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Abstract

We present here an alternative method for designating subtrees of a given tree.
The existing method uses pointers towards nodes of the tree. Our method uses
access paths, and is thus more independent from the implementation than the
existing one. We also show examples of the use of access paths, especially when
they are more efficient than pointers, or when they can solve new problems.

1. THE “OFFICIAL” METHOD

When manipulating trees in a syntax directed editor, for instance CENTAUR [5], we constantly find the
need to designate places in the program, that is, subtrees of the global tree. Following are some examples of
situations that illustrate this need.

a) If the user points on some region of the program by clicking the mouse, instead of using the basic
navigation routines (Up, Down, Right, Left), the system might want to know how to point to this same
region by itself, for instance to help the user to come back to this place. Another interesting situation
is when the system performs some operation on the tree, using a system based on inference rules called
TYPOL [3][4]. This operation might need a designated subtree as an argument, so we have to provide
a way for the system to know about this subtree.

b) If we want to take a photograph of a given program, including the highlighting of some subtree(s), we
need to remember in some way the relation between every highlighted node and the root of the tree.

¢) For every incremental computation, we need to know all the parts of the tree that were modified, in
order to infer which computations have to be done again. Moreover, we would like to know, for each
node of the tree, whether any subnode was modified, ie if the corresponding subtree was modified.

Of course, CENTAUR already provides a way of designating subtrees, which is the following: Every node of
a syntax tree can be located by a pointer. Each time one wants to point to or to remember a subtree, one
has only to remember the pointer to this subtree.

This solution is simple and easy to use. Most of the CENTAUR primitives work with the pointers.
Highlighting a subtree, for instance, works all right with the pointer to the designated subtree. Remembering
such a pointer is easy since it takes very little amount of storage.

However, when we want to do more complex things, we are too strictly limited by this method. In the
next section, we shall describe why this standard solution is not strong enough for our needs.



2. WHY POINTERS ARE NOT STRONG ENOUGH

2.1. The main problem

Let us admit that we designate subtrees by pointers. To talk about the whole program, we just use a
particular pointer, which goes to the top of the tree. The first problem we meet is that it is not easy to
guess the parental relation between two pointers, if any. In particular, if we are given the pointer to the top
of the tree, and the pointer to one subtree, we are unable to go from the top to the subtree using only basic
moves.

Conversely, when traversing a tree, in preorder for instance, while executing a TYPOL program, it is
easy to compute the sequence of movements from the top of the tree to the current node. But if we want
to highlight the currently visited node, we first need to translate the sequence of movements to obtain the
actual pointer, and only then can we highlight the subtree corresponding to this pointer.

To say it shortly, the main drawback of the pointer method is: we can’t simply guess the relation
between two different subtrees by just knowing their pointers. The other problems we are going to describe
are, in some way, derived from this weakness.

2.2. Consequence for plain designating of subtrees

Some times one wants to talk about, let us say, the second son of a node, whatever modifications were
done to this node or its sons. But, when replacing a node by another one, all the pointers towards this node
and its sons are changed, since it is a new abstract syntax tree. So the old pointer to the second node is no
longer useful to designate it, and it is necessary to “go there” by some atomic moves.

2.3. Consequences for incremental computation

Let us consider again the questions of incremental recomputation. We may remember the upper nodes
of all modified subtrees by keeping the list M of pointers towards them. But then, we want to know, for any
given node N, if some node under it was modified or not. The only way for that is to compute the pointers
towards all subtrees of IN, then to check if any of them is member of the list M. It is clear that this method
is extremely heavy, especially if we need to apply it to every node of the tree.

Another problem is that we can’t simplify the list M of modified nodes. Suppose some subtree S has
three subtrees, S1, S, and S3. If we have already modified the first and third subtrees, then M contains
both S; and S3. Now if we modify S in turn, we just add S to M. But now, S; and Sz are redundant in
M. Moreover, they may point to subtrees that don’t exist any longer, just because the whole subtree S was
modified. Therefore, we want to remove them from M, to come back to some kind of “normal form”. But
this is just as tough as the previous problem, since we want to know if some pointer is “ancestor” of another
one. So we can’t easily find the “normal form” of M.

