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We propose an imperative version of the Rewriting Calculus, a calculus based on pattern

matching, pattern abstraction and side effects, which we call iRho.

We formulate both a static and big-step call-by-value operational semantics of iRho. The

operational semantics is deterministic, and immediately suggests how an interpreter for the

calculus may be built. The static semantics is given using a first-order type system based on

a form of product types, which can be assigned to term-like structures (that is, records).

The calculus is à la Church, that is, pattern abstractions are decorated with the types of the

free variables of the pattern.

iRho is a good candidate for the core of a pattern-matching imperative language, where a

(monomorphic) typed store can be safely manipulated and where fixed points are built into

the language itself.

Properties such as determinism of the interpreter and subject-reduction have been

completely checked using a machine-assisted approach with the Coq proof assistant.

Progress and decidability of type checking are proved using pen and paper.

1. Introduction

The study of rewriting-based languages (such as Elan (Protheo Team 2005), Maude

(Maude Team 2005), ASF+SDF (van Deursen et al. 1996; Asf+Sdf Team 2005) and

OBJ∗ (Goguen 2005)) is a promising line of research unifying the logical and functional

paradigms.

Although rewriting-based languages are less popular than object-oriented languages

such as Java (Sun 2005) and C# (Microsoft 2005) for ordinary programming, they can

serve as common typed intermediate languages for implementing compilers for rewriting-

based, functional, object-oriented, logic, and other high-level modern languages (Cirstea

et al. 2001a; Cirstea et al. 2002; Cirstea et al. 2004).

Pattern matching has been used widely in functional and logic programming (for

example, in ML (Milner et al. 1997; Cristal Team 2005), Haskell (Jones 2003), Scheme

(R. Kelsey 1998), Curry (Hanus 1997) and Prolog (Kowalski 1979)), but it has generally

been considered to be a convenient mechanism for expressing complex requirements about

the function’s argument, rather than as a basis for an ad hoc paradigm of computation.

One of the main advantages of rewriting-based languages is pattern matching, which

allows one to discriminate between alternatives. These languages permit non-determinism

in the sense that they can represent a collection of results. That is, pattern matching need

not be exclusive, multiple branches can be ‘fired’ simultaneously. An empty collection of
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results represents an application failure, a singleton represents a deterministic result, and

a collection with more than one element represents a non-deterministic choice between

the elements of the collection.

This feature highlights a difference compared with those functional languages featuring

pattern matching, such as ML, Haskell and Scheme. It shares some similarities with

backtracking and exhaustive proof search in logic languages like Prolog. It is possible to

make a pair of two functions having the same pattern, and when the pair is applied to an

argument, both functions will be fired. Optimistic and pessimistic operational semantics†,

with a fixed strategy, can then be imposed on the language by defining successful results

as Cartesian products that have, in the optimistic case, at least one component that is

not a failure value, or, in the pessimistic case, none of its components are failure values.

It should then be possible to obtain a logic language on top of this structure by defining

an appropriate strategy for backtracking. Useful applications lie in the field of pattern

recognition and the manipulation of strings and trees.

The Rewriting Calculus (Rho) (Cirstea et al. 2001b; Cirstea et al. 2004) integrates

matching, rewriting and functions in a uniform way; its abstraction mechanism is based

on rewrite rule formation – in a term of the form P ! A, one abstracts over all the free

variables of the pattern P (instead of over a simple variable as in the lambda calculus).

The Rewriting Calculus is a generalisation of the lambda calculus since one may choose

the pattern P to be a variable. If an abstraction P ! A is applied to the term B, the

evaluation mechanism is based on:

1 bind the free variables present in P to appropriate subterms of B to build a substitution

θ; and then

2 apply θ to A.

Indeed, this binding is achieved by matching P against B. In rewriting-based languages,

pattern matching can be ‘customisable’ with more sophisticated matching theories, for

example, building-in associativity and/or commutativity of equality.

The original Rho calculus is computationally complete, and, through pattern matching,

lambda calculus and fixed points can be encoded and type checked using ad hoc patterns.

In fact, Rho is a direct generalisation of the core of a typed (rewriting-based and

functional) programming language (of the ML∪Elan family) in which, roughly speaking,

an ML-like let becomes by default a let rec by abstracting over a suitable pattern P ;

through pattern matching, one can type check many divergent terms (such as Ω, see

Example 6). One of the main features of the Rewriting Calculus is that it can deal with

structuring and destructuring structures, such as lists (we record only the names of the

constructor and discard the names of the accessors). Since structures are built into the

calculus, it follows that the encoding of constructor/accessors is simpler than the standard

encoding in the lambda calculus. Table 1 provides an informal comparison between the

untyped encoding of accessors in the two formalisms.

† ‘Optimistic’ means that, if a matching failure occurs, the computation is not halted; this is in contrast with a
‘pessimistic’ machine, that ‘kills’ the computation once a failure value is produced.
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ops/form Rho calculus Lambda calculus

cons X ! Y ! (cons X Y ) λX. λY . λZ.Z X Y

car (cons X Y ) ! X λZ.Z (λX. λY .X)

cdr (cons X Y ) ! Y λZ.Z (λX. λY . Y )

Table 1. Accessors and destructors in Rho/lambda calculi

Original contribution

In this paper we present the first version of the Imperative Rewriting-calculus (iRho), an

extension of Rho with references, memory allocation and assignment à la ML (Felleisen

and Friedman 1989). To our knowledge, no similar study exists in the literature. The

iRho-calculus is a powerful calculus at both the syntactic and semantic levels. It includes

all the features of functional/rewriting-based languages with imperative aspects and

pattern-matching facilities.

The controlled use of references, in the style of the ML language (Milner et al. 1997)

also gives the user the programming ease and expressiveness that, a priori, might not be

expected from such a simple calculus.

The crucial ingredients of iRho are a combination of:

(i) modern and safe imperative features, which give full control over the internal data-

structure representation; and

(ii) ‘matching power’, which provides the main Lisp-like operations, such as cons/car/cdr.

The language iRho provides a good theoretical foundation for an emerging family of

languages that combine rewriting, functions and patterns with semi-structured XML-

data (for example, XDUCE (Xduce Team 2005), CDUCE (Frisch 2005)) or combin-

ing object-orientation and patterns with semi-structured data (for example, HYDROJ

(Lee et al. 2003)†).

From theory to practice and vice versa

We present both a static and dynamic semantics of iRho. The dynamic semantics is

given using a natural deduction system (big-step) (Martin-Löf 1984; Milner 1986-87;

Plotkin 1981; Tofte 1987; Kahn 1987; Plotkin 2004). The formalisation uses environments

inside ‘closure values’ to keep the value of free variables in function bodies, and a global

store to model the imperative traits. In this design phase we have tried not to forget the

needs and objectives of a future implementor of the language: that is, to build a sound

machine (the interpreter) with a sound type system (the type checker), respecting Milner’s

slogan that ‘well-typed programs do not go wrong’, but also taking a bit of care over

performance issues.

The static and dynamic semantics are suitable for a mathematical specification, for

implementation with high-level programming languages, such as Bigloo (Serrano 2005)

† ‘...object-oriented pattern matching naturally focuses on the essential information in a message and is
insensitive to inessential information...’
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(of the Scheme family), and for certification with a modern and semi-automatic proof

assistant, such as Coq (Logical Team 2005).

