Specification of PARTITA Analyses

Laurent HASCOET
Simulog Sophia-Antipolis

1 Introduction

The FORESYS system is devoted to understanding, cleaning, and trans-
forming FORTRAN programs. All these tasks require deep and efficient
preliminary analyses, in order to give acceptable results.

Most of these analyses are actually part of the PARTITA component of
FORESYS, since they were initially devellopped for use by this component.

A key constraint in the design of FORESYS is that it must be used
on real-life FORTRAN programs. This stresses the problems of efficiency,
in time and space. This will often affect our implementation choices, some-
times leading to more complex algorithms. Also, since real-life FORTRAN
programs may heavily use such concepts as entry, exit, goto or other un-
structured control, all our analyses must perform reasonably well even in
ustructured parts of a file.

Memory organization is complex in FORTRAN. It is a mix of old-fashio-
ned common, equivalence, and of more modern pointer or structure.
As a consequence, it is difficult and costly to determine in what manner
two memory references may overlap. Since this question is crucial in most
analyses, we have to design a way to answer it quickly. In the next section,
we will present a solution based on a splitting of the memory space into
atomic zones.

Control structures are complex in FORTRAN, since many programs were
built with gotos, i.e. in absolutely free control. This leads to pathologic
cases, such as irreductible loops. Moreover, some forbidden programming
methods were not checked for by old compilers, and therefore were widely
used. Even if a goal of the FORESYS system is to detect and remove these
cases, we must first analyse them correctly. As a conclusion it turns out that
the best program representation for our purpose is not the abstract syntax
tree, but the control flow graph (cfg). The cfg will be explained in detail in
the 4'" section. All the analyses that we shall present later, in the 6"* and
7" sections, are based on the cfy.

The analyses we shall present here run on a single FORTRAN unit.
Then it is the task of the interprocedural database system to combine the
analyses of these units, so as to get a correct interprocedural result. We
shall not talk of these interprocedural issues here.

Let us present the analyses that we implement, in a “call by need” fash-
ion. There are two main results we want to provide the user. One is the
information about which variables are used, overwritten, or both, by the
considered unit. We call this the in-out analysis. The other result is
the dependence graph, linking all the basic operations of a unit with de-
pendence relations. These relate reads and writes of a same value (data
dependencies), or control structures with the operations that they condi-
tion (control dependencies).

As is well known, a good dependence graph must contain as few de-
pendencies as possible. To achieve that, array references must be carefully
studied to detect that array indexes may never overlap. Classical analy-
ses help detect these independencies. For example, knowing the interval of
value of a variable may help proving that two array indexes never overlap.
Also, knowing that a variable is an arithmetic progression with respect to
the loop index, helps too. Also, some directives provided by the user must
be propagated to every place where they might be useful. For the control
dependencies, a careful analysis is needed to limit the scope of influence of
conditionnals and loops. For the in-out analysis, an important improvement
is the detection of killed arrays, i.e. arrays which are proved to be completely
overwritten through the execution of a loop.

To summarize, the analyses that we need for PARTITA and FORESYS

are

e variable bounds: Searches and propagates information about the
interval inside which the run-time value of each numerical variable
will range.

e killed arrays: Detects the array variables whose value is completely
overwritten through the execution of a loop.

e in-out analysis: Computes, for each variable of a program unit,
whether it is read, or overwritten, or a combination of those, through
the execution of the unit.

¢ context of control: Computes, for every line of the unit, upon which
conditions and inside which iterations it is executed.

e induction variables: Detects these variables whose value can be
proved a simple arithmetic progression with respect to the loop control
index.

e directives propagation: PARTITA allows the user to give direc-
tives. Then this analysis propagates these directives through the unit,
until some operation makes this directive obsolete or false.

e data dependencies: Detects all possible data dependencies between
every couple of memory references found in the unit. Three types of
data dependence exist: write-to-read, read-to-write, and write-to-write.

There is an order between these analyses, since the result of one may be
useful to another. This order is shown on figure 1.

variable bounds

killed arrays induction variables

in—out analysis

|context of control

| directives propagation l

data:dependences |

Figure 1: Ordering of the current PARTITA analyses

There are cases where two different analyses may benefit from each other.
Since this leads to a circularity, we choose to loose the benefit in one di-
rection, thus loosing some precision in the analysis. For example, a good
detection of induction variables needs to know the bounds inside which a
loop index ranges, but conversely the bounds of a variable are more precisely
known when it is proved to be an induction variable. One solution would

be to interleave these analyses, but this would lead to extremely complex
algorithms.

All these analyses are based on the cfg. But, except for the context of
control and the directives propagation, they go deep inside each FOR-
TRAN instruction, to the level of memory references and atomic operations.
This introduces a second graph, which we call the data flow graph (dfg), and
which represents these memory references and atomic operations. Besides,
this dfg is also the place where data dependencies will be stored. The dfg
will be described in the 5% section.

2 The memory map

Because of equivalences, variables of different names may overlap in memory.
It is important to consider that when computing the data dependencies.
Similar problems come with pointers, or with aliasing.

Checking that two variable references overlap may be expensive if we al-
ways get down to comparing their memory offset. So there is a preparation
phase, during which the memory space is divided into zones. A given mem-
ory reference corresponds to one or more zones. Most computation during
analysis refer explicitely to zones instead of variable names.

The zones are chosen so that it is easy to tell two zones overlap. Actually,
two zones overlap if and only if they are the same, i.e. they have the same
rank.