2.4. Consequences for memorizing states of the screen

We have often felt the need to store and retrieve a given state of the screen, that is, the currently shown
tree, along with the current position of the highlighted zone. So let us suppose we did that with pointers.

If we just remember the values of the two pointers, we are soon faced with the following problem. If in
the following operations on the tree, we modify in some way the structure of the tree —which is more than
often the case—, then, the value of the stored tree is changed together, since it is in fact the same tree, the
same pointer. That is not so good for a backup!

On the other hand, if we choose first to copy both the top tree and the subtree, we memorize something
that is of course independent from any further modification, but we have lost the parental relation between
the two trees. Therefore, it is impossible to restore the previous state of the screen.

What we need here is to store, instead of both trees, a copy of the whole tree, plus the relation between
the two trees, this relation depending only on the structure of the global tree.

We are now going to describe our solution to these problems.



3. THE NEW METHOD FOR DESIGNATING SUBTREES

3.1. The notion of PATH

We are more interested in considering the relation between two trees than in working with pointers
towards them. Relations between trees seem more natural, and more independent from the implementation
technique used for trees. They depend only on the structure of the total tree.

These relations should allow us to designate any subtree, or any list of subtrees. We are also interested
in having some kind of normal form, to avoid repetitions, and to detect if one subtree is equal to another.

We also want to know, for every node of the tree, if some of its subtrees can be found in the list of
designated zones. Moreover, if it is the case, we want to know how to find, how to access to these subtrees.

In fact, all that doesn’t leave us much choice.

We propose to designate any subtree, or any collection of subtrees of a given tree, by what we call a
PATH. The PATH is the link from the top of the tree to the top of every designated subtree. It can be viewed
as the skeleton of the global tree, when we remove from it all the subtrees which are not designated.

3.2. The abstract syntax of a PATH

If the path is all, it means that the whole considered tree is designated. If not, then the path is the list
of the sons of the considered tree that have some designated sub-zone. In particular, when the path is an
empty list, ( ), it means that no subtree of the current tree is designated. For each son in the path, we give
recursively the path from this son to its own designated subtrees.

Thus, the abstract syntax we use to write paths is:
sorts

PATH STARTED_PATH ATOMIC_STEP INTEGER

functions
crossroad : STARTED_PATH* —  PATH
all —  PATH
start_path : ATOMIC_STEPXPATH — STARTED_PATH
son : INTEGER —  ATOMIC_STEP
left —  ATOMIC_STEP
right —  ATOMIC_STEP
Remark:

crossroad is a list operator, so there are two equivalent ways of writing the same crossroad tree:
crossroad[PATH;,PATHs]  or  crossroad[PATH; . crossroad[PATHz . crossroad] |]]

3.3. The problem of lists

Now, we have to explain the use of the operators left and right. CENTAUR provides two ways of
manipulating trees, and in particular lists. These two ways are the internal representation, VTP [6], and
TYPOL, (or PROLOG). In the case of lists, this leads to some ambiguity. While list operators, seen from
VTP, behave as n-arity nodes, with special operators like insert, delete or go to the n*" element, the same
lists, seen from TYPOL, are built with a binary operator, just like the LISP cons.

Now we have to choose one of those two notations, and to convert to the other one when necessary. We
chose the TYPOL way, just because we intend to use our paths mainly from TYPOL. An other reason is that
this is the more powerful way. In VTP, there is no way to talk about the “rest” of a list, while it is possible
in TYPOL. On the other hand, it is always possible to go to any element of a list with a correct sequence of
car’s and cdr’s. We shall see later that this was the only solution to compute paths inside TYPOL rules.

Here, the ATOMIC_STEP left means the equivalent of the car operator, and goes to the first son of the
current list. On the other hand, right, goes to the cdr of the list, ie the list without its first element.



