e·bind)

The assertiontypeb(Σ, bind(v, λy.b), A) has to be derived via(t·bind), so
there existsB such thatres(Σ, v, B) andy:B ǸD typeb(Σ, b, A). There-
fore, by mutual induction, there existA+,Σ+ such thatres(s′, v′, A+) and
ext(Σ+,Σ) andcomp(Σ+, s′) andsub(A+, A). ut
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A.2. SUBJECTREDUCTION WITH COINDUCTIVE RESULT TYPING(FUNς )

LEMMA 30 (Coinductive result typing).

(i) : cores(s, v, A) ∧ eval(s, a, s′, v′) ⇒
cores(s′, v, A)

(ii) : cores(s, v, A) ⇒ cores((s, t), v, A)

(iii) : x:A ǸD type(b, B) ∧ closed(x) ǸD wrap(b, b)∧
(∀x, w,C : (x7→w, x:C ∈ Γ)⇒ Γ ǸD cores(s, w, C)) ⇒
x:A ǸD cotypeb((s, ι 7→λx.b), b, B)

Proof. (i) By structural induction on the derivation ofeval(s, a, s′, v′).
(ii) By structural coinduction.(iii) By structural induction on the derivation
of closed(x) ǸD wrap(b, b), and point(ii). ut

LEMMA 31 (Objects).

type([li=ς(xi)bi]i∈I , [li:Bi]i∈I) ∧ closed(xi) ǸD wrap(bi, bi)i∈I∧
(∀x,w,C : (x7→w, x:C ∈ Γ)⇒ Γ ǸD cores(s, w,C)) ⇒
cores((s, ιi 7→λxi.bi)i∈I , [li=ιi]i∈I , [li:Bi]i∈I)

Proof.By induction on the object[li=ς(xi)bi]i∈I , and Lemmas 30.(ii) and
30.(iii). ut

LEMMA 32 (Method invocation).

cores(s, [lj=ιj , . . .], [lj :Bj , . . .]) ∧ s(ιj) = λx.b ⇒
x:[lj :Bj , . . .] ǸD cotypeb(s, b, Bj)

Proof.By inspection on the rule(t·cores). ut

LEMMA 33 (Functional method update).

cores(s, [li=ιi]i∈I , [lj :Bj , . . .]) ∧ (j ∈ I)
x:[lj :Bj , . . .] ǸD cotypeb((s, ι 7→λx.b), b, Bj)∧
(∀x,w,C : (x7→w, x:C ∈ Γ)⇒ Γ ǸD cores(s, w,C)) ⇒
cores((s, ι 7→λx.b), [li=ιi, lj=ι]i∈I\{j}, [lj :Bj , . . .])

Proof.By induction on the result[li=ιi]i∈I , and Lemma 30.(ii). ut

THEOREM 34 (Subject Reduction with coinductive result typing).

Γ ǸD type(a,A) ∧ Γ ǸD eval(s, a, t, v) ∧
(∀x,w,C : (x7→w, x:C ∈ Γ)⇒ Γ ǸD cores(s, w, C)) ⇒
∃A+:TType : Γ ǸD cores(t, v, A+) ∧ Γ ǸD sub(A+ A)
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Proof.By structural induction on the derivation ofΓ ǸD eval(s, a, t, v).
The rules(e·call) and (e·bind) require amutualstructural induction argu-
ment, namely a stronger induction schema valid also for the predicateevalb,
which is the counterpart ofeval for closures.

(e·var). By hypothesistype(x,A) and:

x7→v
eval(s, x, s, v)

(e·var)

From Lemma 23.(var), there existsB such thatx:B ∈ Γ andsub(B,A).
ChooseA+ := B.

Sincex7→v ∈ Γ, by the third hypothesis of the theorem we can derive
cores(s, v, A+), thus concluding.

(e·obj). By hypothesistype([li = ς(xi)bi]i∈I , A) and:

∀i ∈ I : ιi /∈ Dom(s)

(closed(xi))...
wrap(bi, bi)

eval(s, [li = ς(xi)bi]i∈I , (s, ιi 7→λxi.bi)i∈I , [li = ιi]i∈I)
(e·obj)

By Lemma 23.(obj), there exists[li:Bi]i∈I such that:

type([li = ς(xi)bi]i∈I , [li:Bi]i∈I) (7)

andsub([li:Bi]i∈I , A). ChooseA+ := [li:Bi]i∈I .
Sinceclosed(xi) ǸD wrap(bi, bi) ∀i ∈ I and (7), we apply Lemma 31,

and deducecores((s, ιi 7→λxi.bi)i∈I , [li = ιi]i∈I , A+).

