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Abstract

Arigatoni is a lightweight overlay network that deploys theGlobal Computing Paradigm
over the Internet. Communication for over the behavioral units of the overlay is performed
by a simpleresource discovery protocol(RDP). Basic Global Computers Units (GC) can
communicate by first registering to a brokering service and then by mutually asking and
offering services.

Colonies and communities are the main entities in the model. A colony is a simple virtual
organization composed by exactly one leader and some set (possibly empty) of individuals.
A community is a raw set of colonies and global computers (think it as asoupof colonies
and global computer without a leader).

We present an operational semantics via a labeled transition system, that describes the
main operations necessary in theArigatoni model to perform leader negotiation, join-
ing/leaving a colony, linking two colonies and moving oneGC from one colony to an-
other. Our formalization results to be adequate w.r.t. the algorithm performing peer log-
ging/delogging and colony aggregation.

1 Introduction

Effective use of computational grids viaP2P systems requiresup-to-dateinfor-
mation about widely-distributed resources. This is a challenging problem for very
large distributed systems particularly when taking into account the continuously
changing state of resources. Discovering dynamic resources must be scalable in
number of resources and users and hence, as much as possible, fully decentral-
ized. It should tolerate intermittent participation and dynamically changing sta-
tus/availability.
The Arigatoni Model is suitable to deploy, via theInternet the Global Com-
puting Communication Paradigm, i.e. computation via a seamless, geographically
distributed, open-ended network of bounded resources by agents acting with partial
knowledge and no central coordination. The model can be deployed firstly in an
intranet and further from intranet to intranet by overlapping anOverlay Network
on the top of theactual network. An overlay network is an abstraction on top of
a global network to yield another global network. Overlay examples areresource
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discoveryservices (notion of resource sharing in distributed networks), search en-
gines (abstraction of information repository), or systems of trusted mobile agents
(notion of autonomic, exploratory behavior) [5].

TheArigatoni model provides the necessary basic infrastructure necessary for
a real deployment of the overlay network itself. Moreover, our work abstracts on
which kind of resourcethe overlay network is playing with; pragmatically speaking,
this work could be useful forGrid, or for distributed file/band sharing, or for more
evolved scenarios like mobile and distributed object-oriented computation.

TheArigatoni communication model is organized incolonygoverned by a clear
leader. Global computers belong to only one colony, and requests for resources
located in the same or in another colony traverse a broker-2-broker negotiation
whose security is guaranteed viaPKI mechanisms.

The model is suitable to fit with various global scenarios from classicalP2P
applications, like file or band sharing, to more sophisticatedGrid applications, like
remote and distributed big (and small) computations, until possible, futuristicmi-
gration computations, i.e. transfer of a non completed local run in anotherGC, the
latter scenario being useful in case of catastrophic scenarios, like fire, terrorist at-
tack, earthquake etc., in the vein of Global Programming Languagesà la Obliq or
Telescript.
The Units in theArigatoni model are:

• A Global Computer Unit,GC, i.e. the basic peer of the global computer para-
digm; it is typically a small device, like aPDA, a laptop or aPC, connected via
IP, unrelated to the media used, wired or wireless, etc.

• A Global Broker Unit,GB, is the basic unit devoted to register and unregister
GCs, to receive service queries from clientGCs, to contact potential servants
GCs, to negotiate with the latter the given services, to trust clients and servers,
and to send all the information necessary to allow the clientGC and the servants
GCs to communicate. EveryGB controls acolony (denoted byCOL) of col-
laborating global computers. Hence, communication intra-colony is initiated via
only oneGB, while communication inter-colonies is initiated through a chain
of GB-2-GB message exchanges. In both cases, when a clientGC receives an
acknowledgment for a request service (with related trust certificate) from the
properGB, then the client will enjoy the service directly from the servant(s)
GC, i.e. without a further mediation of theGB itself.

• A Global Router Unit,GR is a simple basic unit that is devoted to send and
receive packets using a proper Resource Discovery Protocol [3] and to forward
the “payload” to the units which are connected with this router. EveryGC and
everyGB has one personalGR, with which it communicates via a suitableAPI.
The connection between router and peer is ensured via a suitableAPI.

Colonies and Individualsare the main entities in the model. A colony is a sim-
ple virtual organization composed by exactly one leader and some set (possibly
empty) of individuals. Individuals are global computers (think it as anAmoeba),
or (sub)colonies (think it as aProtozoa). A formal definition of a colony is given
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{GB} is a (small) colony

{GB1, GC1 . . . GCm} is a colony

{GB1, GC1 . . . GCm,

subcolony︷ ︸︸ ︷
{GB2, GCm+1 . . . GCm+n}}

is a colony (it contains a subcolony)

{GB1, GC1 . . . GCm, GB2, GCm+1 . . . GCm+n}

is not a colony (twoGBs)

{GB3,

subcolony︷ ︸︸ ︷
{GB1, GC1 . . . GCm},

subcolony︷ ︸︸ ︷
{GB2, GCm+1 . . . GCm+n} }

is a colony (with two subcolonies)

{
subcolony︷ ︸︸ ︷

{GB1, GC1 . . . GCm},
subcolony︷ ︸︸ ︷

{GB2, GCm+1 . . . GCm+n}}

is not a colony (no leader in the toplevel colony) but it is a community

Figure 1. Some Colony’s Examples

using this simpleBNF syntax:

COL ::= {GB} | COL ∪ {GC} | COL ∪ {COL }
The two main characteristics of a colony are:

(i) a colony hasexactlyone leaderGB and at least one individual (theGB itself);

(ii) a colony contains individuals (someGC’s, or other colonies).