3.4. An example

Let us illustrate that on an example. We want to consider the abstract tree whose graphical represen-
tation is:

To designate the three subtrees Ty, T2 and Tg, we use the following PATH, which we represent graphi-
cally as:

and whose abstract syntax is:

crossroad
[start_path(son(2),
crossroad|[start_path(son(2),all())
)
start_path(son(3),
crossroad|[start_path(son(1),
crossroad[start_path(right(),
crossroad[start_path(left(),all())
start_path(right(),
crossroad[start_path(left(),all())
D
DDD

3.5. Concrete syntaxes of a PATH

Now, those paths are going to be manipulated from different languages. Namely, when we work in
CENTAUR, we are allowed to manipulate trees directly in VTP (which is written in LISP), and we can also
translate them into TYPOL (PROLOG), to manipulate them with all the power of PROLOG for pattern-
matching, unification, and backtracking. In this last case, we may want to manipulate paths written in
PROLOG too. For now, these are all the languages we need.
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It follows that we need to define a concrete syntax form, or a pretty-printing routine, for each of the
manipulation languages. For LISP, we chose to pretty-print as much as possible with the LISP list operator.
The pretty-printing rules are:

- The operator crossroad is just the lisp list.

- The operator start_path is the lisp cons.

- The operator all, which is pretty-printed as the atom ’all.

- The operators left and right become respectively the atoms ’l and ’r.

- The operator son is pretty-printed as the integer atom which is the rank of the son. This is more natural,
and leads to no ambiguity, since the abstract syntax is very simple. The previous example path becomes
now:

(2. (2. a))(3 . (1. ((r. (@ . al)(x. (1. all)))))))))

For PROLOG, we chose that the crossroad operator should be represented as the PROLOG list. The
son operator becomes, as usual, the integer atom representing the rank of the son. All the other operators
are written in the usual PROLOG prefix notation, with some abbreviations. The previous path can be
written in C-PROLOG [1]in the following way:

[sp(2, [sp(2, all)]),sp(3, [sp(1, [sp(r, [sp(1, all), sp(r, [sp(l, all)) )] )])]

In the next section, we shall try to relate our notion of paths with other, classical ideas.

3.6. PATHSs as finite automata

Let us consider the set Sy of all sequences of movements (ATOMIC_STEP), that are allowed in the global
tree. The set S is the subset of S, whose elements lead to designated zones in the tree. Here, “designated”
may mean highlighted, or modified. In other words, the designated zones are the subtrees we want to
remember with a path P;.

What we want to emphasize is that P; represents a finite automaton that recognizes exactly the subset
SQ of Sl .

In the starting state, the automaton reads the first movement of the given sequence s. Transitions are
provided only for the ATOMIC_STEPs which can be found in the first level of the crossroad. For the example
described above, there are transitions only for son(2) and son(3). Any sequence s starting with something
else is simply not recognized.

After a transition, say son(3), the new state is given by the PATH that follows son(3) in P;. It gives
us a new path P,. In this new state, the provided transitions are to be read in P, and in our example, we
can see there is only son(1), and so on. When the state reached is described by the PATH all(), The state is
a termination state. But this state has all possible transitions provided, leading back to this state itself. It
means that inside a designated tree, every sub-node of it is designated too. The automaton corresponding
to our example path above is:



We find here for the first time the notion of sub-path. The path Ps is a sub-path of P;. It is also
a sub-part of the original automaton, which is classically called the derivation of the automaton Py with
regard to the initial sequence son(3)

There is a close relation between the division of automata and the notion of sub-path. The result of
the derivation of an automaton A; by the sequence s is a new automaton A,. In the language recognized
by A, some chains may start with the initial sequence s, and finish with a sequence f. The automaton A,
recognizes the set F of these sequences f. The sub-path P, can be interpreted in a parallel way. If the user
stops to consider the global tree, by moving to some subtree we wants to focus his attention on, we “derive”
the path P; by the sequence of moves the user did. Later we will say “divide” instead of “derive”, to avoid
confusion at least. Now the result of that is Ps. Py recognizes the finishing sequences, ie is the path that
relates the new position “of the user”, to the designated zones he still can reach from there.

