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Abstract

Arigatoni is a structured multi-layer overlay network providing various services with variable guarantees, and promoting an intermittent
participation in the overlay since peers can appear, disappear and organize themselves dynamically. Arigatoni provides fully decentralized,
asynchronous and scalable resource discovery; it also provides mechanisms for dealing with an overlay with a dynamic topology. This paper
introduces a nontrivial improvement of the resource discovery protocol by allowing the registration and request of multiple instances of the same
service, service conjunctions, and multiple services. Adding multiple instances is a nontrivial task since the discovery protocol must keep track
(when routing requests) of peers that accept to serve and peers that deny the service. Adding service conjunctions allows a single peer to offer

different services at the same time. Simulations show that it is efficient and scalable.
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1. Introduction

The explosive growth of the Internet gives rise to
the possibility of designing large overlay networks and
virtual organizations consisting of Internet-connected global
computers, able to provide a rich functionality of services
that makes use of aggregated computational power, storage,
information resources, etc. Arigatoni [1] is a structured multi-
layer overlay network which provides resource discovery with
variable guarantees in a virtual organization where peers can
appear, disappear and organize themselves dynamically. In a
nutshell, the main units in Arigatoni are:

e A Global Computer Unit, GC, i.e. the basic peer of the
global computing paradigm; it is typically a small device,
like a PDA, a laptop or a PC, connected through IP in
various ways (wired, wireless, etc.).
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e A Global Broker Unit, GB, i.e. the basic unit devoted to
subscribe and unsubscribe GCs, to receive service queries
from client GCs, to contact potential server GCs, to
negotiate with them services, to authenticate clients and
servers, and to send all the information necessary to allow
the client GC and the servers GCs to communicate. Every
GB controls a colony of collaborating global computers.
Hence, communication intra-colony is initiated via only one
GB, while communication inter-colonies is initiated through
a chain of GB-2-GB message exchanges whose security is
guaranteed via PKI| mechanisms. In both cases, when a client
GC receives an acknowledgment of a service request from
the direct leader GB, then the GC is served directly by the
server(s) GC, i.e. without a further mediation of the GB,
in a pure peer-to-peer fashion. Registrations and requests
are performed via a simple query language & la SQL and
a simple orchestration language a la LINDA, or BPEL.

e A Global Router Unit, GR i.e. the basic unit close to GCs
and GBs that is devoted to send and receive packets, using
the resource discovery protocol [2,3], and to forward the
“payload” to the units which are connected with this router.
The connection GB-GR-GC is ensured via a suitable API.

e A Colony is a simple virtual organization composed of
exactly one leader GB and a set (possibly empty) of
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individuals. Individuals are global computers (think it as an

Amoeba) or subcolonies (think it as a Protozoa). The two

main characteristics of a colony are:

(1) A colony has exactly one leader GB and at least one
individual (the GB itself);

(2) A colony contains individuals (GCs, or other sub-
colonies).

The main challenges in Arigatoni lie in the management
of an overlay network with a dynamic topology, the routing
of queries, and the discovery of resources in the overlay.
In particular, resource discovery is a nontrivial problem for
large distributed systems featuring a discontinuous amount
of resources offered by global computers and an intermittent
participation in the overlay. Thus, Arigatoni features two
protocols: The virtual intermittent protocols, VIP, and the
resource discovery protocol RDP. The VIP protocol deals with
the dynamic topology of the overlay, by allowing individuals
to login/logout to/from a colony. This implies that the routing
process may lead to failures, because some individuals have
logged out, or are temporarily unavailable, or because they have
been manu militari logged out by the broker because of their
poor performance or greediness [4].

The total decoupling between GCs in space (GCs do
not know each other), time (GCs do not participate in the
interaction at the same time), and synchronization (GCs can
issue service requests and do something else, or may be
doing something else when being asked for services) is a
major feature of Arigatoni overlay network. Another important
property is the encapsulation of resources in colonies. All those
properties play a major role in the scalability of Arigatoni’s
RDP.

The version V1 of the RDP protocol [2] enabled one service
at the time to be requested, e.g. a CPU or a specific file. In [3],
the protocol was enhanced (V2) to take into account multiple
instances of the same service. Adding multiple instances is
a nontrivial task because the broker must keep track (when
routing requests) of how many resource instances were found
in its own colony before delegating the rest of the instances to
the surrounding colonies.

