
Towards a common architecture to interconnect
heterogeneous overlay networks

Vincenzo Ciancaglini Luigi Liquori Giang Ngo Hoang
INRIA Sophia Antipolis Méditerranée

France

Email: name.surname@inria.fr

Abstract—This paper presents a novel overlay architecture to
allow the design and development of distributed applications
based on multiple interconnected overlay networks. Message
routing between overlays is achieved via co-located nodes, i.e.
nodes that are part of multiple overlay networks at the same
time. Co-located nodes, playing the role of distributed gateways,
allow a message to reach a wider set of peers while overlay
maintenance remains localized to individual overlays of smaller
size. To increase robustness, gateway nodes route messages
in an unstructured fashion, and can discover each other by
analyzing the overlay traffic. The approach is able to work in
both ”collaborative” scenarios, where overlay protocol messages
can be modified to include additional inter-routing information,
or non-collaborative ones. This allows for the interaction with
existing overlay protocols already deployed.

Keywords: peer-to-peer, overaly networks, distributed hash
tables, overlay interconnection

I. INTRODUCTION

A. Context

Overlay networks (structured and unstructured) have been
broadly recognized as a viable solution for the implementation
of distributed applications of various nature: Distributed Hash
Tables (DHT), application level multicast protocols, distributed
object lookup, file systems, etc. In a real world scenario, a fully
distributed design should rely as much as possible on regular,
desktop-class machines, without the assumption of permanent
connectivity, or even a public IP address. Although most of
the protocols designed in recent years show interesting prop-
erties of scalability, fault tolerance and handling of dynamic
topologies, studies such as [1] have shown that, under real net-
working conditions, an overlay can suffer severe performance
degradation when deployed on a larger scale. This problem has
been addressed in works such as [2] for specific cases, or, for
a more general case, in Hierarchical Overlays (see Section
II-C), in an effort to increase locality and reduce the size
of individual overlays. A second challenge one is faced with
when designing distributed applications is brought on by the
fact that load balancing and data complexity are often inversely
proportional. In the case of Distributed Hash Tables (DHTs),
adding semantics to overlay keys or using non-consistent hash
functions (such as locality preserving hash) for the addressing
implies altering the data partitioning scheme, resulting in an
uneven distribution of data across peers. Because of this, query
complexity in distributed applications remains low. Works

such as [3] or [4] show the implementation of complex
queries on top of structured overlays, but their apporach is,
again, specific to a data domain (in the abovementioned case,
semantic and “geographical” data). What if an application
wanted to exploit both? A third concern stems from security
and anonimity issues due to the distributed nature of the
system. Malicious attacks such as Sybil or Eclipse [5] can be a
source of concern when one is designing a distributed system.
Furthermore, due to the peer-to-peer message routing nature
of such a protocol, it becomes possible for a malicious node
to infer the activity of a peer by analyzing the ongoing traffic.
Finally, there exists a more general problem regarding the co-
operation of various systems. Existing systems are currently
not able to communicate and exchange data with each other.
As an example, the BitTorrent protocol [6] can use a DHT,
based on the Kademlia protocol [7], to perform peer discovery.
At the present state, there exist two different implementation
of such a protocol (Mainline DHT and Azureus), and these
two implementations are incompatible with one another.

B. Synapse interconnection protocol

With these premises in mind, we propose a novel archi-
tecture, henceforth referred to as Synapse, to allow for the
transparent interaction between heterogeneous overlay net-
works. The general idea behind Synapse is to exploit co-
located nodes, i.e. nodes connected to different overlays at
the same time, as a form of distributed gateways capable of
inter-routing queries and messages beyond one overlay. Nodes
in an overlay can route messages to the overlay itself, using the
correspondent protocol, or to foreign networks by contacting,
in an unstructured way, previously discovered gateway nodes.
Node discovery can be performed in an opportunistic way, by
embedding additional information in the overlays messages,
or independently via a peer exchange mechanism. The latter
allows for a Synapse node to be completely independent from
the underlying overlay protocol, thus giving the possibility
of having existing overlay networks interact with each other
without breaking network compatibility. A first version of the
protocol has been presented in [22], of which the present
work aims to be a generalization and an extension to multiple
cooperation scenarios.