4. OPERATIONS ON PATHS

We have already found some nice, real-size, applications of our PATHsS. These examples have guided us
in the choice of the basic operations we should provide the users of PATHs. We shall try to highlight, for each
case, the advantages (and disadvantages) of paths vs pointers.

4.1. Putting a PATH into normal form

The classical use of a normal form for paths is to check if two paths are equal, ie if they designate
exactly the same subtree(s) of a given tree. At first sight, it seems easier with pointers, since one just has
to check equality of two sets of pointers. But we have already shown the problems found when two pointers
designate a node and an ancestor of that node.

We are going to show here the rewriting rules which transform a path to its normal form.

First, here are some rules to define a standard order between the STARTED_PATHS of a crossroad node.
We chose the natural order: 1°¢, 2"¢ and 3¢ son, in the case of fixed arity nodes, and left first, then right,
in the case of lists. Of course any mixture of lists and fixed arity notation is illegal, and we will not bother
about these forbidden cases where in a crossroad, one talks about the nt® son and the left or right son.

(Ry) crossroad[start_path(son(2),P2), start_path(son(1),P1) . C]
— crossroad[start_path(son(1),Py), start_path(son(2),Ps) . C]

(Rg) crossroad[start_path(son(3),Ps), start_path(son(2),Ps2) . C]
— crossroad[start _path(son(2),Pa), start _path(son(3),P3) . C]

(Rg) crossroad[start_path(son(3),Ps), start_path(son(1),P1) . C]
— crossroad[start _path(son(1),P1), start _path(son(3),P3) . C]

(R4) crossroad[start_path(right(), PR), start_path(left(),PL) . C]
— crossroad [start _path(left(), PL), start_path(right(), PR) . C]

Now we want to express that a crossroad node cannot have two sons starting by the same ATOMIC_STEP. In
that case, the two start_path must be merged into a single one, starting by the same ATOMIC_STEP.

(Rs) crossroad[start_path(A_S, all()), start_path(A_S,Psy) . C]
— crossroad|[start _path(A_S, all()) . C]

(Rg) crossroad[start_path(A_S,P1), start_path(A_S, all()) . C]
— crossroad|start _path(A_S, all()) . C]

(Ry) crossroad|start_path(A_S,P1), start_path(A_S,P2) . C]
— crossroad|[start_path(A_S,P3) . C]



Where Pj is the classical concatenation of the two PATHs, Py and Pa, which are both starting with a crossroad
operator.
The next step is to say that a start_path that leads to nowhere is equivalent to no start_path at all. That is:

(Rg) crossroad[start_path(A_S, crossroad[ ]), . C] — C

We could also write rules like
crossroad[start_path(left(), all()), start_path(right(), all()) . C] —  all()

but we think it is a too fast simplification, and besides, it is not exactly the same thing to designate all sons
of a node and to designate this node itself.

This rewriting system will help us to check that all our operations give results in normal form, but we
will not implement it directly. We just want to keep it as a reference. Therefore, we will not go into any
demonstration about it. Anyway, we think this system clearly has the Church-Rosser property.

4.2, Adding a PATH to another

If we define an incremental routine, we have to chose a way to remember exactly which are the nodes
of the tree that were modified. We already saw the main drawback of the pointers method, which is the
difficulty to compute the normal form.

Let’s suppose now that the list of already modified subtrees is stored in the path P;. Now we modify
something more. If the system is consistent, we must suppose that we get another path Ps, which corresponds
to the newly modified subtrees. Now we have to compute the new path to store P3. We shall say that P35 is
the sum of Py and Ps.

