
Intersection-Types à la Church

Luigi Liquori

INRIA Sophia Antipolis, France

Simona Ronchi Della Rocca

Dipartimento di Informatica, Università di Torino, Italy

Abstract

In this paper, we present Λt
∧, a fully typed λ-calculus based on the intersection-type system

discipline, which is a counterpart à la Church of the type assignment system as invented
by Coppo and Dezani. The relationship between Λt

∧ and the intersection type assignment
system is the standard isomorphism between typed and type assignment system, and so
the typed language inherits from the untyped system all the good properties, like subject
reduction and strong normalization. Moreover both type checking and type reconstruction
are decidable.

Key words: Logics and Intersection-Types, λ-calculus à la Curry and à la Church

1 Introduction

The implicative and conjunctive fragment of the intuitionistic logic (denoted by
L∧→), where the logical connectives “→” and “∧” denote the implication and the
conjunction is a well-known powerful logical system: this logic is presented in
Figure 1. Finding a typed λ-calculus à la Church, in the Curry-Howard sense is not
a simple task [Hindley (1984)], because of the “anomalous” decoration of the rules
dealing with conjunction.

The Intersection-Type Assignment System (∧̀) is a set of inference rules for
assigning intersection-types to terms of the untyped λ-calculus. Intersection-
types are formulæ of the implicational and conjunctive fragment of propositional
logic. The syntax and the typing rules are presented in Figure 2. Intersection-

Email addresses: Luigi.Liquori@inria.fr (Luigi Liquori),
ronchi@di.unito.it (Simona Ronchi Della Rocca).

Preprint submitted to Elsevier May 14, 2007

Let Σ
4= {σ1, . . . , σn}, and Σ, σ

4= Σ ∪ {σ}

σ ∈ Σ

Σ `L∧→ σ
(Var)

Σ, σ1 `L∧→ σ2

Σ `L∧→ σ1→σ2

(→I)

Σ `L∧→ σ1→σ2 Σ `L∧→ σ1

Σ `L∧→ σ2

(→E)

Σ `L∧→ σ1 Σ `L∧→ σ2

Σ `L∧→ σ1 ∧ σ2

(∧I)

Σ `L∧→ σ1 ∧ σ2

Σ `L∧→ σ1

(∧EL)

Σ `L∧→ σ1 ∧ σ2

Σ `L∧→ σ2

(∧ER)

Figure 1. The Logic L∧→

Syntax of Λu
∧

Let α range over a denumerable set V of type-constants
Let “∧” take precedence over “→”

M ::= x | λx.M | M M

σ ::= α | σ→σ | σ ∧ σ

Type System for Λu
∧

Let E
4= {x1:σ1, . . . , xn:σn} (i 6= j implies xi 6≡ xj), and E, x:σ

4= E ∪ {x:σ}

x:σ ∈ E

E ∧̀ x : σ
(Var)

E, x:σ1 ∧̀ M : σ2

E ∧̀ λx.M : σ1→σ2

(→I)

E ∧̀ M : σ1→σ2 E ∧̀ N : σ1

E ∧̀ M N : σ2

(→E)
E ∧̀ M : σ1 E ∧̀ M : σ2

E ∧̀ M : σ1 ∧ σ2

(∧I)

E ∧̀ M : σ1 ∧ σ2

E ∧̀ M : σ1

(∧EL)
E ∧̀ M : σ1 ∧ σ2

E ∧̀ M : σ2

(∧ER)

Figure 2. The Intersection-Type Assignment System ∧̀.

types were introduced by Coppo and Dezani, to increase the typability power of
Curry’s type assignment system for the λ-calculus [Coppo and Dezani-Ciancaglini
(1980)]. Since then, intersection-types have been fruitfully used for designing
static semantics of programming languages (e.g. Algol-like [Reynolds (1996)]),
for characterizing interesting classes of λ-terms (e.g. the strongly normalizing ones
[Pottinger (1980)]), and for studying denotational semantics of various untyped λ-
calculi (e.g. [Barendregt et al. (1983)] and [Coppo et al. (1983)]).

There are many versions in the literature of intersection-type assignment systems.
Here we choose that one presented as “System D” [Krivine (1990)], characterized

2

by the presence of non syntax-directed rules for dealing with the introduction and
elimination of the intersection. Note that, differently from most of the systems
presented in the literature, as for example [Dezani-Ciancaglini et al. (1998)], in this
system the connective ∧ is neither commutative nor associative nor idempotent.
The choice of this presentation has been taken since we are looking for a typed
version of the calculus, where bound variables come decorated with their types,
and in this setting it is natural to consider types as syntactical entities. In any case,
this presentation does not have any consequence on the typability power of the
intersection type assignment system, which is well known to characterize all and
only the strongly normalizing terms [Krivine (1990), Pottinger (1980)].

Following the standard terminology, let us call à la Curry a system assigning types
to untyped terms, and à la Church a system assigning types to typed terms, i.e.
where types are part of the syntax of terms, by decorating bound-variables in
abstractions. Differently from other type assignment systems à la Curry, Λu

∧ has no
natural counterpart à la Church. The classical example is the polymorphic identity
in Λu

∧ that has the following type-derivation:

x:σ1 ∧̀ x : σ1

∧̀ λx.x : σ1→σ1

(→I)
x:σ2 ∧̀ x : σ2

∧̀ λx.x : σ2→σ2

(→I)

∧̀ λx.x : (σ1→σ1)∧(σ2→σ2)
(∧I)

but is untypable using a naïve corresponding rule à la Church for the introduction
of intersection-types [Hindley (1984)].

x:σ1 ∧̀ x : σ1

∧̀ λx:σ1.x : σ1→σ1

(→I)
x:σ2 ∧̀ x : σ2

∧̀ λx:σ2.x : σ2→σ2

(→I)

∧̀ λx: ? .x : (σ1→σ1)∧(σ2→σ2)

(∧I)

By the Curry-Howard isomorphism [Howard (1980)], a λ-term must record the
shape of its type-derivation. A standard proof decoration would give rise to a
language which is a λ-calculus extended with a pair construction. For example,
according to [Ronchi Della Rocca (2002)], the previous proof would be decorated
in the following way:

x:σ1 ∧̀ x : σ1

∧̀ λx:σ1.x : σ1→σ1

(→I)
x:σ2 ∧̀ x : σ2

∧̀ λx:σ2.x : σ2→σ2

(→I)

∧̀< λx:σ1.x, λx:σ2.x >: (σ1→σ1)∧(σ2→σ2)
(∧I)

The resulting language has a huge syntax, since the pairing construct can be applied
only on terms, which can be different, but their below untyped versions must
be identical. An example in the literature of λ-calculus typed à la Church with
intersection types, where the syntax is exactly the classical one, but for types,

3

is the language Forsythe in [Reynolds (1996)]. But it is incomplete, in the sense
that the resulting typed system has less typability power than the type assignment
one. In fact, in the Reynolds syntax, assuming that a term M has type τ under the
assumption that the variable x has any one of the types σi (1≤i≤n), we can form
the typed term:

λx:σ1|σ2|...|σn.M

having types (σi→τ) for 1≤i≤n, and all types derived from these by applying
intersection introduction, intersection elimination and subtyping relations. So,
for example, there is not a typed version of λx.λy.x, giving it the type ρ =
(σ→(σ→σ)) ∧ (τ→(τ→τ)), where σ and τ are uncomparable. In fact, according
to the Forsythe syntax, we can form the two terms, namely λx:σ|τ.λy:σ.x, having
types σ→(σ→σ) and τ→(σ→τ), and λx:σ|τ.λy:τ.x, having types τ→(τ→τ) and
σ→(τ→σ), but there is not a term relating the types of x and y in the desired way.
(this example has been taken from [Wells and Haack (2006)]). Moreover, Forsythe
appear something in between a typed and a type assignment calculus, since terms
do not have unique types.