The version V3, presented in this paper, adds multiple
services and service conjunctions. Adding service conjunctions
allows a global computer to offer several services at the same
time. Multiple services requests can be also asked to a GB; each
service is processed sequentially and independently of others.
As an example of multiple instances, a GC may ask for three
CPUs, or four chunks of 1GB of RAM, or one chunk of 10
GB of HD, or one gcc compiler; as an example of a service
conjunction, a GC may ask for another GC offering at the same
time one CPUs, and one chunk of 1GB of RAM, and one chunk
of 10 GB of HD and one gcc compiler.

If a request succeeds, then via the orchestration language
of Arigatoni (not described in this paper), the GC client can
synchronize all resources offered by the servers GCs. To sum
up, the contributions of this paper are:

e A complete description of the resource discovery protocol
RDP V3, which allows multiple instances, multiple services
and service conjunctions.

e A new version of the simulator taking into account the
nontrivial improvements in the resource discovery protocol.

e Simulation results that show that our enhanced protocol is
scalable.

The rest of the paper is structured as follows: after
Section 2 describing the main machinery underneath the
protocol features, Section 3 introduces the pseudocode of the
protocol; then Section 4 shows our simulation results and
finally Section 5 provides related work analysis and concluding
remarks. This paper is an extended and improved version of [3].

2. Resource discovery protocol RDP V3

Suppose a GC X registers to its GB and declares its
availability to offer a service S, while another GC Y issues
a request for a service S'. Then, the GB looks in its routing
table and filters S’ against S. If there exists a solution to this

filter equation, X can provide a resource to Y. For example,

s £ [CPU = Intel, Time < 10 sec] filters against S’ =

[CPU = Intel, Time > 5 sec], with attribute values Intel and
Time between 5 and 10 seconds. In RDP V2, a global
computer asks not only for a service S, but also for a certain
number of instances of S; this is denoted by SREQ : [(S, n)].
In RDP V3:

e Every GC registers in the colony with a tuple of
(services,instances) like SREG : [(S;, n;)]’="", and may
ask for a tuple like SREQ : [(S;, nj)]jzl"'k. Each service
is processed sequentially and independently of others. This
is achieved by wrapping the RDP V2 code inside a

foreach j =1...kdo...V2code...end foreach.

e A service request may also have the shape SREQ
[((N\;=;_,Si), n)], ie. the system is no longer asked to find
n occurrences of a single service, but rather n occurrences
of a conjunction of services. That is, the system has to look
for n distinct GCs, each GC being able to provide all the
services in /\ Si.

Each GB maintains a routing table T representing the
services that are registered in its colony. The table is updated
according to the dynamic registration and unregistration of
GC in the overlay. For a given S, the table has the form
T[S] = [(Pj,mj)]jzl'"k, where (Pj)jzl'"k are the address
of the direct children in the GB’s colony, and (mj)jzl'"k are
the instances of S available at P ;. For a single atomic service
request SREQ : [(S, n)], the steps are:

i=l..n

e Look for ¢ distinct GCs able to provide S in the local GB’s
colony;

e If ¢ < n, then search » < (n — ¢g) remaining instances in
local subcolonies;

e If r < (n—gq), then delegate (n — g — r) remaining instances
to the leader of the colony.

A GC receiving a service request chooses the services that
it accepts/rejects to serve; then, it generates a SRESP message
containing the lists of accepted/rejected services, and sends it
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to its GB. The response messages are then propagated back in
the overlay, following the reverse path.
A service request SREQ : [(S, n)] may arrive bottom-up to the
GB directly from its colony, or top-down from its own leader.
In both cases, the GB tries to locate n distinct GC that can
provide S. More precisely, the list [(P j.m j)]j =Lk contains all
the direct children in GB’s colony that can provide S (child P
with m ; instances of S).

The discovery protocol features two search modes, selective
and exhaustive. Let SREQ [(S,n)], and T[S] =
(P, mj)/=tk,

e The selective search mode is resource conservative at the
price of important delays in case of low acceptance rates.
The selective mode consist in:

—If Zle m; > n, then there are enough resources in the
GB’s colony to provide S. Let y < k be the smallest
index such that >>7_ m; > n, and Ziy:_ll m; < n. Then,
SREQ : [(S,m;)] is sent to all P;(i < y — 1), and
SREQ: [(S,n — Zf:_]l m;)] is sent to Py.