C. Summary

The rest of the paper is structured as follows: in Section II
we present the previous work concerning overlay federation
and collaboration. In Section III we lay out in detail the
Synapse architecture, as well as the routing and node discovery
mechanisms. Section IV briefly presents some details of the
implementation in the OverSim simulator. Section V shows
promising results gathered from simulations of our previous
work, where it appears that the use of smaller interconnected
overlays has interesting properties concerning scalability and
exhaustivity. Section VI presents some examples of application
that have been, or could be already developed on top of
Synapse, where in Section VII we give conclusions and discuss
further work.

II. RELATED WORK

Inter-overlay cooperation is a challenge in peer-to-peer
networking that has inspired a number of research efforts.
These efforts can be classified into the following categories.

A. Cooperation via gateway

The authors in [8] present the model in which dedicated
peers are used as gateways for forwarding requests from one
overlay to another. However, this model intuitively suffers
from the ”single point of failure” problem; the gateways are
burdened by load and attack. Also, an evaluation of the model
hasn’t been performed in this work. The authors in [9] propose
a protocol using co-located peers and peers whose neighbors
belong to other DHTs as virtual gateways to enable cross-DHT
searching between various DHT implementations. Although
the focus there was on wireless ad-hoc networks, the authors
claim that their protocol can be used in wired networks too.
Unfortunately, it is unclear how they evaluate their protocol.

B. Cooperation via super overlay

The authors in [10] present a super overlay model, in
an effort to enable the interaction of multiple independent
overlays. They use a global DHT to organize all the peers
across different overlays into a uniform space. The routing
between different overlays is performed on the global DHT.
The authors in [11] propose another model using a super
overlay to enable inter-overlay cooperation. In their model,
some chosen peers from more than one overlay are exported
and form a Synergy inter-network. When the sender peer and
the receiver peer belong to different overlays, they are exported
(i.e. join the Synergy network) and, in this way, can use the
Synergy path to route to each other.

C. Cooperation via hierarchy

Several works exploit hierarchy to build overlay topologies
based on the coexistence of smaller local overlay networks.
[12] introduces Canon, that merges the leaf-networks together
to form a single overlay. [13] presents the HIERAS overlay,
which contains many other overlay networks across different
layers inside this overall overlay network. Each sub-overlay
contains a subset of the set of all system peers. The authors

in [14] propose the model which enables the interconnection
of various clusters of peers, by forming an overlay of super
peers chosen from these clusters.

The hierarchical overlay approach is certainly the one clos-
est to ours, in terms of goals and implementation. However,
we believe that the use of an unstructured routing between
overlays can increase the robustness in the case of high churn
of gateway nodes.

D. Merging overlay

Some other works attempt to merge several overlays into
one overlay. The authors in [8] introduce a protocol that
enables one CAN-network to be completely absorbed into
another one. However, there is no mathematical analysis or
practical evaluation done in this paper. The authors in [15]
provide an analysis of the problem of merging two different
overlays and introduce an algorithm of merging two ring-
based overlays in [16]. Merging overlays require modifying
the key space, as well as rearranging keys and data. These
tasks are expensive in terms of time and power processing. It
also remains impossible to merge heterogeneous overlays.

E. Structured and unstructured overlay cooperation

The authors in [17] introduce a hybrid model, mixing
Gnutella and DHT overlays for a file sharing application. The
ultra peers in Gnutella form a DHT, and search is performed
via conventional flooding techniques of overlay neighbors for
normal files, and via DHT queries for rare files.

III. SYSTEM DESCRIPTION

In this section we describe the node structure, inter-overlay
routing and node discovery performed in Synapse. As a
reference for the operations and messages, we adopt the Key-
Based Rotuing API described in [18], since it provides a well-
formed general abstraction, independent of specific protocol
implementation.

A. General overview and definitions

As we said earlier, the idea behind Synapse is to provide
a framework that allows for transparent interconnection and
collaboration of heterogeneous overlays. A Synapse node is
generally connected to one or more overlay networks (referred
to as Connected Overlays), and maintains a table of pointers
to other Synapse nodes, which can act as gateways to overlays
other than the connected ones. These are referred to as Direct

Overlays. Each overlay network is identified by a unique
networkID.

Figure 1 depicts an example scenario, where a Synapse node
S1 sees connected overlays netID1 and netID5 and direct
overlays netID2, netID3, netID4, via gateway nodes S2,
S5, S8.