Some examples of colonies are shown in Figure1.
A Community (denoted byCOM) is a raw set of colonies and global computers
(think it as asoupof colonies andGC without a leader). A formal definition of
community is given using theBNF syntax:

COM ::= ∅ | COM ∪ {GC} | COM ∪ {COL }
A simple example of a community is shown in Figure1. As one can see from the
abstract syntax, a colony is a community but the reverse is not true.
Resource Discoveryis one of the key issues in building overlay computer net-
works. Individuals (global computers) can register and unregister to a colony. The
same holds true for the subcolonies that, in turn, can (un)register to another colony.
The main difficulty in (un)registering is dealing withAdministrative Domains: as
well stated in the seminal Cardelli-Gordon’s paper on Mobile Ambients [2]:

“In the early days of theInternet one could rely on a flat name space given byIP
addresses; knowing theIP address of a computer would very likely allow now to
talk to that computer in some way. This is no longer the case: firewalls partition
theInternet into administrative domains that are isolated from each other except
for rigidly controlled pathways. System administrators enforce policies about
what can move through firewalls and how [...]”
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(Un)Registering Modalities. There are essentially two ways of registering to a
GB leader of a colony, the latter being not enforced by theArigatoni model:

• registration of an individual (GC or colony) to aGB leader of a colony belonging
to the samecurrent administrative domain;

• registration viaremote tunnellingof an individual (GC or colony) to anotherGB
leader of a colony belonging to adifferent administrative domain. In this case,
we say that the individualsde factoare working in local modein the current
administrative domainand in global modein another administrative domain.

In addition to this remote registration, the same individual can still register
to theGB leader of the colony belonging to the same administrative domain in
which it resides. As such, in its global mode, it will belong to the colony of the
current administrative domain, and, in its local mode (via remote tunnelling), it
will belong to another colony in another administrative domain.

Counterwise, an individual can unregister according to the following simple rules
d’étiquette:

• unregistration is possible only when there are no pending services demanded or
requested to the leaderGB of the colony it belongs: it must wait for an answer of
the leaderGB or for a direct connection of theGC requesting the already offered
service, or wait for a timeout. The colony accepts the unregistration only if the
colony itself will not becorrupted;

• (as a corollary of the above) aGB cannot unregister from its own colony,i.e.
it cannot discharge itself. However, for fault tolerance purposes, aGB can be
faulty. In that case, theGCs will unregister one after the other and the colony
will “disappear”;

• once aGC (e.g. a laptop) has been disconnected from a colony belonging to any
administrative domain, it can migrate in another colony belonging to any other
administrative domain;

Summarizing, the original contributions of the paper are:

• a formalization of theVirtual Intermittence Protocol(VIP) in terms of a labeled
transition system; in our modest opinion, this is the first attempt to capture the
behavior of an intermittence protocol using formal methods and a labeled tran-
sition semantics mathematical tool. Advantages of this approach is that rely on
robust mathematical basis as languages and concurrency theory. As such, formal
and mechanical proof on protocols related with overlay networks is feasible.

• a complete domain independenceof the model w.r.t. other models in the litera-
ture. In other wordsArigatoni completely abstracts of its use,i.e. Grid, file/band
sharing, web services, etc.

• some simulation results of the intermittent participation for a given network
topology.
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2 Units in a Nutshell

A complete description of all the functional units of theArigatoni model is given
in [1]; this section is an overview.

2.1 Global Computer Unit

In theArigatoni model, aGlobal Computer Unit (GC) is a cheap computer device.
The computer should be able to work inStandalone Local Modefor all the tasks
that it can do locally or inGlobal Mode, by first registering itself in theArigatoni
overlay, and then by making a global request to the overlay network induced by the
model. Figure2 shows theArigatoni model. TheGC must be able to perform the
following tasks:

• Discover, upon the physical arrival of theGC in a new colony, the address of a
GB, representing theleaderof the colony;

• Register/Unregister on theGB which manages the colony;
• Request some services to itsGB, and respond to some requests from theGB;
• Upon reception from aGB of a positive response to a request, be able to connect

directly with the servant(s)GC in aP2P fashion, and offer/receive the service.

2.2 Global Broker Unit

TheGlobal Broker Unit (GB) performs the following tasks:

• Discover the address of anothersuperGB, representing thesuperleaderof the
supercolony, where theGB’s colony is embedded. We assume that everyGB
comes with its properPKI certificate.
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• Register/Unregister the proper colony to theleaderGB which manages the su-
percolony;

• Register/Unregister clients and servantsGC in its local base of global computers.
By definition everyGC can register toat mostoneGB;

• Acknowledge the request of service of the clientGC;
• Discover the resource(s) that satisfies theGC’s request in its local base (local

colony) ofGC;
• Delegate the request to anotherGB governing another colony;
• Perform a combination of the above two actions;
• Deal with allPKI intra- and inter-colony policies;
• Notify the clientGC (or the delegatingGB) that some servant(s)GCs haveac-

ceptedto serve the request, or just notify afailure of the request.

Every GC in the colony sends its request to theGB which is the leader of the
colony. There are different scenarios concerning the demanded resource for service
discovery, namely:

(i) The broker finds all the resource(s) needed to satisfy the requested services
of theGC client locally in the intranet. Then it will send all the information
necessary to make theGC client able to communicate with theGC servants.
This notification will be encoded using theRDP protocol. Then, theGC client
will directly talk with GC servant(s), and the latter will manage the request,
as in classicalP2P systems;

(ii) The broker did not find all the resource(s) in its local intranet. In this case it
will forward and delegate the request to another broker. For that purpose, it
must first register the whole colony to another supercolony;

(iii) A combination of steps 1 + 2 could be envisaged depending on the capability
of theGB to combine resources that it manages and resources that come from
a delegateGB;

(iv) After a fixedtimeout period, or when all delegateGBs have failed to satisfy
the delegated request, the broker will notify theGC client of therefusal of
service.

