
DCM 2005 Preliminary Version

iRho: the Software
[System Description]

Luigi Liquori

INRIA, France

Abstract

This paper describes the first implementation of an interpreter foriRho, an imperative
version of the Rewriting-calculus, based on pattern-matching, pattern-abstractions, and
side-effects. The implementation contains a parser and a call-by-value evaluator in Natural
Semantics; everything is written using the programming languageScheme. The core of
this implementation (evaluator) iscertifiedusing the proof assistantCoq.

Performances are honest compared to the minimal essence of the implementation. This
document describes, by means of examples, how to use and to play withiRho. The final
objective is to makeiRho a, so called,agile programming language, in the vein of some
useful scripts languages, like,e.g. Python andRuby, where proof search is not only feasible
but easy.

1 Introduction to the Rewriting Calculus

One of the main advantages of therewriting-basedlanguages, likeElan [16],
Maude [14], ASF+SDF [19, 2], OBJ∗ [10], Stratego [18] is pattern-matching.
Pattern-matching allows to discriminate between alternatives: once a pattern is
recognized, a pattern is associated with an action. The corresponding pattern is
thus rewritten in an appropriate instance of a new one.

Another advantage of rewriting-based languages (in contrast withML or
Haskell) is the ability to handlenon-determinismin the sense of a collection of
results: pattern matching need not to be exclusive,i.e. multiple branches can be
“fired” simultaneously. An empty collection of results represents an application
failure, a singleton represents a deterministic result, and a collection with more
than one element represents a non-deterministic choice between the elements of
the collection. This feature makes the calculus quite close to logic languages too;
this means that it is possible to make a product of two patterns, thus applying "in
parallel" both patterns.

Optimistic/pessimistic semantics can then be imposed to the calculus by
defining successful results as products that have at least a component (respectively
all the components) different from error values. It should be possible to obtain a
logic language on top of it by redefining appropriate strategy for backtracking.

1 Supported by grantAeolus FP6-2004-IST-FET Proactive, and the French grant ACI Modulogic.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Useful applications lie in the field of pattern recognition, and strings/trees
manipulation. Pattern-matching has been widely used in functional and logic
programming, asML [15,7], Haskell [11], Scheme [17], or Prolog [9]; generally,
it is considered a convenient mechanism for expressing complex requirements
about the function’s argument, rather than a basis for anad hoc paradigm of
computation.

The Rewriting-calculus(Rho) [4, 5] integrates in a uniform way, matching,
rewriting, and functions; its abstraction mechanism is based on the rewrite rule
formation: in a term of the formP → A, one abstracts over the patternP .
Note that the Rewriting-calculus is a generalization of the Lambda-calculus if
the patternP is a variable. If an abstractionP → A is applied to the term
B, then the evaluation mechanism is based on the binding of the free variables
present inP to the appropriate subterms ofB applied toA. Indeed, this binding
is achieved by matchingP againstB. One of the advantages of matching is that it
is “customizable” with more sophisticated matching theories,e.g. the associative-
commutative one.

This year, an imperative extension enhancing the (functional)Rho, was
presented in [13]; shortly, we introduced imperative features like referencing (i.e.
“malloc-like ops”, ref expr), dereferencing (i.e. "goto-memory ops”,! expr), and
assignments operators (X := expr). The associated type system was enriched
with dereferencing-types (i.e. pointer-types, int ref), and product-types (e.g.
int → int ∧ nat → nat). The mathematical content of this extension was validated
by the help of the semiautomatic proof assistantCoq. A toy software
prototype, mimicking the mathematical behavior of the dynamic semantics was
also implemented inScheme. This paper introduces shortly the firstLGPL release
of the software; a parser has been implemented and more syntactic sugar has been
added to make the interpreted easier to use. The core kernel is conform to the
semantics specification of [13]; future releases will also come with a machine
assisted “certificate” that the design choices are correct. We may envisage also
proof extraction of the main kernel routine, in case of a “port” of the software
in Caml or in Haskell 2 . This paper presents the syntax of theiRho language
and some examples that can be run directly by cut and paste in the interpreter.
The current distribution can be found in:http://www-sop.inria.fr/mirho/

Luigi.Liquori/iRho/ . It contains: two software releasesiRho-1.0.scm ,
and iRho-1.1.scm , a precompiled binary version for Linux architecture3 , a
file demo.rho containing many examples, and a copy of the [13] paper (journal
version).

We conclude with a table showing future releases and evolutions of the present
software, like (polymorphic) type inference, powerful matching and unification
algorithms, exceptions handlers, strategies, calling external languages, objects, etc.