—If Y5, m; < n, then there are not enough GCs in the
GB’s colony to provide S. Then, SREQ : [(S, m;)] is
sent to all P; (i < k), and SREQ : [(S,n — 3% m;)] is
delegated to the GB’s leader. The rationale is that one first
try to ask for as many resources in GB’s colony, and then
ask GB’s leader for the remaining resources.

e The exhaustive mode is resource eager, but is independent
of the acceptance rate. The exhaustive search mode consists
in sending SREQ : [(S, min(m;, n))]to all P; (1 <i < k),
and to delegate SREQ : [(S,n — Zle min(m;, n))] to the
GB’s leader. The rationale is to first ask for all resources
in the GB’s colony, and then ask the GB’s leader for the
remaining resources.

A Service Response SRESP : ACC : [(S, a)], or SRESP :
REJ : [(S, d)], may follow service requests for services S.
That is, “a” GCs accepted to provide S, and “d” denied. Due
to the asynchrony of Arigatoni, more replies can arrive to the
colony’s leader (i.e. a+d > n). As for requests, there exists two
modes that tell the way the acceptances are propagated back to
the leader of the colony. In the selective reply mode, at most
the number of instances of S that were asked by the leader are
returned, whereas in the exhaustive reply mode, all acceptances
are returned.

As for acceptances, there exist two modalities that determine
the way those acceptances are propagated back to the colony’s
leader.

e In the selective search mode, the whole colony is asked
for n instances of S, at most. This implies that exactly d
instances of S must now be looked for to fulfil the original
request. Hence, one first try to find d instances of S in
other subcolonies. One then delegate the instances that could
not be found to the colony’s leader. Finally, the remaining
instances are reported back as rejected.

e In the exhaustive search mode, each sub-colony is asked
for n instances of S, at most. Hence, there may be other
subcolonies that have not replied yet, and which may reply

with enough acceptances to fulfil the request. The remaining
instances must be delegated to the colony’s leader.

3. RDP pseudo-code

In this section, we detail the pseudo-code of the RDP V3.
Five global variables are used for each Arigatoni’s interac-
tion “ask-route-reply-route-back™: Path, asked, downstream,
upstream, and SendList. Each message (SREQ or SRESP)
contains a unique identifier id, which is initially set to the ad-
dress of the GC that sends the initial SREQ message. The vari-
able Path is a simple hash “keyed” by the identifier of the mes-
sage. The other variables are double hashes which first key is
the identifier of the message, and second key is a given service
S. The intuitive meaning of those variables is listed below.

e Path{id}: Peer address: identifies the peer from which the
original SREQ message came from.

o asked{id}{S}: Integer: instances of S asked and not replied,
i.e. the remaining number of instances of S to find to fulfil
the request.

o downstream{id}{S}: Integer: instances of S asked in colony
and not replied.

o upstream{id}{S}: Integer: instances of S delegated but not
replied.

o SendList{id}{S}: (Peer address, Integer)*: the list of direct
children that are potentially able to provide S.

The pseudo-code of RDP V3 is showed in Algorithms [1-8].

Algorithm 1 Receiving SREQ;4:[(S;, n;)1'=""* from Pyom
(executed by P)

1. Path{id} < Pgom

2: for each (S,n) € SREQ do

3 if SendList{id}{S} = ¢ then
SendList{id{S} < Filter(S, Pgom)

end if

(RoutingList, remaining) < Route( Pgom, S, n, search_mode)

// To trace back the reverse route

// Filter S in P’s routing table

A

// Build a routing
// list
7 asked{id}{S} < asked{id}{S} +n

8: if remaining # 0 then // Remaining instances to find

9: if L # @ and L # Py then // L exists and is different from Py
10: Insert L:(S, remaining) in RoutingList

11: upstream{id}{S} < upstream{id}{S} + remaining

12: else // P’s colony is isolated
13: Send SRESP;4:REJ:[(S, remaining)] 10 Pgom

14: asked{id}{S} < asked{id}{S} — remaining

15: end if

16: end if

17: end for

18: for each Q:(S, m) € RoutingList do
19: Send SREQ;4:[(S,m)]to Q
20: end for

// Send SREQi g4 to every element in RoutingList

Case of service request (Algorithm I). Consider a global broker
P receiving a service request SREQ; 4 from a neighbour P,
and let L be P’s leader. The same steps are performed for each
tuple (S, n) € SREQ.