With this goal in mind, we have encoded the static and dynamic semantics of iRho

in Coq. All subtle aspects, which are usually ‘swept under the carpet’ when working on

paper, are here highlighted by the rigid discipline imposed by the Logical Framework

of Coq. This process has often influenced the design of the semantics. The continuous

interplay of mathematics and manual (that is, pen and paper) vs. mechanical proofs, and

prototype implementations using high-level languages such as Scheme (and back) has

been fruitful from the very beginning of our project. Although our calculus is rather

simple, we expect in the near future to scale our work up to larger projects, such as

the certified implementation of compilers for a programming language of the C family

(Cristal Team 2003; Leroy 2005).

Therefore, the main contributions of this paper are as follows:

— We provide a typed framework that enhances the functional language Rho with

imperative features such as referencing, dereferencing and assignment operators.
— We enrich the type system with dereferencing and product types. The resulting calculus

iRho is a good candidate for giving a semantics to a broad family of functional,

rewriting and logic-based languages.

Road map

The paper is structured as follows. In Sections 2 and 3, we present the syntax and

operational semantics of the functional rewriting calculus Rho and the imperative rewriting

calculus iRho, respectively. Section 4 describes the type system. Section 5 presents the

metatheory for iRho. Section 6 contains various examples of terms, reductions and type

checking. Section 7 presents the formalisation of iRho in Coq. Section 8 contains some

remarks about our methodology and describes some ‘views’ of the natural semantics,

presents conclusions and lays out some ideas for further work.

The Coq encoding of the dynamic and static semantics (with their theorems) and the

prototype implementation of an interpreter in Bigloo can be found at http://www-sop.
inria.fr/mascotte/Luigi.Liquori/iRho.

2. The functional Rho

For pedagogical reasons we will begin by presenting the functional Rho. This will allow

us to introduce almost all the ingredients and technicalities needed to scale-up to the

full imperative iRho. In a nutshell, Rho is a functional calculus with pattern matching,

and can be seen as the kernel of any (statically typed) programming language based on

functions, term rewriting, and pattern matching; many term rewriting systems can also

be encoded in iRho (see Cirstea et al. (2004) for the exact class of term rewriting systems

that can be encoded). Since the presentation of Rho mimics our current implementation,

we make use of closures, that is, <pattern abstraction · environment> pairs, to denote

functional values of free variables recorded in the environment. This representation will

avoid the use of meta-substitution everywhere.
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Fig. 1. Rho’s syntax.

2.1. Functional syntax

Notational conventions. We use the meta-symbols ! (function and type abstraction), and

‘ ,’ (structure operator), and the implicit @ (application operator). We assume that the

application operator @ associates to the left, while the other operators associate to the

right. The priority of @ is higher than that of !, which is, in turn, of higher priority

than ‘ ,’.

The symbols:

— A,B, C, . . . range over the set TA of terms;

— X,Y , Z, . . . , SELF, . . . range over the set X of variables (X ⊆ TA);
— a, b, c, . . . , cons, true, false, not, and, or, dummy, . . . range over a set K of term constants

(K ⊆ TA);
— P ranges over the set P of pseudo-patterns, (X ⊆ P);
— τ range over the set Tτ of types, the symbol b ranges over the set of type constants,

the symbols Γ,∆ ranges over contexts;

— Av, Bv, Cv, . . . range over the set Val of values.

We sometimes write A for A1 · · ·An, for n ! 0. The symbol ≡ denotes syntactic equality.

The syntax of Rho is presented in Figure 1.

Types and contexts. The symbol b is used to denote basic types, the arrow type τ1 ! τ2 is

the type of pattern abstractions P !∆ A, with ∆ containing the types of the free variables

of P , and the product type τ1 ∧ τ2 is the type of structure terms (A1 , A2).

Patterns. An unrestricted use of patterns in lambda abstraction may lead to a failure of

confluence in small-step semantics (see Klop (1980)). To retain confluence, Vincent van

Oostrom (van Oostrom 1990) introduced a suitable syntactical condition on the formation

of patterns, called the Rigid Pattern Condition (RPC), which

(i) forces patterns to be ‘linear’ (that is, no double occurrences of free variables, thus

avoiding, the pattern (aX X));
(ii) forbids ‘active’ variables (thus avoiding the pattern (X P )).

Not all functional languages with pattern matching apply the same restrictions concern-

ing linearity in patterns. For example, Scheme accepts non-linear patterns, permitting

the comparison of subparts of the datum (through eq?), while ML enforces linearity

in patterns (but when guards can be used to test for equality between two parts of a

data structure). Haskell, because of its lazy evaluation strategy, only accepts patterns
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that are linear. The solution we adopt in this formalisation and implementation of the

Rewriting Calculus was influenced by the choice of the implementation language of our

operational semantics, namely Scheme. The specification of the matching algorithm in

iRho accepts non-linear patterns, and compares subparts of the datum (through ≡, which

is implemented using the primitive equiv? in Scheme). Confluence is preserved thanks

to the call-by-value strategy of the operational semantics.

The shape of patterns has been limited to algebraic terms and structures (that is,

no function as pattern). This restriction is strictly related to the current software

development of our interpreter, and to the current mechanical development of the

metatheory underlying iRho, and not to theoretical problems (see Barthe et al. (2003)).

Terms. The main intuitions behind the term syntax are as follows:

— Variable and Constant are exactly as in the lambda calculus with constants.

— Structure allows one to express lists, sets, objects, and so on.

— Pattern Abstraction allows one to match over patterns. This gives a conservative

extension of the simply-typed lambda calculus when the pattern is a simple variable,

that is, λX:τ.A ' X !X:τ A; the context ∆ in the pattern abstraction records the

types of all the free variables of P (possibly bound in the body A). For example, the

accessors car (in a homogeneous list) can be written in Rho as follows:

car (
= (cons XY) !∆ X with ∆ ≡ X:τ,Y:τ′ .

— Application allows one to apply a pattern abstraction P !∆ A to an argument B,

which of course must match on P . The terms are reduced under a classical call-by-

value evaluation strategy; in the evaluation, the body of a pattern abstraction is not

evaluated until the function is called on a suitable value (that is, pattern abstractions

are values). For example, (car (car (cons (cons a b) c))) will reduce to a.

Observe that compared with ‘non-strategic’ implementations of the Rewriting Calculus

(Cirstea et al. 2001a; Cirstea et al. 2001b; Cirstea et al. 2002; Barthe et al. 2003),

the delayed matching constraint [P *∆ A].B, now just becomes syntactic sugar for

(P !∆ A)B (which is omitted from the source language but will still be present in the set

of output values).

Values and environments. The set Val of values, and the set of environments Env are

defined below, where the last two forms are closures:

Av ::= aAv | Av , Av | 〈P !∆ A " ρ〉 | 〈[P *∆ Av].B " ρ〉 functional values.

Environments (denoted by ρ) are partial functions from the set of variables to the set of

values, that is, ρ ∈ Env ' [X ⇒ Val]⊥. The extension of an environment is denoted by

ρ[X 0→ Av] and is defined by

ρ[X 0→ Av](Y ) (
=

{
Av if X ≡ Y

ρ(Y ) otherwise.
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2.2. The Rosetta Stone

The Rewriting Calculus is known to be a conservative extension of the lambda calculus

(Cirstea et al. 2001a; Cirstea and Kirchner 2001). Nevertheless, it is typically presented

using an infix notation, using as binder the meta-symbol ‘arrow’ (!), instead of the prefix

notation using as a binder the meta-symbol ‘lambda’ (λ) together with the meta-symbol

‘point’ (.). Moreover, since an abstraction can bind more than one variable, the type

decoration of a pattern is given by a ‘context’ (∆) instead of a simple type. The rationale

is

λX:X:τ1︸︷︷︸
∆

.A ' X !∆ A variables as patterns

λ(f X Y ):X:τ1, Y :τ2︸ ︷︷ ︸
∆

.A ' (f X Y ) !∆ A algebraic patterns.