The problem is, as the skilled reader can understand, the presence of non syntax-
directed rules that disconnect the λ-term from its type-derivation (hence losing the
Curry-Howard correspondence). It is important to point out that this problem does
not depend on the chosen intersection-type assignment system; indeed, not one of
the intersection type assignment systems presented in the literature is completely
syntax directed (and not-even it cannot be!)

Our goal is to build a λ-calculus à la Church, and related intersection-type system
Λt
∧, whose syntax is, as far as possible, similar to other typed λ-calculi. We want to

design this calculus through a typed system, building typed terms together with
their type, such that the typed system and the type assignment system Λu

∧ are
related by the standard path designed in [Giannini et al. (1993),Liquori (1996),van
Bakel et al. (1997)]. For this system, we are interested to catch as much as possible
properties from the following list:

Desiderata
(1) typed and type assignment derivations are isomorphic, under the assumption

that they share the same type syntax. I.e., the application of an erasing
function E on all typed terms and contexts (in a typed derivation judgment)
produces a derivable type assignment derivation with the same structure, and
every type assignment derivation is obtained from a typed one with the same
structure by applying the same erasure E . Such a kind of isomorphism has
been studied in [van Bakel et al. (1997)].

Moreover, we want that the intersection calculus à la Church inherits all the
properties of intersection type assignment à la Curry, namely:
(2) subject reduction;
(3) strong normalization of typable terms;
plus the following ones:

4

(4) unicity of typing;
(5) decidability of type reconstruction and of type checking.

In order to find a solution to this challenge, we designed a calculus, whose terms
are composed by two parts, carrying out the computational and logical information
respectively. The first component (the marked-term) is a simply typed λ-term,
but types are variable-marks, i.e., natural numbers representing store locations.
The second component (the proof-term) records both the associations between
variable-marks and types and the structure of the derivation. The technical tool
for realizing this is an unusual formulation of context, which assigning types to
term-variables at a given mark/location. The calculus of proof-terms can be defined
per se, as decoration of the implicative and conjunctive fragment of intuitionistic
logic; it codifies a set of proofs that is strictly bigger than these corresponding to
intersection-type derivations (see [Ronchi Della Rocca and Roversi (2001)]).

As example, the typed identity with type

(σ1→σ1) ∧ (σ2→σ2)

can be written in our proposal as the term

(λx:0.x)@(λ0:σ1.0)∧(λ0:σ2.0)

where 0 is a mark, and (λ0:σ1.0)∧(λ0:σ2.0) is the logical content of λx:0.x.
The typed λ-calculus so obtained satisfies all the above requirements. As a nice
consequence of these choices, we get decidability of the type reconstruction and
type checking, both being also easy to define.

There are other proposals in the literature for a λ-calculus typed with intersection
types. We already have cited Forsythe [Reynolds (1996)], which is not complete,
as well as the language proposed in [Pierce and Turner (1994)]. The languages
proposed in [Capitani and Venneri (2001)], [Wells et al. (2002)], and [Wells and
Haack (2006)] have been designed with other purposes, and they do not satisfy
requirement 1. The language in [Ronchi Della Rocca (2002)] has been designed for
logical purposes in order to satisfy the requirement 1, but its syntax and operational
semantics are unsatisfying, from our point of view.

The paper is organized as follows: Section 2 presents the logical calculus. Section 3
shows the whole intersection-typed λ-calculus. Section 4 contains some examples,
while Section 5 lists the metatheory and the type checking/type reconstruction
algorithms. In Section 6 the soundness between Λt

∧ and Λu
∧ is proved. Conclusions

and final remarks end the paper.

5

2 The Proof-calculus ΛP

The syntax of intersection-types is that of the formulas of the implicative and
conjunctive fragment of the intuitionistic logic (denoted by L∧→), where the
logical connectives “→” and “∧” denote the implication and the conjunction.
Unfortunately, the intersection-type assignment system Λu

∧ does not correspond,
in the Curry-Howard sense, to this logic [Hindley (1984)], because of the
“anomalous” decoration of the rules dealing with conjunction.

In what follows, we present a typed λ-calculus, obtained by decorating the proof
of such a logic. The main peculiarity of this calculus is that it is defined on another
categories of variables called variable-marks; the calculus will be used to record
the structure of an intersection derivation, though an association between variable-
marks and types.

Syntax of ΛP . We start with some useful definitions.

Definition 2.1

(1) Variable-marks (denoted by ι) range over Nat;
(2) Intersection-types are defined as follows:

σ ::= α | σ→σ | σ ∧ σ

where α ranges over a denumerable set V of constants;
(3) Proof-contexts are finite associations between variable-marks and types, and

they are defined by the following grammar:

G ::= ε | G, ι:σ

(4) Pseudo-proof-trees are labeled unary/binary trees defined as follows:

∆ ::= ι | λι:σ.∆ | ∆ ∆ | ∆∧∆ | $∆ | ∆%

(5) The set Fv(∆) of the variable-marks in a pseudo-proof-tree ∆ is

Fv(ι)
4= {ι} Fv(λι:σ.∆)

4= Fv(∆) \ {ι}

Fv(∆%)
4= Fv(∆) Fv(∆1 ∆2)

4= Fv(∆1) ∪ Fv(∆2)

Fv($∆)
4= Fv(∆) Fv(∆1∧∆2)

4= Fv(∆1) ∪ Fv(∆2)

A variable-mark is bound in ∆ if it is not free in ∆.

6

The Proof-calculus ΛP .
Let G

4= {ι1:σ1, . . . , ιn:σn} (i 6= j implies ιi 6≡ ιj), and G, ι:σ
4= G ∪ {ι:σ}

ι:σ ∈ G

G P̀ ι : σ
(Var)

G, ι:σ1 P̀ ∆ : σ2

G P̀ λι:σ1.∆ : σ1→σ2

(→I)

G P̀ ∆1 : σ1→σ2 G P̀ ∆2 : σ1

G P̀ ∆1 ∆2 : σ2

(→E)
G P̀ ∆1 : σ1 G P̀ ∆2 : σ2

G P̀ ∆1∧∆2 : σ1 ∧ σ2

(∧I)

G P̀ ∆ : σ1 ∧ σ2

G P̀ $∆ : σ1

(∧EL)
G P̀ ∆ : σ1 ∧ σ2

G P̀ ∆% : σ2

(∧ER)

Figure 3. The Proof-calculus ΛP .

Type System for ΛP . The system proves judgments of the shape:

G P̀ ∆ : σ

where G is a proof-context, ∆ is a pseudo-proof-tree, and σ is a type. The pseudo-
proof-tree ∆ is a legal proof-tree if there are G and σ such that G P̀ ∆ : σ. The
rules of the system, obtained by decorating the rules of the logic L∧→, are showed
in Figure 2. Note that ΛP is just an unusual syntax for the simply typed λ-calculus
with pairs, which can be seen, via the Curry-Howard isomorphism, as a decoration
of L∧→.