2.3 Global Router Unit

The last unit in theArigatoni model is theGlobal Router Unit (GR). The GR
implements all the low-level network routines, those which really have access to
the IP network. It is the only unit which effectively runs theRDP protocol. The
GR can be implemented as a small daemon which runs on the same device as aGC
or aGB, or as a shared library dynamically linked with aGC or aGB. TheGR is
devoted to the following tasks:

• Upon the initial startup of aGC it helps to register the unit to aGB;
• It checks the well-formedness and forwardsRDP packets across the overlay
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toward their destinations.RDP packets encode the requests of aGC or a GB
in theArigatoni network;

• Upon the initial startup of aGB it helps the unit with several otherGBs that it
knows or discovers.

2.4 Unit Semantics

The formal semantics of the three formal units was first presented in [1]: Figures
3 and4 show the pseudo code embedded inside aGC and aGB. We write inblue
the code not essential to the semantics of peer discovery and the virtual (un)growth
of colonies, and we highlight inredthe code which is essential.

inparallel
while true do // Registration loop

GBU = Discover( MyCard )
case (GlobalMode,RegMode) is

( true , false ):
ServiceReg( MyCard ,GBU,LOGIN)

( false , true ):
ServiceReg( MyCard ,GBU,LOGOUT)

otherwise : // Do nothing
endcase

endwhile
with

while true do // Shell loop
Data = ListenLocal()
Response = LocalServe(Data)
case (Response,GlobalMode,RegMode) is

( login ,_,_): // Open global mode
GlobalMode = true

( logout ,_,_): // Close global mode
GlobalMode = false

( true , true ): // Ask to the GBU
MetaData = PackScenario(Data)
ServiceRequest( MyCard ,GBU,MetaData)

otherwise : LocalReply(Response)
endcase

endwhile
with

while RegMode do // Global GBU listening
MetaData = ListenGBU()
case MetaData.CMD.SERVICE is

SREG: // GBU responds if it accepts my registration
if CanJoin(MetaData)
then RegMode = true
endif

if CanLeave(MetaData)
then RegMode = false
endif

SREQ: // GBU is asking for some resources
if CanHelp(MetaData)
then ServiceResponse( MyCard ,GBU, ACC)
else ServiceResponse( MyCard ,GBU, REJ)
endif

SRESP: // GBU responds if it found some resources
if CanServe(MetaData)
then Peers = GetPeers(MetaData)

Response = GlobalServe( MyCard ,
Peers,MetaData)

ServiceResponse( MyCard ,GBU, DONE)
LocalReply(Response)

else LocalReply( fail )
endif

endcase
endwhile

with
while RegMode do // Global GCU listening

MetaData = ListenGCU()
if Verify(MetaData)
then Data = UnPackScenario(MetaData)

Response = LocalServe(Data)
if Response == fail
then ServiceResponse( MyCard ,GBU, ERR)
else ServiceResponse( MyCard ,GBU, DONE)

SendResult( MyCard ,GCU,Response)
endif

else ServiceResponse( MyCard ,GBU, SPOOF)
endif

endwhile
endinparallel

Figure 3.GC pseudocode

3 Formal Semantics of the Virtual Organization

Let {. . .} denotes a colony and not necessarily an administrative domain (like in
Cardelli-Gordon ambients), and let every individual come with its ownIP address
and security certificate. Let{GB, . . .} denotes a colony with its leader,e.g.

{GB, COL1, COL2, GC1, GC2, . . .}
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inparallel
while true do // Registration loop

GBU = Discover( MyCard )
case (GlobalMode,RegMode) is

( true , false ):
ServiceReg( MyCard ,GBU,LOGIN)

( false , true ):
ServiceReg( MyCard ,GBU,LOGOUT)

otherwise : // Do nothing
endcase

endwhile
with

while true do // Shell loop
Data = ListenLocal()
Response = LocalServe(Data)
case (Response,GlobalMode,RegMode) is

( login ,_,_): // Open global mode
GlobalMode = true

( logout ,_,_): // Close global mode
GlobalMode = false

( fail , true , true ): // You ask for you
MetaData = PackScenario(Data)
ServiceRequest( MyCard , MyCard ,MetaData)

otherwise : LocalReply(Response)
endcase

endwhile
with

while true do // Intra-colony listening
MetaData = ListenPeer()
PushHistory(MetaData)
case MetaData.CMD.SERVICE is

SREG: // A Peer is asking for (un)registration
Update(Colony,MetaData)

SREQ: // A Peer is asking for some request
SubColony = SelectPeers(Colony,MetaData)
if SubColony == {} // Broadcast inter
then

ServiceRequest( MyCard ,GBU,MetaData)
endif

foreach Peer in SubColony do
// Broadcast intra

ServiceRequest( MyCard ,Peer,MetaData)
endforeach

SRESP: // A GCU responds to a request
Sort&PushPeers4Id(MetaData)

endcase
endwhile

with
while true do // Spooling Peers4Id

foreach (Id,Peers) in Peers4Id do
if Timeout(Id)
then ServiceResponse( MyCard ,{}, NOTIME)
else if Satisfy(Peers,History(Id))

then
ServiceResponse( MyCard ,

GetBestPeers4Id(Id),
DONE)

endif
endif
PopPeers4Id(Id)

endforeach
endwhile

with
while RegMode do // Inter-colony listening

MetaData = ListenGBU()
PushHistory(MetaData)
case MetaData.OPE is

SREG: // Registration inter GBU
... as forSREQintra-colony

SREQ:
... as forSREQintra-colony

SRESP: // A leader GBU responds to a request
Sort&PushPeers4Id(MetaData)

endcase
endcase

endwhile
endinparallel

Figure 4.GB pseudocode

is a colony with two subcolonies and twoGCs highlighted. A colony is virtually
addressed by theIP of its GB leader. Let a community be denoted by{. . .}, e.g.