1) General assumptions: The following assumptions have
been kept into consideration when designing the protocol:

• All of the overlays expose key based routing capabilities
(although an extension to keyword-based searches should
be possible);

netID 1

= Synapse Node
= Overlay Node

netID 2

netID 3

netID 4
netID 5

= Synapse pointers

S1

S2

S3
S4

S5

S6S7

S8

S9

S10

Fig. 1. Synapse overlay overview

• The hash function used by different overlays is not
necessarily the same. This involves the exchange of
the unhashed key when routing a message outside an
onverlay;

2) Synapse definition: To summarize, we can define a
Synapse node as a node capable of the following operations:

• Processing and routing a message coming from the ap-
plication layer to the connected overlays;

• Dispatching a message directly to other Synapse nodes,
to be routed in overlays others than the connected ones;

• Routing a request coming from other Synapses;
• Discovering new Synapses (Sec. III-D);
• Inviting new Synapse nodes to join connected overlays

(Sec. III-F);

Aside from the data structures and messages required to be
maintained by each of the connected overlays (finger tables,
neighbors list, find node messages etc.) Synapse introduces
new structures to handle the inter-overlay routing:

• a networkID per each overlay, to identify it unequivocally;
• a Direct Overlay Table (DOT), that is, a table storing

pointers to gateway nodes arranged per networkID;
• a Message Routing Table (MRT), responsible for storing

information about ongoing messages (TTL, source nodes,
MessageID, targeted overlays...);

• a Cache table, used for storing values associated to
frequently requested keys, in order to minimize routing
for popular items;

Furthermore, Synapse implements the following messages:

• SYNAPSE_OFFER(netIDList), issued by a gateway
node to publish the list of overlays it is connected to;

• SYNAPSE_REQUEST(key, RequestID,

message, TTL, strategy,

target[networkID], visited[networkID],

PubKey) sent by a synapse node to a gateway in order
to route a message outside an overlay;

• SYNAPSE_RESPONSE(RequestID, netID,

responseMessage) used by a gateway to return the
response messages from a foreign overlay;

• SYNAPSE_INVITE(networkID) sent to a Synapse
node to ”invite” it to join a specific overlay;

• SYNAPSE_JOIN(networkID) issued by a Synapse
node wishing to join a given overlay;

B. Routing in Synapse

Message routing can follow 3 different mechanisms:

• Synapse nodes can route a message in any of the con-
nected overlays;

• Synapses can also route a message directly to any of
the direct overlays by issuing a SYNAPSE_REQUEST

message to a gateway node in its node table;
• It is also possible to reach Indirect Overlays, i.e. overlays

not directly reachable, but the networkID of which is
known, by issuing a SYNAPSE_REQUEST message, with
the target networkIDs specified, to a random set of
gateway nodes. This engages an unstructured routing
through gateway nodes until a node connected to the
target overlay is reached;

A SYNAPSE_REQUEST message carries within itself sev-
eral parameters, amongst which the unhashed key for the
message, a RequestID (in order to identify if a message has
already passed by a gateway), a TTL parameter that defines
how many times should a message be routed to subsequent
gateways and, if necessary, a list of target networkIDs to which
the message should specifically be routed.

The choice of which, and how many overlays to select for
message routing constitutes the system’s routing strategy.

C. Routing strategies

A routing strategy consists of a set of rules that regulates the
choice of which overlays to route a message to and, to which
nodes of said overlays and when to route a message. Routing
strategies strongly depend on the application implemented on
top of the overlay and the network conditions. Here, we present
some examples of possible strategies that can be implemented
on top of a Synapse overlay:

1) n-Random Walk: a Synapse node picks n random over-
lays to which to route the request, from all of its connected
and direct overlays.

2) n-Flood: a Synapse node picks n nodes per each direct
and connected overlay. The choice of replicating a message on
the same overlay comes from the need to overcome network
partitioning by routing a request via nodes placed in different
locations of the adressing space.

3) Opportunistic routing: a Synapse can dispach a
SYNAPSE_REQUEST to another Synapse node upon reception
of a SYNAPSE_OFFER, thus having a much higher chance of
routing to an active node.

4) n-Direct routing: a Synapse routes a message directly to
a certain overlay only, by picking n Synapse nodes connected
to said overlay. If no finger to said overlays is present, the
message can be routed to random Synapse Nodes by sending

a SYNAPSE_REQUEST message with specified the target
networks list.

