
Babelchord: a Social Tower of DHT-Based Overlay Networks ∗

Luigi Liquori Cédric Tedeschi Francesco Bongiovanni

INRIA Sophia Antipolis - Méditerranée, France
surname.name@sophia.inria.fr

Abstract

Chord is a protocol to distribute and retrieve infor-
mation at large scale. It builds a large but rigid overlay
network without taking into account the social nature
and the underlying topology of large platforms, made
of the interconnection of many independent smaller net-
works. Thus, new approaches are required to build over-
lay networks. In this paper, we propose Babelchord, a
more flexible and social overlay interconnecting differ-
ent Chord networks, which are floors of a social tower.
Peers can belong to several floors, allowing this inter-
connection. By connecting smaller structured overlay
networks in an unstructured way, it provides a cost-
effective alternative to hierarchical structured P2P sys-
tems requiring costly merging. Routing of lookup mes-
sages is performed as in Chord within one floor, but a
peer belonging to several floors forwards the request to
the different floors it belongs to. These co-located peers
act as a sort of neural synapse. Results from simulations
show that Babelchord scales up logarithmically with the
number of Babelchord peers. Moreover a small number
of synapses is enough to ensure a high exhaustiveness
level.

1 Introduction

A significant part of today’s Internet traffic is gener-
ated by peer-to-peer (P2P) applications, originally de-
veloped for file sharing, it today extends to real-time
multimedia communications or high performance com-
puting. Distributed hash tables (DHTs) like the well
known Chord [8] protocol, have become the breaking
technology to implement scalable, robust and efficient
Internet applications. DHTs provide a lookup service
similar to a basic hash table. Information is stored as

∗Supported by AEOLUS FP6-IST-15964-FET Proactive: Algorith-
mic Principles for Building Efficient Overlay Computers.

(key, value) pairs and evenly distributed among peers.
Any peer can efficiently retrieve the value associated
with a given key. DHTs are extremely scalable in the
sense that both the number of hops to reach any peer of
the network and the size of the routing table scale log-
arithmically with the number of peers. Periodic mecha-
nisms are used to detect and correct problems following
departures and failures of peers, thus ensuring a minimal
disruption in dynamic environments.

Chord, like other DHTs, was built to maintain a
global overlay network on top of the physical intercon-
nection of many heterogeneous computers. It builds a
large but rigid overlay network (a global ring) without
taking into account the social nature and the underlying
topology of large platforms, made of the interconnec-
tion of many independent smaller networks. New ap-
proaches are required to build overlay networks. An-
other drawback is its inability to cope with network par-
titions resulting in two (or more) separated networks.
Recovering a single overlay requires to merge all these
sub-networks back together, which appears to be par-
ticularly costly in terms of time and messages. More-
over, if several distinct Chord networks wish to aggre-
gate their resources, then they also have to merge. To do
so, they have to decide which ring will absorb the other
one, and which hash function will be used, leading to
critical security issues.

More generally, some distant networks may want to
cooperate to offer the aggregated set of their resources
in a transparent way to the community, without giving
the opportunity for one DHT to alter other DHT’s data.
To overcome the previously described drawbacks of a
global overlay, an emerging and promising paradigm is
the interconnection of smaller independent networks. In
this paper, we propose the Babelchord framework, con-
necting smaller Chord networks in a simple unstructured
way via peers co-located in several networks playing the
role of neural synapses. We build a social and flexible
tower of independent Chord’s floors.

Suitable applications. In addition to DHTs traditional
use, Babelchord provides a groundwork for some newly
introduced classes of applications. We here give two
strong examples. (1) Many applications and networks
(Psiphon, Tor, . . .) have been recently developed in order
to bypass the censorship on the Internet. Babelchord
could support such applications by taking advantage of
inter-floor routing to bypass software barriers. (2) Social
networks, such as Facebook or LinkedIn are still based
on a client-server architecture; very often those sites
are down for maintenance. Babelchord could represent
a scalable and reliable alternative to decentralize such
social networks.