Reduction Semantics of ΛP . Being ΛP a calculus isomorphic to the typed λ-
calculus with pairs, its reduction rules are the well known ones:

(λι:σ.∆1) ∆2 →β ∆1[∆2/ι]

$(∆1∧∆2) →π1 ∆1

(∆1∧∆2)% →π2 ∆2

By abuse of notation, →ι, →π1 , →π2 will denote the contextual closure of the above
rules.

As usual, the ΛP calculus works modulo α-conversion, as the symmetric,
transitive, reflexive, and contextual closure of the following rule:

λι1:σ.∆ →α λι2:σ.∆[ι2/ι1] where ι2 is fresh

The following result holds:

Fact 1 (Strong Normalization of ΛP) ΛP is strongly normalizing.

7

3 The Intersection-Typed Calculus Λt
∧

The key idea in the design of the intersection-typed system is to split the term into
two parts, carrying out the computational and the logical information respectively.
Namely, the first one is a term of a typed λ-calculus, while the second one is a proof-
term (belonging to the language ΛP introduced in the previous section) describing
the shape of the type derivation. The technical tool for connecting the two parts is
an unusual formulation of contexts. In fact, a context associates to a variable both
a variable-mark and a type, such that different variables are associated to different
variable-marks.

This novel formulation of contexts allows to remember, in rule (→I), just the
variable-mark, the corresponding type being stored in the proof-tree, built by the
system in parallel with the typed term. In this way the underlying term is de facto a
term of the classical untyped λ-calculus. Since the proof-tree describes the structure
of the type-derivation, we also obtain the decidability of type reconstruction and
type checking.

Syntax.

Definition 3.1

(1) Contexts are finite associations between variables and types at a given
variable-mark, such that each variable and each variable-mark occur at least
once in it. They are defined as follows:

Γ ::= ε | Γ, x@ι:σ

(2) Marked-terms are defined as follows:

M ::= x | λx:ι.M | M M

(3) A pseudo-term of Λt
∧ has the shape M@∆, where M is a marked-term and ∆

is a proof-tree;

In what follows, the symbol ≡ denotes the syntactic equality for marked-terms,
types, contexts, variable-marks and proof-trees, respectively.

Definition 3.2 (Fv)

(1) The set of free-variables of a marked-term is defined as follows:

Fv(x)
4= {x} Fv((λx:ι.M))

4= Fv(M) \ {x} Fv((M N))
4= Fv(M) ∪ Fv(N)

8

x@ι:σ ∈ Γ

Γ ` x@ι : σ
(Var)

Γ, x@ι:σ1 ` M@∆ : σ2

Γ ` (λx:ι.M)@(λι:σ1.∆) : σ1→σ2

(→I)

Γ ` M@∆1 : σ1→σ2 Γ ` N@∆2 : σ1

Γ ` (M N)@(∆1 ∆2) : σ2

(→E)
Γ ` M@∆1 : σ1 Γ ` M@∆2 : σ2

Γ ` M@(∆1∧∆2) : σ1 ∧ σ2

(∧I)

Γ ` M@∆ : σ1 ∧ σ2

Γ ` M@($∆) : σ1

(∧EL)
Γ ` M@∆ : σ1 ∧ σ2

Γ ` M@(∆%) : σ2

(∧ER)

Figure 4. The Type System ` for Λt
∧.

(2) The set of free variables and of free variable-marks of a pseudo term is defined
as follows:

Fv(M@∆)
4= Fv(M) ∪ Fv(∆)

Type System `. The type judgments of the intersection-typed calculus Λt
∧ have

the shape:
Γ ` M@∆ : σ

where Γ is a context, M is a marked-term, and ∆ is a proof-tree. Intuitively: in the
judgment, the type-context Γ assigns intersection-types to the free-variables of M
annotated by variable-marks; if Γ ` M@∆ : σ, then we say that M@∆ is a term of
Λt
∧.

The proof-tree keeps track of the type of the used mark together with a trace of
the skeleton of the derivation tree. The proof-tree ∆ plays the role of a road map
to backtrack (i.e. roll back) the derivation tree. The typing rules are presented in
Figure 3. Some comments are in order:

• (Var) gives types to free-variables at a given mark;
• (→I) is a quasi-classical abstraction rule, but it records in the term only the

variable-mark associated to the abstracted variable; the proof-tree ∆ evolves in
a new proof-tree enriched with the binding for the mark ι;

• (→E) is a quasi-classical application rule; observe that the two type-stores of
the premises become sub proof-trees in the conclusion (the hidden application
operator being the root);

• (∧I) is the most important rule; given two judgments for M assigning types σ1

and type σ2, in the same context Γ but with different proof-trees ∆1, and ∆2,
we can assign the intersection-type σ1 ∧ σ2 to M in the context Γ but in the
new proof-tree ∆1∧∆2. At this point the marked-term M loses the one-to-one
correspondence with its proof. Luckily, the new proof-tree keeps track of the
derivation and guarantees unicity of typing;

• (∧EL), and (∧ER) are the two standard rules that eliminate intersection-types.
Also in this case the marked-term M loses the one-to-one correspondence with

9

its (logical) proof, but the proof is memorized by the proof-tree, thanks to the
two place-holders $and%, indicating the applied rule.

Reduction semantics. For a given term M@∆, the computational part (M) and
the logical part (∆) grow up together while they are built through application
of rules (Var), (→I), and (→E), but they get disconnected when we apply
(∧{I, EL, ER}) rules (that changes the ∆ but not the M). This disconnection is
“logged” in the ∆ via occurrences of operators ∧,%, and $.

As such:

• by (∧I) and from M@∆1 and M@∆2, we get M@(∆1∧∆2). So ∆1 and
∆2 describe two different derivations sharing the same marked term. As a
consequence, to a redex in M will correspond some redexes in ∆1 and ∆2, that
need to be performed in parallel with the redex in M in order to preserve the
correct syntax of the term;

• by (∧EL) or (∧ER) and from M@∆, we get M@($∆) or M@(∆%); so each
reduction in M implies some reductions inside the wrapped ∆.

In order to correctly identify the reductions that need to be performed in parallel in
the two parts of the term, we will define the notion of overlapping. Namely a redex
is defining taking into account the surrounding context.