2 The extraction mechanism inCoq can currently targetCaml or Haskell code.
3 ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
dynamically linked (uses shared libs), stripped.

2

http://www-sop.inria.fr/mirho/Luigi.Liquori/iRho/
http://www-sop.inria.fr/mirho/Luigi.Liquori/iRho/

2 Playing with iRhoSW

The interpreteriRhoSW greets you as follows:

--
| ----------\ |
| | i R h o > |
| ----------/ |
| An Imperative Rewriting Calculus Interpreter |
| Kernel Certified by the Proof Assistant Coq |
| Powered by Bigloo Scheme |
| Copyright Inria 2005 |
| Version 1.1alpha |
| NoEffect Theory Loaded |
| $ = Switch Theory |
| # = Clean Namespace |
| @ = Exit iRho |

--

As usual, the first thing to learn is how to exit from theread-eval-printloop:
just evaluate "@;; " to exit. Evaluating "$;; " moves the interpreter to theempty
(or syntactic) matching theory to theno-stuckmatching theory, introduced firstly
in [5]: we will be more precise about this theory in a moment, after presenting the
syntax and a sketch of the reduction semantics. Evaluate "#;; " allows to clean
a global namespace, i.e. a space where constants, functions, and term rewriting
systems can be names and globally reused.

Syntax

The untyped (abstract) syntax ofiRho is as follows:

key ::= "(" | ")" | "," | "^" | "!" | ":=" | "->" |
"<-?" | "?->" | ";" | "=" | "[" | "]" | "|" Keywords

var ::= "any sequence of capital alphadigit" Variables
const ::= "any sequence of non capital alphadigit" Constants
patt ::= var | const | const patt |

patt,patt | ^ patt Patterns
expr ::= const | var | patt -> expr | expr expr |

expr,expr | ^ expr | ! expr |
expr:=expr | expr <-? expr ?-> expr |
var=expr | [(var=expr |) ∗] Expressions

One important point is thatlinearity in pattern is not enforced in the syntax;
the solution we adopt in this formalization and implementation of the Rewriting-
calculus was influenced by the choice of the implementation language of our
operational semantics, namelyScheme and the matching algorithm adopted [12].
As such, the specification of the matching algorithm iniRho accepts non-linear
patterns, and compares subparts of the datum (through≡, implemented via the
primitive equiv? in Scheme). Confluence is preserved, thanks to the call-by-
value strategy of the operational semantics. Examples of legal terms are:

3

iRho IN > 12;;
iRho OUT > 12
iRho IN > dummy;;
iRho OUT > dummy
iRho IN > x;;
iRho OUT > x
iRho IN > X;;
iRho OUT > (Effect: Unbound Variable X)
iRho IN > 12;;
iRho OUT > 12
iRho IN > (12->13 12);;
iRho OUT > 13
iRho IN > (12->12 14);;
iRho OUT > (Effect: Pattern Mismatch)
iRho IN > ((a->b,a->d) a);;
iRho OUT > (b , d)
iRho IN > ((a->b,c->d) a);;
iRho OUT > b
iRho IN > (f X Y)->X;;
iRho OUT > (Fun ((f X) Y) -> X)
iRho IN > ((f X X)->X (f 3 4));;
iRho OUT > (Effect: Pattern Mismatch)
iRho IN > $;;
iRho OUT > Switching_to_empty_theory
iRho IN > ((a->b,c->d) a);;
iRho OUT > (b , (Effect: Pattern Mismatch))

The last example can help to understand that the no-stuck theory absorbs
pattern-matching failures, while the empty theory is not. This is perhaps a good
point to introduce the reduction semantics.

Reduction Semantics

The semantics behaves as follows (see [13] for a detailed presentation):

(patt -> expr exprnf) => sigma(expr) where sigma=patt<<exprnf
((expr1,expr2) exprnf) => ((expr1 exprnf),(expr2 exprnf))

The first rule fires an application if the argument is in normal-form (call-by-
value semantics) and if itmatcheswith the pattern, while the second rule distributes
the application to all elements of a structure. That’s all you need to do if you
want to play just with the functional fragment of theRho. In a nutshell, the
functional fragment is “just” a Lambda-calculus with patterns, records, and non
exclusive pattern-matching (i.e. multiple branches can be fired simultaneously).
The possibility to fire, in parallel, multiple matching branches is one of the biggest
peculiarity of the Rewriting-calculus w.r.t. other languages featuring (exclusive and
sequential) pattern-matching.