Formally, the zones compose a partition of the memory space. It is the
largest partition such that if a variable name may access that zone, it may
access every byte of it. In other words, no beginning or end of an array (or a
scalar) may be in the middle of a zone. Figure 2 shows an exemple of zones
decomposition, in the case where A(100) has been equivalenced with B(1),
and B(250) has been equivalenced to scalar X.

There is another decomposition of memory space, called “big Zones” or
“Zones”, also shown on figure 2. Big Zones are designed so that no variable
can be in two Zones. This is used in data-dependencies only, and will be
explained there.

The preparation of the memory map yields the list of all zones. Ev-
ery zone knows its offset, and the list of all variables that may access it.
Conversely, every variable reference will be given a varinfo, which contains
information about the accessible zones.

To save memory space, most varinfo are shared between all variable
references of same name. They are thus computed during memory map

ZOnes: - L o 2 o s >i<5—> <—6>
Z0nes. - T - <—2>

Figure 2: zones and Zones of the memory map

creation, stored in the symbol table for their variable name, and later (during
dfg creation), each variable reference will receive its varinfo. An exception
is pointers, that require pointer-based variables to have possibly different
varinfo’s at each occurence.

This memory map is slightly different to handle data structures, but
we shall not discuss this here.

3 Graphs

There are many classical ways to represent a graph. We did not elect the
matrix representations, devoted to dense graphs, since both cfg and dfg are
sparse graphs. Moreover, we want enough flexibility to add extra nodes
whenever we want.

So the representation we chose is a list of nodes, and each node stores
the list of the arrows related to it. A question remains: should a node keep
the arrows flowing to it, from it, or both? This is a classical trade-off, whose
answer is different for cfg and dfy.

The cfg is relatively small, and has few arrows. about half of the analyses
will traverse it from the entry down, and the other half from the exit up. It
is natural to store the control flow arrows in both directions.

The dfgis very large. It has nearly as many nodes as machine instructions
contained in the unit. Even with a very good data dependence analysis, the
number of data dependencies is high. Moreover, it turns out that nearly all
analyses use only one direction of the arrows: a dfg node needs only know
about the data dependencies going to it. It is therefore natural to store only
the dfg arrows arriving at a given node, and this saves memory space.

As we said before, the analyses traverse the cfg, but use the dfg at the
same time. It is actually better to think of these analyses, not as cfg or
dfg based, but based on an intimate combination of both graphs. For this
reason, these two graphs are stored together, in a structure called flow-
graph, and constantly reference each other. For sake of clarity, we shall try
to present them separately, in the two next sections, but this is an artefact.

4 The control flow graph

The control flow graph is a classical representation of imperative programs.
It consists of basic blocks, which are sequences of atomic instructions that
are always all executed in order. Basic blocks are then linked with control
flow arrows, that indicate the possible choices for the control flow, to go
from a basic block to the next one to be executed.

Atomic instructions may be an assignment, a procedure call, an io
statement, a do header, a conditionnal test, by opposition to structured
instructions such as a do or an if then else.

In the following, basic blocks will be called block-node’s (structure block-
node), the control flow arrows are instances of the structure c-arrow, and
atomic instructions are instances of the structure instr-node.

There are two special nodes of the cfg. One is the entry block, of sub-
type block-node:entry. It corresponds to the beginning of the unit. Each
instruction of this block corresponds to a different entry statement, corre-
sponding to the various ways to call the unit. The first of these instructions
corresponds to the normal entry, i.e. the header of the unit.

The other special node is the exit node (subtype block-node:exit),
corresponding to the normal end of the unit, returning control to the calling
unit. It has only one instr-node corresponding to the "end” statement.

Among all the other nodes of the cfg are nodes of subtype block-
node:header. They represent loop headers, i.e. the first basic block of
a loop, when the loop is entered normally. Basic blocks of type block-
node:header are special since many extra information concerning the loop
itself will be stored there. See the annex for a complete list of those.

Since loops in a FORTRAN program are not always signalled by a do
statement, we must detect all loops directly from the cfg. This is done with
a classical algorithm, a depth first search in the graph, starting from the
entry block. An extension of this algorithm finds the loops in the c¢fg. This
extension is very close to the classical Tarjan algorithm. In the rare (and
disapproved) case of a loop with many entries, if one entry corresponds to

a do loop, we ensure with a backtracking mechanism that this entry will be
chosen as the block-node:header.

A limitation inherent to the algorithm is that loop detection associates
one loop per loop header, i.e. it is not able to split a loop in two nested
loops, when the two loops cycle through the same loop header. This would
be useful in some cases, but it cannot be achieved automatically and would
require an interface with the user.

An interesting by-product of the depth first search is that it returns
an ordering of the block-node’s. This ordering called the dfst order, is
such that every propagation of a value through the cfg, in the control flow
direction, is faster when block-node’s are visited in dfst order. When the
propagation goes backwards, just take the nodes in the reverse of dfst order.

Our cfg creation algorithm also performs some simplifications. One is
the detection of dead code. Precisely, we detect and remove from the cfg, all
block-node’s that cannot be reached from the entry node. This dead code
is stored in the flow-graph. Also, we minimize the size of the cfg according
to the following rules:

e Empty block-node’s must be skipped

e block-node’s that are always consecutive, the first always flowing to
the second and the second only reached by the first, must be merged.

e c-arrows going from the same origin block-node to the same desti-
nation block-node must be merged.

The assigned goto statements are partly solved at cfg building time, i.e.
we propagate the values that a goto variable may have, and set only those
c-arrow’s from the goto statement to the block-node’s labeled by a possible
value of the goto variable. Error messages are emitted when an illegal use
of a goto variable is detected.

Figure 3 shows the c¢fg built for a small unit.