Since the context ∆ declares the types of all the free variables of P , we have

Fv(P !∆ A) (
= Fv(A) \ Fv(P ) .

The other cases of the Fv definition are given in Definition 1.

Let-like and conditional constructs. Let-like constructs can be generalised to include

patterns by viewing them as syntactic sugar for applications, that is,

let P * A in B
(
= (P ! B)A .

Conditionals can also be easily encoded in Rho, using pairing and application (true, and

false are constants), that is,

neg (
= (true ! false , false ! true)

if A thenB else C
(
= (true ! ((X ! B) dummy) , false ! ((X ! C) dummy))A .

Observe that, because of the call-by-value strategy, the then and else branches are

wrapped in a dummy abstraction, and X is fresh in B and C , that is, X 2∈ Fv(B) ∪ Fv(C).

Pair encoding. It is also well known that structures can be easily encoded in the lambda

calculus using the standard pair encoding.

The ‘Rosetta’ stone (see Figure 2) gives an intuitive comparison between the lambda-like

and rewriting-like notations, with a particular focus on the pair/projection encoding.

2.3. Functional operational semantics

We define a big-step call-by-value operational semantics through a natural proof deduction

system. The purpose of the deduction system is to map every expression into a value. The

semantics is defined using three judgments with the shape

ρ 3 A ⇓val Av or 3 〈Av " Bv〉 ⇓call Cv or ρ 3 〈A " Av〉 ⇓match ρ′ .

The first judgment evaluates a term in Rho, the second applies one value to another,

producing a result value, and the last updates a correct environment obtained by matching
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Fig. 2. The Rosetta (functional) Stone.

a term against a value. All the rules are presented in Figure 3, where the symbol % stands

for either @ or ‘ ,’. In a nutshell:

— (Red·Val) evaluates every constant to itself.

— (Red·Var) simply fetches the value of X into the environment.

— (Red·Struct) simply evaluates a structure to a structure value.

— (Red·Fun) evaluates a pattern abstraction to a closure.

— (Red·Applv) first reduces the term A to a value Av, then evaluates the argument B in

Bv, and finally applies Av to Bv using the ⇓call judgment.

— (Call·Algbr) builds an algebraic value under the shape of an application in weak

head-normal form.

— (Call·Struct) applies every element of the structure value to the argument Cv.

— (Call·FunOk) first matches successfully P against Bv, and then evaluates the body of

the pattern abstraction A in the new environment calculated by ⇓match.

— (Call·FunKo) applies when the match of P against Bv fails: a failure value is returned.

— (Call·Wrong) applies a failure value to a value; the failure value is then propagated.

— (Match·Const) means that matching two equal constants does not modify the resulting

environment.

— (Match·VarNew) and (Match·VarEq) mean that matching a variable against a value

produces an environment updated with the new binding, or the same environment if

the variable is already bound with exactly the same value.

— (Match·Pair) means that matching either an application or a structure (recall that % ∈
{@ , }) produces an environment resulting from the composition of two environments.

The natural operational semantics is deterministic and immediately suggests how to build

an interpreter. The standard first-order matching algorithm of Huet (1976) is implemented

by a judgment ρ 3 〈A "Av〉 ⇓match ρ′ that, given an environment, a term and a value, either

enriches the environment or fails. However, the algorithm has been enhanced in order to

take into account the imperative features of the calculus.

Remark 1 (On failure values and exceptions). ‘Failure values’ 〈[P *∆ Av].B " ρ〉 denote

failures occurring when we cannot find a correct substitution θ on the free variables of

P such that θ(P ) ≡ Av; the environment ρ records the value of the free variables of B.
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Fig. 3. Natural functional semantics.
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Failure values are obtained during the computation when a matching failure occurs. They

can in principle be discarded, or caught by an exception handler (see Cirstea et al. (2002)),

which can be implemented in the interpreter.

In this paper, for the sake of simplicity, we will not deal with pattern-mismatch errors

and pattern exceptions (but this feature is available as an option in our interpreter). In the

examples of Section 6, when a computation terminates with success (that is, not a failure

value), all intermediate failure values are simply discharged from the final output. The

interested reader may consult Cirstea et al. (2004) for the necessary operational semantics

extensions/enhancements, and for a suitable matching theory that automatically drops

failure values.

Remark 2 (Optimistic vs. pessimistic vs. clean machines). Our natural semantics is

‘optimistic’, in the sense that if a matching failure occurs, the computation is not halted

and we explicitly list such a failure in the final result. Of course, other choices are possible,

such as ‘killing’ the computation once a failure value is produced, or ‘cleaning’ all failure

values from the final result. The distinction is clearly visible when dealing with structures,

as shown in the following trivial example (we let ⇓opt
val and ⇓pex

val and ⇓clean
val , denote the

optimistic, pessimistic and clean machine cases, respectively)

...

! 3 (3 ! 3 , 4 ! 4) 4 ⇓opt
val 〈[3 * 4].3 " !〉 , 4

...

! 3 (3 ! 3 , 4 ! 4) 4 ⇓pex
val 〈[3 * 4].3 " !〉

...

! 3 (3 ! 3 , 4 ! 4) 4 ⇓clean
val 4

We conclude this section with a simple example of two functional evaluations.

Example 1 (Two functional evaluations). Consider the following term in Rho

((aX) ! (3 ! 3)X) (a 3) and ((aX) ! (3 ! 3)X) (a 4)

and let

5 ≡ ! 3 〈((aX) ! (3 ! 3)X) " !〉 ⇓val 〈((aX) ! (3 ! 3)X) " !〉

( ≡ ! 3 (a 3) ⇓val (a 3)

! ≡ ! 3 (a 4) ⇓val (a 4)

Av ≡ 〈[3 * 4].3 " ρ〉 ρ0
(
= [X 0→ 3] ρ1

(
= [X 0→ 4] .

The deduction trees are shown in Figure 4.
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Fig. 4. Natural deduction of ((aX) ! (3 ! 3)X) (a 3) and ((aX) ! (3 ! 3)X) (a 4).

Fig. 5. iRho’s syntax.

3. The Imperative Rewriting Calculus

In this section we add imperative features to our rewriting calculus to yield the full iRho.

We extend the syntax of terms by adding (de)referencing and assignment operators, by

extending the set of values and contexts including references, by adding new reference-

types, and by recasting our natural semantics in terms of store locations and environments

(Tofte 1987; Felleisen and Friedman 1989).

Syntax. The syntax of iRho (types, contexts, patterns and terms) is given in Figure 5.

Intuitively, iRho deals with references à la ML that is:

— Ref terms The term ref A is a referencing term (the-location-of); if A is a term of

type τ, then ref A is a pointer to A of type τ ref;
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— Assignment terms The term A := B is an assignment operator, which returns as

its result the value obtained by evaluating B (as in, for example, SmallTalk); other

languages, such as OCaml, return a special value () of type unit.