Adding imperative features causes to introduce a store,i.e. an global partial
mappings from locations to expressions in normal forms (i.e. values), and to add

4

the following reduction rules:

^ exprnf /s => loc/(s,loc=exprnf) where loc not in Dom(s)
!loc /s => s(loc)/ s where loc in Dom(s)

loc:=exprnf /s => exprnf/(s,loc=exprnf) where loc in Dom(s)
exprs1;expr2/s => ((X->expr2) expr1)/s where X fresh in expr2

In a nutshell: the first rule allocates a new fresh locationloc in the store and
binds it to the valueexprnf ; the second rule reads the content of the locationloc ;
the third rule writes in the locationloc the valueexprnf . The last rule (sequence)
is just a macro for a dummy function application; the call-by-value strategy ensures
thatexpr1 will be evaluated (possibly with a store modification) beforeexpr2 .
Examples of legal terms are:

iRho IN > ^ 1,2;;
iRho OUT > ((Ref 1) , 2)
iRho IN > ^ (1,2);;
iRho OUT > (Ref (1 , 2))
iRho IN > (!^(X->X) 4);;
iRho OUT > 4
iRho IN > ((X,Y)->(X,Y) (^3,^4));;
iRho OUT > ((Ref 3) , (Ref 4))
iRho IN > ((X,Y)->(Y:=!X;(!X,!Y)) (^3,^4));;
iRho OUT > (3 , 3)
iRho IN > ((X,Y)->(Y:=!X;(X,!X,Y,!Y)) (^3 , ^4));;
iRho OUT > ((Ref 3) , (3 , ((Ref 3) , 3)))
iRho IN > ((f X Y)->(Z->(X:=!Z) X) (f ^3 ^4));;
iRho OUT > 3
iRho IN > (X->((^ Y->Y) X) ^ 4);;
iRho OUT > 4
iRho IN > ((XREF->((X->XREF:=X) 5)) ^dummy);;
iRho OUT > 5

The macro “=”

This simple macro allows to modify a global namespace; it is also useful to define
quickly constants values, functions, and term rewriting systems with built-in fix-
points.

iRho IN > ID = (X->X);;
iRho OUT > (Fun X -> X)
iRho IN > IDID = (X->X X->X);;
iRho OUT > (Fun X -> X)
iRho IN > ID;;
iRho OUT > (Fun X -> X)
iRho IN > (ID 4);;
iRho OUT > 4
iRho IN > IDID;;
iRho OUT > (Fun X -> X)
iRho IN > (IDID 4);;

5

iRho OUT > 4
iRho IN > MATCHPAIR = ((f(X,Y))->X);(MATCHPAIR (f(2,3)));;
iRho OUT > 2
iRho IN > MATCHCURRY = (f X Y)->X;(MATCHCURRY (f 2 3));;
iRho IN > SWAP=((X,Y)->((AUX->(AUX:=!X;X:=!Y;Y:=!AUX;

(!X,!Y,!AUX)))(^0)));;
iRho OUT > (Fun (X , Y) -> ((Fun AUX ->

((Fun FRESH1005 -> ...
((Bang X) , ((Bang Y) , (Bang AUX))))
(Ass Y (Bang AUX)))) (Ass X (Bang Y))))
(Ass AUX (Bang X)))) (Ref 0))) Swapping two variables

iRho IN > (SWAP(^4,^5));;
iRho OUT > (5 , (4 , 4))
iRho IN > FIXV = FUN->VAL->(FUN (FIXV FUN) VAL);;
iRho OUT > (Fun FUN -> (Fun VAL ->

((FUN (FIXV FUN)) VAL))) A call-by-value fix point
iRho IN > (FIXV ID 3);;
Segmentation fault Sorry, reload everything ...
iRho IN > LETRECPLUS = ((PLUS ->

(PLUS ((succ (succ 0)),(succ (succ 0)))))
(FIXV (PLUS -> VAL ->
(((0,N) -> N ,

((succ M),N) -> (succ (PLUS (M,N)))) VAL))));;
letrec PLUS = ‘‘Peano’s plus’’ in (PLUS (2,2))

If-then-else

Control structures can be easily be defined as follows:

iRho IN > NEG = (true -> false, false -> true);;
iRho OUT > ((Fun true -> false) , (Fun false -> true))
iRho IN > (NEG true);;
iRho OUT > false
iRho IN > AND = ((true, true) -> true,

(true, false) -> false,
(false,true) -> false,
(false,false) -> false);;

iRho OUT > ((Fun (true , true) -> true) ,
((Fun (true , false) -> false) ,
((Fun (false , true) -> false) ,