4.1 The block-node’s

The block-node’s correspond to basic blocks. A block-node must thus
contain the ordered list of its atomic instructions, or instr-node’s. It also
contains the list of the c-arrows flowing towards it, and from it. There is
also an indication about the immediately enclosing loop header, if any. The
block-node holds additional information, returned by the various analyses.
See the annex for a complete list.

100
200

subroutine small(A,B)
integer A,B,i,n
dimension A(100),B(100)

n=20
do 100 i = 1,100
if (A(i).ge.0)
then
A(i) =n

n=n+1
else
A(i) = B(i)
goto 200
n=n-+3
endif
B(i) =0
continue
print *, n
end

Entry: small(A,B)

'

n=0
1,100
‘ push
do exit
Header: do 100i=1,100
ldoloop
cycle if (A()-ge.0)
if true if false
/ pop
A@)=n A() = B(i)
n=n+1
B(@i)=0
print *, n
Exit: end

Figure 3: Control flow graph for a small unit

4.2 The block-node:header’s

In addition to the contents of a block-node, the block-node:header’s
contain specific information about the loop they represent. Let us mention
here the list of all the block-node’s that are directly inside the loop, and
not inside sub-loops. This list is stored in dfst order. See the annex for a
complete list.

4.3 The instr-node’s

The instr-node’s correspond to atomic instructions. They contain the
abstract syntax tree of their instruction, plus a pointer to their enclosing
block-node. In the case of conditionals and do’s, the abstract syntax tree
is the whole structured statement, even if it represents only a part of it.
instr-node’s also hold additional information, returned by the analyses.

Conversely, there is a way to go from the abstract syntax tree of an
instruction to its corresponding instr-node.

4.4 The c-arrow’s

The arrows of the cfglink the end of a basic block to the beginning of another.
They express the fact that the control flows from the last instruction of the
first block to the first instruction of the last block. When many arrows
are available, they must tell in what case they are chosen. The switching
instruction, that determines in what case we are, is always the last instr-
node of the origin block-node. A c-arrow contains:

e its origin block-node

e its destination block-node

the condition upon which it is chosen (its type)

the loops it exits and enters

the value to propagate along the arrow

The condition upon which an arrow is chosen (its type) is unnecessary
when there is only one exiting arrow. In other cases it is the conjunction
of a typename and a list of cases. Sometimes the list of cases may be
replaced by “default”, meaning all the cases not taken by other c-arrows.
Possible types are shown on figure 4

typename | case default
comp_goto | n, positive integer result of the expression | yes
select_case | the syntax tree of the case selector yes
io end, error, or normal no
ass_goto the target goto label no
call the alternate return label, or normal no
if true, false, It, gt, le, ge, eq, ne no
entry the entry name or %main% no
do loop or exit no

Figure 4: Possible types of a c-arrow

The loops that the arrow exits and then enters are stored in an ordered
list. It starts with the (maybe empty) list of all the loops exited, then either
there is a single loop name into which the arrow cycles, i.e. the control flow
starts a new iteration, or there is a (maybe empty) list of all the successive
new loops into which the control flow enters. The loops are represented by
their block-node:header’s BH;, thus this info has one of the two shapes:

e pop BHy, then pop BHy, ... then cycle BH,,

e pop BH;, then pop BH», ... then push into BH,,, then push into
BH, 41, ...

4.5 The two ways to traverse a cfg

Analyses of a FORTRAN unit are based on a traversal of the cfg. There
are two main ways to do so. According to the analysis, the best one must
be selected. The cfg may be traversed:

e In a pure graph-oriented way, from the entry down or from the exit
up. In that case, there must be a fixpoint, since the graph contains
loops, so that values are not guaranteed to be propagated everywhere
in one pass.

e In a loop-oriented way. In that case, each loop is considered as a single
instruction for its enclosing loop. At the end of each loop treatment,
the result must be summarized for use by the enclosing level. There
may be no need for a fixpoint then.

Let us sketch here the framework of a graph-oriented analysis, performed
from the entry down. The aim is to propagate information on the cfy,

10

following the c-arrow’s, until this propagation yields nothing new, i.e. a
fixpoint has been reached. Briefly the method is:

Initialize values of all cfg block-node’s
Until <nothing has changed>
{<nothing has changed> = true
for all <block-node> in cfg, taken in dfst order
{<last-value> = value propagated on previous passage
accumulate the values coming from arriving c-arrow’s
compute the accumulated value
<value> = propagation of this value across <block-node>
propagate <value> onto exiting c-arrow’s
unless <value> == <last-value>
{<nothing has changed> = false}

}

Terminate, and clean values of all cfg block-node’s

This method is slightly improved in real implementation, to avoid mem-
orizing all the values for all the c¢fg, and for detecting fixpoints earlier, thus
saving redundant computation.

Besides these optimization issues, the main questions to answer to im-
plement an analysis are now:

e What data structure to represent the values. Special attention must
be paid to the representation of the two values: ”unknown value”, and
a special value | meaning that the block-node has not been visited
yet. These are of course two different values.

e How to combine two values arriving from two converging arrows?

e How to compose the value upon entry into a block-node to get the
value upon exit (or conversely)?

e How to tell two values are the same?

5 The data flow graph

The data flow graph (dfg), represents the dependencies between machine
atomic operations, such as load, store, arithmetic operations, etc... Since
the dfg does not expand function and procedure calls, these calls are also

11

considered as atomic operations. Other atomic operations are io operations,
and entry and exit of the unit.

Since the dfg is very large, only incoming dependencies are stored on the
nodes. As a consequence, arrows need not store their destination node, but
only their origin, and their type.