Related work. Apart from Chord protocol, our pro-
posal is inspired by the Arigatoni overlay network [1, 5]
built over a number of agents, organized in colonies, and
ruled by a broker leader, democratically elected or im-
posed by system administrators. An agent asks the bro-
ker to log in the colony by declaring the resources it of-
fers to the community. Colonies can recursively be con-
sidered as evolved agents who can log in an outermost
colony governed by a super-leader. Once logged in, an
agent can ask the broker for other resources. Brokers
route requests by filtering their resource routing table,
and forwarding the request first inside its colony, and
second outside, via the proper super-leader. Once the re-
questing agent receives the information on the requested
resources, the real resource exchange is performed di-
rectly between agents, in a pure P2P fashion.

Hierarchical overlay networks have been recently
intensively studied. Brocade [9] is a two-level DHT
whose key idea is to build local DHTs inside which some
leaders are elected, according to metrics such as CPU
or bandwidth, to enter an interdomain DHT connecting
local DHTs together. Authors in [3] generalize it to
an arbitrary number of levels, and adapted it to the
IP-numbering [4]. A different way, introduced in [6]
consists in using a set of distributed reliable peers,
called landmarks, used to dispatch peers in virtual
bins considering a given metric, such as the latency.
Each peer computes the latency between itself and each
landmark, sorts them and thus finds its own bin. The
intuition behind this is that peers that are close to
each other have similar landmark measurements. To
achieve exhaustiveness, hierarchical approaches require
mergers. Authors in [7] focused on merging several
similar overlays together. However, as argued in [2],
such mechanisms generate a significant communication
overhead, not to mention the time required before
converging towards a usable single overlay.

2 Babelchord’s social tower

We here describe the Babelchord’s features. Joining
and creating floors is governed by negotiations and
social behaviors, as encountered in the recent social
networking phenomena. Babelchord extends Chord in
the following points:

Peers and floors. Peers can belong to several distinct
floors. A peer wishing to join a floor comes with a list
of resources it offers to this floor’s community. The
rationale is then simple. The more (relevant) resources
the peer injects into the floor, the higher the probability
to successfully enter it is. This operation can be based
on a tit-for-tat strategy, commonly used in economics
or social sciences. It is clear that the more floors the
peer is registered to, the larger its routing table will
be. Nevertheless, we can assume that the numbers of
floors a peer belongs to will be pretty low. Moreover
it is the peer’s choice to belong to more floors, thus
it knows it has the capacity to deal with a routing and
storage overhead. Each floor has a proper hash function
in order to perform consistent hashing of peers and keys
within it. Peer variables used to perform routing, like its
predecessor on the ring (pred), its successor on the ring
(succ) and the entries of its routing table (fingers),
must be upgraded in order to take into account the multi-
floor extension.

Multi-floor routing. When a peer lookups a resource
on a given floor (using the floor’s hash function), a
Babelchord routing is launched. A unique tag identifier
for the query is created. If the routing goes through a
synapse peer, then the lookup is forwarded in parallel
to all the floors the synapse peer belongs to, otherwise
the routing goes on as in a standard Chord ring. To do
this, each peer needs to know the hash function of the
floor. This means that keys need to be hashed at every
floor change. The rationale of this propagation is simple:
the more floors you explore, the higher the probability
of success will be. It is important to notice that while
the searchwithin a single floor lookup is exhaustive and
logarithmic in the number of peers, the whole lookup
in Babelchord can be non exhaustive with a routing
complexity that can vary according to the number of
floors (inter-floor routing) times a logarithmic factor
(intra-floor routing).

Limiting cycles during lookup. In order to avoid
lookup cycles when doing cross-floors search, each peer
maintains a list of already processed requests’ tag in

2

A

B

F1 F2

E

D I
J

H

C
F

G

hop 1

hop 4

hop 2

hop 7

Fail !

hop 6

hop 9

lookup (f)

table

f <-> ip _F

……………..