Definition 3.3 (Reduction Semantics)

(Contexts and Overlapping) The marked-term contexts C{ } and proof-term con-
text D{ } and multi-hole proof-term context E{ } are defined as follows:

C{ } ::= { } | C{ }M | M C{ } | λx:ι.C{ }

D{ } ::= { } | D{ }∆ | ∆ D{ } | λι:σ.D{ } | $D{ } | D{ }% | D{ } ∧∆ | ∆ ∧ D{ }

E{ } ::= { } | E{ }∆ | ∆ E{ } | λι:σ.E{ } | $E{ } | E{ }% | E{ } ∧ E{ }

Note that, while C{ } and D{ } are contexts with exactly one hole, the context
E{ } can have more than one hole. Let E{∆i}i∈I denote a proof-context where
the i-th hole has been filled by ∆i, for i ∈ I . The notion of overlapping between
marked-terms and proof-terms, denoted by C{ } v E{ } is defined by induction
on E{ } as follows:

{ } v { }

C{ } v E{ }

C{ }M v E{ }∆

C{ } v E{ }

M C{ } v ∆ E{ }

C{ } v E{ }

λx:ι.C{ } v λι:σ.E{ }

10

C{ } v E{ }

C{ } v $E{ }

C{ } v E{ }

C{ } v E{ }%

C{ } v E1{ } C{ } v E2{ }

C{ } v E1{ } ∧ E2{ }
(→) reduction The (→) reduction rule is the union of the three reduction rules

defines as follows:

if C{ } v E{ } then

C{(λx:ι.M) N} @ E{(λι:σi.∆i) ∆′
i}i∈I →β C{M [N/x]} @ E{∆i[∆

′
i/ι]}i∈I

M @ D{$(∆1∧∆2)} →π1 M @ D{∆1}

M @ D{(∆1∧∆2)%} →π2 M @ D{∆2}

Note that the hypothesis of C{ } v E{ } in the definition of the →β-reduction is
essential in order to recover, for each β-redex in the marked term, the corresponding
β-redexes, wrapped in the proof-term; those redexes must fired in parallel, in order
to do not create exotic typed terms that would not have an untyped counterpart in
the original system à la Curry.

α-conversion on well formed terms can be formally defined as follows:

Definition 3.4 (α-conversion)

(λx:ι.M) @ ∆ →α (λy:ι.M [y/x]) @ ∆ y fresh in M

M @ (λι1:σ.∆) →α M [ι2/ι1] @ (λι2:σ.∆[ι2/ι1]) ι2 fresh in ∆

4 Examples

We show two notorious examples in order to justify how type derivations can be
built for Λt

∧ proof-terms starting for the corresponding untyped λ-terms à la Curry,
and two further examples in order to illustrate the reduction rules of Λt

∧.

Example 4.1 (Classical polymorphic identity)
We show a derivation for a typed term corresponding to the typing in Λu

∧:
∧̀ λx.x : (σ1→σ1) ∧ (σ2→σ2).

x@0:σ1 ` x@0 : σ1

(Var)

` (λx:0.x)@(λ0:σ1.0) : σ1→σ1

(→I)
x@0:σ2 ` x@0 : σ2

(Var)

` (λx:0.x)@(λ0:σ2.0) : σ2→σ2

(→I)

` (λx:0.x)@((λ0:σ1.0)∧(λ0:σ2.0)) : (σ1→σ1)∧(σ2→σ2)
(∧I)

11

Example 4.2 (Polymorphic self-application)
Let σ2

4= (σ1→σ1) ∧ σ1. We show a term in Λt
∧ corresponding to the typing of Λu

∧:
∧̀ λx.xx : σ2→σ1.

x@0:σ2 ` x@0 : σ2

(Var)

x@0:σ2 ` x@($0) : σ1→σ1

(∧EL)
x:0:σ2 ` x@0 : σ2

(Var)

x:0:σ2 ` x@(0%) : σ1

(∧ER)

x@0:σ2 ` (x x)@($0) (0%) : σ1

(→E)

` (λx:0.x x)@(λ0:σ2.($0) (0%)) : σ2→σ1

(→I)

Note how the proof-tree memorizes exactly the skeleton of the type-derivation.

Example 4.3 (Reduction in Λt
∧)

A term in Λt
∧ corresponding to the following typing in Λu

∧: y:σ1 ∧ σ2 ∧̀ (λx.x) y :
σ1 ∧ σ2 can be constructed in the following way:

D1 D2

y@0:σ1 ∧ σ2 ` (λx:1.x) y@((λ1:σ1.1) $0) ∧ ((λ1:σ2.1) 0%) : σ1 ∧ σ2

(∧I)

where D1 is:

y@0:σ1 ∧ σ2, x@1:σ1 ` x@1 : σ1

(Var)

y@0:σ1 ∧ σ2 ` (λx:1.x)@(λ1:σ1.1) : σ1→σ1

(→I)
y@0:σ1 ∧ σ2 ` y@0 : σ1 ∧ σ2

(Var)

y@0:σ1 ∧ σ2 ` y@$0 : σ1

(∧EL)

y@0:σ1 ∧ σ2 ` (λx:1.x) y@((λ1:σ1.1) $0) : σ1

(→E)

and D2 is:

y@0:σ1 ∧ σ2, x@1:σ2 ` x@1 : σ2

(Var)

y@0:σ1 ∧ σ2 ` (λx:1.x)@(λ1:σ2.1) : σ2→σ2

(→I)
y@0:σ1 ∧ σ2 ` y@0 : σ1 ∧ σ2

(Var)

y@0:σ1 ∧ σ2 ` y@0% : σ2

(∧ER)

y@0:σ1 ∧ σ2 ` (λx:1.x) y@((λ1:σ2.1) 0%) : σ2

(→E)

This term can be written as: C{(λx:1.x) y}@E{(λ1:σ1.1) $0}{(λ1:σ2.1) 0%}, where
the two overlapping contexts are respectively: C{ } ≡ { } and E{ } ≡ { } ∧ { }, so
this term β-reduces to: y@$0∧0% which is a well formed term, in fact it can be built
in the following way:

y@0:σ1 ∧ σ2 ` y@0 : σ1 ∧ σ2

(Var)

y@0:σ1 ∧ σ2 ` y@$0 : σ1

(∧EL)
y@0:σ1 ∧ σ2 ` y@0 : σ1 ∧ σ2

(Var)

y@0:σ1 ∧ σ2 ` y@0% : σ2

(∧ER)

y@0:σ1 ∧ σ2 ` y@$0 ∧ 0% : σ1 ∧ σ2

(∧I)

Note that, if only one of the redexes in the proof-term would be reduced, then the
resulting term will be not well formed.

12

Example 4.4 (A complete reduction)
Consider the typing in Λu

∧

∧̀ (λx.x x) ((λy.y) (λy.y)) : σ ∧ τ

A corresponding term in Λt
∧ is:

` (λx:0.x x) ((λy:1.y) (λy:2.y))@(∆1 ∆2) : σ ∧ τ

Let
δ
4= ((σ→σ) ∧ σ) ∧ ((τ→τ) ∧ τ)

and

∆1 = λ0 : δ.∆3 ∆3 = ∆4 ∧∆5 ∆4 = ∆6 ∆7 ∆5 = ∆′
6 ∆′

7

∆6 = $($0) ∆7 = ($0)% ∆′
6 = $(0%) ∆′

7 = (0%)%

∆2 = ∆8 ∧∆9 ∆8 = ∆10 ∧∆11 ∆10 = ∆12 ∆13 ∆12 = λ1:σ2.2

∆13 = λ2:σ.2 ∆11 = ∆14 ∆15 ∆14 = λ1:σ.1 ∆15 = λ2:α.2

∆9 = ∆′
10 ∧∆′

11 ∆′
10 = ∆′

12 ∆′
13 ∆′

12 = λ1:τ 2.1 ∆′
13 = λ2:τ.2

∆′
11 = ∆′

14 ∆′
15 ∆′

14 = λ1:τ.1 ∆′
15 = λ2:β.1

Reducing the top-level β-redex (corresponding to the two overlapping contexts
C{ } ≡ E{ } ≡ { }), leads to the term

((λy:1.y) (λy:2.y)) ((λy:1.y) (λy:2.y))@(($($∆2)︸ ︷︷ ︸
π−red

) (($∆2)%)︸ ︷︷ ︸
π−red

)∧(($(∆2%)︸ ︷︷ ︸
π−red

) ((∆2%)%︸ ︷︷ ︸
π−red

))

Reducing all the four π-redexes leads to the following term

((λy:1.y) (λy:2.y)) ((λy:1.y) (λy:2.y))@(∆10 ∆11) ∧ (∆′
10 ∆′

11)

that can be seen both as:

C{(λy:1.y) (λy:2.y)}@E{∆10}{∆′
10}

and
C{(λy:1.y) (λy:2.y)}@E{∆11}{∆′

11}
by considering either the contexts C{ } ≡ { }((λy:1.y) (λy:2.y)) and E{ } ≡
{ }∆11 ∧ { }∆′

11 or C{ } ≡ ((λy:1.y) (λy:2.y)){ } and E{ } ≡ ∆10 { } ∧∆′
10 { }.