{COL1, COL2, GC1, GC2}

is a community with two subcolonies and twoGC’s.
We present an operational semantics via a reduction relation “→”, between

communities, that describes the main operations necessary in theArigatoni model
to perform leader discovery and colony’s service registration, namely joining/leaving
a colony, linking two colonies and moving oneGC from one colony to another.

As usual in process algebras, the reduction is quotiented by a set theoretical
equivalence between communities. As remarked by Michele Bugliesi during the
workshop, we omit in the reduction rules all the imperative aspects related to the
changing ofstateof individuals; we focus only on the functional rules of the proto-
col describing the intermittent participation of individuals. The reduction rules are
listed below with a concise explication.
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(i) A GC joins a colonyin the same Administrative Domain

discover(GC) = GB

samedom(GB, GC) = true gmode(GC) = true

accept(GB, GC) = true regmode(GC) = false

{{GB, . . .}, GC} → {{GB, GC, . . .}}
(JoinGCU)

• discover(GC) = GB discovers the leader-GB unit, upon physical/logical
insertion of theGC in theArigatoni network;

• samedom(GB, GC) = true: both the broker and the global computer reside
in the same administrative domain;

• accept(GB, GC) = true: the broker accepts the global computer in its
colony;

• gmode(GC) = true & regmode(GC) = false: the global computer is in
global mode but not yet registered. The side effect of this rule is to set the
registration mode totrue.

(ii) A GC leaves a colonyin the same Administrative Domain

pendingip(GC) = false

samedom(GB, GC) = true gmode(GC) = false

accept(GB, GC) = false regmode(GC) = true

{{GB, GC, . . .}} → {{GB, . . .}, GC}
(LeaveGCU)

• pendingip(GC) = false: the global computer has no pending services to
give to its leader;

• samedom(GB, GC) = true: both the broker and the global computer reside
in the same administrative domain;

• accept(GB, GC) = false: the broker accepts to delog the global computer
in its colony;

• gmode(GC) = false& regmode(GC) = true: the global computer is in
local mode but still registered. The side effect of this rule is to set its regis-
tration mode tofalse.

(iii) A subcolony joins a colonyin the same Administrative Domain

discover(GB2) = GB1

samedom(GB1, GB2) = true gmode(GB2) = true

accept(GB1, GB2) = true regmode(GB2) = false

{{GB1, . . .}, {GB2, . . .}} → {{GB1, {GB2, . . .}, . . .}}
(JoinCol)

• discover(GB2) = GB1: the brokerGB2 discovers the brokerGB1, upon
physical/logical insertion in theArigatoni network;

• samedom(GB1, GB2) = true: both reside in the same administrative do-
main;
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• accept(GB1, GB2) = true: the brokerGB1 accepts the subcolony in its
colony;

• gmode(GB2) = true& regmode(GB2) = false: the brokerGB2 is in global
mode but not yet registered. The side effect of this rule is to set its registra-
tion mode totrue.

(iv) A subcolony leaves a colonyin the same Administrative Domain

pendingip(GB2) = false

samedom(GB1, GB2) = true gmode(GB2) = false

accept(GB1, GB2) = false regmode(GB2) = true

{{GB1, {GB2, . . .}, . . .}} → {{GB1, . . .}, {GB2, . . .}}
(LeaveCol)

• pendingip(GB2) = false: the brokerGB2 has no pending services to give
to its leaderGB1;

• samedom(GB1, GB2) = true: both reside in the same administrative do-
main;

• accept(GB1, GB2) = false: the brokerGB1 does not accept the subcolony
in its colony;

• gmode(GB2) = false& regmode(GB2) = true: the brokerGB2 is in local
mode but still registered. The side effect of this rule is to set its registration
mode tofalse.

(v) Linking two coloniesin different Administrative Domains

gmode(GB1) = true

newgbu(GB1, GB2) = GB3 gmode(GB2) = true

samedom(GB1, GB2) = false regmode(GB1) = false

agree(GB1, GB2) = true regmode(GB2) = false

{{GB1, . . .}, {GB2, . . .}} → {{GB3, {GB1, . . .}, {GB2, . . .}}}
(LinkCol)

• newgbu(GB1, GB2) = GB3: a new broker is created on behalf onGB1 and
GB2;

• samedom(GB1, GB2) = false: both reside in the same administrative do-
main;

• agree(GB1, GB2) = true: an agreement between the two brokers is signed;
• gmode(GB1) = true& gmode(GB2) = true& regmode(GB1) = false&

regmode(GB2) = false: the brokers are in global mode but still not reg-
istered. The side effect of this rule is to set the registration mode of both
brokers totrue.
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(vi) Unlinking two coloniesin different Administrative Domains

pendingip(GB1) = false pendingip(GB2) = false

pendingip(GB3) = false gmode(GB1) = false

newgbu(GB1, GB2) = GB3 gmode(GB2) = false

samedom(GB1, GB2) = false regmode(GB1) = true

agree(GB1, GB2) = false regmode(GB2) = true

{{GB3, {GB1, . . .}, {GB2, . . .}}} → {{GB1, . . .}, {GB2, . . .}}
(UnLinkCol)

• newgbu(GB1, GB2) = GB3: a new broker is created on behalf ofGB1 and
GB2;

• samedom(GB1, GB2) = true: both reside in the same administrative do-
main;

• agree(GB1, GB2) = false: an agreement between the two brokers is with-
drawn;

• pendingip(GB1) = false& pendingip(GB2) = false&
pendingip(GB3) = false: the brokersGB1,2,3 have no pending services;

• gmode(GB1) = false& gmode(GB2) = false& regmode(GB1) = true&
regmode(GB2) = true: the brokers are in local mode but still registered.
The side effect of this rule is to set their registration mode tofalse.