D. Synapse node discovery strategies

In order to reach direct overlays, a Synapse node that joins
the network needs to discover gateway nodes connected to
overlays other than his. Depending on the application scenario,
there are several mechanisms available:

1) Message embedding: In a collaborative scenario, in
which the overlay protocol messages can support additional
data, the simplest solution is to embed the list of overlays
the node issuing the message is connected to. In this way,
each Synapse node forwarding the message in the overlay, can
extract this information and update its Direct Overlay Table,
in Kademlia-like fashion.

2) Active notifications: Being notified of a transiting mes-
sage, a Synapse Node can decide to proactively send a
SYNAPSE_OFFER message to the source node, containing
its overlay list, in order to publish its presence. This is an
effective technique in non-collaborative scenarios, in which
a message source is known (e.g. iterative or semi-recursive
routing protocols).

3) Peer exchange: For those scenarios in which embedding
is not possible, and a message source is not known (due to
a fully recursive routing algorithm), a Synapse Node can still
discover other Synapses via an iterative peer exchange mech-
anism. This, however, requires an initial Synapse bootstrap
node to be contacted, in order to perform the first discovery.

4) Aggressive discovery: Aside from the above strategies,
which are generic and suitable for any overlay protocol, other
strategies can be put in place in a collaborative scenario, to
exploit the specificity of a certain protocol (e.g. a source node
list, leaf tables, neightbor cache...).

E. Synapse node structure

As shown in Figure 2, a Synapse Node instance is made up
of several components:

• The Synapse Application Adapter acts as an interface
to and from the Application layer. It serves the pur-
pose of decoupling the applicative part from the multi-
overlay logic behind by exposing an API agnostic of
the undrlying structure, processing complex queries, and
to generating the appropriate messages for the Synapse
Controller;

• The Synapse Controller is reponsible for orchestrating
multiple requests, routing messages according to the
appropriate strategy, and collecting and grouping results
coming from different overlays. It also takes care of
the Synapse overlay maintenance, by performing the
discovery of new Synapse nodes, checking their state via
ping messages and dispatching join invitations to modify
the overlay topology (see Sec.III-F). It maintains and
relies on the Direct Overlay Table (DOT) to store pointers
to gateway nodes and the Message Routing Table (MRT),
to keep track of ongoing routings. Furthermore, the Cache

Table can store values retrieved recently, in order to serve

them immediately should a new request for the same key
arrive. The Synapse Controller contacts its direct overlays
by sending ROUTE messages to the overlay sub-modules.
Each overlay sub-module, on the other hand, notifies the
Synapse Controller via a NOTIFY message every time
an overlay message is forwarded by them, or an RCP
message is received, in order to check for new gateway
nodes by examining whether or not a networkID list is
present in the message header, or to announce its own
presence via a SYNAPSE_OFFER message.

Synapse node

Synapse Controller

...

Tier 1 Application

Synapse Application Adapter

Direct Overlay
Table

Message Routing
Table

Application
Request/Response

Synapse
Request/Response

Route/Forward Route/Forward Route/Forward

Notify Notify Notify

To other
Synapse
Nodes

Chord
port

Overlay 1 Node
(Chord)

CAN
port

Overlay 2 Node
(CAN)

Kad
port

Overlay 3 Node
(Kademlia)

Request Data
Cache

Fig. 2. Structure of a Synapse Node

F. Self-organization via “social networking” primitives

In addition to Synapse messages, we propose a set of
primitives to implement overlay self-organization mechanisms.
Through the issue of a SYNAPSE_INVITE message, a
Synapse node can ask other Synapses to join one or more
overlays, in order to increase the overlay capacity, QoS or
external connectivity.

In the same way, a Synapse node can propose itself to be
a member of an overlay, with a SYNAPSE_JOIN message
addressed either to another Synapse node which is already a
member of the target overlay, or to an authentication server.

Social based primitives are particularly interesting if con-
sidered under the perspective of being able to have an overlay
”grow” or ”shrink” around application data, such as, for
example, the social graph in online social networks. They can
also be exploited to regulate the connectivity of an overlay
towards the rest of the system, by increasing the number of
gateways to said overlays, providing a flexible mechanism to
implement QoS and failure avoidance in a system.