e In line 1, the originator of the request is first recorded in
Path{id}, so as to allow reply messages to follow the reverse
path.

e In line 4, the Filter function (Algorithm 6) determines the
SendList{id}{S} corresponding to service S, i.e. the list of
P’s direct children that are potentially able to provide S.
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In line 6 the Route function (Algorithm 8) builds
(RoutingList, remaining), i.e., the list of children that
will receive a particular service request, according to the
selected search mode, and the positive number of the
remaining instances for which no server has been found.
The RoutingList contains a list of mappings of the form
Q : [(S, m)] which means that we send a service request
SREQ : [(S, m)] to a neighbour Q.

In line 9, if L exists and is not the originator of the request
(to avoid routing loops), then the entry L : (S, remaining) is
appended to RoutingList (line 10), and the upstream counter
is incremented, accordingly (line 11); else (line 12, L exists
and it is the originator of the request), since servers can be
found for remaining instances of service S, a rejection reply
is sent back to the originator of the request (line 13), and the
asked counter is decremented, accordingly (line 14).

In line 19, a service request is sent to each neighbour Q
having an entry in the RoutingList.

Algorithm 2 Receiving SRESP;4:ACC:[(S;, a;)]'=!* from

Psrom (exec. by P)
1: case search_mode is
“selective” :
2 Send SRESP;4:ACC:[(S, a)] to Path{id} // Forward the SRESP
3. “exhaustive” :
4 for each (S,n) € SRESP do
5 if Pgrom = L then // Top-down request
6: upstream{id}{S} < max(upstream{id}{S} — a; 0)
7 else // Bottom-up request
8 downstream{id}{S} < max(downstream{id}{S} — a; 0)
9: end if
10: if asked{id}{S} > a then // More instances asked than accepted
11 asked{id}{S} < asked{id}{S} —a
12: acc_return < a
13: else // More instances accepted than asked
14: acc_return < asked{id}{S} —a
15: asked{id}{S} < 0
16: end if
17: case reply_mode is
“selective” :
18: Send SRESP;4:ACC:(S, a) to Parh{id} // Accepted “a” instances
19: “exhaustive” :
20: Send SRESP;4:ACC:(S, acc_return) to Path{id} // Accepted
// “acc_return” instances
21: end case
22: end for
23: end case

Case of service response (Algorithms 2, 3). Consider a
global broker P receiving a reply message SRESP;4q from
a neighbour Pgom. The operation of the resource discovery
algorithm is explained hereafter. The same steps are performed
for each tuple in SRESP.

e Acceptance (Algorithm 2). For each (S,a) € SREQ, let

SRESP;gq4 : ACC : [(S, a)] arrive from Pgon at P, ie. “a”
global computers in P’s colony accepted to provide S.

If the selective search mode is used to route the original
service request SREQiq4 : (S, n), issued by Path{id}, then
the whole colony is asked for at most n instances of S.
Hence, no more than n acceptances may arrive from P’s
colony. Thus, the reply message is simply forwarded back
to Path{id} (line 2).

If the exhaustive search mode is used, then each child
is asked for at most n instances of S. Hence, it is possible
that a number of acceptances higher than n arrives from P’s

Algorithm 3 Receiving SRESP14:REJ:[(S;, d;)]'=!* from

l:>from

(exec. by P)

1:

=

42:

if Pgrom = L then // Return rejections
Send SRESPi4:REJ:[(S, d)] to Path{id}
asked{id}{S} < asked{id}{S} —d
upstream{id}{S} < upstream{id}{S} — d
else
case search_mode is
“exhaustive” :
for each (S,n) € SRESP do
downstream{id}{S} < max(downstream{id}{S} — d; 0)
if asked{id}{S} < downstream{id}{S} + upstream{id}{S} then
// Fewer instances asked than down/upstream’ed
Wait for more replies from other children
else // More instances asked than down/upstream’ed
remaining <asked{id}{S}—downstream{id}{S}—upstream{id}{S}
if L ¢ and L # Path{id} then
upstream{id}{S} < upstream{id}{S} + remaining
Send SREQi4:(S, remaining) to L
else
asked{1d}{S} « asked{id}{S} — remaining
Send SRESP; 4:REJ:(S, remaining) to Path{id}
end if
end if
Remove Pf.om from SendList{id}{S}
end for
“selective” :
for each (S, n) € SRESP do
Remove Pfom from SendList{id}{S}