The method to compute P3 is very simple. P; and Py are both paths starting from the same place, ie
the top of the tree. The first thing to do is only to concatenate the two lists of STARTED _PATHs, with
some care for the all operator. Thus, the definition of the concatenation is in the following inference rules:

all() , PATH — al()

PATH , oll() — all()

PATH # all()
crossroad| | , PATH — PATH

PATH #all() C, PATH — C,
crossroad[SP . C] , PATH — crossroad[SP . C,]

Now, all that remains is to put P3 in normal form again. In the way we would implement it, those two steps
would be mixed, for more efficiency.

4.3. Checking if some subtree was partially modified

Again, the classical situation in which this question arises is incremental recomputation. Now that we
have a stored path value, that indicates the modified subtrees, if any, we want to use this value.

Using the pointers method would oblige us to traverse the whole considered subtree, and for each node
encountered, check whether its pointer is or not in the stored list. The complexity of that operation is m x n,
where n is the size of the subtree (number of nodes), and m is the number of pointers in the stored list.

With the PATH method, we just have to check if the stored path, P, is or not equal to crossroad] |.

4.4. Checking if some subtree is totally new

It is nearly the same case as above, except that we just need to check if P is or not equal to all().
This problem was also an easier one with pointers, since one just needed to check if the pointer towards the
considered tree was in the stored list

4.5, Computing a sub-PATH

In the two previous paragraphs, all the checkings can be performed on only one particular node, ie the
one for which we know the PATH. Now, this is a little bit silly, since the only node for which we know the
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PATH is the top of the whole tree. So we need to give means to compute a sub-PATH, ie the PATH that
relates a given subtree of the global tree to its own modified subtrees.

Comparison with the pointers method is difficult here. With pointers, that problem could be seen as
partitioning the set of modified pointers of the whole tree into subsets, these subsets containing, for instance

- In the first subset, all the modified pointers that are under the first son of the tree.
- In the second subset, all the modified pointers that are under the second son of the tree.
- And so on...

To compute a sub-PATH, we need a path P and a subtree. This subtree has to be designated, for
instance by another path Ps. Of course P “starts” from the same place as P, does. In fact, this latest path
is a little bit special, for it points to one and only one subtree. So it may be considered as only a list of
ATOMIC_STEPs. The operation we will apply, which we like to call divide (since it divides a path into
sub-paths), is very simple. Informally, three cases may happen.

- Either P equals all(). Then the result of the division is always all().

- Either P, which is now a list of STARTED _PATHs, contains an element that starts by the same
ATOMIC_STEP as P5. Then the computation restarts from the corresponding path and the rest of P,.

- Else P doesn’t contain anything in the required “direction”, and the result is the empty path crossroad]].

When at last, the path P2 is all(), this means that the target subtree has been reached, and the division is
finished. The corresponding inference rules are given below:

all) /P — all()

P/P, — Py
crossroad[start_path(AS,P) . C] / crossroad[start_path(AS,P3)] — Ps

AS' # AS C / crossroad|start_path(AS,P2)] — Pj3
crossroad|start_path(AS',P) . C] / crossroad|start_path(AS,P3)] — P3

crossroad| | /P — crossroad| ]

P/all) — P

The result needs not to be put into normal form again. It is easy to prove that, if the two arguments are
paths in normal form, then the result is too.

Now we can improve the comparison between pointers and paths. When given a global tree, of size
s, a list of modified pointers, of length m, and also a subtree, located [ levels deep in the tree, the size of
the subtree is approximately s x 27!, To determine if the subtree is partially modified has the complexity
m x s x 27!, With paths, the same operation has the complexity of the division of the two paths, which is
proportional to the length of Pa, which is proportional to I. In most cases, the path method wins, except
perhaps for very deep subtrees.

4.6. Maintaining the PATH to the currently visited node

When traversing a tree with TYPOL, we may want every step of the inference to know the subtree it
is working on. In particular, we often want to be able to highlight the currently visited node.

Let us admit first that, here, pointers are just as good as paths are. We only want to present our
solution to this well-known problem.