5.1 The dfg nodes

These nodes will be implemented as subtypes of the type op-ref:atomic.
This fundamental type has methods to get/set the list of incoming data-flow
arrows, and to get/set the abstract syntax tree corresponding to the machine
atomic operation. There is also a way to get the instr-node it comes from.

The dfg nodes that represent a load or a store are of subtype op-
refitatomic:rw:read or op-ref:atomic:rw:write, and have special meth-
ods to get the varinfo attached to the variable name (cf section 2). There
are also additional methods used during data dependencies computation.

The subtype op-ref:atomic:eval represents operations, and the subtype
op-ref:atomic:constant represents immediate constants. There is also a
special op-ref:atomic:loop-counter attached to every loop, and represent-
ing the counter of iterations of the loop. The first iteration is numbered 0,
the next one 1, and so on.

The dfg nodes are created by a simple analysis of each instr-node. They
are then arranged, not as a flat list, but as a nested structure that reflects
their relations in the instruction. This structure will be called a nest. The
nest structure looks very much like the abstract syntax tree structure, except
that its leaves are the op-ref:atomic’s, and it is implemented more lighly.
The nest is then attached to its instr-node. For example, figure 5 shows
the nest containing all op-ref:atomic’s for the instruction:

A(2*%i) = B(i) + func(i+10,X)*C(i)

Since some analyses need to consider the excution order of all the op-
ref:atomic’s, we provide a function that returns such an order from the nest
structure. However, many orders are available. For instance, the FORTRAN
standard give no indication on the order of evaluation of the arguments of
a sum, or a product, or the arguments of a function call. We detect the
situations where the result of an evaluation may change depending of the
above unknown orders, and issue a warning message.

There are special op-refitatomic’s created for the entry inside the unit,
representing the write of the initial value of all formal parameters and com-
mons, or the initial write of variables in save or data statements. On the
other hand, for the exit from the unit, there are op-refitatomic’s created for

12

Lrwowrite A

T

....eval +eval *
/ \ ..rwiread i ..:constant 2

...;eval *rw:iread B

/ ..rw:iread i
....rw:read Ccall func
rwiread i / \

..rwiread Xeval +
...constant 10 ..:rw:read i

Figure 5: nest of all op-refitatomic’s of an instruction

the read of the exit values of the parameter’s, common’s, and save’s for use
by the calling unit. The op-ref:atomic’s on entry all depend on a single
op-ref:tatomic:entry. The op-refitatomic’s on exit all have a dependence
towards a single op-ref:atomic:exit

5.2 The dfg arrows

These arrows, of type d-arrow, represent all dependencies. The dependen-
cies we want to find in the final dfg are:

e The direct dependencies.
This is the dependence from the op-refitatomic:rw:write of a mem-
ory location to a op-refiatomic:rw:read that may access the value
written at this same location.

e The anti dependencies.
This is the dependence from the op-refitatomic:rw:read of a memory
location to a op-ref:atomic:rw:write that may overwrite the value
read at this same location.

13

e The output dependencies.
This is the dependence from the op-refitatomic:rw:write of a mem-
ory location to a op-refi:atomic:rw:write that may overwrite the
value written at this same location.

e The control dependencies.
This is the dependence from the top op-ref:atomic of a control state-
ment (loop or conditionnal) to every op-ref:atomic of instructions
actually controlled by it.

e The value dependencies.
This is the dependence from an op-refitatomic returning a value on
the execution stack to the op-refitatomic using this value.

A d-arrow memorizes all the dependencies from its origin op-ref:atomic
to its destination op-ref:atomic. It also stores its origin op-ref:atomic it-
self, but not its destination.

It is well known that all these dependencies have a distance. This is
the difference between the loop iteration where the origin op-ref:atomic
is executed, and the loop iteration where the destination is executed. This
distance is essential for parallelization analyses.

6 The analyses performed on cfg and dfg

6.1 The variable bounds analysis

The computation of variable bounds is done by a fixpoint traversal of the
cfg, from the entry down. As we saw before, all we need to specify now is
the structure used to keep the bounds, then the way two such structures
combine (when two c-arrows converge), the way this structure is updated
through a block-node, and how to detect that the fixpoint is reached.

As one would expect, bounds are computed zone per zone. We limit the
expressive power of our variable bounds, by associating only an interval of
real values to each zone. This way we are not able to use and propagate
constraints such as x > y or x # 0 The structure used is therefore a vector
associating to each zone number an interval of real values, extended with
400 and —oo. It may also have a special impossible value. When a arrow
carries the impossible value, it means that this arrow is never taken by the
control flow. If all arrows arriving to a block-node have this value, it means
that the block-node is dead code.

14

The way two variable bounds vectors combine, coming from two converg-
ing arrows, is simple. We just compute the interval union of the incoming
value intervals.

The way a variable bounds vectors is modified by an instruction is just
abstract interpretation. Abstract interpretation of the left hand side of an
assignment returns an interval (maybe [—o00,+0c]). Then the zones of the
right hand side receive this value. When the write is total, i.e. all memory
cells of the zone are surely written, then the interval overrides the previous
one. When the write is not total, i.e. the write is not certain, or it does not
override all cells of the zone, then the interval is merged with the previous
one.

Moreover, all instructions, and not only assignments, are searched for
side-effects, for instance in function call’s. These side-effects may override
the value of some zones with an unknown value. Therefore, the variable
bounds vector must be updated in consequence, setting [—oo, +00] into the
corresponding zones.