G. Routing example

We hereby present an example of routing in a Synapse
network, using a Random Walk strategy with opportunis-

netID 1

netID 2

netID 3

S1

S2

S3

S10

Found! K1

= Overlay routing

= Synapse Request
 Synapse Response

= Synapse Offer

Get(K1)

P2P exchange

P2P exchange

Found! K1

Found! K1

P2P exchange

Get(K1)

Get(K1)

Synapse Response(K1, Val1)

Synapse Offer(S3, [1, 2, 3])

Synapse Request(K1)Synapse Response(K1, Val1)

Synapse Request(K1)

Fig. 3. Routing in Synapse

tic routing enabled. Figure 3 shows the message exchange
between nodes. For the example, we consider a DHT-like
application where chunks of data, associated with keys, can
be spread and replicated into multiple overlays. In our case,
node S1 wants to retrieve the data associated with key K1.
The following operations are involved:

1) The Application Layer on node S1 sends a GET(K1)

to the Synapse Controller via internal APIs.
2) The Synapse Application Adapter, aware of the or-

ganization of data in the system, translates it into a
MULTI_GET(K1, strategy=RANDOM.1.1) mes-
sage to the Synapse Controller, specifying the key to be
retrieved and the strategy to adopt.

3) The Synapse Controller, according to the requested 1-
Random-Walk strategy, picks 1 random overlay (netID1)
from the connected overlay list and 1 random node (S2)
from the Direct Overlay Table.

4) It routes directly a GET(Hash(K1)) message in
netID1, hashing the key with the overlay’s hash function.

5) In parallel, it generates a new RequestID and
sends a SYNAPSE_REQUEST(K1, RequestID,

TTL=1, strategy=RANDOM.1.1,

visited=[netID1], S1PubKey) to S2.
6) Upon reception of said message, S2 picks 1 random

connected overlay (netID2), avoiding netID1, to reroute
the request and decreases the TTL value. Since now
TTL=0, the request is not routed any further to other
gateway nodes.

7) During the routing in netID1, the message is
forwarded by another gateway node (S3) connected
to netID1. S3, first updates its DOT with node
S1 and its netID list embedded in the message,
then notifies S1 of its presence by sending it a
SYNAPSE_OFFER(myList=[netID1, netID2,

netID3], S3PubKey).

8) S1, upon reception of the SYNAPSE OFFER,
first updates its DOT with S3, then replies with
a SYNAPSE_REQUEST(K1, ReqID, TTL=1

RANDOM.1.1, [O1, O2], S1PubKey).
9) S3, receiving the SYNAPSE_REQUEST, picks overlay

netID3. and routes a GET(Hash(K1)). Since TTL is
now 0, the request is not routed to any other gateway.

10) Eventually, the request in netID1 will reach its destina-
tion node, and a response will be sent back to S1.

11) The same message will reach its destination in netID2

and netID3 and responses will be routed back to nodes
S2 and S3, who will then send the message response
RESP1 (containing the value associated to K1) back
to S1 via a SYNAPSE_RESPONSE(ReqID, RESP1,

O2) message, encrypted with S1’s public key.
12) Once all the responses have been gathered they are

sent up to the Application Adapter. Depending on the
application it has several possibilities, for example send-
ing back the whole dataset, randomly select one of
the retrieved values, pick the most recent or perform
a majority selection.

From this example there appear different interesting properties
of the protocol:

• By routing recursively, node S1 is not exposed in overlays
where it is not connected to.

• The key is sent out un-hashed only in the
SYNAPSE_REQUEST messages, which are encripted via
a public key mechanism.

• Routing in direct overlays takes only 2 more
hops more than if S1 was connected to them, 1
hop for the SYNAPSE_REQUEST and 1 for the
SYNAPSE_RESPONSE to travel back.

• During the routing in netID1, S1 came to discover a new
direct overlay, netID3, which then becomes a direct
overlay accessible by contacting S3.

IV. PROTOCOL IMPLEMENTATION IN OVERSIM SIMULATOR

To precisely capture the behaviour of traditional metrics of
overlay networks under controlled conditions, we implemented
our Synapse protocol in the OverSim Overlay Simulator [19].
OverSim is an overlay network simulator implemented on top
of the Omnet++ framework [20]. Its choice was dictated by
the following reasons:

• It provided a whole set of overlay protocols already
implemented and tested, such as Chord, Kademlia, Pastry,
Koorde etc., in both the iterative and recursive form.

• Being based on Omnet++, it brought with itself an
excellent configuration framework, as well as all the logic
behind it.

• It already captures relevant overlay network statistics,
such as exchanged messages, dropped packets, latencies,
and highlighting relevant information.