(Fun (false , false) -> false))))
iRho IN > OR = ((true, true) -> true,

(true, false) -> true,
(false,true) -> true,
(false,false) -> false);;

iRho OUT > ((Fun (true , true) -> true) ,
((Fun (true , false) -> true) ,

6

((Fun (false , true) -> true) ,
(Fun (false , false) -> false))))

iRho IN > OMG = (X->(X X));;
iRho OUT > (Fun X -> (X X))
iRho IN > ((OMG OMG) <-? (AND (true,true)) ?-> 4);; Happy syntax
iRho OUT > 4 Don’t try with false :-)

Defining Term Rewriting Systems

One may wonder a simpler way to define a term rewriting system and a fix-point
operator allowing to use a term rewriting system; theiRhoSW offers two ways to
do it in a simpler and efficient way. The first is by using the macros “=” while
the latter is by using the macros “[...]”. The main difference between those two
alternatives is in efficiency (the former being faster the the latter). We first introduce
some macros for Peano’s numbers

iRho IN > ZERO = 0;;
ONE = (succ 0);;
TWO = (succ ONE);;
THREE = (succ TWO);;
...

Then we simply define ourPLUSterm rewriting system as follows:

iRho IN > PLUS = ((0,N) -> N,
((succ N),M) -> (succ (PLUS (N,M))));;

iRho OUT > ((Fun (0 , N) -> N) ,
(Fun ((succ N) , M) -> (succ (PLUS (N , M)))))

iRho IN > (PLUS (THREE,THREE));;
iRho OUT > (succ (succ (succ (succ (succ (succ 0))))))

or as follows:

iRho IN > [PLUS = ((0,N) -> N,
((succ N),M) -> (succ (PLUS (N,M))))];;

iRho OUT > Term Rewriting System Definition
iRho IN > [PLUS = ((0,N) -> N,

((succ N),M) -> (succ (PLUS (N,M))))];
(PLUS (THREE,THREE));;

iRho OUT > (succ (succ (succ (succ (succ (succ 0))))))

Note that in the two encodings (using “=” or “[...]”) one term rewriting system can
“call” another term rewriting system as follows (using sequencing):

iRho IN > PLUS = ((0,N) -> N ,
((succ N),M) -> (succ (PLUS (N,M))));

FIB = (0 -> (succ 0) ,
(succ 0) -> (succ 0) ,

(succ (succ X)) -> (PLUS ((FIB (succ X)),
(FIB X))));

(FIB FOUR);; First encoding

7

iRho IN > [PLUS = ((0,N) -> N ,
((succ N),M) -> (succ (PLUS (N,M))))

|
FIB = (0 -> (succ 0) ,

(succ 0) -> (succ 0) ,
(succ (succ X)) -> (PLUS ((FIB (succ X)),

(FIB X))))];
(FIB FOUR);; Second encoding

iRho OUT > (succ (succ (succ (succ (succ 0)))))
iRho IN > [PLUS = ((0,N) -> N ,

((succ N),M) -> (succ (PLUS (N,M))))
|
MULT = ((0,M) -> 0,

((succ N),M) -> (PLUS (M,(MULT (N,M)))))
|
POW = ((N,0) -> (succ 0),

(N,(succ M)) -> (MULT (N,(POW (N,M)))))];;
(POW (TWO,TEN));; Power

iRho IN > [ACK =
((0,N) ->(succ N),

((succ M),0) ->(ACK(M,(succ 0))),
((succ M),(succ N))->(ACK(M,(ACK((succ M),N)))))];

(ACK (THREE,FOUR));; Ackermann
iRho IN > LIST = (10,11,12,13,15,16,nil);;
iRho In > [FINDN = ((0,nil) -> fail,

((succ N),nil) -> fail,
((succ 0),(X,Y)) -> X,
((succ N),(X,Y)) -> (FINDN (N,Y)))];

(FINDN (THREE,LIST));; Find an element in a list
iRho In > [KILLM = ((m,(n,nil)) -> (n,nil),

(m,(m,X)) -> X,
(m,(n,X)) -> (n,(KILLM (m,X))))];

(KILLM (13,LIST));; Kill an element in a list

A More Tricky Example: Negation Normal Form

This function is used in implementingdecision procedures, present in almost all
model checkers. The processed input is an implication-free language of formulas
with generating grammar:

φ ::= p | and(φ, φ) | or(φ, φ) | not(φ)

We present three encodings, the first uses the “=” macro, the second uses the “[...]”
macro and the last is just the macro-expansion of the second one (some outputs are
omitted).

iRho IN > PHI = (and ((not (and (p,q))),(not (and (p,q)))));;
iRho IN > NNF = (p -> p,