We have a special way of detecting fixpoint. On each block-node, we
remember the bounds vector at block-node entry, at previous traversal. We
do not compute the same bounds vector at current traversal, but increase the
previous bounds vector. This is natural since, by definition, bounds contain
a summary of the variable bounds in all cases, and therefore, exploring new
cases can never return smaller bounds. In other words, bounds vectors are
strictly growing during bounds computation. Fixpoint is easily found, when
no zone has been assigned a larger interval.

Lastly, let us mention three important characeristics of the algorithm:

e In loops, one may found an infinite sequence of growing bounds. This
happens for instance when x is increased by 2 at each loop. We may
never reach the fixpoint. To avoid this, there is a mechanism of widen-
ing. The bounds interval on iteration n is checked with the one on
iteration n — 1. If it has increased towards +oo, then it is widened by
replacing the upper bound with +oco. The same applies for —oo.

e Conditionnals are used to get more information, according to which
exit arrow is taken. If we are on the false branch of the test:
if (X.ge.10 .or. Y.1t.0)
we may refine the bounds, knowing that X is less than 10 and Y is
positive. If the bounds on one arrow has the impossible value, then
this means that the corresponding branch is dead code.

e Additional information is also extracted from data statements, as well

15

as from a category of user’s directives, specifying arithmetic properties
of variables. If the directives clearly contradict what was known before,
a warning message is emitted, and the directive is given priority.

6.2 The killed arrays analysis

The killed arrays analysis is done with a top-down traversal of the tree
of nested loops. At each level, the block-nodes contained in the loop are
traversed in dfst order.

To speed up the analysis, there is a preliminary phase of detection of the
killable arrays, i.e. the arrays that are likely to be killed by some loop, and
the killer loops, i.e. the loops that are simple enough so that one can prove
that they kill an array.

The killable arrays are the arrays that are local parameters, or that are
in a common. Also, they must not be of ”assumed size”, i.e. their size must
be known statically.

The killer loops are the do loops such that:

there is no other entry into the loop but the normal one.

there is no other exit from the loop but the normal one.

the loop bounds are static constants (maybe proved by variable bounds
analysis.

e the loop stride is either 1 or -1

Also, during the analysis, only the good writes will be considered for
array kill. A write of an array is good iff for every array dimension, the
index expression is a constant or a linear function of the index of a killer
loop. So far, these good writes are not all useful for killed array analysis,
but they might be used by a future better algorithm.

The value propagated during traversal of the cfg is the following one:

For each killable array A,
For each good write of A encountered so far,
For each dimension of A,
e Either a constant
e Or a linear function of some killer loop index.

The way this value is propagated is the following:

16

e Upon entry into a block-node, the incoming values are merged, keep-
ing only their intersection, i.e. a good write is kept iff it can be found
in each incoming value.

e During traversal of a block-node, when a good write is met, it is
added into the value.

e Upon exit from a block-node, the value is propagated on each exiting
c-arrow

At the beginning of each loop, the value just before the loop is kept. A
new, empty value is built, for propagation into the loop.

At the end of each loop, the values on all cycle arrows are merged. The
result is the collection of all the good writes that are performed at each
loop iteration, whatever the flow of control for this iteration. This value is
analysed with respect to the current loop’s bounds, and yields the names
of the arrays effectively killed. This is the final result of this killed arrays
analysis.

This value is also added to the value just before the loop, for propagation
inside the enclosing loop.

6.3 The in-out analysis

The goal of in-out analysis is to determine, for each variable, whether it
is read, written, or both, during an execution of the unit. This analysis is
implemented with a fixpoint traversal of the cfg, from the exit up.

For a given zone, its read status can be true (t) or false (/). There
is a third status, called “maybe” (?), which represents the case where the
zone is maybe read, maybe not, depending on the control flow. This 7 also
represents the case of the zones that are partly read (case of arrays).

Similarly, the write status has also three possible values, t, /, and ?. The
read-write status describes the way the initial value of the zone is read, then
the way it is overwritten later. It makes no sense talking of how this value
may be read after it was overwritten, precisely because it was overwritten!
The read-write status of a zone has thus nine possible values (read status
first):

[/, /7 /6, 7/, 77, T, 6/, 7, tt

The structure to propagate along the cfg is therefore a vector, associat-
ing each zone with its read-write status. It represents, for each zone, the
accumulated read-write status from the current point in the cfg to the exit
of the cfg, taking into account every possible control flow.

17

The structure is actually more complex since it must also keep and up-
date read-write information for variables that have no zone in the current
unit, since they appear only in called subroutines or functions, and commu-
nicate through common’s.

At initialization time, each block-node is provided with the read-write
status through it. This will speed up later propagations. This is natural
since a block-node, having no switch in it, always affects the read-write
status in the same way. The read-write status of a block-node is computed
by retrieving all the op-ref:atomic’s of the nest of each instr-node of
this block, in execution order, and then combine them in “then” mode (cf
later). The read-write status of a subroutine or function call is given by the
interprocedural analysis.

During the fixpoint, there are two improvements to the natural propa-
gation.

e Loops that have certainly at least one iteration are treated in a special
way. This is because, if a read or write occurs inside a loop that may
be done zero times, then the status must be “maybe”. On the other
hand, the status may be true when one is certain the loop body is
done at least once. This refinement uses the results of the variable
bounds analysis.

e Arrays killed by a loop have a write status that is certainly true, even
if the simple propagation returned “maybe”.

Then, the last thing to say to fully specify the in-out analysis is how two
read-write status combine, in the or mode (when two c-arrow’s converge),
and in the then mode (when the two status are done in sequence). This is
summarized in Figures 6 and 7.