// Retry at other children or delegate

// Try to delegate or reject

// Try other children, delete or reject

// Don’t send requests to Pgom
// anymore
(RoutingList, remaining) < Route(Pgom, S, d, search_mode)
if remaining # 0 then // Still remaining instances to treat
if L ¢ and L # Py, then /7 L exists and is different from Py
Insert L:(S, remaining) in RoutingList
upstream{id}{S} < upstream{id}{S} + remaining
else // P’s colony is isolated
Send SRESP4:REJ:(S, remaining) to Path{id}
asked{id}{S} < asked{id}{S} — remaining
end if
end if
end for
for each Q:{(S, ¢)} € RoutingList do
Send SREQi4:[(S, )]to Q // Send an SREQ for every element in
// RoutingList
end for
end case
end if

colony. To do this, counters asked, upstream, downstream

and acc_return are updated, accordingly (lines 6-15).

The selective reply mode simply replies back to Path{id}
with a acceptance instances (line 18), while the exhaustive
reply mode replies with acc_return instances (line 20).
Rejections (Algorithm 3). For each (S,d) € SREQ, let
SRESPiq4 : REJ : [(S,d)] arrive from Pgom at P, ie.,
“d” global computers in P’s colony refused to provide S.
This implies that all global computers in P’s colony have
received a request for a service S.

If the sender of the message is the leader L, then no
other potential servers for the d instances of S can be found.
Consequently, the rejection message is simply forwarded
back (line 2), and counters asked and upstream are updated,
accordingly (lines 3 and 4).

If L is not the sender of the rejected message, then there
may be other potential servers in the colony or in other
surrounding colonies. The operation of the protocol depends
on the search mode that is used.

— (exhaustive search mode) Then there are no other
potential servers in P’s colony but there may be in other
surrounding colonies. Hence, the number of instances of
S that need to be found to fulfill the request is first
determined.
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If asked < downstream + upstream (line 9), then
there are enough potential servers in the colony or in
surrounding colonies that have not replied yet, to fulfil the
request. Consequently, we simply wait for more replies
(line 11).

In contrast, if asked > downstream + upstream, then
one looks for more potential servers in order to fulfil the
request. Then, there are (asked — downstream — upstream)
of them to be found (line 13). As said before, servers
may be found by delegating to the leader L. Hence, the
latter receives a request for the remaining instances of S,
if possible, (line 16), or a rejection is sent back to the
original sender of the request (line 19). The upstream or
asked counters are updated, accordingly (lines 15 and 18).

— (selective search mode) Then there may be other potential
servers in P’s colony. The process is the same as in
Algorithm 1, except that one do not consider children
that have already received a request (line 22,24). For
that purpose, one use the SendList that is originally
created by the Filter function (during the processing of
the original service request message), and produce another
RoutingList with the Route function (line 27).

Finally, one proceeds as in Algorithm 1 (lines 28—41).

Algorithm 4 Receiving SREQ:[(S;, 1)] from L (executed by
aGO)

1. foreachi =1...kdo
2: if accept then
3 Acc appﬂd S;
4 end if

5. end for ‘

6 Send SRESP:ACC:[(S;, 1)]'€4<C to L
7: Send SRESP:REJ:[(S;, 1)1 #A<¢ to L

Algorithm 5 Receiving SRESP:ACC:[(S, a)] from L
cuted by a GC)

1: Initiate P2P negotiation with GCs (embedded in message)

(exe-

RDP embedded in GCUs (Algorithms 4, 5). We show the cases
of receiving a service request and a positive service response.
The case of negative service response is trivial since the GC do
simply nothing. Note that each reply message is formally of
the form SRESP : ACC : [(S, P))]'='* where the P; are the
GCs that accepted to provide S (the same for rejections). Those
algorithms are quite intuitive and need not be commented.