By making the first choice, we obtain:

(λy:2.y) ((λy:1.y) (λy:2.y))@(∆13 ∆11) ∧ (∆′
13 ∆′

11)

13

where the two overlapping contexts are: C{ } ≡ (λy:2.y) { } and E{ } ≡
(∆13 { }) ∧ (∆′

13 { }).

Reducing this β-redex leads to the following term

(λy:2.y) (λy:2.y)@(∆13 ∆15) ∧ (∆′
13 ∆′

15)

where the overlapping contexts C{ } ≡ { } and E{ } ≡ { }∧{ } individuate the last
β-redex. Reducing this β-redex we obtain the term in normal form

(λy:2.y)@∆15 ∧∆′
15

5 The Isomorphism between Λu
∧ and Λt

∧

In this section we prove that the type system ` for Λt
∧ is isomorphic to the

classical system ∧̀ for Λu
∧ of Coppo and Dezani [Coppo and Dezani-Ciancaglini

(1980)]. The isomorphism is given for a customization of the general definition
of isomorphism given in [Giannini et al. (1993), Liquori (1996), van Bakel et al.
(1997)], to the case of intersection-types and proof-trees.

From the logical point of view, the existence of an isomorphism means that there
is a one-to-one correspondence between the judgments that can be proved in the
two systems, and the derivations correspond with each other rule by rule. In what
follows, and with a little abuse of notation, marked-terms and untyped terms of the
λ-calculus will be ranged over by M, N, . . ., the difference between marked-terms
and untyped-terms being clear from the context (i.e. the judgment to be proved).

Definition 5.1 (Church vs. Curry)

(1) The type-erasing function E : Λt
∧ ⇒ Λ is inductively defined on terms as

follows:

E(x@_)
4= x

E((λx:ι.M)@_)
4= λx.E(M@_)

E((M N)@_)
4= E(M@_) E(N@_)

E can be extended to contexts in the following way:

E(ε)
4= ε

E(Γ, x@ι:σ)
4= E(Γ), x:σ

(2) Let DerΛu
∧ and DerΛt

∧ be the sets of all (un)typed derivations in ∧̀ and `,
respectively. Let D,D1, . . . ,Dn range over (un)typed derivations. Systems ∧̀

14

G

(
x:σ ∈ E

E ∧̀ x : σ
(Var)

)
4=

x@ι:σ ∈ Γ

Γ ` x@ι : σ
(Var)

E(Γ) = E ι is fresh

G

(D : E, x:σ1 ∧̀ M ′ : σ2

E ∧̀ λx.M ′ : σ1→σ2

(→I)

)
4=

G(D) : Γ, x@ι:σ1 ` M@∆ : σ2

Γ ` (λx:ι.M)@(λι:σ1.∆) : σ1→σ2

(→I)

E(Γ, x@ι:σ1) = E, x:σ1 & E(M@∆) = M ′

G

D1 : E ∧̀ M ′ : σ1→σ2

D2 : E ∧̀ N : σ1

E ∧̀ M ′N ′ : σ2

(→E)

4=

G(D1) : Γ ` M@∆1 : σ1→σ2

G(D2) : Γ ` N@∆2 : σ1

Γ ` (M N)@(∆1 ∆2) : σ2

(→E)

E(Γ) = E & E(M@∆1) = M ′ & E(N@∆2) = N ′

G

D1 : E ∧̀ M ′ : σ1

D2 : E ∧̀ M ′ : σ2

E ∧̀ M ′ : σ1 ∧ σ2

(∧I)

 4=

G(D1) : Γ ` M@∆1 : σ1

G(D2) : Γ ` M@∆2 : σ2

Γ ` M@(∆1∧∆2) : σ1 ∧ σ2

(∧I)

E(Γ) = E & E(M@(∆1∧∆2)) = M ′

G

(D : E ∧̀ M ′ : σ1 ∧ σ2

E ∧̀ M ′ : σ1

(∧EL)

)
4=

G(D) : Γ ` M@∆ : σ1 ∧ σ2

Γ ` M@($∆) : σ1

(∧EL)

E(Γ) = E & E(M@∆) = M ′

G

(D : E ∧̀ M ′ : σ1 ∧ σ2

E ∧̀ M ′ : σ2

(∧ER)

)
4=

G(D) : Γ ` M@∆ : σ1 ∧ σ2

Γ ` M@(∆%) : σ2

(∧ER)

E(Γ) = E & E(M@∆) = M ′

Figure 5. The Function G.

and ` are isomorphic, if and only if there exist F : DerΛt
∧ ⇒ DerΛu

∧ and
G : DerΛu

∧ ⇒ DerΛt
∧, such that:

(a) (Soundness) If D : Γ ` M@∆ : σ, then F(D) : E(Γ) ∧̀ E(M@∆) : σ;

(b) (Completeness) If D : E ∧̀ M ′ : σ, then there exists Γ and ∆, such that
G(D) : Γ ` M@∆ : σ, and E(Γ) ≡ E, with E(M@∆) ≡ M ′;

(c) (Inversion) F ◦ G is the identity in DerΛu
∧, and G ◦ F is the identity in

DerΛt
∧, modulo uniform naming of variable-marks. I.e.,

G(F(Γ ` M@∆ : σ)) = ren(Γ) ` ren(M@∆) : σ

where ren is a is a simple function renaming the free occurrences of
variable-marks;

(d) (Faithfulness) Both F and G preserve the structure of derivations, (i.e.,
the tree obtained from a derivation by erasing all judgments, but not the
names of the rules).