• Thanks to the Omnet++ framework, it is possible to run
a simulation in a cluster, using the MPI framework.

• It allows the use of different libraries to simulate the
underlay layer, includes a module to perform actual
deployment of simulation code and the exchange of
messages on a real network.

• It provides classes and methods suitable for the imple-
mentation of new overlay protocols and applications on
top, with the minimum amount of code, exposing a clear
API derived from [18].

However, the implementation of Synapse on top of OverSim
presented several challenges due to the internal architecture,
which is designed to support either one overlay, or multiple
overlays of the same type. Without going too much into
technical detail, we briefly describe how such challenges have
been overcome, as they could be of interest to anyone else
involved in the development of heterogeneous overlays inside
OverSim.

A. Extending OverSim’s overlay host

like IOverlay

Synapse.ned

SimpleUDP.ned

udpOut

appIn appOut

udpIn

extends BaseOverlay

SynapseController

udpOut udpIn ovlAppInovlAppOut

SynapseChord

udpOut udpIn appInappOut

SynapseKademlia

udpOut udpIn appInappOut

appOut appIn

(to BaseApp)

Fig. 4. Synapse OverSim modules diagram

Figure 4 shows the Synapse Controller module diagram
in Oversim. The same colors for 2 gates indicate that the
gates are connected. The controller has been implemented
as a BaseOverlay derived class, so that Tier-n modules
could see it as the only overlay module and, thus, be de-
coupled by the multi-overlay routing. However, the Synapse
Controller implements a double behaviour, with relation to
the OverSim model, acting also as a Tier-1 application
connected to the overlays’ submodules (SynapseChord,
SynapseKademlia etc.) via the ovlAppin/out gates.
In this way, it is able to control the overlays by using the
CommonAPI messages provided by OverSim, without any
changes to the overlay submodules logic.

To work around the static architecture mentioned before,
the overlay submodules have to be instantiated at runtime
during the Synapse Controller INIT phase. In addition to
allowing an extremely granular configuration of the overlays
(the initial overlay interconnection can be setup for each
individual node), manual instantiation of overlay modules
becomes necessary when implementing the social networking
logic, since a Synapse node might have to join a new overlay
at runtime.

B. Extending OverSim’s overlay modules

The goal for this implementation was to leave OverSim
overlay modules code untouched, in order not to break compat-
ibility or to generate unwanted behaviors. The only additional
operation to be implemented in each of the overlays was to
send a notification message (KBRNotify) to the Synapse
Controller each time a message was routed or an RCP call was
received. Through the use of template metaprogramming, we
managed to implement all of the required logic in a wrapper
class, SynapseOverlayWrapper that could inherit any of
the overlay classes, which are passed as parameters of the
template.

Here is the class definition for the SynapseOverlayWrapper:

template

<class BaseOverlayType=BaseOverlay>

class SynapseOverlayWrapper :

public BaseOverlayType

This allows us to create extended classes by a simple
inheritance mechanism. The SynapseChord class is defined
as follows:

class SynapseChord :

public SynapseOverlayWrapper<Chord>

Thanks to this parametrized inheritance, the SynapseOver-
layWrapper can access any attribute or protected member of
BaseOverlay, which every overlay module inherits, while
leaving the specific implementation untouched.

The simulator code is open source and it is available at
[21].

V. EXPECTED RESULTS

Synapse is still a work in progress and extensive simulations
are currently ongoing to thoroughly test the scalability and

exhaustivity in different network scenarios and with different
routing strategies, illustrating possible application uses, and
we are confident in the capabilities of our architecture.

To support that, we briefly present some results of an early
work [22], where an initial version of Synapse was imple-
mented and tested. This simulations show the performaces of
what is now called the opportunistic strategy to perform inter-
overlay routing, without the use of the Direct Overlay Table. It
can be considered as a worst-case scenario, in which peers do
not discover gateway nodes, nor perform any peer exchange.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

Sa
tis

fa
ct

io
n

ra
tio

Average connectivity of synapses

Exhaustiveness

1% of synapses
2% of synapses
5% of synapses

10% of synapses
20% of synapses
50% of synapses

Fig. 5. Lookup exhaustiveness with opportunistic routing

Figure 5 shows the routing exhaustiveness, while varying
the granularity of the network, the percentage of gateway
nodes per overlay and the average interconnection degree per
each gateway.