Algorithm 6 The Filter(S, Pgom) function for RDP V2

1. for each entry 7[S'] = [(P‘,-,n‘,-)]/'=1"'k in 7 do
2 if S filters S’ then

3 for each j =1...k suchthat P; # Pgom do

4: SendList{id}{SHP ;} < SendList{id}{SH{P;} +n; // Add/update
// SendList{1d}{S}{P ;}

5: end for

6: end if

7. end for

8: return SendList{id}{S}

The filter function for V2 builds the SendList{id}{S}
corresponding to the request id for a service S, i.e. the
direct list of P’s children that are potentially able to serve

the request for S coming from Pggm. The function parses
all the services in the routing table, accordingly. The Filter
function for V3 enables service conjunctions and for this it
has to be modified. For a service request of the form SREQ :
[((A\;—;_,,Si),n)], the system is no longer asked to find n
occurrences of a single service, but rather n occurrences of a
conjunction of services. That is, the system has to look for n
distinct GCs, each GC being able to provide all the services in
/i1 Si. A conjunction of services is treated atomically, i.e.
as a single service S. Both algorithms are quite intuitive and
they are are described in Algorithms 6 and 7.

The Route function of Algorithm 8 builds RoutingList,
i.e., the list of neighbors that ask for a particular service,
according to the selected search mode; it has the form {(P; :
(S, ni))}izl"‘h, that is neighbors P; will receive a request for
n; instances of S. The function also returns the remaining
instances for which no server has been found.

4. Protocol evaluation

The actual Arigatoni’s topology is tree-based with a routing
complexity of O(logN) (N being the number of nodes).
However, in each GB, an extra complexity is required in order
to solve the filter equation between the service request and
the routing table 7 containing the mapping between peers and
resources; this complexity is usually linear in the size of S.

To assess the effectiveness and the scalability of the protocol,
we have conducted simulations using large numbers of units
and service requests. For lack of space, we only present the
results that correspond to the new features of the protocol,
namely, the ability to specify multiple instances of a service,
service conjunctions, and multiple services.

We have generated a network topology of 103 GBs,
using the transit-stub model of the Georgia Tech Internetwork
Topology Models package [5], on top of which we added
the Arigatoni overlay network. We considered a finite set of
services S ... S, of size r = 128, with an exact filtering policy
(i.e., S; filters S; and no other services), and we defined the
overlap interval 1 < L < 128, as the interval of indices inside
which services filter each other, that is, for all (i, j) € L2, S;
filters against S;. If L = 128, then all services filter each other;

Algorithm 7 The Filter(S = (A,_, , Si). Pirom) function for

RDP V3
1: foreachi =1...ndo
2 tmp < 0 // Auxiliary vector
3 for each entry 7[S'] = [(P;, nj)]-/=l"'k in7 do
4 if S; filters S’ then // Handle all conjunctions
5 for each j = 1...k such that P # Pgoy do
6: mmp[j] < tmp[j1+n
7: end for
8: end if
9: end for

10: if SendList{id}{S} = then
11: SendList{id}{S} « tmp

12: else

13: foreach j =1...k do

14: SendList{id{{SHP j} = min(SendList{id}{SHP }, tmpl j1)
15: end for

16: end if

17: end for

18: return SendList{id}{S}
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Algorithm 8 Route(Pgom, S, n, search-mode)

I: remaining < n

2: RoutingList < (

3. for each (Q, f) € SendList{id}{S} do
4 if Q = Pfop or Q = Parh{id} then

5 continue // Go to next iteration in loop
6: end if
7 case search_mode is
“exhaustive” :
8: ifn > f then // More instances asked than offered
9: Insert Q:(S, f) in RoutingList
10: remaining < remaining — f
11: downstream{id}{S} < downstream{id}{S} + f
12: Remove (Q, f) from SendList{id}{S}
13: else // More instances offered than asked
14: Insert Q:(S, n) in RoutingList
15: remaining < 0
16: downstream{id}{S} < downstream{id}{S} +n
17: f<f—n
18: end if
19: “selective” :
20: if remaining > f then // More instances asked than offered
21: Insert Q:(S, f) in RoutingList
22: remaining < remaining — f
23: Remove (P, f) from SendList{id}{S}
24: else // More instances to offer than asked
25: Insert Q:(S, remaining) in RoutingList
26: f < f — remaining
27: remaining < 0
28: end if
29: if remaining = 0 then // No more instances to treat
30: break // Break loop
3 end if
32 end case
33: end for

34: return (RoutingList, remaining)

if L = 1, then each service only filters with itself. At each GB,
we added a number of GCs chosen randomly between zero and
100.