8

q -> q,
(not (not X)) -> (NNF X),
(not (or (X,Y))) -> (and ((not (NNF X)),(not (NNF Y)))),
(not (and (X,Y))) -> (or ((not (NNF X)),(not (NNF Y)))),
(and (X,Y)) -> (and ((NNF X),(NNF Y))),
(or (X,Y)) -> (or ((NNF X),(NNF Y))));

(NNF PHI);; First encoding
iRho IN > [NNF = (p -> p,

q -> q,
(not (not X)) -> (NNF X),
(not (or (X,Y))) -> (and ((not (NNF X)),(not (NNF Y)))),
(not (and (X,Y))) -> (or ((not (NNF X)),(not (NNF Y)))),
(and (X,Y)) -> (and ((NNF X),(NNF Y))),
(or (X,Y)) -> (or ((NNF X),(NNF Y))))];

(NNF PHI);; Second encoding
iRho OUT > (and((or((not p),(not q))),(or((not p),(not q)))))

Certification: theDIMPRO pattern

In [13] we experimented with an interesting “pattern (in the sense of“The Gang
of Four” [8]) called DIMPRO, a.k.a.Design-IMplement-PROve, to design safe
software, which respectsin toto its mathematical and functional specifications. The
iRhoSW is a direct derivative of such a methodology.

Intuitively, we started from a clean and elegant mathematical design, from
which we continued with an implementation of a prototype satisfying the design
(using a functional language), and finally we completed it with a mechanical
certification of the mathematical properties of the design, by looking for the
simplest “adequacy” property of the related software implementation. These three
phases are strictly coupled and, very often, one particular choice in one phase
induced a corresponding choice in another phase, very often forcing backtracking.

The process refinement is done by iterating cycles until all the global properties
wanted are reached (the process is reminiscent of a fixed-point computation, or of
a B-refinement [1]). All three phases have the same status, and each can influence
the other.

Our recipe probably suggests a new schema, or “pattern”, in the sense of“The
Gang of Four” [8], for design-implement-certify safe software. This could be
subject of future work. A small software interpreter for our core-calculus is surely
a good test of the “methodology”. More generally, this methodology could be
applied in the setting of raising quality software to the highest levels of theCommon
Criteria, CC [6] (from EAL5 to EAL7), or level five of theCapability Maturity
Model, CMM. We schedule in our agenda our novelDIMPRO, in the folklore of
“design pattern”, hoping that it would be useful to the community developing safe
software for crucial applications.

9

Agenda

Our iRhoSW is really young: the table below sketch some possible improvements
planned in the next two future releases.

major improvements/release 2.0 3.0

exceptions on pattern-matching failure X

first-order type inference X

more control structures and strategies X

simple objects and object-based inheritanceX

type-inferenceà la Damas-Milner X

unification and AC matching theory X

rewriting-rule as patterns [3] X

calling externalsScheme/Java/C X

I/O (files) X

certification usingCoq X ??

References

[1] J. R. Abrial.The B-Book: Assigning Programs to Meanings.
[2] Asf+Sdf Team. The Asf+Sdf Meta-Environment Home Page, 2005.
[3] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure Pattern Type Systems. In

Proc. of POPL. 2003.
[4] H. Cirstea, C. Kirchner, and L. Liquori. The Rho Cube. InProc. of FOSSACS, volume

2030 ofLNCS, pages 166–180, 2001.
[5] H. Cirstea, L. Liquori, and B. Wack. Rho-calculus with Fixpoint: First-order system.

In Proc. of TYPES. Springer-Verlag, 2004.
[6] Common Criteria Consortium. The Common Criteria Home Page, 2005.
[7] Cristal Team. OCaml Home page, 2005.
[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides (The Gang of Four).Design Patterns

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.
[9] GNU Prolog Team. The Prolog Home Page, 2005.

[10] J. Goguen. The OBJ Family Home Page, 2005.
[11] Haskell Team. The Haskell Home Page, 2005.
[12] G. Huet. Résolution d’equations dans les langages d’ordre 1,2, ...,ω. Ph.d. thesis,

Université de Paris 7 (France), 1976.
[13] Liquori, L. and Serpette, B. iRho, An Imperative Rewriting Calculus. InProc. of

PPDP, pages 167–178. The ACM Press, 2004.
[14] Maude Team. The Maude Home Page, 2005.
[15] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Standard ML

(Revised). MIT Press, 1997.
[16] Protheo Team. The Elan Home Page, 2005.
[17] Scheme Team. The Scheme Language, 2005.
[18] Stratego Team. The Stratego Home Page, 2005.
[19] A. van Deursen, J. Heering, and P. Klint.Language Prototyping, 1996.

10

	Introduction to the Rewriting Calculus
	Playing with iRhoSW
	References