……………..

hop 3

hop 8 hop 5

hop 10

×

Figure 1. Multi-floor routing example

order to discard previously seen queries. Also, each
lookup process has a Time-To-Live (TTL) value which
is decreased each time we cross floors’ boundaries.
These two features prevent the system from generating
unnecessary queries and thus reducing the global Ba-
belchord number of messages. A nice property of Ba-
belchord’s routing mechanisms is that with a fairly low
amount of synapses, we can still achieve a pretty high
query exhaustiveness.

Peers and floors selection. Each peer maintains a list
of hot peers involved in successful lookups and a list of
hot floors similarly responsible for a significant amount
of successful lookups. Periodically, every peer can
either (i) select a new hot floor to join thus increasing
the current peer’s connectivity, (ii) select a hot peer to
invite in one its floors, (iii) create a new floor.

2.1 An example

We illustrate the Babelchord protocol by giving an
example of a simple two floors overlay topology and
multi-floor lookup routing. Figure 1 shows a topology
made of two floors F1 and F2. Peers are depicted by
capital letters, i.e. A,B,..I, and J. Assume that every
peer offers a single resource, i.e. a,b,...,i, and j.
The two Babelchord floors intersect via two synapses
peers A and B. Hops are labeled by an integer i denoting
a global time of arrival on a given peer. Since intra-floor
routing is performed as in Chord, fingers and hand tables
are hence omitted. For graphical purposes, routing in the
first floor moves clockwise, while in the second floor
moves anticlockwise. For clarity, we omit to hash peers
and resources via the two different hash functions. A
lookup(f) is received by peer D on floor F1; the intra-
floor routing (hops 1 and 2) goes to E and A (the synapse)

that, in turn, will trigger an inter-floor routing on floor
F2 (hop 4). The routings proceed in parallel on both
floors passing by peers I, J, and B (hops 3,4,5 and 8,
respectively). Since peer B is the second synapse, when
it receives the lookup(f) by hop 8 on floor F2, it will
not forward it since it already saw the lookup triggered
on F1. In the meantime, the two lookups will continue
their route to peers C (routing failure on floor F1), on
peers F,G, and finally terminate on peer H hosting the
value ip F offering the resource f.

3 Babelchord’s protocol

We present the details of the algorithms to build
Babelchord. First, we focus on how Chord’s variables
are extended to support a multi-floor architecture. Then,
in Section 3.2, we give the Babelchord lookup. Finally,
in Section 3.3, we give an idea on how peers can
negotiate joins and creation of floors. Recall that words
floor and ring refer to the same object.

3.1 Data structures for every peer

Let f, g represent both the identifier of a floor
and, with a slight abuse of notation, the hash function
hash(f)(-) used at this floor. (We assume a distinct
cryptographic hash function for each floor). The tag

structure is a list of unique identifiers of previously seen
requests. The res structure represents the set of re-
sources offered by a single peer, while the table struc-
ture is the part of the hash table the peer manages, con-
taining the associative array of resource keys and IP-
addresses providing these resources. Every peer con-
tributes actively to routing through its table and to re-
source exchange. The succ, pred, and hands struc-
tures contain predecessor, successor and finger informa-
tion for each floor. Finally, hotpeers and hotfloors

contain information collected through lookups about
peers for potential collaborations and floors for poten-
tial participation. Here is the detailed list of variables:

Node’s Data structures
f(-)

def
= hash(f)(-)with hash:int->Sha1 hash function

tag
def
= (int)∗ list of unique tags identifying a Babelchord packet

res
def
= (r)∗ list of resources offered by the current peer

table
def
= (r,(ip)∗)∗ the associative array of key, value pairs

succ
def
= (f,ip)∗ associative array of successors at floor f

pred
def
= (f,ip)∗ associative array of predecessors at floor f

fingers
def
= [ip] array of ip addresses

hands
def
= (f,fingers)∗ associative array of fingers at floor f

hotpeers
def
= (ip,(f)∗)∗ associative array of peers view by some floors

hotfloors
def
= (f,(ip)∗)∗ associative array of floors view by some peers

3

The Babelchord’s protocol
1.01 on receipt of LOOKUP(r) from ip do looking for peers hosting resource r
1.02 t = new_tag(ip); new unique tag for this lookup
1.03 this.insert_tag(t); insert tag into the tag list
1.04 send FINDSUCC(t,⊥,r,ip) to this.ip; send findsucc to itself
1.05 receive FOUND(f,ip2) from ip3 wait for the Babelchord routing
1.06 if ping(ip2) test the aliveness of ip2
1.07 this.update_hotpeers(ip2,f); update the hot peer list with ip2 at floor f
1.08 this.update_hotfloors(f,ip2); update the hot floor list with f signaled by ip2
1.09 return lookup_table(ip2,r); remote table lookup on ip2; return the list of ips offering the resource r