At each GB, we added a random number of GCs chosen
uniformly at random between zero and 100. To simulate
subscription load, we then randomly registered at each GC each
service with a probability o denoting the global availability of
services, or as the density of population of GCs (since the more
the number of GCs, the more likely it is that a given service is
provided). The routing tables were updated, accordingly.

We then issued 50,000 service requests at GCs chosen
uniformly at random. Each request contained either a certain
number of instances | of a service, or one instance of a
conjunction of services, also chosen uniformly at random. Each
service request is then handled by the RDP V3. We used a
service acceptance probability of & = 75%, which corresponds
to the probability that a GC, receiving a request for a S (and
offering S), accepts to provide it.

Upon completion of all the requests, we measured for each
GB its load as the number of requests (messages) it received.
We then computed the average load as the average value over
the population of GBs in the system. We also computed the
maximum load as the maximum value of the load over all the
GBs in the system.

We computed the average and maximum load fractions as
the average and maximum loads divided by the number of
requests. The average load represents the average load of a
GB due to the completion of the n requests. The average load
fraction represents the fraction of requests that a GB served,
on average. The maximum fraction represents the maximum
fraction of the requests that a GB served. Since a GB receives

at most one request message corresponding to a given service
request, the average load fraction can be seen as the fraction of
GBs in the system involved in a service request, in average.

We computed the average service acceptance ratio as
follows. For each GC, we computed the local acceptance
ratio as the number of service requests that yielded a positive
response (i.e. the system found at least one GC), over the
number of service requests issued at that GC. A service request
that contained multiple instances of a service counts as a
positive response only if the system found as many GCs as the
number of instances specified in the request.

We then computed the average acceptance ratio as the
average value over the number of GC (that issued at least one
service request). Fig. 1(a) shows the influence of the number
of instances | in service requests on the average and maximum
load fraction and on the average success rate. It is obtained with
a value of p of 0.12%. Unsurprisingly, we observe that asking
for more instances of a service requires more resources from
the system. Indeed, for each instance, the system tries to find a
different GC able to provide the service. We observe that low
level GBs participate more, since there are more delegations.
For values | higher than seven, the average and maximum load
fractions stabilize, as the average success rate keeps decreasing;
this means that there are not enough resources in the system
to completely fulfil the request (i.e. not enough GCs able to
provide the requested service).

Fig. 1(b) shows the influence of the number of services in
a conjunction. It is obtained with a value of p of 3%. The
phenomenon and its explanation is mostly similar to that of
Fig. 1(a), except that it happens at a much greater scale. Indeed,
the system must find a GC that can provide (and accepts) all
the services in a conjunctive service request, which requires to
probe a much greater portion of the network than if a single
service is requested.

5. Related work and conclusions

Many technologies, algorithms and protocols have been
proposed recently for resource discovery. Some of them focus
on Grid or P2P oriented applications [6], but none targets
the full generality as Arigatoni does. Indeed, Arigatoni deals
with generic resource discovery for building an overlay network
of global computers, structured in a virtual organization of
variable topology, with clear distinct roles between leader GBs
and individuals (GCs or subcolonies).

5.1. Discussion on closest overlay architectures (from [7])

The main challenges of “pervasive computing” are how to
build an overlay network with dynamic topology, and how to
route queries and discover resources efficiently.

In an overlay network, any message is routed through the full
overlay; as such, the topology adopted in the overlay strongly
affects routing algorithms and their complexity. The overlay
is built on top of the physical one, and, thus, two neighbour
nodes in the overlay network may be many links apart in
the physical network. The Arigatoni topology is a dynamic
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Fig. 1. Average and maximum load fraction, and average success rate w.r.t. (a) number of instances (b) number of services in conjunction.

hierarchical n-layer tree. To assist lookup, structured overlays
map (key of) data item to nodes (our GBs). Hence, the mapping
is usually done through hashing the key space of the data
item to the id space of nodes. In Arigatoni, routing tables
denoting the set of resources are stored in GBs; thus, each
GB maintains a partition of the data space. When a GC asks
for a resource, the query is filtered against the first direct GB’s
routing table; in case of filter-failure, the query is recursively
forwarded to the direct super-GB. Any answer of the query
must follow the reverse path. Thus, lookup overhead reduces
when a query is satisfied in the current colony. Most structured
overlays guarantee lookup operations that are logarithmic in the
number of nodes. To improve performance of lookup, caching
and replication of either data, search paths or both is possible.
Besides improving routing, replication assists in providing load
balancing, improves fault tolerance and the durability of data
items.