3.1. Imperative syntax

As an immediate benefit of the new and powerful built-in pattern-matching algorithm,

the classical dereferencing term (goto-memory), denoted by !A, where A is a pointer in

the store can be easily defined as follows (types are omitted):

!A (
= (ref X ! X)A .

This is a nice feature with respect to functional core calculi, in that it mixes imperative

and functional features, as in Caml.

Sequencing can be also defined in iRho as follows (types are omitted):

A ;B (
= (X ! B)A X 2∈ Fv(B) .

Issues related to garbage collection are beyond the scope of this paper: new locations

created during reduction through referencing (ref A) will remain in the store forever. In

principle, the classical techniques of Ian Mason and Carolyn Talcott, and Greg Morrisset

et al. (Mason and Talcott 1992; Morrisett et al. 1995) could be applied to iRho.

Values and stores. The set Val of values is enriched by locations. The symbol ι ranges

over the set Loc of store locations, and the symbol σ ranges over the set of global stores

Store.

Av ::= . . . as in Rho . . . | ι imperative values.

Stores are partial functions from the set L of locations to the set of values, that is,

σ ∈ Store ' [Loc ⇒ Val]⊥; we denote the extension of a store by σ[ι 0→ Av] with the

meaning

σ[ι 0→ Av](ι′)
(
=

{
Av if ι ≡ ι′

σ(ι′) otherwise.

3.2. Imperative operational semantics

As in the functional case, we define an ‘optimistic’ big-step operational semantics. Again,

the chosen strategy is call by value, and the semantics is defined using three judgments

with the shape

σ " ρ 3 A ⇓val Av " σ′ or σ 3 〈Av " Bv〉 ⇓call Cv " σ′ or σ " ρ 3 〈A " Av〉 ⇓match ρ′ .

The main difference compared with the functional calculus Rho is that all judgments have

as premise a global store σ, which can be modified and returned as a result. In the case

of ⇓val and ⇓call, a store σ is given as input, and a (possibly modified) store σ′ is returned

as output. In the ⇓match rule, a store σ is needed as input since our matching algorithm
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Fig. 6. Natural imperative semantics.

allows us to match a referencing term ref A to a pointer variable, as in, for example,

[ι0 0→ 3] " [Y 0→ ι0] 3 (ref X !X:b X)Y ⇓val 3 · [ι0 0→ 3] .

The rules of the dynamic semantics are defined in Figure 6. In a nutshell:

— (Red·{v,Applv,Var,Fun, Struct}) behave, essentially, as in the functional case, except

that the store parameter is propagated over the judgments in the premises and in the

conclusion.
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— (Red·Ref) first reduces A into a value, and then stores it into a ‘fresh’ location ι.
— (Red·Ass) performs assignment: first we reduce the receiver A into an (existing)

memory location, then we reduce the expression B (to be assigned) to a value, and,

finally, we give as result the value produced by B, and a new store, which performs

the modification in situ .
— (Call·{FunOk, Struct,FunKo,Algbr,Wrong}) do not present any surprises when com-

pared with the corresponding rules in Rho: the only difference lies in the store

propagation from the input of the conclusion (through the premises) to the output of

the conclusion (value · store).
— (Match·{Const,VarNew,VarEq,Pair}) have the same matching judgments as in Fig-

ure 3 with the addition of an (unused) extra parameter σ.
— (Match·Ref) is the only matching rule that needs a store as an input argument: it first

fetches the value Av in the store σ, at the location ι, and then calls the matching of

the pattern P against the value Av. An example of imperative pattern matching is

[ι0 0→ 3] " ! 3 〈ref X " ι0〉 ⇓match [X 0→ 3] .

This pattern-matching rule allows us to consider the dereferencing term !A simply as

sugar in iRho.

Observe that the following rule, which first reduces A into a location value ι and then

returns the value stored at ι, is admissible:

σ0 " ρ 3 A ⇓val ι " σ1 ι ∈ Dom(σ1)

σ0 " ρ 3 !A ⇓val σ1(ι) " σ1

(Red·Deref) .

We conclude with a simple example of an imperative evaluation.

Example 2 (An imperative evaluation). Take the imperative term

((a (X ,Y )) ! (3 ! X := !Y ) !X) (a (ref 3 , ref 4))

with σ0
(
= [ι0 0→ 3][ι1 0→ 4], and σ1

(
= σ0[ι0 0→ 4], and ρ0

(
= [X 0→ ι0][Y 0→ ι1]. The deduction

tree is shown in Figure 7.

4. The type system

In this section we present a type system for iRho. As usual, we employ type checking to

catch some errors before run-time evaluation. In the following section, we present a rich

collection of (typable) examples, namely decision procedures, meaningful objects, fixed

points and term rewriting systems. The type system can probably be extended with a

subtyping relation, or with bounded polymorphism, to capture the behaviour of structures-

as-objects, and object-oriented features. Compared with previous type systems for the

(functional) Rho (Cirstea et al. 2001b; Cirstea et al. 2002; Barthe et al. 2003; Cirstea et al.

2004), structures can now have different types, that is, thanks to the following typing rule,

which is new compared with the previous typed formulations of the Rewriting Calculus:

Γ 3A A : τ1 Γ 3A B : τ2

Γ 3A A ,B : τ1 ∧ τ2

(Term·Struct) .
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Fig. 7. Natural deduction of ((a (X ,Y )) ! (3 ! X := !Y ) !X) (a (ref 3 , ref 4)).

The type τ1 ∧ τ2, which is reminiscent of a record-types discipline, is suitable for

heterogeneous structures, like lists, ordered sets or objects. This enhancement gives a

more flexible type discipline, where the product type τ1 ∧ τ2 reflects the implicit non-

commutative property of ‘ ,’ in the term ‘A ,B’, that is, ‘A ,B’ does not necessarily behave

in the same way as ‘B ,A’. This modification greatly improves the expressiveness compared

with previous typing disciplines on the Rewriting Calculus (Cirstea et al. 2004) in the sense

that it gives a type to terms that will not be stuck at run time, but it does complicate the

metatheory and mechanical proof development. The main enhancement compared with

previous versions of the Rewriting Calculus (Barthe et al. 2003) is that here the elements

of the structure are not forced to have the same type.

The type system 3A is algorithmic: the type rules are deterministic and suggest two

decision procedures for type reconstruction and type checking. We say that a set of rules

specifies a deterministic typing algorithm if the type rules are syntax directed, and each

rule satisfies the sub-formula property (all the formulas appearing in the premise of a rule

are sub-formulas of those appearing in the conclusion).

The main complication in the type system lies in applying a structure to an argu-

ment, thus producing a structure value by dispatching the argument to all the pattern

abstractions contained in the structure.

The structure value will be typed with a product type containing all the components of

the structure. As a simple example, if we apply a structure (with type (b1 ! b2)∧(b1 ! b3))

to an argument of type b1, we would obtain as result a structure value of type b2 ∧ b3.

To capture this behaviour (which is a direct consequence of dispatching application into
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Fig. 8. Well-formed pattern and terms.

structures), we need the partial function arr on types, which transforms a product type

into a function type:

arr(τ1 ! τ2)
(
= τ1 ! τ2

arr(τ1 ∧ τ2)
(
= τ3 ! (τ4 ∧ τ5)

{
if arr(τ1) ≡ τ3 ! τ4

and arr(τ2) ≡ τ3 ! τ5 .