The figure shows that a low synapse degree (2) is enough to
achieve quasi-exhaustiveness, which is a somewhat unexpected
and seemingly good result, given in mind that we are trying to
limit the cost of each gateway node to maintain a connection
to several overlays. Furthermore, the granularity does not
significantly influence exhaustiveness when the number and
connectivity of the synapses are fixed.

Figure 6, on the other hand, shows the average latency
(measured in number of hops) observed when retrieving a key
in a random overlay. An interesting point to notice is that the
number of hops remains logarithmic when changing from a
Chord network into a Synapse network (the number of nodes
is 10000, the latency never exceeds 14). Other simulations, are
in accordance with this observation. We adress the reader to
[22] for a more detailed discussion over the results.

VI. APPLICATION SCENARIOS

We herein present some examples of distributed applications
that could sit on top of a multiple overlay structure provided
by the Synapse protocol, as well as some interesting aspects
and possibilities which emerge when thinking about possible
applications. As one can imagine, most of the examples exploit
the increase locality offered by a federated network, be it
network, geographical, social or semantic locality.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20

H
op

s

Average connectivity of Synapses

Lookup latency

1% of synapses
2% of synapses
5% of synapses

10% of synapses
20% of synapses
50% of synapses

Fig. 6. Lookup latency with opportunistic routing

A. P2P Online Social Networks

In [23] the authors describe a partitioning algorithm for the
Cassandra DHT which optimizes the key in such a way that
data related to users close in the social graph has a greater
chance of residing in the same Cassandra node.

Such an algorithm could be easily adapted to a multi-overlay
scenario based on Synapse, allowing users to share their data
in one or more DHTs, whose nodes are 1st or 2nd degree links
in their social graph, allowing for a scalable implementation
of a real P2P OSN.

B. Community-centric publish/subscribe

In [24] we described a proof of concept of a car sharing
application based on an early design of the Synapse protocol.
Such an application would allow members of a social com-
munity (e.g. school, company etc.) to share, through the use
of a Distributed Hash Table, service offerings, in this case
car rides. Through the interconnection of different DHTs, it
was possible to increase the chance of matching a demand
with its correspondent offering, by extending the queries to
communities based on geographic proximity, which are more
prone to having the same travel patterns.

C. Security and anonimity

Network federation can allow for the creation of trusted
overlays, in which data is stored only by a set of trusted
peers. Data replication across multiple overlays can lead to
more efficient strategies against data pollution, where multiple
queries for the same key can be issued in several overlays, only
to choose the value returned by the majority of the overlays.

Moreover, messages traveling in one overlay can hardly be
traced back, since a request could have always come on behalf
of a foreign node.

Potentially, in a fully recursive protocol setup, the only
message carrying the unhashed key and the source node is the
SYNAPSE_REQUEST, which, being a point-to-point message,
can be easily encrypted via a public key mechanism.

D. Database interoperability

In [25], we present another proof of concept that exploits the
Synapse protocol to allow the interconnection of distributed
digital catalogs of cultural heritage documents. In this exam-
ple, while the document was still under the control of the
owner organization, the document metadata could be shared
in several DHTs, one for each of the organizations, allowing
users to access the global data via extended queries.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we have presented a novel architecture,
the purpose of which is to enable the design of distributed
applications based on multiple interconnected overlays, as well
as to facilitate easier interconnection of existing overlays.

As we have just begun scratching the surface of all the
possibilities offered by such an approach, our further work
includes a mathematical modeling of the system, and an
extensive testing of all the routing strategies in order to be
able to accurately quantify messaging overhead, resilence to
churn and data consistency. Furthermore, we need to be able to
define a mechanism which would guarantee a minimum level
of interconnection between different overlays, i.e. to assure a
constant presence of only a minimal number of gateway nodes
within the overlays.

A study about the integration of Synapse with keywork-
based unstructured overlays is under way, and the possibility
of compiling keyword-based queries into key-based ones is
being carefully considered.

Currently, a java-based client exploiting well-tested overlay
protocol libraries, as well as simulation code on top of the
OverSim simulator [19] have been developed and are under
test.

REFERENCES

[1] R. Jimenez, F. Osmani, and B. Knutsson, “Connectivity properties of
mainline bittorrent dht nodes,” in Proceedings of IEEE P2P ’09., 2009.