In the literature, there are essentially the following types of
overlays: structured (tree, ring or grid), unstructured, hybrid
overlays (a combination of the two above), and multi-layer (or
n-layer) overlays. Arigatoni falls in the latter category that is
widely used in many P2P systems.

In a nutshell, in a n-layer overlay network, the responsibility
assigned to individuals differs (think of the different roles
between GBs and GCs), since super-peers (GBs) serving as a
server for a subset of all peers. Ordinary peers (GCs) submit
queries to their super-peers and receive results from it. Super-
peers are also connected to each others; they route messages
over the overlay network, submit, delegate and answer queries
on behalf of their peers. This structure is replicated recursively,
creating a n-layer topology, where peers become super-peers
with decreasing responsibilities.

Typical issues in n-layer overlays are the size of each
colony, and the internal coherence of the resources offered and
requested by each colony. Typical bottlenecks of n-layers are
reliability, service availability (related to few points of failure)
and load balancing. Classical solutions to cope with these
problems are adding redundancy at the broker-layer.

Historically, the most related tree topologies are BATON [8]
and P-GRID [9], whereas the closest n-layer topologies are the
one of Canon [10] and Coral [11]. We summarize the closest
topologies.

e (BATON) is a balanced binary tree that features a left and
a right routing table, both contained in each node (denoted
by a single logical id). Nodes may join or leave the network
at any time, provided the tree remains balanced. The node
receiving a join can forward the join towards a node which
has less children or which is a leaf node. This implies that a
GC can become a GB. Leaving the network is constrained
to not breaking the balanced tree unless finding a substitute.
As such, load balancing can be costly.

e (P-GRID) is a distributed dynamic binary search tree, such
that the search space is partitioned between peers. The
salient feature of P-GRID is the separation of concerns
between id and position in the network. All peers maintain a
partial routing table of the search space, that negotiated with
the closest peers. Multiple peers can be responsible for the
same path, resulting in a non uniqueness of routing and a
robustness under peer failure.

e (Canon) is a multi-layer overlay where routing is based on
a hierarchical DHT. As in Arigatoni, the search space is
partitioned into domains; in contrast, routing inside a domain
is DHT-based, and topology is static.

e (Coral) is another hierarchical DHT. The search space is
partitioned into three clusters, based on latency; a regional
cluster, a continental cluster and a planet-wide cluster. It
also comes with algorithm for self-organizing, merging and
splitting clusters, to ensure acceptable diameters.

5.2. Conclusions

In this paper, we describe the version V3 of Arigatoni’s
generic resource discovery protocol. The new improved
protocol RDP presented in this paper allows for multiple
instances, multiple services, and service conjunctions. Other
main achievements are the complete decoupling between the
different units in the system, and the encapsulation of resources
in local colonies, which enable Arigatoni to be potentially
scalable to very large and heterogeneous populations.

The reliability of the RDP V3 itself, although desirable, is
of lesser importance, given the fact that service provision is not
guaranteed at all in Arigatoni (indeed it is not a requirement). In
other words, when a GC issues a service request, it is possible
that no individuals are found for some of the services included
in the request. This happens, for example, if those services have
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not been declared by any GCs in the system, or if all the GCs
that have declared themselves as potential servers refuse those
services.

However, at the cost of memory and bandwidth require-
ments, it is still possible (future work) to implement reliable re-
source discovery by using a reliable transmission protocol (e.g.
TCP), an applicative acknowledgment scheme in combination
with a retransmission buffer, and persistent data storage, and
leader’s replication.

As part of our ongoing research, we are also working on
a more complete mathematical study of our system, based on
more elaborate statistical models and realistic assumptions,
as well as the possibility to include hierarchical DHT in
addition to the routing tables. The possibility to change the
Arigatoni topology from a hierarchical tree to a graph is also
intriguing. We are currently working on the implementation
of a actual prototype and the subsequent deployment on the
PlanetLab experimental platform [12], and/or on GRID5000,
the experimental platform available at the INRIA [13].
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