The Final result of in-out analysis is used in the following way. It
is split in two. One part is the in-out information for variables that are
exported, i.e. the variables that are (equivalenced to) formal parameters or
in common’s. The rest is the local variables information.

The first part is stored into the interprocedural database to be used by
in-out analysis of calling units. It can also be shown to the user via the
FORESYS interface.

The second part is scanned to detect those zones whose read status is
true. This corresponds to an error, since it means the zone is used before
its initialization by the user. In all other cases, there is nothing to say. This
second part is not kept after in-out analysis.

18

/71 /2] /¢

|2/

77

7t |t/ | t? | tt |

/712121 2/ 122 22 2/ 2222
A VEAVAGAEABEAEIEA R EE
Je /22 /6 |22 (22 [26 | 27 | 27 | 2%
/2722 (22 |2/ |22 |22 |2/ |22 | 22
77 |22 |77 |27 | 27 |27 | 27 | 27 | 22 | 22
7t || 72 | 77 | 2t | 27 | 27 | 76 | 77 | 27 | 2%
t/ [[2/ (22 (22 |2/ 22|22 |t/ | t2 | ¢2
t?2 [27 [22 [27 |22 | 27 | 77 | €7 | t7 | t2
tt |27 |22 | 7t | 22 | 27 | 7t | t7 | 7 | tt

Figure 6: The

IW7AViSViaRIA

or combination of read-write status

77

76 [t/ | 67 | tt |

//

//

/7

/t

/?

/?

/?

/t

?/
77

777t [t/ | t7 | tt
77 [7t | 77 | 72 | 2¢

/t

/t

/t

/t

t

aVaVAVEE

7702/ (22 [76 |2/ [22 |7t |t/ | t7 | tt
77 (77 [27 [76 |27 [27 [7t | 27 |27 | 7t
76 || 76 | 7t | 76 | 7t | 7t | 7t | 76 | 76 | 26
t/ [t/ [t7 |[tt [t/ | t7 | tt |t/ | €2 | 6t
t7 [7 | €7 | tt | 67 | €7 | &t | 67 | t2 | 6t
tt || tt | tt | tt | tt | &t | tt | 6t | tt | bt

Figure 7: The then combination of read-write status (line then column)

19

6.4 The context of control analysis

The aim of the context of control analysis is to determine, for each block-
node, by which loops and by which conditionnals it is controlled. Actually,
a block-node may depend on a loop to know how many times it will be
executed (maybe zero), and with what values of the loop index. Similarly, a
block-node may depend on a conditionnal to know if it is executed or not.

If the original program was structured, these questions would be trivial.
However, in FORTRAN, unstructured instructions lead to surprising cases.
For example, a block-node inside a do loop may not be controlled by that
loop, because it is done only before an exit instruction.

6.4.1 obliged successors

One preliminary analysis is to compute, for each block-node, the list of all
its obliged successors, i.e. the list of all block-node’s that will be executed
after it, whatever the control flow.

This is done by a single traversal of the list of all block-node’s, in the
reverse dfst order. It turns out that this order avoids the fixpoint.

The propagated value is a pair of two lists. One is the list of the block-
node’s that are obliged successors of the current block-node, in the whole
program, the other is the list of the obliged successors, inside the current
iteration of the enclosing loop. The general idea is that the obliged successors
of a block-node are the intersection of the obliged successors of the c-
arrow’s flowing from it. The obliged successors of a c-arrow are the obliged
successors of its destination block-node, plus the destination block-node
itself.

6.4.2 context of control

This is computed by a single traversal of the list of all block-node’s, in the
dfst order. Each c-arrow conveys the context of control for which it is
taken. Each block-node computes its context of control by computing
a logical OR between all its incoming c-arrow’s.

The key is the frequent simplification of the context of control. The
main simplification is when a block-node is in the obliged successors of a
conditionnal, then one may remove every reference to this conditionnal in
its context of control. Other simplifications are the usual logical simplifi-
cations to normal form. We try and simplify out the OR logical operation
as much as possible.

For controls with respect to loops, the following conventions apply:

20

e A block-node directly inside a loop is controlled by its loop header.
See later for the syntax of context of control’s

e When a loop has many exits, then inside its enclosing level, it is con-
sidered as a switch controlling those block-node’s that are executed
after one exit and not after another.

e When a loop has many entries, it is the loop header that has a complex
context of control with respect to the different entries, while the
blocks inside the loop have a simple control with respect to the loop

header.
At the end, every block-node knows its context of control, whose
syntax is:
<context> ::= <condition>x*

i.e. a context is a list of conditions that must be all true, for the block-
node to execute. These conditions are stored in reverse chronological order,
the first condition to check is the last in the list.
" <context>*
i.e. a condition may be the ”or” conjunction of some contexts. This is the
case where two flow arrows lead to a place, and they could not be merged
into a single context.

<condition> ::= "loop" <block-node:header>
This means that the current place is conditionned by the iterations of the
loop <block-node:header>.

<condition> ::= "or

<condition> ::= "pop" <block-node:header> <rank>
This means that the current place is conditionned by the way loop <block-node:header>
exited. If it exited through the block-node of rank <rank>, then the con-
dition is satisfied.

<condition> ::= "push" <block-node:header> <rank>
This is used only for the loop headers. This means that the current loop
<block-node:header> will be entered through the push c-arrow from the
block-node of rank <rank>

<condition> ::= "test" <block-node> <c-arrow’s type>
This means that the current place is conditionned by the result of the test
at the end of <block-node>. When the c-arrow chosen has the required
type, then the condition is satisfied.

These results are immediately used at the end of context of control

analysis, to set the d-arrow’s in the dfg corresponding to these controls:

e From the op-ref:atomic:eval of a conditionnal to every op-ref con-
tained in a controlled block-node.