1.10 on receipt of FINDSUCC(t,f,r,ip) from ip2 find the successor of ip
1.11 if t = join join a floor
1.12 if f(r) ∈ (f(this.ip),f(this.get_succ(f))] as in Chord
1.13 send FOUND(f,this.get_succ(f)) to ip; found the successor of ip
1.14 else
1.15 ip3 = this.closest_preceding_node(f,r); internal Chord routing
1.16 send FINDSUCC(t,f,r,ip) to ip3; send to the next hop
1.17 else if not(this.in_tag(t)) lookup not processed
1.18 this.push_tag(t); mark as ‘‘already processed’’
1.19 for all g ∈ this.dom_hands() do for all floors of current peer
1.20 if g(r) ∈ (g(this.ip),g(this.get_succ(g))] test if arrived, as in Chord
1.21 send FOUND(g,this.get_succ(g)) to ip; found a peer hosting an entry for r
1.22 exit forall; stop the routing: ‘‘game over’’
1.23 else
1.24 ip4 = this.closest_preceding_node(g,r); internal Chord routing
1.25 send FINDSUCC(t,g,r,ip) to ip4; send findsucc to the next hop

Auxiliary functions
1.26 closest_preceding_node(f,r) internal function as in Chord
1.27 for i = m downto 1 do for all fingers of floor f
1.28 if this.lookup_hands(f)[i] ∈ (f(this.ip),f(r)) testing the hand table as in Chord
1.29 return this.lookup_hands(f)[i]; return the finger of floor f
1.30 return this.ip; return the current peer ip

Figure 2. Pseudocode for multi-floor resource lookup

2.01 on receipt of JOIN(f) from ip current peer invited by ip to join f
2.02 if this.good_deal(f,ip) the invitation is a ‘‘good deal’’ (strategy left to implementers)
2.03 this.add_hands(f,⊥); add floor f to the hands associative array
2.04 this.add_succ(f,⊥); add a successor for floor f to the successor associative array
2.05 this.add_pred(f,⊥); add a successor for floor f to the successor associative array
2.06 send FINDSUCC(join,f,this.ip,this.ip) to ip; find my successor
2.07 receive FOUND(f,ip2) from ip3; receiving the response
2.08 this.reassign_succ(f,ip2); reassign ip3 as my successor at floor f
2.09 for all r ∈ res do for all the resources offered by the current peer
2.10 send FINDSUCC(join,f,r,this.ip) to ip; find the peer hosting the table entry for r
2.11 receive FOUND(f,ip5) from ip4; waiting for response
2.12 if ping(ip5) test the aliveness of ip5
2.13 update_table(ip5,r,this.ip); the table stored on ip5 is updated with the new bind for r with this.ip

2.14 on receipt of JOINREQ(f) from ip the current peer ask to ip to join the floor f
2.15 if this.good_deal(f,ip) accept ip at floor f is a ‘‘good deal’’ (strategy left to implementers)
2.16 send JOIN(f) to ip; accept ip at floor f

Figure 3. Pseudocode for join and join request

3.2 The lookup protocol

The multi-floor lookup is illustrated in Figure 2.
Lines 1.01 to 1.04 initiate a lookup on a resource r.
After creating a new unique tag for this request, the
current peer initiates the lookup by sending a FINDSUCC
message to itself, and waits for the response, i.e., a
FOUND message specifying the IP-address of a peer
storing the sought key. On receipt of a FINDSUCC

message (Line 1.10), the current peer distinguishes two
types of messages:

Join routing (Lines 1.12-1.16). When the first ele-
ment of the message is a join tag, it means that the
lookup serves a join purpose. The request is then routed
as in Chord’s join, and corresponds to the routing pro-
cess of either a resource registration or a peer insertion.
A FOUND message is then returned to the initiator of the
routing ip at Line 1.13.