[2] ——, “Sub-Second lookups on a Large-Scale Kademlia-Based overlay,”
in Proceedings of 11th IEEE International Conference on Peer-to-Peer
Computing 2011, 2011.

[3] P. Cudré-Mauroux, S. Agarwal, and K. Aberer, “GridVine: An infras-
tructure for peer information management,” IEEE Internet Computing,
vol. 11, no. 5, 2007.

[4] M. Varvello, C. Diot, and E. Biersack, “A walkable kademlia network
for virtual worlds,” in Proceedings of IPTPS, 2009.

[5] G. Urdaneta, G. Pierre, and M. V. Steen, “A survey of dht security
techniques,” ACM Comput. Surv., vol. 43, 2011.

[6] Bittorrent website. http://www.bittorrent.com. [Online]. Available:
http://www.bittorrent.com

[7] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-peer Informa-
tion System Based on the XOR Metric,” in Proc. of 1st International
Workshop on Peer-to-peer Systems, 2002.

[8] L. Cheng, R. Ocampo, K. Jean, A. Galis, C. Simon, R. Szabó, P. Kersch,
and R. Giaffreda, “Towards distributed hash tables (de)composition in
ambient networks,” in Proceedings of DSOM, 2006.

[9] L. Cheng, “Bridging distributed hash tables in wireless ad-hoc net-
works,” in Proceedings of GLOBECOM, 2007, pp. 5159–5163.

[10] G. Tan and S. A. Jarvis, “Inter-overlay cooperation in high-bandwidth
overlay multicast,” in Proceedings of ICPP, 2006, pp. 417–424.

[11] M. Kwon and S. Fahmy, “Synergy: an overlay internetworking archi-
tecture,” in Proceedings of ICCCN, 2005.

[12] P. Ganesan, P. K. Gummadi, and H. Garcia-Molina, “Canon in g major:
Designing dhts with hierarchical structure,” in Proceedings of ICDCS,
2004.

[13] Z. Xu, R. Min, and Y. Hu, “Hieras: A dht based hierarchical p2p routing
algorithm,” in Proceedings of ICPP, 2003.

[14] L. Garcés-Erice, E. W. Biersack, P. Felber, K. W. Ross, and G. Urvoy-
Keller, “Hierarchical peer-to-peer systems,” in Proceedings of Euro-Par,
2003.

[15] A. Datta and K. Aberer, “The challenges of merging two similar
structured overlays: A tale of two networks,” in Proceedings of IW-
SOS/EuroNGI, 2006.

[16] T. M. Shafaat, A. Ghodsi, and S. Haridi, “Dealing with network
partitions in structured overlay networks,” Peer-to-Peer Networking and
Applications, vol. 2, no. 4, 2009.

[17] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein, “The case for
a hybrid p2p search infrastructure,” in Proceedings of IPTPS, 2004.

[18] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards a
common api for structured peer-to-peer overlays,” in Proceedings of the
2nd International Workshop on Peer-to-Peer Systems (IPTPS03), 2003.

[19] I. Baumgart, B. Heep, and S. Krause, “OverSim: A flexible overlay
network simulation framework,” in Proceedings of 10th IEEE Global
Internet Symposium (GI ’07) in conjunction with IEEE INFOCOM 2007,
Anchorage, AK, USA, 2007.

[20] Omnet++ network simulator. http://www.omnetpp.org. [Online].
Available: http://www.omnetpp.org

[21] Synpase oversim implementation webpage. http://www-sop.inria.fr/
teams/lognet/synapseV2.0/. [Online]. Available: http://www-sop.inria.
fr/teams/lognet/synapseV2.0/

[22] L. Liquori, C. Tedeschi, L. Vanni, F. Bongiovanni, V. Ciancaglini,
and B. Marinkovic, “Synapse: A scalable protocol for interconnecting
heterogeneous overlay networks,” in Proceedings of Networking, 2010.

[23] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine(s) that could: scaling online social
networks,” in Proceedings of the ACM SIGCOMM 2010 conference on
SIGCOMM, 2010.

[24] V. Ciancaglini, L. Liquori, and L. Vanni, “Carpal: Interconnecting over-
lay networks for a community-driven shared mobility,” in Proceedings
of Trustworthly Global Computing Conference, 2010.

[25] B. Marinković, L. Liquori, V. Ciancaglini, and Z. Ognjanović, “A
distributed catalog for digitized cultural heritage,” in Proceedings of
ICT Innovations 2010, 2011.