21

e From the op-refitatomic:eval of a conditionnal to the op-ref:atomic:loop-
counter of a loop, in the case where the test may determine an exit
from this loop.

There should also be d-arrow’s from the op-ref:atomic:loop-counter
of a loop to the op-ref’s contained in the loop. However, we do not set
them, and will set only a few of them later. The reason is that we shall later
detect the parts of the loops that are always the same at each iteration.
These parts should be done only once in a restructured code. In that case,
there must not be any dependence from the op-ref:atomic:loop-counter
to these places.

6.5 induction variables analysis

The induction variables analysis detects which scalar variables may be
expressed as linear functions of the loop indexes of enclosing loops.

The method we use here is implemented as a traversal of the tree of
nested loops. Inside each loop, the block-node’s are traversed in dfst order.
For each loop, there are three main steps:

e The first step is done during traversal of the block-node’s of the loop.
We consider one loop iteration. Suppose we know ZV,, the value
of each zone at the beginning of this iteration. What we propagate
is, for each zone, the way its current value is related to ZV,. We
propagate only the values that will allow us to find induction variables,
i.e. polynomes of zones of ZV,,. In all other cases, the value propagated
for the zone is a special constant, called lost-track. When the control
flow merges, the polynomes on each incoming c-arrow must be the
same, and then it is the merged value. Else the merged value is lost-
track.

e The second step is the closure step. We compute ZV, 41 by collecting
the values propagated on the cycling arrows of the loop. Then we
analyse ZV,, 41 as a function of ZV,, to find out induction values:

— if z,41 = c then z is a loop constant. z, = c.

— if z,41 = 2z, + ¢ then z has an induction value, which is z, =
zo + ¢ x lc, where [c is the loop counter.

— if 2,41 is a sum of zones that have already an induction value,
then z has an induction value too.

22

e At the end of each loop, when the loop and the loop bounds are simple
enough, we compute the exit value of the induction variables. This is
useful to detect when the zone has an induction value with respect
to the enclosing loop too. This will also generate more elegant code
when some code transformation techniques require that the exit value
of induction variables be set explicitely on exit of the loop.

6.6 directives propagation analysis

The only directive we need to propagate is the C$injective directive. All
the others directives have already been used, during dfg building and vari-
able bounds analysis. However, new directives may come up some day,
that sould be propagated here.

This analysis is again implemented with a fixpoint traversal, from the
entry down, of the cfg. There is no subtelty worth describing. The propa-
gated value is the current list of injective array names. An array becomes
injective when we reach a C$injective directive for it. An array remains
injective as long as it is not overwritten. At a merge point in the cfg, an
array must be injective on all merging arrows to remain injective.

7 The data dependence analysis

The data dependence analysis must perform a two-level traversal of the
cfg. The first level chooses every possible origin block-node, and then for
each block-node, the second level traverses the cfg to reach every possible
destination block-node. This is why this analysis is grossly O(N?) where
N is the number of op-ref:atomic:rw of the unit. This preamble is to
justify all the efforts to speed this algorithm up, since it consumes most of
the time spent by PARTITA.

There are three successive granularity levels in the algorithm. Fortu-
nately, these levels are rather independent. So we shall present them in
sequence

1. The coarse level is how does the algorithm select every possible pair
of origin and destination block-node’s.

2. The intermediate level is how, given an origin and a destination block-
node’s, the algorithm selects efficiently every pair of origin and desti-
nation op-refitatomic:rw, that are likely to have a dependence.

23

3. The finest level is how to detect that two memory references are ef-
fectively in dependence. At this level appear the classical algorithms
known as gecd test, separability test, simplex method, etc.

Before this, we must present the basic data structures that will be cre-
ated, and the initializations to be performed.

7.1 Distances

There is a classical shape for data dependencies. A data dependence contains
two parts. First is the type (direct, anti, output, control, or value), second
is the distance. The distance is the distance in the iteration space between
the origin and the destination. For each enclosing loop, it says how many
iterations may have elapsed between origin and destination.

Thus the distance associates, to each enclosing loop of both origin and
destination, an interval of integers inside which the number of iterations may
be. Additionnaly, we store the number of loop levels enclosing the origin,
that do not enclose the destination, and reciprocally.

There may be negative integers inside a distance, typically when origin
and destination are in two nested loops, and the distance for the outer
loop is strictly positive. Then, if the origin is at inner iteration n, and the
destination is at inner iteration n — 3, then the distance for the inner loop
is =3

During the coarse level, the value propagated from the origin block-
node to the destination contains the candidate iteration distance between
them. Then the finest level analysis refines this distance, reducing it to a
smaller set of possibilities (eventually empty), and this reduced distance will
be used in data dependencies between these two block-node’s.

7.2 Masks

Each time we select a pair of op-ref’s, we need an important information,
that is the overwritten variables between the two. This has two important
uses:

e First use is to detect variables whose value has certainly not changed
in the meantime. We are then allowed to simplify these variables out
of equations, leading to more accurate data dependence analysis. This
is more precise that a simple loop constants detection, since a vari-
able may keep its value between two points, while being overwritten
somewhere else in the loop.

24

e Second use is to detect variables (scalar or arrays thanks to killed
arrays analysis) whose complete value has been overwritten. In that
case, there must not be any dependencies between two references of
such a variable.

This information, called a mask, is stored as a vector, associating each
zone to one of the three status: untouched, touched (but not overwritten),
and overwritten. Actually, there is also a mask for variables that are not
known in the current unit, but that exist and communicate through com-
mons between called subroutines. (The same thing occured for in-out
analysis). We shall not describe this in more detail.