Resource lookup routing (Lines 1.18-1.25). If the
first element of the message is a numeric tag, it means
that the message is part of a resource lookup request.
The message can then be routed in several rings the

4

Runned periodically, in order to make some inter-floor business
Join a hot floor (increase local, i.e. peer, connectivity)
3.01 join_new_floor()
3.02 select f ∈ (this.dom_hotfloors() \ this.dom_hands()); select one floor to join (strategy left free)
3.03 select ip ∈ this.select_node(f); select one peer of f to send a join request
3.04 send JOINREQ(f) to ip; send an invitation to ip to join floor f

Invite an hot peer to a randomly chosen floor (increase semilocal, i.e. floor, connectivity)
3.05 invite_new_node()
3.06 select f ∈ this.dom_hands(); select one floor to invite a peer (strategy left free to impl.)
3.07 select ip ∈ this.dom_hotpeers(); select one hot peer to invite (strategy left free to impl.)
3.08 if this.good_deal(f,ip) the invitation is a ‘‘good deal’’ (strategy left to implementers)
3.09 send JOIN(f) to ip; send an invitation to ip to join floor f

Create a new floor from scratch (increase global, i.e. Babelchord, connectivity)
3.10 create_new_floor()
3.11 f = new_floor(ip) ; a new floor function is created
3.12 this.add_hands(f,⊥); ⊥ is the new floor
3.13 this.add_pred(f,⊥); ⊥ is the predecessor
3.14 this.add_succ(f,ip); ip itself is the successor

Figure 4. Pseudocode for negotiating new joins

current peer belongs to. First, the tag of the request
is checked (Lines 1.17-1.18). If the request was
already processed, it is simply ignored, otherwise, the
request tag is saved. When a search is successful,
a FOUND message (containing the address of the peer
responsible for the requested information) is sent back
to the lookup’s initiator. On receipt of FOUND (Lines
1.05-1.09), the initiator checks the aliveness of the peer
and updates its hot peer and hot floor lists according
to its satisfaction. Finally, it remotely reads the values
wanted (Line 1.09). Lines 1.26-1.30 detail one local
routing step (finding the closest preceding peer among
my fingers) for the next step, as in Chord, but it includes
the floor information.

3.3 New floor creation (tower building)

Figures 3 and 4 show the creation of new floors: JOIN
and JOINREQ. Lines 2.01 to 2.13 detail the reception of
a JOIN(f) message which is an invitation to join floor
f from a peer ip, already member of f. On receipt,
the peer decides whether it is a good deal or not to
join f (Line 2.02). If this is the case, the current peer
initiates its join to f by sending a FINDSUCC message
to ip and waits for its information required to belong
to f, namely, its successor. On receipt, the current
peer registers its resources res into the floor (Lines
2.09-2.13). Lines 2.14 to 2.16 detail the receipt of the
JOINREQ(f) message, used to request an invitation. On
receipt, the peer evaluates the advantages and drawbacks
of accepting a new peer at floor f and sends an invitation
in the case of a positive evaluation.

Through Figure 4, we show the pseudocode for
proposing, negotiating, and accepting new connec-
tions. The following functions are periodically trig-
gered: join new floor (Lines 3.01 to 3.04) selects

one floor (among the hot floors list) and requests an in-
vitation to one peer of this floor. invite new node

(Lines 3.05 to 3.09) selects a peer to invite at a given
floor (this peer must reach the good deal require-
ments). create new floor (Lines 3.10 to 3.14) ini-
tiate the creation of a new floor for future invitations.

Note that the strategy for peers and floors selection
can be based on any criteria (performance, churn rate,
resources’ relevance. . .).