(vii) Contextual Rules and Congruence
We add the following congruence rules for set union and set minus, and

structural equivalence rules, whereCOM denotes communities,COL denotes
colonies and= denotes the set theoretical equality. All symbols can be in-
dexed.

COM1 → COM2

COM1 ∪ COM3 → COM2 ∪ COM3

(CommCup)

COM1 = COM3 ∪ COM4 COM3 ∩ COM4 = ∅ COM3 → COM2

COM3 → COM2 \ COM4

(CommMinus)

COM1 = COM3 COM3 → COM4 COM4 = COM2

COM1 → COM2

(StructEq)

Rule(CommCup) is the usual Contextual closure of the reduction rules, while
rule(CommMinus) states that a reduction can drop in its right-hand side some
individuals that are not essential to the firing of the reduction itself. Let→∗

be the reflexive and transitive closure of→.

4 Join/Leave a Colony in a Different Administrative Domain
The acute reader has observed that the above labeled transition systemforbidsan
individual to join/leave another colony whose leader residesin a different Adminis-
trative Domain. This is sound in order to guarantee the integrity and the security of
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the virtual organization induced by theArigatoni model. Crossing safely admin-
istrative domains is an important security problem that the model must take into
account. However, the situation where one individual does not receive enough help
from the local colony or, worst, where it is even rejected as an individual, could be
very common. In this case, it is highly desirable that the model permits a mecha-
nism to cross boundaries of the administrative domain in order to make a service
request to another colony which resides in another administrative domain. This can
be done in two ways:

(i) the individual resident in an administrative domainIP1 knows some “friends”
inhabitant of the colony resident in another administrative domainIP2 (think
of the individual as a laptop connected in a hot spot of an airport, and think
of the “friend” as the desktop in its own office). Then, via an explicitssh ,
the laptop can log into the desktop and send a global request to the “mother
colony”. As such, the laptop works in itslocal modewhile the desktop works
in global mode. The final result will be send, viassh-tunneling to the
laptop.

This mechanism of tunneling is well-known in common practice of no-
madic behaviors and it does not require anyad hoc rewriting rules in the
Arigatoni virtual organization since the connection individual-friend is done
explicitly and privately;

(ii) the individual resident in an administrative domainIP1 knows no inhabitant
of the colony resident in another administrative domainIP2, but it knows the
IP address of the leader of the colony. If the leader agrees, it can arrange
an ssh-tunnel by creating from scratch avirtual cloneof the remote in-
dividual and by registering it in the colony on behalf of the leader of the
colony. As in the previous case, the laptop can log into the desktop and send
a global request to the “mother colony”. As such, the laptop works inlocal
modewhile the clone works inglobal mode. The final result will be sent, via
ssh-tunneling to the laptop.

This mechanism is well-known in common practice of nomadic behaviors
and is reminiscent of theVirtual Private Networktechnology (VPN) [6]. To
implement thisVPN-like behavior, we must add fourad hocrewriting rules
in the labeled transition system showed in Figure5. For obvious lack of space
those rules are not commented but left as an easy exercise to the interested
reader.

5 Firing Free Riders

Again, the acute reader has observed that the original labeled transition system
allowsfree ridersto become members of one colony.

“In economics and political science, free riders are actors who consume more
than their fair share of a resource, or shoulder less than a fair share of the costs
of its production. The free rider problem is the question of how to prevent free
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discover(GC1) = GB agree(GB, GC1) = true

samedom(GB, GC1) = false gmode(GC1) = false

newgcu(GB, GC1) = GC2 regmode(GC1) = false

samedom(GB, GC2) = true gmode(GC2) = true

accept(GB, GC2) = true regmode(GC2) = false

{{GB, . . .}, GC1} → {{GB, GC2, . . .}, GC1}
(JoinTunnelGCU)

agree(GB, GC1) = false

samedom(GB, GC1) = false pendingip(GC2) = false

newgcu(GB, GC1) = GC2 gmode(GC1, GC2) = false

samedom(GB, GC2) = true regmode(GC1) = false

accept(GB, GC2) = false regmode(GC2) = true

{{GB, GC2, . . .}, GC1} → {{GB, . . .}, GC1}
(LeaveTunnelGCU)

discover(GB2) = GB1 agree(GB1, GB2) = true

samedom(GB1, GB2) = false gmode(GB3) = true

newgbu(GB1, GB2) = GB3 regmode(GB3) = false

samedom(GB1, GB3) = true gmode(GB2) = false

accept(GB1, GB3) = true regmode(GB2) = false

{{GB1, . . .}, {GB2, . . .}} → {{GB1, {GB3}, . . .}, {GB2, . . .}}
(JoinTunnelCol)

agree(GB1, GB2) = false

samedom(GB, GB2) = false pendingip(GB3) = false

newgbu(GB1, GB2) = GB3 gmode(GB2, GB3) = false

samedom(GB1, GB3) = true regmode(GB2) = false

accept(GB1, GB3) = false regmode(GB3) = true

{{GB1, {GB3}, . . .}, {GB2, . . .}} → {{GB1, . . .}, {GB2, . . .}}
(LeaveTunnelCol)

Figure 5. Extra Reduction Rules for Service Request via Tunnellingà la VPN

riding from taking place, or at least limit its negative effects. Because the notion
of “fairness” is a subject of controversy, free riding is usually only considered
to be an economic “problem” when it leads to the non-production or under-
production of a public good, and thus to Pareto inefficiency, or when it leads to
the excessive use of a common property resource”[From Wikipedia].