Hence, the type system of iRho derives judgments with the shape

Γ 3Γ ok Γ 3τ τ : ok Γ 3v Av : τ

Γ 3ρ ρ : Γ′ Γ 3σ σ : Γ′ Γ 3P P : τ Γ 3A A : τ ,

which denote well-typed contexts, types, values, environments, stores, patterns and terms,

respectively. In the following, we let the symbol α range over X ∪ K. The typing rules for

patterns and terms are presented in Figure 8. Note that the following rule is admissible.

It says that if A is a pointer to an object of type τ, then its access in memory, denoted by

!A, has type τ.

Γ 3A A : τ ref

Γ 3A !A : τ
(Term·Deref)

The following descriptions cover the most interesting type-checking rules:
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— (Patt·Start) and (Term·Start) fetch from the context the correct type of variables and

constants, respectively.
— (Patt·Struct) and (Term·Struct) assign a product type to a structure that records the

type of both elements.
— (Patt·Algbr) and (Term·Appl) deal with application. We will just discuss the term–term

application, the pattern–pattern application being similar. The application rule is what

one expects for an algorithmic version of a type system; note that before applying

terms, we need to transform the type τ1 of A into an arrow type since it could happen

that A is a structure containing more branches of the same domain type. The subject

of the statement is aP P since P can be empty and, as usual, application associates

to the left.
— (Term·Abs) has the context ∆ added to its premises using the decidable function Fv(P );

the context Γ gives types only for algebraic constants.
— (Term·Assign) deals with assignment: the only possible choice is to assign to an

expression A of type τ ref , an object B of type τ.
— (Term·Ref) says that if an object A has type τ, then a pointer to this object, denoted

by ref A, has type τ ref .

4.1. Extra typing rules

The presentation of the type system is completed by five complementary judgments with

the shape

Γ 3Γ ok, or Γ 3τ τ : ok, or Γ 3v Av : τ and Γ 3ρ ρ : Γ′ or Γ 3σ σ : Γ′

denoting well-formed contexts, types, values, environments and stores, respectively. These

judgments are required when we encode iRho in the Logical Framework of Coq. The type

rules of these five new judgments are really much more intuitive and do not need any

particular comment. It is worth noting that rule (Value·Algbr) also needs a transformation

step for product types into arrow types. The (Value·Clos) and (Value·Fail) rules are also

interesting since the inferred type for the environment ρ is ‘charged’ into the derivation

for the pattern abstraction. All of the extra rules are listed in Figure 10.

5. Metatheory

In this section we present the main properties of iRho, namely:

1 Our natural semantics for ⇓val is deterministic.
2 Type checking with 3A is unique.
3 Subject reduction holds (that is, types are preserved under reduction).
4 Type soundness holds (that is, the type system preserves the evaluator from ‘stuck’

states).
5 Both type checking and type reconstruction are decidable.

The most crucial proofs have been carried out using a mechanical development with the

proof assistant Coq (Liquori and Serpette 2005). Some of this development is presented

in detail in Section 7. We start with a natural definition of free variables.
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Fig. 9. Extra typing rules.
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Definition 1 (Free variables Fv ).

Fv(a) (
= !

Fv(X) (
= {X}

Fv(!A) (
= Fv(A)

Fv(ref A) (
= Fv(A)

Fv(P !∆ A) (
= Fv(A) \ Fv(P )

Fv(AB) (
= Fv(A) ∪ Fv(B)

Fv(A ,B) (
= Fv(A) ∪ Fv(B)

Fv(A := B) (
= Fv(A) ∪ Fv(B) .

Now we prove that our natural semantics is deterministic.

Theorem 2 (Deterministic semantics). For any term A, environment ρ and store σ:

1 If σ1 " ρ 3 A ⇓val Av " σ2 and σ1 " ρ 3 A ⇓val Bv " σ3, then Av ≡ Bv and σ2 ≡ σ3.

2 If σ1 3 〈Av " Bv〉 ⇓call Cv " σ2 and σ1 3 〈Av " Bv〉 ⇓call Dv " σ3, then Cv ≡ Dv and σ2 ≡ σ3.

3 If σ " ρ1 3 〈P " Av〉 ⇓match ρ2 and σ " ρ1 3 〈P " Av〉 ⇓match ρ3, then ρ2 ≡ ρ3.

Proof. The theorem was proved using Coq.

The type system presentation is syntax directed, so it suggests directly how we can build

an algorithm, and thus that it enjoys the nice property of uniqueness of typing; a software

prototype of a simple type checker can be found in the web appendix (Liquori and

Serpette 2005)).

Theorem 3 (Uniqueness of typing). If Γ 3A A : τ1, and Γ 3A A : τ2, then τ1 ≡ τ2.

Proof. The theorem was proved using Coq.

The following definition splits the typed context into two sub-contexts: the former

recording types assigned to locations, and the latter recording types assigned to variables.

This will be useful in the Subject-reduction Theorem.

Definition 4 (Coherence). The context Γ is coherent with a store σ, and an environment

ρ, denoted by

Γ 3coh σ " ρ

if there exist two sub-contexts Γ1 and Γ2 such that Γ1,Γ2 ≡ Γ and Γ1 3σ σ : Γ1 and

Γ2 3ρ ρ : Γ2.

Proving subject reduction for open terms is preliminary to proving it for closed terms.

Theorem 5 (Subject reduction for open terms). If σ1 "ρ1 3 A ⇓val Av "σ2 and Γ1 3coh σ1 "ρ1

and Γ1 3A A : τ, then there exists Γ2, which extends Γ1, such that Γ2 3coh σ2 " ρ1 and

Γ2 3v Av : τ.

Proof. The theorem was proved using Coq.

The following result is crucial for type soundness.

Theorem 6 (Subject reduction for closed terms). If ! " ! 3 A ⇓val Av " σ and ! 3A A : τ,

then there exists Γ such that Γ 3coh σ " ! and Γ 3v Av : τ.

Proof. The theorem was proved using Coq.
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The reduction rules for the operational semantics given in Figure 6 readily suggest how an

interpreter for iRho can be defined. Run-time errors for this interpreter would correspond

to stuck states when using the rules to evaluate a closed expression. An inspection of the

three judgments of the operational semantics shows that there are only two ways in which

an evaluation may get ‘stuck’:

— (⇓val) gets stuck when we access a variable not defined in the environment, when the

evaluation of A in A := B gives a fresh, dangling location (that is, one not in the

current used store), or if a premise in some judgment gets stuck.

— (⇓call) gets stuck when we try to apply a location value to a value (for example, 〈ι "Av〉),
or if a premise in some judgment gets stuck.

— (⇓match) gets stuck when we try to match a pattern against a value with a different

(unmatchable) shape, for example, 〈(P Q) " (A ,B)〉.
The following soundness theorem proves the absence of such errors in the evaluation of

a well-typed closed expression.

Theorem 7 (Progress and type soundness). Let A be a closed term such that ! 3A A : τ is

derivable, and let C[·] be any iRho-context.

Progress

(⇓val)

1 If A ≡ C[X], there exist σ1 and ρ such that σ1 " ρ 3 X ⇓val ρ(X) " σ2 and ρ(X) 2= ⊥.

2 If A ≡ C[B := C], there exist σ1 and ρ such that σ1 "ρ 3 B ⇓val ι "σ2 and ι ∈ Dom(σ2).

(⇓call)

If A ≡ C[B C], there exist σ1 and ρ such that σ1 " ρ 3 B ⇓val Bv " σ2, and Bv 2≡ ι;

(⇓match)

If A ≡ C[B C], there exist σ1 and ρ such that σ1 " ρ 3 B ⇓val 〈P !∆ D " ρ1〉 " σ2 and

σ2 " ρ 3 C ⇓val Cv " σ3, and P will successfully match with Cv.