Therefore, the coarse level propagates a second information, which is the
mask between the origin and destination block-node’s. Additionally, each
op-ref receives at initialization its mask from the beginning of its block-
node, and another one till the end of its block-node. Other interesting
mask’s are computed, such as the mask from any block-node to the exit
of its enclosing loop, to any block-node from the entry into its enclosing
loop, and through one loop.

7.3 The two-level cfg traversal

First thing is to choose each block-node in turn, to be the initial one for
data dependencies. This is done by a top-down traversal of the tree of nested
loops, with each level traversed in dfst order.

For each selected block-node, we build an initial distance, and an initial,
empty mask. Then we propagate the distance and the mask, following the
cfg, towards all reachable block-node. The distance is updated each time
we cross a loop boundary. The mask is updated each time it traverses a
block-node. The way mask’s are merged when the control flow merges is
natural.

For each block-node reached, we gather all the incoming masks into
a single one, take the incoming distance, and call for the block-node to
block-node analysis with these parameters.

There are some parameters that modify the way this traversal is done.
It is possible to traverse each loop twice, therefore treating the first iteration
separately. This may cost a lot of execution time, but eventually gives better
results (fewer dependencies) It is also possible to neglect all dependence
analysis outside of loops. While this saves time, the cost is that we loose
read-write navigation inside the unit, and we have less dead code detected
(code dead because not used).

25

7.4 The block-node to block-node analysis

The idea is to compare each op-ref from the origin block-node with each
one from the destination. This is very expensive if we have no way to reject
quickly the pairs of op-ref’s that are clearly not in dependence. This is
where the big Zones appear (cf section 2).

Suppose we have n op-ref’s in each block-node. Then the cost in
time is approximately O(n?). Suppose now that these op-ref’s are evenly
distributed into Z Zones. By definition of Zones, we are sure that if two
op-ref’s are in different Zones (in their varinfo field), then they may never
overlap. Then for each Zone, the time cost is O(n%/Z?), and the time cost
for the whole jobs is O(n?/2)

So the algorithm is schematically:

For each big Zomne Z,
OL = List of op-refs in Origin, for Z (precomputed)
DL = List of op-refs in Destination, for Z (precomputed)
For each OP1 in OL
Maskl = Mask . mask from OP1 to exit of Origin (precomputed)
For each 0OP2 in DL
Unless OP1 is a read and OP2 is a read
Mask2 = Maskl . mask from the start of Destination to OP2 (precomputed)
When zones(0P1), zones(0P2) and Mask2 intersect
analyse dependencies between OP1 and 0OP2

7.5 The op-ref to op-ref dependence analysis

The only case worth discussion is the dependence between two arrays. The
classical method leads to solving an equation between two expressions, each
coming from the index expressions of the two arrays. If the expressions may
be proved never equal, then there is no dependence. Else, there must be a
dependence in the dfg.

There are many tactics available. We chose some of them, and performed
them in the following order:

e GCD test. The analysis may stop here, with certainly no dependence.

e Separability tests (weak and strong). The analysis may stop here,
with certainly no dependence or certainly a dependence.

e Simplex test. This is the catch-all case. It works seldom, but may
prove that there is no dependence.

26

e In all other cases, we must assume there is a dependence

Moreover, when the Separability test works, it is able to restrict the
distance, giving more precision to the result.

All these tests work much better when the bounds of the variables are
known with good precision. This is the justification for variable bounds
analysis.

Also, it is good to have a variable replaced by a linear function of the
loop counters, and this is why we needed to detect induction variables.

Lastly, injective arrays are useful, since when the equation is T'(exp;) =
T(exps), and T is injective, then the equation is equivalent to exp; = exps,
which may then eventually be proved false, removing one dependence.

7.6 Additional loop control dependencies

So far, there were no control dependencies set from the op-ref:atomic:loop-
counter to any op-ref:atomic inside the loop. As we said before (context
of control analysis), this is to keep the possibility to detect loop invariant
code.

We are now ready to put just the necessary control dependencies. At the
end of data dependence analysis, we have now direct dependencies from
the write of the loop index to each use of it in the loop. This will be just as
good as a control dependence. There is still one case where code that does
not use the loop index should depend on the op-ref:atomic:loop-counter.
This is when a value set at one iteration is used at next iteration, just like
in

do i=1,100
b=a+1
a = f(b)
enddo

Now that we have the data dependencies, we can detect this situation. We
then add a control arrow (of distance 0), from the loop counter to every op-
ref:atomic:rw:read that has an incoming direct dependence of distance 1
or more, with respect to the loop. It is easy to check on the above example
that this would set a dependence towards the read of a, and therefore , the
two instructions have a chain of dependence from the loop counter.

Figure 9 illustrates the result of the above analyses for the small program
of figure 8. We show the resulting dfg after all dependencies are set. We
remind the relation between the dfg and the cfg by showing the underlying

27

nest structure. For clarity, we only show dependence distances different from
0. We don’t show the anti dependences towards the writes of k and i, since
they will soon be removed because these are induction variables.

subroutine EX(A,B,C,Test)

integer A,B,C,Test

dimension A(-10:100), B(300),C(300),Test(100)
integer i,k

C
k=0
do i=1,100
k=k + 2
if (Test(i).1t.0) then
B(k) = 10
endif
A(i) = A(i-5) + B(k)*C(k)
enddo
print *, k
end

Figure 8: A small unit

28

WA WB) wWC “wWTest)

e(print)

r(k)

Figure 9: Final state of the dfyg

29