15

F

(
x@ι:σ ∈ Γ

Γ ` x@ι : σ
(Var)

)
4=

x:σ ∈ E

E ∧̀ x : σ
(Var)

E(Γ) = E

F

(Γ, x@ι:σ1 ` M@∆ : σ2 (→I)

Γ ` (λx:ι.M)@(λι:σ1.∆) : σ1→σ2

)
4=

F(D) : E, x:σ1 ∧̀ M ′ : σ2

E ∧̀ λx.M ′ : σ1→σ2

(→I)

E(Γ, x@ι:σ1) = E, x:σ1 & E(M@∆) = M ′

F

D1 : Γ ` M@∆1 : σ1→σ2

D2 : Γ ` N@∆2 : σ1

Γ ` (M N)@(∆1 ∆2) : σ2

(→E)

4=

F(D1) : E ∧̀ M ′ : σ1→σ2

F(D2) : E ∧̀ N ′ : σ1

E ∧̀ M ′N ′ : σ2

(→E)

E(Γ) = E & E(M@∆1) = M ′ & E(N@∆2) = N ′

F

D1 : Γ ` M@∆1 : σ1

D2 : Γ ` M@∆2 : σ2

Γ ` M@(∆1∧∆2) : σ1 ∧ σ2

(∧I)

4=

F(D1) : E ∧̀ M ′ : σ1

F(D2) : E ∧̀ M ′ : σ2

E ∧̀ M ′ : σ1 ∧ σ2

(∧I)

E(Γ) = E & E(M@(∆1∧∆2)) = M ′

F

(D : Γ ` M@∆ : σ1 ∧ σ2

Γ ` M@($∆) : σ1

(∧EL)

)
4=

F(D) : E ∧̀ M ′ : σ1 ∧ σ2

E ∧̀ M ′ : σ1

(∧EL)

E(Γ) = E & E(M@∆) = M ′

F

(D : Γ ` M@∆ : σ1 ∧ σ2

Γ ` M@(∆%) : σ2

(∧ER)

)
4=

F(D) : E ∧̀ M ′ : σ1 ∧ σ2

E ∧̀ M ′ : σ2

(∧ER)

E(Γ) = E & E(M@∆) = M ′

Figure 6. The Function F .

Function F and G are described in Figures 6 and 5.

Notice that the definition of isomorphism expresses more than just soundness and
completeness of E . Indeed, soundness and completeness imply an isomorphism
between the judgments of the two systems, but they do not imply necessarily a
one-one correspondence between derivations. Figure 7 shows the various functions
between typed and untyped systems of λ-calculi that realize the above relations
between typed and untyped judgments and derivations.

Theorem 5.1 (Isomorphism) The systems ` and ∧̀ are isomorphic.

Proof. Soundness can be proved by induction on the structure of the derivation in
the Λt

∧. Completeness can be proved by induction on the structure of the derivation
in Λu

∧, using soundness. Inversion can be proved by induction on the structure of
both the derivations, using the soundness and completeness result. Faithfulness is

16

G

E(Γ) ∧̀ E(M@∆) : σΓ ` M@∆ : σ
-E

�
E−1

F

�

-

�
�
�
�
�
�
�
�
�
��

L
L

L
L

L
L

L
L

L
LL

L
L

L
L

L
L

L
L

L
LL

�
�
�
�
�
�
�
�
�
��

Figure 7. Functions between Λt
∧s and Λu

∧s Judgments and Derivations.

immediate. 2

We can also explore the relationship between Λt
∧ and the proof calculus ΛP by

defining an erasure function E ′ : Λt
∧ ⇒ ΛP as follows:

E ′(_@∆)
4= ∆

The function E ′ can be extended naturally to a function from contexts to proof-
contexts:

E ′(ε) 4= ε

E ′(Γ, x@ι:σ)
4= E ′(Γ), ι:σ

Then it is easy to define a function F ′ : DerΛt
∧ ⇒ DerΛP such that

D : Γ ` M@∆ : σ implies F ′(D) : E ′(Γ) P̀ ∆ : σ. F ′ consists in just
applying E ′ to all contexts and subjects of the derivation. Note that Λt

∧ and ΛP
are not isomorphic; for example, the statement ι1:σ P̀ (λι2:τ.ι2)∧ ι1 : (τ→τ)∧ σ
in ΛP has no a corresponding counterpart in Λt

∧.

6 Metatheory of Λt
∧

In this section we will prove properties [3-6] listed in the introduction. First we
need to prove the Generation and Substitution lemmas.

Lemma 6.1 (Generation)

(1) If Γ ` M@∆1 ∧ ∆2 : σ, then σ ≡ σ1 ∧ σ2 and Γ ` M@∆1 : σ1 and
Γ ` M@∆2 : σ2;

(2) If Γ ` M@$∆ : σ then there exists τ , such that Γ ` M@∆ : σ ∧ τ ;
(3) If Γ ` M@∆% : σ then there exists τ , such that Γ ` M@∆ : τ ∧ σ;
(4) If Γ ` x@ι : σ, then x@ι : σ ∈ Γ;
(5) If Γ ` (λx:ι.M)@(λι:σ1.∆) : σ1→σ2, then Γ, x@ι:σ1 ` M@∆ : σ2;

17

(6) If Γ ` M N@∆1 ∆2 : σ, then there exists σ′, such that Γ ` M@∆1 : σ′→σ,
and Γ ` N@∆2 : σ′.

Proof. By induction on derivation. 2

Lemma 6.2 (Substitution)
If Γ, x@ι:σ ` M@∆ : τ , and Γ ` N@∆′ : σ, then Γ ` M [N/x]@∆[∆′/ι] : τ .

Proof. By induction on derivation. 2

We continue with subject reduction

Theorem 6.1 (Subject reduction)
If Γ ` M@∆ : σ and M@∆ → N@∆′, then Γ ` N@∆′ : σ.

Proof. We will treat the case → is →β; the cases →π1 and →π2 are easier. By def-
inition, there are two contexts C{ } and E{ }, such that C{ } v E{ }, and M@∆ ≡
C{(λx:ι.P) Q}@E{(λι:σi.∆i) ∆′

i}i∈I which β-reduces to C{P [Q/x]}@E{∆i[∆
′
i/ι]}i∈I .

By induction on C{ }. Let C{ } ≡ { }. We proceed now by induction on E{ }. If
E{ } ≡ { }, then, by Generation Lemma.(5− 6) the derivation is of the shape:

Γ, x@ι:τ ` P@∆ : σ

Γ ` λx:ι.P@λι:τ.∆ : τ→σ
(→I)

Γ ` Q@∆′ : τ

Γ ` (λx:ι.P) Q@(λι:τ.∆) ∆′ : σ
(→E)

Then, by Substitution Lemma, we get Γ ` P [Q/x]@∆[∆′/ι] : σ.

Let E{ } ≡ E1{ } ∧ E2{ }, where { } v Ei{ }, and 1 ≤ i ≤ 2. Then, by Generation
Lemma.(1), we have σ ≡ σ1 ∧ σ2 and Γ ` (λx:ι.P) Q@E1{(λι:σi.∆i) ∆′

i}i∈I1
: σ1

and Γ ` (λx:ι.P) Q@E2{(λι:σi.∆i) ∆′
i}i∈I2

: σ2, for some I1, I2, such that
I = I1 ∪ I2. By induction, we have Γ ` P [Q/x]@E1{∆i[∆

′
i/ι]}i∈I1

, and
Γ ` P [Q/x]@E2{∆i[∆

′
i/ι]}i∈I2

, and the proof follows, by rule (∧I).

The cases for E{ } ≡ $E1{ }, or E{ } ≡ E1{ }% follow easily by induction. No other
cases can apply.

For the inductive case, we will show the proof in case C{ } ≡ R C1{ }, and E{ } ≡
∆ E1{ }, with C1{ } v E1{ }. Then R C1{(λx:ι.P) Q}@∆ E1{(λι:σi.∆i) ∆′

i}i∈I →β

R C1{P [Q/x]}@∆E1{∆i[∆
′
i/ι]}i∈I . By the Generation Lemma, there exists σ′,

such that Γ ` R@∆ : σ′→σ, and Γ ` C1{(λx:ι.P) Q}@E1{(λι:σi.∆i) ∆′
i}i∈I : σ′.