The selfish nodes inP2P networks, called free riders, only utilize other peers
resources without providing any contribution in return, have greatly jeopardized the
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pendingip(GC) = false gmode(GC) = true

samedom(GB, GC) = true regmode(GC) = true

fairness(GB, GC) ≤ ε notifiring(GB, GC)

{{GB, GC, . . .}} → {{GB, . . .}, GC}
(FireGCU)

pendingip(GB2) = false gmode(GB2) = true

samedom(GB1, GB2) = true regmode(GB2) = true

fairness(GB1, GB2) ≤ ε notifiring(GB1, GB2)

{{GB1, {GB2, . . .}, . . .}} → {{GB1, . . .}, {GB2, . . .}}
(FireCol)

Figure 6. Extra Reduction Rules for FiringFree Riders

fairness attribute ofP2P networks. Figure 6 presents the two rules that take into ac-
count the ratio between the number of services offered and the number of services
demanded by an individual. If the leader of a colony finds that an individual ratio
of fairness is too small (≤ ε for a givenε), it can arbitrarily decide to fire that indi-
vidual without notice. Here, the functionpendingipalso checks that the individual
has no pending services to offer, or that the timeout of some promised services has
expired, the latter case means that the free rider promised some services but finally
did not provide any service at all (not trustful). The functionnotifiring sends a
message to the free rider, notifying it that it was definitively fired from the colony.

6 Examples

In [1], a Grid scenario for Seismic Monitoring was presented. In this section we
briefly recall the scenario and we present, by means of labeled transition system
reductions, the evolution of the given virtual organization. The

6.1 (Re)Setting the Scenario (from [1])

John, chief engineer of the SeismicDataCorp Company, Taiwan, on board of the
seismic data collector ship, has to decide on the next data collect campaign. For
this he would like to process the 100 TeraBytes of seismic data that have been
recorded on the mass data recorder located in the offshore data repository of the
company, to be processed and then analyzed.

He has written the processing program for modeling and visualizing the seismic
cube using someparallel library like e.g. MPI/PVM: his program can be distributed
over different machines that will compute a chunk of the whole calculus.

However, the amount of computation is so big that a supercomputer (GCSCU)
and a cluster of PC (GCCLU) has to berentedby the SeismicDataCorp company.
John will also ask forbandwidthvia anISP located in Taiwan (GCISPTW) in order
to get rid of any bottleneck related to the big amount of data to be transferred.
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Figure 7. AGrid Scenario for Seismic Monitoring

Aftermath, the processed data should be analyzed using aVirtual Reality Center,
VRC (GCVCRCPU) based in Houston, U.S.A. by a specialist team and the resulting
recommendations for the next data (GCVRCSPEC) collect campaign have to be sent
to John. Hence one would like the following scenario to happen:

• John logs with its laptop (GCJohn) to theArigatoni overlay network in a given
colony in Taiwan, and sends a quite complicated service request in order for the
data to be processed using his own code. Usually, theGB leader of the colony
will receive and process the request;

• If the resource discovery performed by theGB succeeds,i.e. a supercomputer, a
cluster and anISP are found, then the data are transferred at a very high speed
and processed;

• John will order to theGCSDTW containing the seismic data to dispatch suitable
chunks of data to the supercomputer and the cluster designated by theGB to
perform some pieces of computation;

• John will assign to the supercomputer unit the task of collecting all intermediate
results in order to compute the final result (i.e. it will play the role ofMaestro di
Orchestra);

• The processed data are then sent from the supercomputer, via the high speedISP
to the Houston center for being visualized and analyzed;

• Finally, the specialist team’s recommendations have to be sent to John’s laptop.

This scenario is pictorially presented in Figure7.
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6.2 Formalizing the Scenario

The initial community (the primitiveSoup) will be composed of the following ele-
ments:

COMSoup
4= {{GBSDTW}, GCSDTW, {GBISPTW}, GCISPTW, {GBCPU},

GCSCU, GCCLU, {GBVRC}, GCVRCPU, GCVRCSPEC}

By applying five times the reduction rule(JoinGCU) we obtain the new commu-
nity:

COM1
4= {{GBSDTW, GCSDTW}, {GBISPTW, GCISPTW}, {GBCPU, GCSCU, GCCLU},

{GBVRC, GCVRCPU, GCVRCSPEC}}

andCOMSoup →5 COM1. Then by applying the reduction rule(CommCup) we
see John’s laptop appear in the new community,COM2

4= COM1 ∪ {GCJohn}:

COM2
4= {GCJohn, {GBSDTW, GCSDTW}, {GBISPTW, GCISPTW},

{GBCPU, GCSCU, GCCLU}, {GBVRC, GCVRCPU, GCVRCSPEC}}

By applying again(JoinGCU) we obtain the new community:

COM3
4= {{GBSDTW, GCSDTW, GCJohn}, {GBISPTW, GCISPTW},

{GBCPU, GCSCU, GCCLU}, {GBVRC, GCVRCPU, GCVRCSPEC}}

Now, if the community whose leader isGBSDTW agrees to join the colony whose
leader isGBISPTW (both are supposed to live in the same administrative domain),
by applying rule(JoinCol), we obtain the new community:

COM4
4= {{GBISPTW, GCISPTW, {GBSDTW, GCSDTW, GCJohn}},

{GBCPU, GCSCU, GCCLU}, {GBVRC, GCVRCPU, GCVRCSPEC}}

The colony in Taiwan and the colony whose leader isGBCPU (they are supposed
to live in different administrative domain) sign an “agreement”, by applying rule
(LinkCol), so giving the new community:

COM5
4= { {GBISP&CPU, {GBISPTW, GCISPTW, {GBSDTW, GCSDTW, GCJohn}},

{GBCPU, GCSCU, GCCLU}}, {GBVRC, GCVRCPU, GCVRCSPEC}}

Finally, the colony containing John’s laptop is ready to receiveJohn’s huge Service
Request, and, hopefully for John, the request will be accepted and performed . . . It
is now time for John to come back home and the communityCOM5 could then
(but this is not mandatory) disintegrate. By applying the “dual” reduction rules
(LeaveGCU), (LeaveCol), and(UnLinkCol) plus the congruence rules(CommCup)
and(CommMinus), we come back to the initial soup,i.e. COL5 →∗ COMSoup.