Type-soundness

If ! 3A A : τ, then ! " ! 3 A ⇓val Av for some Av.

Proof.

Progress

(⇓val) If A has a variable X as a sub-expression, then, by the well-typedness of the

sub-expressions, environment and store, ρ(X) 2= ⊥. If A has an assignment B := C as

a sub-expression, then, by the well-typedness of the sub-expressions, environment and

store, B evaluates to ι " σ2 and ι ∈ Dom(σ2);

(⇓call) Similarly, if A has an application B C as a sub-expression, then, by the well-

typedness of the sub-expressions, environment and store, the evaluation of B is not a

location.

(⇓match) Again, if A has an application B C as a sub-expression, then, by the well-

typedness of the sub-expressions, environment and store, the evaluation of B leads to

a closure value 〈P !∆ D " ρ1〉, and the pattern P has a shape that can overlap with

Cv (the latter being obtained by the evaluation of C).
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Fig. 10. The algorithms iType and iTCheck.

Type soundness

Type soundness follows immediately from Progress and the Subject-reduction Theorem.

We conclude this section with some decidability results.

Theorem 8. Given a closed expression A, the following propositions are decidable:

1 (Type checking) The existence of a type τ such that ! 3A A : τ is decidable.

2 (Type reconstruction) The truth of ! 3A A : τ for a given τ is decidable.

Proof.

1 Figure 10 gives the sketch of a recursive algorithm for building τ, or returning false if

it does not exist.

2 We use the previous algorithm for type reconstruction (Figure 10). By the uniqueness

of typing, Γ 3A A : τ if and only if τ is equivalent to the type found for A.

Theorem 9 (Soundness and completeness of iType). For a closed A and a given ∆, we

have iType(ε;A) = τ if and only if ε 3A A : τ is derivable.

Proof. It is easy to prove both parts using induction on the structure of A.

6. Examples

To simplify the derivations, some types are omitted. The first example type checks the

imperative term of Example 2. The second example deals with structures and normalised

types. The third example evaluates a more complicated imperative term, and the final

example provides static and dynamic descriptions of a simple functional fixed point. When

no ambiguity arises, we use the following syntactic sugar for multiple assignments:

(X1 ; . . . ;Xn) := (A1 ; . . . ;An)
(
= X1 := A1 ; . . . ;Xn := An .
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Fig. 11. Type checking of Example 2.

Fig. 12. Type checking of ((X ,Y ) !∆ X := !Y , (X ,Y ) !∆ Y ) (a , b).

6.1. Basic examples

Example 3 (Type checking). The type checking of Example 2 is shown in Figure 11, where

Γ ≡ b:ok, 3:b, 4:b, a:(b ref ∧ b ref ) ! b and ∆ ≡ X:b ref , Y :b ref .

Example 4 (Structures and normalised types). Let Γ ≡ b:ok, a:b, b:b and ∆ ≡ X:b ref , Y :

b ref . A derivation for

((X ,Y ) !∆ X := !Y , (X ,Y ) !∆ Y ) (a , b)

is shown in Figure 12.

6.2. Some trickier examples

Example 5 (Negation normal form). This function (computing a negation normal form) is

used in implementing decision procedures, which are present in almost all model checkers.

The processed input is an implication-free language of formulas with generating grammar

φ ::= p | (and (φ ,φ)) | (or (φ ,φ)) | (notφ) .

We present two imperative encodings: in the first, the function is shared using a pointer,

and recursion is achieved through dereferencing. In the second, formulas are again shared,
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Fig. 13. Imperative encoding with(out) sharing.

through back-pointers to shared sub-trees. The variable ‘SELF’ plays the role of the

metavariable ‘self ’ (or ‘this’) commonly found in object-oriented languages. Then we type

check the encodings. For the sake of readability, all type decorations within terms are

omitted.

Imperative (I)

This encoding uses a variable SELF, which contains a pointer to the recursive code:

here the recursion is achieved directly through pointer dereferencing, assignment and

the classical imperative fixed point in order to implement recursion. Given the constant

dummy, the function nnf1 is defined as in Figure 13, and the imperative encoding is

let SELF * ref dummy in let NNF * nnf1 in SELF := NNF; (NNFφ) .

Imperative with sharing (IS)

This encoding uses a variable SELF, which contains a pointer to the recursive code

and a flag pointer to a boolean value associated with each node: all flag pointers

are initially set to false; each time we scan a (possibly) shared formulas we set the
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Fig. 14. One fixed point.

corresponding flag pointer to true. The grammar of shared formulas is

bool ::= true | false

flag ::= bool ref

ψ ::= ref φ

φ ::= p | (and (flag ,ψ ,ψ)) | (or (flag ,ψ ,ψ)) | (not (flag ,ψ)) .

Given the constant dummy, the function nnf2 is defined as in Figure 13, and the

imperative encoding is

let SELF * ref dummy in let NNF * nnf2 in SELF := NNF; (NNFψ) .

Typing the imperative encodings

If b is the type of formulas φ and b ref is the type of the shared formulas ψ, and

∧nτ (
= τ ∧ . . . ∧ τ︸ ︷︷ ︸

n

and τ1
(
= b ! b and τ2

(
= b ref ! b ref , then it is easy to verify that

the following judgments are derivable (we let Γ1
(
= dummy: ∧6 τ1,SELF: ∧6 τ1 ref and

Γ2
(
= dummy: ∧6 τ2,SELF: ∧6 τ2 ref ):

(I) Γ1, X: ∧6 τ1,NNF: ∧6 τ1 3 NNF(φ) : ∧6b

(IS) Γ2, X: ∧6 τ2,NNF: ∧6 τ2 3 NNF(ψ) : ∧6b ref .

Example 6 (Simple first-order fixed point (Cirstea et al.) 2004). The type systems of

iRho do not obey the classical property that ‘well-typed programs normalise’. More

precisely, non-termination can be encoded in our calculus thanks to ad hoc patterns. We

present here a term inspired by the classical Ω term of the untyped lambda calculus. Let

Γ ≡ fix:(b ! b) ! b and ∆ ≡ X:b ! b. A derivation for Ω (
= (fixX) !∆ (X (fixX)) is

shown in Figure 14. It is easy to verify that our interpreter diverges on this term.

Remark 3 (On let rec and fixed points). Fixed points and let rec definitions are introduced

using the well-known result of Nax Paul Mendler (Mendler et al. 1986; Mendler 1987).
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When introducing recursive definitions in the typed lambda calculus, the strong normal-

isation is no longer enforced by typing if the type constructors do not satisfy a positiveness

condition.

This condition forces an algebraic constructor to be typed without negative occurrences

of recursive (potentially infinite) entities; in our case, the algebraic constructor fix (see

Example 6) involved does not satisfy the above condition since it is applied to a recursive

object represented by the SELF variable. This condition is also enforced in the Calculus

of Inductive Constructions (see Gimenez (1998)), which is the basis of the Coq proof

assistant. The condition avoids inconsistencies in the system itself, such as proving the

Russell Paradox ; termination issues are essential in Curry–Howard based proof assistants.

The same problem also appears in programming languages: for instance, one can define

a recursive function in Caml without using the keyword let rec.