By induction we get Γ ` C1{P [Q/x]}@E1{∆i[∆
′
i/ι]}i∈I : σ′, and the proof follows

by rule (→E). The other cases are easy. 2

18

Type∧(Γ, M@∆)
4= match (M@∆) with

(_@($∆1)) ⇒1 σ1 if Type∧(Γ, M@∆1) = σ1 ∧ σ2

(_@(∆1%)) ⇒2 σ2 if Type∧(Γ, M@∆1) = σ1 ∧ σ2

(_@(∆1∧∆2)) ⇒3 σ1 ∧ σ2 if Type∧(Γ, M@∆1) = σ1 and

Type∧(Γ, M@∆2) = σ2

(x@_) ⇒4 σ if x@ι:σ ∈ Γ

((λx:ι.M1)@(λι:σ1.∆1)) ⇒5 σ1→σ2 if Type∧((Γ, x@ι:σ1), M1@∆1) = σ2

((M1 M2)@(∆1 ∆2)) ⇒6 σ2 if Type∧(Γ, M1@∆1) = σ1→σ2 and

Type∧(Γ, M2@∆1) = σ1

(_@_) ⇒7 false otherwise

Typecheck∧(Γ, M@∆, σ)
4= Type∧(Γ, M@∆)

?
= σ

Figure 8. The Type Reconstruction and Type Checking Algorithms for Λt
∧.

The strong normalization of Λt
∧ is proved from the strong normalization of ΛP .

Theorem 6.2 (Strong Normalization of Λt
∧)

Λt
∧ is strongly normalizing.

Proof. Let D : Γ ` M@∆ : σ, and let us assume, by absurdum, that there is an
infinite reduction sequence starting from M@∆, i.e.,

M@∆ ≡ C1{M1}@A1{∆i
1}i∈I1

→ C2{M2}@A2{∆i
2}i∈I2

→ . . . →

Cj{Mj}@Aj{∆i
j}i∈Ij

→ Cj+1{Mj+1}@Aj+1{∆i
j+1}i∈Ij+1

→ . . .

where A{ } is a context either of the shape C{ }, or of the shape E{ }. In the first
case the reduction is a β-reduction, in the second one is a π-reduction. By applying
the function F ′, defined at the end of Section 5, on each element of the reduction
sequence, we get an infinite sequence of proof-terms A1{∆i

1}i∈I1
, A2{∆i

2}i∈I2
. . . Aj{∆i

j}i∈Ij
, Aj+1{∆i

j+1}i∈Ij+1
. . ., such that, for all j ≥ 0, we have that

Aj{∆i
j}i∈Ij

reduces to Aj+1{∆i
j+1}i∈Ij+1

, either by a π-reduction or by a strictly
positive number of β-reductions. But this is impossible, since ΛP enjoys the strong
normalization property (Fact 1). 2

19

The further requirement we asked for is the unicity of typing. In general, for typed
languages, typing is unique modulo α-conversion, i.e., modulo renaming of bound-
variables.

Theorem 6.3 (Unicity of Typing of Λt
∧)

If D1 : Γ ` M@∆ : σ1, and D2 : Γ ` M ′
@∆′ : σ2, and M@∆ =α M ′

@∆′, then
σ1 ≡ σ2, and D1 ≡ D2.

Proof. By easy induction on the structure of the derivation D1. 2 We can finish
this section by presenting the type reconstruction and the type checking algorithms
for Λt

∧ in Figure 6, and by proving that they are decidable. The soundness and
completeness proofs follow.

Theorem 6.4 (Type Reconstruction for Λt
∧)

(Soundness) If Type∧(Γ, M@∆) = σ, then Γ ` M@∆ : σ
(Completeness) If Γ ` M@∆ : σ, then Type∧(Γ, M@∆) = σ.

Proof.

(Soundness) By induction on the structure of (M@∆).
(_@($∆1)) Then ∆ ≡ $∆1 and σ ≡ σ1. By induction, the judgment

Γ ` M@∆1 : σ1 ∧ σ2 is derivable. Apply rule (∧EL) to obtain a derivation for
Γ ` M@($∆1) : σ1.

(_@(∆1%)) Then ∆ ≡ ∆1% and σ ≡ σ2. By induction, the judgment
Γ ` M@∆1 : σ1 ∧ σ2 is derivable. Apply rule (∧ER) to obtain a derivation for
Γ ` M@(∆1%) : σ2.

(_@(∆1∧∆2)) Then σ ≡ σ1 ∧ σ2. By induction, the judgments Γ ` M@∆1 : σ1

and Γ ` M@∆2 : σ2 are derivable. Apply rule (∧I) to obtain a derivation for
Γ ` M@(∆1∧∆2) : σ1 ∧ σ2.

(x@_) Then M ≡ x and ∆ ≡ ι, since the Type∧ algorithm (that works via
a classical ML-like match-case analysis) has already ruled out the cases of
∆ ∈ {$∆1, ∆1%, ∆1∧∆2}, and since the case ∆ ≡ λι:σ1.∆1 does not apply.
By hypothesis we get x@ι:σ ∈ Γ. Apply rule (Var) to obtain a derivation for
Γ ` x@ι : σ.

((λx:ι.M1)@(λι:σ1.∆1)) Then M ≡ λx:ι.M1 and ∆ ≡ λι:σ1.∆1 and σ ≡
σ1→σ2. By induction, the judgment Γ, x@ι:σ1 ` M1@∆1 : σ2 is derivable.
Apply rule (→I) to obtain a derivation for Γ ` (λx:ι.M1)@(λι:σ1.∆1) :
σ1→σ2.

((M1 M2)@(∆1 ∆2)) Then M ≡ M1 M2 and ∆ ≡ ∆1 ∆2 and σ ≡ σ2. By
induction, the judgments Γ ` M1@∆1 : σ1→σ2 and Γ ` M2@∆2 : σ1 are
derivable. Apply rule (→E) to obtain a derivation for Γ ` (M1 M2)@(∆1 ∆2) :
σ2.

(_@_) This case does not apply since σ 6= false.

20

(Completeness) By induction on the derivation of Γ ` M@∆ : σ.
(Var) Then M ≡ x and ∆ ≡ ι. By match-case number 4 we get

Type∧(x, ι@σ) = σ.
(→I) Then M ≡ λx:ι.M1 and ∆ ≡ λι:σ1.∆1 and σ ≡ σ1→σ2. By induction

we get Type∧((Γ, x@ι:σ1), M1@∆1) = σ2, and by match-case 5 we get
Type∧((λx:ι.M1)@(λι:σ1.∆1)) = σ1→σ2.

(→E) Then M ≡ M1 M2 and ∆ ≡ ∆1 ∆2 and σ ≡ σ2. By induction we get
Type∧(Γ, M1@∆1) = σ1→σ2 and Type∧(Γ, M2@∆2) = σ1, and by match-case
6 we get Type∧((M1 M2)@(∆1 ∆2)) = σ2.

(∧I) Then ∆ ≡ ∆1∧∆2 and σ ≡ σ1∧σ2. By induction we get Type∧(M, ∆1) =
σ1 and Type∧(M, ∆2) = σ2, and by match-case 3 we get Type∧(M, (∆1∧∆2)) =
σ1 ∧ σ2.