16



7 Properties

In this section we prove that our process algebra is able to model the virtual orga-
nization induced by anArigatoni overlay network. Contextual equivalence [4] is
the standard way of saying that two communities havethe same behavior(they are
equivalent) if and only if, whenever they are merged inside an arbitrary community,
they admit the same elementary observations. In our setting and as usual in process
algebras, contextual equivalence is formulated in terms of observing the presence
of top-level colonies, as in the next definition.

Definition 7.1 [Colony Exhibition and Contextual Equivalence]

(i) a communityCOM must exhibit a colonyCOL, write COM ↓must COL, if
COL is a community containing a top-level colonyCOL, i.e.

COM ↓must COL 4= COM = {. . . , COL, . . .}

(ii) a communityCOM may exhibit a colonyCOL, writeCOM ↓may COL, if after
a number of reductions,COL is a community containing a top-level colony
COL, i.e.

COM ↓may COL 4= COM →∗ COM′ andCOM′ = {. . . , COL, . . .}

(iii) let the contextC[·] be a community containing zero or more holes, and for any
communityCOM let C[COM] be the community obtained by filling each hole
in C[·] with a copy ofCOM. The contextual equivalence between community,
write COM ' COM′, is defined as

COM ' COM′ 4= for all COL andC[·] we have

C[COM] ↓may COL ⇔ C[COM′] ↓may COL

(iv) let COM →∗' COM′ if there existsCOM′′ such thatCOM →∗ COM′′ and
COM′′ ' COM′.

Let COM be the set of communities generated by theBNF syntax.

Theorem 7.2 (Closure Under Reduction)

(i) If COM ∈ COM, andCOM →∗ COM′, thenCOM ∈ COM;

(ii) If COM ' COM′, thenCOM, COM′ ∈ COM;

(iii) If COM →∗' COM′, thenCOM, COM′ ∈ COM

Proof

1) By observing the reduction rules of the labeled transition system, one can
verify that if the left-hand side belongs toCOM, then it is also the case for the
right-hand side. The final result can be obtained by induction on the number
of reduction.
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2,3) By point 1) using Definition7.1.
2

Theorem 7.3 (Inversion)

(i) If COM →(JoinGCU/COL) COM′ on the individual (GC or COL), and
COM′ →(LeaveGCU/COL) COM′′ on the same individual, thenCOM = COM′′;

(ii) If COM →(LinkCol) COM′ on two colonies, andCOM′ →(UnLinkCOL) COM′′ on
the same colonies, thenCOM = COM′′.

Proof By observing the reduction rules, one can observe that the right-hand side of
the reduction rules(JoinGCU), (JoinCOL), and(LinkCOL) corresponds to the left-
hand side of the dual reduction rules(LeaveGCU), (LeaveCOL), and(UnLinkCol),
and conversely the left-hand side of the reduction rules(JoinGCU), (JoinCOL),
and (LinkCOL) corresponds to the right-hand side of the dual reduction rules
(LeaveGCU), (LeaveCOL), and (UnLinkCol). Applying one rule after the other
clearly corresponds to an identity operation. 2

We conclude this section by a conjecture that links our formal presentation of
the VIP protocol with the actual pseudo-implementation of the protocol, as de-
scribed in Figures3 and4.

Conjecture 7.4 (Adequacy of the labeled transition system w.r.t. the pseudocode)
The labeled reduction system is adequate with the pseudocode of theGB and of the
GC shown in Figure3 and4.

Proof (Sketch) Observe that theredparts of the pseudocode of theGC concerning
the set and unset of the variablesglobalmode/regmode leads to the firing of the
two rules(JoinGCU) and(LeaveGCU). Moreover, thered parts of the pseudocode
of the GB concerning the set and unset of the variablesglobalmode/regmode
leads to to the firing of the two rules(JoinGCU) and (LeaveGCU). The last two
rules of the transition systems, namely(LinkCol) and(UnLinkCol) are encapsulated
(hence hidden) in the function callsUpdate(Colony,Metadata) . 2

As suggested by one referee, further work will focus on study bisimulations for
reasoning about contextual equivalence of programs. This would greatly benefit in
the field of overlay networks where, quite often, protocol are definedmanu militari
via implementations and evaluated via experimental simulations (as in the next
section).

8 Experimental Evaluation

In this section, we provide results from experimental evaluation. We have con-
ducted simulations using large numbers of units and service requests. In this paper,
we specifically focus on the effect of individuals disconnections on the average
service acceptation ratio.

More precisely, we have implemented reduction rules(JoinGCU), (LeaveGCU),
(JoinCol), and(LeaveCol), that represent the "core" rewriting set to simulate the
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dynamic behavior in theArigatoni overlay network. We expect to implement the
full set of rewriting rules defining the operational semantics soon.

8.1 Simulation Setup

We have generated a network topology using the transit-stub model of the Georgia
Tech Internetwork Topology Models package [7], on top of which we added the
Arigatoni overlay network. The resulting network topology, shown in Figure8,
contains103 GBs. GB2 (highlighted with a square in Figure8) was chosen as the
root of the topology. We considered a finite set of resourcesR1 · · ·Rr of variable
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Figure 8. Simulated network topology with 103GBs

sizer, and represented a service by a direct mapping to a resource. In other words,
a service expresses the conditional presence of a single resource. We have a set
of r services{S1 · · · Sr}, where serviceSi expresses the conditional presence of
resourceRi. A GC declaring serviceSi means that it can provide resourceRi. This
model, while quite simple, is still generic enough, and is sufficient for the main pur-
pose of our experiments, which is to study the impact of individuals disconnections
on the average service acceptation ratio. Results are illustrated in Figure9.