4 Simulation results

To better capture its relevance, we have conducted
some simulations of the Babelchord approach. The
simulator, written in Python, works in two phases. First,
a Babelchord topology is created, with the following
properties: (i) a fixed network size (the number of peers)
N , (ii) a fixed number of floors denoted F , (iii) a fixed
global connectivity, i.e., the number of floors each peer
belongs to, denoted by C. As a consequence: (i) the
peers are uniformly dispatched among the floors, i.e.,
each peer belongs to C floors uniformly chosen among
the set of floors, (ii) each resource provided by peers is
present at C floors, (iii) the average lookup length within
one given floor is log((N × C)/F)/2.

In a second time, the simulator computes the number
of hops required to reach one of the peer storing the
key of a particular resource. Results are given for
different values of N , F , and C. Figure 6 gives the
results for C=2 and F=10, 50, 100. Note that, in this
case, the size of the routing table is in O(log((N ×
C)/F))<O(log(N)). The curves clearly demonstrates
the logarithmic behavior of such an architecture, even if
the average number of hops remains slightly above the
Chord reference (log(N)/2). Note also that, the curves

5

suggest that when the ratio C/F decreases, the lookup
length increases. This statement is rather intuitive:
at each multi-floor routing step, the number of floors
reached by a request depends on this ratio. Figure 6 also
presents the same experiments with C=5. As expected,
the lookup length is slightly reduced compared to the
results with C=2. Finally, Figure 5 shows the number
of synapses vs. the lookup success rate. Only 5% of
the whole population is a synapse connecting 2 (resp. 3,
5, 10) floors. However, this is enough to achieve more
than 50% (resp. 60%, 80%, 95%) of exhaustive lookups
in the Babelchord network.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10

S
uc

ce
ss

 r
at

e

"Synapses" percentage

Lookup success rate (10000 nodes, 10 floors)

Connectivity = 2
Connectivity = 3
Connectivity = 5
Connectivity = 10

Figure 5. Exhaustiveness, N=10000

5 Conclusion
Babelchord is a social tower of Chord rings. It pro-

vides a simple method to build the flexible and social
next generation of overlay networks. Babelchord ag-
gregates smaller structured overlay networks in an un-
structured fashion based on intersection peers, called
synapses allowing to explore the whole overlay with-
out the need for hierarchical systems or costly merg-
ing. Simulations show that Babelchord is scalable while
offering an exhaustive search at the cost of only few
synapses, thus establishing the relevance of connecting
smaller structured network in an unstructured fashion.
Next steps are a complete analysis of such topologies,
more simulations, and an actual implementation fol-
lowed by real deployments of this promising paradigm.

References

[1] R. Chand, M. Cosnard, and L. Liquori. Powerful Re-
source Discovery for Arigatoni Overlay Network. Future
Generation Computer Systems, 1(21):31–38, 2008.

Figure 6. Lookup length, C=2 and C=5

[2] A. Datta and K. Aberer. The Challenges of Merging Two
Similar Structured Overlays: A tale of Two Networks. In
Proc. of IWSOS, 2006.

[3] L. Erice, E. Biersack, K. Ross, P. Felber, and G. Keller.
Hierarchical P2P Systems. In Euro-Par, 2003.

[4] L. Erice, K. Ross, E. Biersack, P. Felber, and G. Keller.
Topology-Centric Look-up Service. In NGC, 2003.

[5] L. Liquori and M. Cosnard. Logical Networks: Towards
Foundations for Programmable Overlay Networks and
Overlay Computing Systems. In TGC, volume 4912 of
LNCS, pages 90–107. Springer, 2007.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Adressable Network. In
ACM SIGCOMM, 2001.

[7] T. Shafaat, A. Ghodsi, and S. Haridi. Handling
Network Partitions and Mergers in Structured Overlay
Networks. In Proc. of P2P, pages 132–139. IEEE
Computer Society, 2007.

[8] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup service for Internet Applications. In ACM
SIGCOMM, pages 149–160, 2001.

[9] B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatow-
icz. Brocade: Landmark Routing on Overlay Networks.
In IPTPS, 2002.

6