(e·call). By hypothesistype(a.lj , A) and:

eval(s, a, s′, [li = ιi]i∈I) s′(ιj) = λx.bj

(x7→[li = ιi]i∈I)...
evalb(s′, bj , s

′′, v) j ∈ I

eval(s, a.lj , s
′′, v)

(e·call)

By Lemma 23.(call), there exists[lj :Bj , . . .] such thattype(a, [lj :Bj , . . .])
and sub(Bj , A). Sinceeval(s, a, s′, [li = ιi]i∈I), by inductive hypothesis
there existsC such that:

(a) cores(s′, [li = ιi]i∈I , C);
(b) sub(C, [lj :Bj , . . .]).

Among the premises of the rule(e·call), we havej ∈ I, s′(ιj) = λx.bj , and:

x7→[li = ιi]i∈I
ǸD evalb(s′, bj , s

′′, v) (8)

Moreover, it isC ≡ [lj :Bj , . . .] from (b); therefore, using(a) and Lemma 32:

x:C ǸD cotypeb(s′, bj , Bj) (9)
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We deduce(∀x, w,C : (x7→w, x:C ∈ Γ) ⇒ Γ ǸD cores(s′, w, C)) from
the third hypothesis of the theorem and Lemma 30.(i). Then, since (8) and (9),
we apply the mutual induction hypothesis, deducing there existsA+ such that
cores(s′′, v, A+) andsub(A+, Bj). We finish by transitivity of subtyping.

(e·updf). By hypothesistype(a.l←ς(x)b, A) and:

eval(s, a, s′, [li = ιi]i∈I)

(closed(x))...
wrap(b, b) ι′j 6∈ Dom(s′) (j ∈ I)

eval(s, a.l←ς(x)b, (s′, ι′j 7→λx.b), [li = ιi, lj = ι′j ]
i∈I\{j})

(e·updf)

By Lemma 23.(upd), there exists[lj :Bj , . . .] ≡ B such thattype(a,B),
sub(B,A) andx:B ǸD type(b, Bj). Sinceeval(s, a, s′, [li = ιi]i∈I), we
can apply the inductive hypothesis, deducing there existC such that:

(a). cores(s′, [li = ιi]i∈I , C);
(b). sub(C,B); that is,C ≡ [lj : Bj , . . .].
ChooseA+ := C.

By Lemma 23.(bd·weak), we obtainx:A+
ǸD type(b, Bj); then, exploting

closed(x) ǸD wrap(b, b) and Lemma 30.(iii), we deduce:

x:A+
ǸD cotypeb((s′, ι′j 7→λx.b), b, Bj) (10)

Next we derive(∀x,w,C : (x7→w, x:C ∈ Γ) ⇒ Γ ǸD cores(s′, w, C))
from the third hypothesis of the theorem and Lemma 30.(i). Then, from(a),
(10),j ∈ I and Lemma 33, we have:

cores((s′, ι′j 7→λx.b), [li = ιi, lj = ι′j ]
i∈I\{j}, A+)

and conclude by transitivity of subtyping.

(e·ground). By hypothesiscotypeb(s, ground(a), A) and:

eval(s, a, s′, v)
evalb(s, ground(a), s′, v)

(e·ground)

The assertioncotypeb(s, ground(a), A) has to be derived by means of the
rule (t·coground), namely fromtype(a,A): therefore, by induction, there
existsA+ such thatcores(s′, v, A+) andsub(A+, A).

(e·bind). By hypothesiscotypeb(s, bind(v, λy.b), A) and:

(y 7→v)...
evalb(s, b, s′, v′)

evalb(s, bind(v, λy.b), s′, v′)
(e·bind)

The assertioncotypeb(s, bind(v, λy.b), A) must be derived via(t·cobind), so
existsB such thatcores(s, v,B) andy:B ǸD cotypeb(s, b, A). By mutual
induction, there existsA+ such thatcores(s′, v′, A+) andsub(A+, A). ut
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