There are many techniques for implementing recursive definitions efficiently and

effectively in call-by-value functional languages: among them, it is worth noting the

‘in-place update tricks’ outlined by Guy Cousineau et al. (Cousineau et al. 1987), and the

more recent techniques due to Gérard Boudol and Pascal Zimmer (Boudol and Zimmer

2002), and Tom Hirschowitz et al. (Hirschowitz et al. 2003), or Peter Landin’s classical

trick (Landin 1964).

7. Formalisation in Coq

In the previous sections we have given a mathematical presentation of iRho suited to an

encoding in Coq. The formalisation of iRho in the specification language of the proof

assistant is, however, a complex task as we have to face many subtle details that are left

implicit on paper. Here we will just briefly discuss the most interesting aspects of this

development.

The encoding of iRho in Coq rephrases the previous sections in a natural way. The

adequacy of the Coq encoding with respect to the mathematical presentation is proved

using pen and paper.

A well-known problem we have to deal with is the encoding of the !-binder. Binders

are known to be difficult to encode in proof assistants; our encoding was essentially

based on closures, that is, <pattern abstraction · environment> pairs. Environments are

partial functions from variables to values. Substitution is replaced by a simple look up in

the environment; variable scoping, and all name-related matters are simply ignored. This

technique is widely used in efficient implementations of functional languages, and greatly

simplifies mechanical metatheory.

7.1. Syntactic and semantic structures

The signature of the encoding of iRho is presented in Figure 15. We will only comment

on the most interesting choices:

— An ad hoc type var is introduced for variables; the only terms that can inhabit var are

the variables in the logical framework. Thus, α-equivalence on terms is immediately

inherited from the metalanguage, together with induction and recursion principles.
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Fig. 15. Semantics domains in Coq.

— Another ad hoc type boperator is introduced for algebraic constants; algebraic

constants come together with their types, thereby giving the category operator as

a boperator∗type pair.

— Locations loc are faithfully represented by natural numbers.

— (Un)typed environments (env and envt) and (un)typed stores (store and storet) are

partial functions from var/loc to the sets value/type.

— A special variable sbrk denotes a function that, for any store, gives the topmost unused

location: the sbrk variable is essential when we are looking to extend the store with

fresh locations during new allocations (using the operator ref ).

— Types type needs no special comments: they are implemented with an inductive

datatype; patterns pattern, expressions expr, and values value are also implemented

by an inductive datatype.

7.2. Natural semantics

As we mentioned in the previous section, the natural semantics is given by means of two

mutually recursive functions, namely, eval and call, and a third function match devoted

to calculate matching; they are sketched in Figure 16. The web appendix (Liquori and

Serpette 2005) contains the complete encoding of the natural semantics. None of the rules

present any surprises when compared with the rules in the natural semantics (that is, we

get adequacy almost directly). We will only comment on the most interesting choices:

— (evalApp) is an ‘ASCII-clone’ of the (Red·Applv) natural semantic rule.



iRho: an imperative rewriting calculus 27

Fig. 16. Sketch of natural imperative semantics in Coq.

— (evalRef) encodes the semantic rule (Red·Ref). Observe the use of the sbrk function,

which extends a given store (partial function) through the (here omitted) auxiliary

function extend store.

— (evalDeref) first verifies that the required location belongs to the store domain (recall

that stores are partial functions), and then directly accesses the store leaving the store

itself unmodified.

— (evalAssign) first evaluates the lvalue and the rvalue, then verifies that the location

corresponds to the lvalue defined in the store, and finally modifies the store in situ .

— (callclosureOK) and (matchCons) are also just clones of the natural semantic rules

(Call·FunOK) and (Match·Pair), respectively.

— (matchRef) first verifies that the given location i has some meaning in the store s, and

then matches the x pattern in (PRef x) against (Loc i).

7.3. Type system

The encoding of the type system is rather straightforward. The encoding consists of three

inductive functions, namely TypeCheckPattern, TypeCheckExpr and TypeOf, to type check

patterns, terms and values, respectively. The latter function needs two important auxiliary
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Fig. 17. Sketch of type-checking rules in Coq.

functions, namely AbstractEnv, and AbstractStore, to maintain consistency between types

environments (Γ) and typed stores (σ). We will only discuss the most interesting rules

presented in Figure 17:

— (tcPOpCons) and (tcApp) encode the type checking rule for patterns (Patt·Algbr), and

terms (Term·Appl), respectively – they make use of the function NormalizeFunType

which behaves as a coercion to a functional type.

— (tcRef), (tcDeref) and (tcAssign) encode the type rules (Type·Ref), (Type·Deref) and

(Type·Assign), respectively – they just mimic the corresponding rules in the natural

semantics.

— (aeExtend) is the counterpart of the judgment 3ρ (see Subsection 4.1), which assigns a

type (that is, a context) to an untyped environment – to ease the proof development,

the encoding makes use of two different partial functions, namely envt and storet,

to give a type to untyped environments and store, but this ‘nuance’ disappears in the

typing rule, where a context Γ binds variables and/or locations to types; a coherence
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theorem (see Section 5) bridges the gap between the mathematical presentation and

the encoding.

— (toClosure) faithfully encodes rule (Value·Clos) – see Subsection 4.1.

— (FixAbstract) is crucial for establishing a coherence relation between (un)typed

environments and (un)typed stores.

7.4. Some metatheory in Coq

The following theorems collect some results we have proved in Coq on both the

dynamic and static semantics: see Section 5 for the the full metatheory, and Liquori

and Serpette (2005) for its complete mechanical counterparts.

Theorem 10 (Coq’s run-time galleria).
1 Lemma LowerWhenSbrk : (s:store)(i:loc) (* writable store for sbrk *)

i=(sbrk s) -> (a:value)
(Lower s (extend_store s i a)).

2 Lemma NoGarbageCollection : (E:expr)(e:env)(s:store)(v:value)(s1:store) (* store grows *)
(eval E e s v s1) -> (LowerDomain s s1).

3 Lemma match_deterministic : (P:pattern)(v:value)(s:store)(e:env)(e1:env)
(match P v s e e1) -> (e2:env) (* algo pattern matching *)
(match P v s e e2) -> (e1=e2).

4 Theorem eval_deterministic : (A:expr)(e:env)(s:store)(v1:value)(s1:store) (* algo eval *)
(eval A e s v1 s1) -> (v2:value)(s2:store)
(eval A e s v2 s2) -> ((v1=v2) /\ (s1=s2)).

5 Theorem call_deterministic: (v1,v2:value)(s:store)(r1:value)(s1:store) (* algo call *)
(call v1 v2 s r1 s1) -> (r2:value)(s2:store)
(call v1 v2 s r2 s2) -> ((r1=r2) /\ (s1=s2)).

Theorem 11 (Coq’s compile-time galleria).
1 Lemma NormalizeFunType_deterministic: (t,t1:type) (* arr-function is deterministic *)

(NormalizeFunType t t1) -> (t2:type)
(NormalizeFunType t t2) -> (t1=t2).

2 Lemma TypeCheckPattern_deterministic: (E:envt)(P:pattern)(E1:envt)(t1:type)
(TypeCheckPattern E P E1 t1) -> (E2:envt)(t2:type) (* algo type check pattern *)
(TypeCheckPattern E P E2 t2) -> ((E1=E2) /\ (t1=t2)).

3 Lemma TypeCheckExpr_deterministic: (E:envt)(A:expr)(t1:type) (* algo type check expr *)
(TypeCheckExpr E A t1) -> (t2:type)
(TypeCheckExpr E A t2) -> (t1=t2).