(∧EL) Then ∆ ≡ $∆1 and σ ≡ σ1. By induction we get Type∧(Γ, M@∆1) =
σ1 ∧ σ2, and by match-case 1 we get Type∧(M, $∆1) = σ1.

(∧ER) Then ∆ ≡ ∆1% and σ ≡ σ2. By induction we get Type∧(Γ, M@∆1) =
σ1 ∧ σ2, and by match-case 2 we get Type∧(M, ∆1%) = σ2.

2

Theorem 6.5 (Type Checking for Λt
∧)

Γ ` M@∆ : σ, if and only if Typecheck∧(Γ, M@∆, σ) = true.

Proof. The ⇒ part can be proved using completeness of the type reconstruction
algorithm (Theorem 6.4), while the ⇐ part can be proved using soundness of the
type reconstruction algorithm. 2

Theorem 6.6 (Judgment Decidability)
If is decidable whether the Λt

∧ judgment Γ ` M@∆ : σ is derivable.

Proof. Routine. 2

7 Conclusions

We studied in this paper the problem of designing a λ-calculus à la Church
corresponding to the intersection-type assignment system. In particular, we asked
for a typed language such that its relationship with the intersection-type assignment
system enjoys all the standard requirements we posed in [Giannini et al. (1993),
Liquori (1996),van Bakel et al. (1997)]. Examples of such “good” correspondences
are respectively the Church and Curry version of the simple typed λ-calculus (if
written using the same symbols), and the typed and type assignment version of the
second order λ-calculus [Girard (1986),Leivant (1983)]. We succeed in designing a

21

calculus based essentially on two basic and simple ideas: an imperative-like notion
of typing, when types are assigned to variables “at a given mark”, and a proof-
calculus, describing intersection-type derivations, whose terms are used as proof-
trees for the terms of the target calculus.

A reader interested in particular in programming applications could object that the
used language is far for being “usable”, since the user needs to specify not only
the typed terms, but also their proof-trees, which are encoding of type-derivations.
The answer can be twofold. From a programming languages point of view, in every
typed language the user, in order to write explicitly the type of a term, in some sense
needs to “guess” the correct type-derivation assigning that type to the term itself.
Here obviously the type-derivations are more difficult than in the simple typed case.
But if we think, for example, to Girard’s Second Order Typed λ-calculus [Girard
(1986)], in order to write the term

Λβ.Λγ.λx:(∀α.α). x (β→γ) of type ∀β.∀γ.(∀α.α)→(β→γ)

one needs to know exactly how and the rules for introducing and eliminating the
universal quantifier work. However, we think that the production of an usable
language is not the only justification for the problem we studied, as it was especially
for [Reynolds (1996), Pierce and Turner (1994)]. The relationship between typed
and type assignment systems is an important theoretical issue, that is interesting in
itself.

Acknowledgment. Simona was kindly supported by QSL: Qualité et Sûrété du
Logiciel, CPER, Région Lorraine, Nancy, and by INRIA; Luigi was supported by
the French CNRS grant ACI Modulogic. Moreover both authors want warmly thank
the two anonymous referees, for their very sharp and constructive suggestions.

References

[Asperti A. et al. (2004)] Asperti A., Coppola P., Martini S. “(Optimal) duplication is not
elementary recursive”, Information and Computation, vol. 193/1, pp. 21-56, 2004.

[Barendregt et al. (1983)] Barendregt H., Coppo M., and Dezani-Ciancaglini M. “A Filter
Lambda Model and the Completeness of Type Assignment”, Journal of Symbolic
Logic, 48(4):931-940, 1983.

[Coppo et al. (1983)] Coppo M., Dezani-Ciancaglini M., Honsell F., and Longo G.
“Extended Type Structures and Filter Lambda Models”, Logic Colloquium ’82, pp.
241-262, North Holland, 1983.

[van Bakel et al. (1997)] van Bakel S., Liquori L., Ronchi Della Rocca S., and Urzyczyn
P. “Comparing Cubes of Typed and Type Assignment systems”, Annals of Pure and
Applied Logic, 86(3):267–303, 1997.

22

[Capitani and Venneri (2001)]
Capitani B., Venneri B. “Hyperformulæ, Parallel Deductions and Intersection-Types”,
Proc. BOTH 2001, ENTCS, 50(2):180-198, 2001.

[Coppo and Dezani-Ciancaglini (1980)] Coppo M., Dezani-Ciancaglini M. “An Extension
of the Basic Functionality Theory for the λ-calculus”, Notre Dame J. Formal Logic,
21(4):685–693, 1980.

[Dezani-Ciancaglini et al. (1998)] Dezani-Ciancaglini M., Giovannetti E., de’ Liguoro
U. “Intersection-types, Lambda-models and Böhm Trees”. In MSJ-Memoir Vol. 2
Theories of Types and Proofs, volume 2, pp. 45-97. Mathematical Society of Japan,
1998.

[Giannini et al. (1993)] Giannini P., Honsell F., and Ronchi Della Rocca S. “Type
Inference: Some Results, Some Problems”, Fundamenta Informaticæ, 19(1,2):87–
126, 1993.

[Girard (1986)] Girard, J.Y. “The System F of Variable Types, Fifteen years later”,
Theoretical Computer Science, 45:159–192, 1986.

[Hindley (1984)] Hindley J. R. “Coppo Dezani Types do not Correspond to Propositional
Logic”, Theoretical Computer Science, 28(1-2):235-236, 1984.

[Howard (1980)] Howard, W. A. “The Formulae-as-Types Notion of Construction”, in: To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp.
479–490, Academic Press, London, 1980.

[Krivine (1990)] Krivine J.L. “Lambda-calcul, Types et Modèles”, Masson, 1990.

[Leivant (1983)] Leivant, D. “Polymorphic Type Inference”, Proc. of POPL, pp. 88–98,
ACM Press, 1983.

[Liquori (1996)] Liquori, L. “Type Assigment Systems for Lambda Calculi and for the
Lambda Calculus of Objects”, Ph.D. thesis, 193 pp., University of Turin, 1996.

[Pottinger (1980)] Pottinger G. “A Type Assignment for the Strongly Normalizable λ-
terms”, in: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pp. 561-577, Academic Press, London, 1980.

[Pierce and Turner (1994)] Pierce, B., C. and Turner, D., N. “Simple Type-theoretic
Foundations for Object-oriented Programming”, Journal of Functional Programming,
4(2):207–247, 1994.

[Reynolds (1996)] Reynolds J.C. “Design of the Programming Language Forsythe”, in:
Algol-like Languages, O’Hearn and Tennent ed.s, Birkhauser, 1996.

[Ronchi Della Rocca (2002)] Ronchi Della Rocca S. “Intersection-Typed Lambda-
Calculus", In Proc of ICTRS, ENTCS, 70(1), 2002.

[Ronchi Della Rocca and Roversi (2001)] Ronchi Della Rocca S. and
Roversi L. “Intersection Logic”, Proc. of CSL, LNCS 2142, pp. 414-428, Springer-
Verlag, 2001.

23

[Wells et al. (2002)] Wells J.B., Dimock A., Muller R., and Turbak F., “A Calculus with
Polymorphic and Polyvariant Flow Types”, Journal of Functional Programming,
12(3), pp. 183-227, 2002.

[Wells and Haack (2006)] Wells J.B., and Haack C. “Branching Types”, Information and
Computation, 2006, To appear.

24