To simulateGC load, we attached50 GCs to eachGB; we then randomly added
each serviceSi with probabilityρ at eachGC and had it registered via the registra-
tion service ofArigatoni. The routing tables of theGBs were updated starting at
the initialGB and ending at the root of the topology,GB2.

We then issuedn service requests atGCs chosen uniformly at random. Each re-
quest contained one service also chosen uniformly at random. Each service request
was then handled by the Resource Discovery mechanism ofArigatoni (described
in [3]). We used a service acceptation probability ofα = 75%, which corresponds
to the probability that aGC that receives a service requestand that declared itself
as a potential individual for that service (i.e. that registered it), accepts to serve it.
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Upon completion of then requests, we computed the average service accepta-
tion ratio as follows. For eachGC, we computed the local acceptation ratio as the
number of service requests that yielded a positive response (i.e. the system found
at least one individual), over the number of service requests issued at thatGC. We
then computed the average acceptation ratio as the average value over the number
of GCs (that issued at least one service request).

To study the impact ofGBs disconnections (i.e., rewriting rules(JoinCol) and
(LeaveCol)), we used a disconnection probability variableδ that indicates a fraction
of disconnected individuals (δ = 0% means all individuals are connected, while
δ = 100% means all individuals are disconnected). We then repeated the same
experiment whenδ of theGBs population, chosen uniformly at random, have been
disconnected from their leader. When a subcolony has been disconnected from
its GB leader, it continues to operate instandalonemode,i.e. with its local GB
leader as the current broker. Therefore, the services offered by the other colonies
are unavailable inside, while services offered by the colony itself are not available
outside. For each value ofδ ∈ [0 · · · 100]%, we repeated the same experiment10
times, and measured the average value of the acceptation ratio. In each of the10
runs, the disconnectedGBs were chosen uniformly at random,independentlyof the
previous runs (i.e., with a different random seed). We then computed the standard
deviation of the average service acceptation ratio (over the10 values).

Starting from the fully connected topologyCOM1 of Figure8, the rationale of
the simulation corresponds to applying a number of(JoinCol) rewriting rules to
have some subcolonies join the colony, and then applying a number of(LeaveCol)
rewriting rules to have some other subcolonies leave the colony, and then perform-
ing the experiment 10 times.

COMi →∗
(JoinCol) COM′

i+1 →∗
(LeaveCol) COMi+1 i = 1 . . . 10

We also studied the effect ofGCs disconnections (rewriting rules(JoinGCU) and
(LeaveGCU)), by repeating the same experiment whenδ of the GCs population
have been disconnected from their leader. Also in this case, a disconnectedGC
continues to work in standalone mode using only their own resources.

As for theGB case, we have

COMi →∗
(JoinGCU) COM′

i+1 →∗
(LeaveGCU) COMi+1 i = 1 . . . 10

The resource discovery protocol taking into account virtual intermittence of indi-
viduals was implemented in C++ and compiled usingGNU C++ version 2.95.3.
Experiments were conducted on a 3.0 GhzIntel Pentium machine with 2GB of
main memory runningLinux 2.4.28. The different experimental parameters are
summarized in Table1. The service availability ratio,ρ, was fixed to a value of
12%, which yields an average service acceptation ratio of almost100% with no
subcolonies disconnections. Figure9(a) shows that the average service accepta-
tion ratio decreases exponentially with the number of subcolonies (i.e., GBs) dis-
connections. This is not surprising, since when a subcolony has been disconnected,
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Parameter Description Value

K Number of GBUs 103

r Size of services pool 128

ρ Service availability 12%

α Service acceptation probability 75%

n Number of service requests issued 50000

δ Fraction of disconnected individuals [0 · · · 100]%

Table 1
Parameters of the experiments
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Figure 9. (a) Average service acceptation ratio w.r.t. fraction of disconnected population.
(b) Average service acceptation ratio for the different runs of the valueδ = 10%. (c) Stan-
dard deviation of the service acceptation ratio w.r.t. fraction of disconnected population.

all the services offered by the other colonies are unavailable. Conversely, all the
services offered by the subcolony are unavailable for the other colonies. Note that
when all subcolonies (GB) have been disconnected (δ = 100%), then the average
service acceptation ratio is not null. Indeed, the local colony of aGB (i.e., theGCs
directly connected to theGB) remains operational,i.e., the services offered by a
GC are available for the otherGCs of the same colony.

We observe thatGC disconnections have more impact on the average service
acceptation ratio thanGB disconnections. This is due to the fact that when aGC is
disconnected, all the services that it provided are unavailable for the entire system
and, conversely, all the services provided by the system are unavailable for it. As
expected, for a value ofδ = 100%, the average acceptation ratio is0, as no service
at all is unavailable.

Figure9(a) shows the different values of the average service acceptation ratio
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obtained for a value ofδ = 10% of the fraction of disconnected population. As pre-
viously explained, for each run, we have chosen10 GBs (∼10% of 103) uniformly
at random, andindependentlyof the previous runs,i.e., with a different random
seed. In other words, the disconnected subcolonies are different in each run. Fig-
ure9(b) shows that subcolonies disconnections can have a very different impact on
the acceptation ratio. In fact, “low-level” subcolonies disconnections have a dra-
matic impact whereas “high-level” subcolonies disconnections have a very limited,
local impact. Figure9(c) shows that, unsurprisingly, the level of the disconnected
subcolony has less impact on the service acceptation ratio for higher values ofδ.
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