4 Lemma open_subject_reduction_match: (P:pattern)(v:value)(s:store)(e,e’:env)
(match P v s e e’) -> (E:envt)(S:storet) (* SR for open expr match*)
(FixAbstract e s E S) -> (E1:envt)(t1:type)
(TypeCheckPattern E P E1 t1) -> (TypeOf S v t1) -> (AbstractEnv S e’ E1).

5 Lemma open_subject_reduction: (A:expr)(e:env)(s:store)(v:value)(s2:store)
(eval A e s v s2) -> (E:envt)(S:storet) (* SR for open expr eval *)
(FixAbstract e s E S) -> (t:type)
(TypeCheckExpr E A t) -> (EX S2:storet | ((Coherent s S s2 S2) /\ (TypeOf S2 v t))).

6 Theorem subject_reduction: (A:expr)(v:value)(s2:store) (* SR for closed expr *)
(eval A env_init store_init v s2) -> (t:type)
(TypeCheckExpr envt_init A t) ->
(EX S2:storet | ((Coherent store_init storet_init s2 S2) /\ (TypeOf S2 v t))).

Since the data structures for stores, environments, terms, values and types are isomorphic

in ‘mathematics’ and in Coq, the adequacy result comes directly as a matter of fact. To

resume, all theorems in the following list that have been proved by the proof assistant

Coqare labelled with a ‘
√

’.

(Determinism)
√

If σ " ρ 3 A ⇓val A
′
v " σ′ and σ " ρ 3 A ⇓val A

′′
v " σ′′, then A′

v ≡ A′′
v and σ′ ≡ σ′′.
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(Unique Type)
√

If Γ 3A A : τ, then τ is unique.

(Coherence)
√

σ " ρ 3coh Γ if there exist two sub-contexts Γ1 and Γ2 such that Γ1,Γ2 ≡ Γ and

Γ 3σ σ : Γ1 and Γ 3ρ ρ : Γ2.

(Subject reduction)
√

If ! 3A A : τ and ! " ! 3 A ⇓val Av " σ, then there exists Γ′ that extends Γ such that

Γ′ 3σ σ : ok and Γ′ 3v Av : τ.

(Type soundness)

If ! 3A A : τ, then ! " ! 3 A ⇓call Av for some Av.

(Type checking)

The existence of a type τ such that ! 3A A : τ is decidable.

(Type reconstruction)

The truth of ! 3A A : τ for a given τ is decidable.

8. Conclusions, related work and future directions

In this paper we have presented a formal development of the theory of iRho, a typed

rewriting-based calculus featuring term rewriting, pattern matching on imperative terms,

structures, functions and side effects. We have mixed rewriting (for rule-based languages),

with functions (for functional languages), structures (for logic-like languages) and safe

imperative structures, all ‘glued together’ by a pattern-matching algorithm that takes into

account the imperative features. To our knowledge, no similar study has appeared in the

literature.

We have presented a clean and compact formalisation of iRho in the proof assistant

Coq. The Subject-reduction theorem, which is particularly tricky on paper, was proved

in Coq with relatively little effort. The full proof development amounts approximately to

43Kbyte and the size of the .vo file is approximately 1Mbyte, working with CoqV7.2.

During the development we often had the feeling that the mathematical design was

driven by both the machine-assisted certification and the software implementation, and

that the feedback between these three phases (which are usually considered distinct) was

crucial for making both safe software and safe theory.

We have experimented with a ‘pattern’† (in the sense of ‘The Gang of Four’ (Gamma

et al. 1994)) called DIMPRO (Design-IMplement-PROve) to design safe software that

respects its mathematical and functional specifications in toto. This pattern will be familiar

to anyone who has knowledge of proof assistants.

Essentially, we started from a clean and elegant mathematical design, we continued

with an implementation of a prototype satisfying the design, and, finally, we completed it

† ‘A pattern is the abstraction from a concrete form which keeps recurring in specific non-arbitrary contexts . . .’
(Riehle and Züllighoven 1996).



iRho: an imperative rewriting calculus 31

with a mechanical certification of the mathematical properties of the design by looking

for the simplest ‘adequacy’ property of the related software implementation. These three

phases are strictly coupled and, very often, a particular choice in one phase induced a

corresponding choice in another phase, which very often forced backtracking.

Refinement of this process was done by iterating cycles until all the required global

properties were achieved (the process is reminiscent of a fixed-point computation, or a

B-refinement (Abrial 1996)). All three phases have the same status, and each influences

the other.

The lesson learned with iRho was that the hand of the math’s designer must be in

strict contact with the hand of the software’s designer, which, in turn, must be in strict

contact with the hand of the proof’s certifier. Our software interpreter has been a good

test of the ‘methodology’. More generally, this methodology could be applied in the setting

of raising quality software to the highest levels of the Common Criteria, CC (Common

Criteria Consortium 2005) (from EAL5 to EAL7), or level five of the Capability Maturity

Model, CMM. We have included in our schedule of future work the task of ‘formalising’

our novel DIMPRO pattern in the folklore of ‘design patterns’, and hope that it will be

useful to the community developing safe software for crucial applications.

Related work

Some implementations of the untyped Rewriting Calculus (uRho) can be found in the

literature. Among them we would like to mention:

— RhoStratego (Stratego Team 2003) is an implementation of an early version of

the uRho (Cirstea and Kirchner 2001), written in the strategic language Stratego

(Stratego Team 2005). The implementation tests strategic programming with higher-

order functional programming.

— Rogue (Stump and Schürmann 2005) is another implementation of a dialect of the

uRho (Cirstea and Kirchner 2001): this implementation is very interesting since some

imperative features are added to the language, for example, reading and writing

‘attributes’ of expressions and a fixed strategy. Rogue has an interesting application,

namely, it is the implementation language for building a new Validity Checker based

on the CVC (Stump et al. 2002) infrastructure.

— JRho (Faure and Moreau 2002) is a Java prototype of uRho (Cirstea and Kirchner

2001) using the TOM pattern-matching compiler (Tom team 2003).

Future directions

The iRho calculus is suitable for extension with more powerful pattern-matching al-

gorithms, and more sophisticated type systems capturing all modern object-oriented

features, including both class-based and prototype-based ones. Among possible develop-

ments, we identify the following:

— To add an exception handling mechanism along the lines of Cirstea et al. (2002) – this

would lead us to modify both the static and dynamic semantics.
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— To add a subtyping relation – this would allow one to type check considerably more

programs in iRho by enhancing the type system with bounded polymorphism and

object-types, together with the design of a type inference algorithm.
— To enhance the calculus with garbage collection – currently, new locations created

during reduction remain in the store forever; extending the calculus with suitable

modern exception mechanisms would be also worth studying.
— To analyse, perhaps using abstract interpretation or static analysis techniques, the

possibility of statically catching some pattern-matching failures.
— To enhance our matching algorithm with residuation and narrowing in the style of

the functional-logic programming language Curry by Michael Hanus (Hanus 1997).
— To add some ad hoc XML primitives to iRho.
— To enhance our proof development in order to reach software extraction using Coq –

this would be particularly appealing as it would eliminate one cycle in our DIMPRO

pattern.
— To apply DIMPRO to the design of a simple compiler from iRho toward an abstract

machine, such as JVM, or .NET, or to a variant of Landin’s machine (Boudol and

Zimmer 2002).
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