Of course, the computation starts on the top node. The corresponding path is of course all(). Now if
we know the path P to the current node, all we need to know is the path to some direct son of the current
node. Let’s suppose that the ATOMIC_STEP leading to this son is AS. We have to build the new path
using the following inference rules. It is obvious they are not efficient, because the paths start from the top
of the tree, while the new steps we want to add to paths are closer and closer to the bottom of the tree. It
is a classical tradeoff; If we had chosen the reverse order for paths, the reverse problem would have arisen
somewhere else.



all(), AS — crossroad[start_path(AS,all()]

P7 AS — P2
crossroad[start_path(ASs,P)], AS — crossroad|start_path(ASs,P2)]

There is a classical method that partially solves the problem of efficiency. The heart of the method is
a little hack, which is to replace the all() at the end of the path by a free variable. In that case, one just
needs to remember the variable and to instantiate it by

crossroad[start_path(AS, FREE PATH)]

where FREE_PATH is just another new free variable, for next step. But this method requires to be very
careful about unifications, and doesn’t apply to all cases.

The conclusion of this section is that for this particular case, we find a weakness of the PATH method.
If one is only interested in keeping relations between the top of the tree and only one subtree at a time, for
highlighting purposes, one should as well keep the path in the reverse order, from the bottom up. In this
very particular case, the reverse of paths seems much more efficient than paths.

4.7. System-related input and output of PATHs

What we call input and output of paths is:

- For input, all the possible ways to compute the path relating a tree and a given list of subtrees. These
trees have to be designated before in some way. That way might be anything, for instance the position
of the video pointer or the current highlighting pointer. These notions are related to the CENTAUR
system, but others systems have other notions close to the CENTAUR ones. The result of our input
routines is always a path. This path may be represented in LISP or PROLOG concrete syntax, according
to the way we want to use it later.

The input routine itself may be written in LISP or in PROLOG, according to efficiency reasons, for
example.

- For output, all the possible ways of displaying the value of a path on the screen. If the tree corresponding
to the top of the path is displayed on some CENTAUR view, the way to output the path may be to
highlight the designated subtrees. Of course, this operation is linked to the actual implementation of
the CENTAUR system. Here again, all languages can be chosen to write the path to output, and to
write the output routine itself.

Another close problem is to translate a LISP path to the equivalent PROLOG path, back and forth.
This a technically difficult problem, because we need a communication mechanism between a LISP process
and a PROLOG process that are interleaved.

It would be tedious to give the actual implementation of all these routines. On the other hand, the
underlying principles are already given, and are rather trivial. Besides, we never wrote all these routines.
We just write one of them when we need it. Right now, what exists already is:

- An input routine, which gives the path, from the top of the tree displayed in a given view, to its
highlighted zone. It is written in LISP, and gives a path in its LISP form. Its current name is get_access.

- A translation routine, from a LISP path to the PROLOG equivalent one, written in LISP, called
prolog_access.

- A PROLOG predicate, called prolog_access, which is an input routine, and which unifies its only
argument to the PROLOG form of the path read from the current view.

- An output routine that, given a path and a tree in its VTP form, gives back the list of the designated
subtrees, in its VTP form too. If one wants to see the tree and its highlighted zone on a given view,
one just has to “send” the global tree and the result of the routine to that view, using ordinary VTP
primitives. Everything is written in LISP, and this function is named send_access.
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We understand one being worried about the apparent complexity of all these combinations of input, output
and implementation languages, plus the associated translations: This problem disturbs us too!

4.8. And so on...

We don’t intend to be exhaustive about all the uses of paths. Therefore, we will stop here our list of
examples. We just think that we have presented and justified the main operations on paths, and shown that
they are more powerful than pointers.

The rewriting rules and inference rules we have shown here are not the actual implementations, which
may be done in PROLOG, or in LISP, with perhaps some little hacks around. Rules are all right for
explaining.

For further examples, we are going to show in the next chapter, some more complex uses of paths,
involved in more “real programming” situations

5. MORE COMPLEX USES OF PATHS

The following examples are real uses of paths, and we are not going to use them to introduce or illustrate
operations on paths. Instead, we want to show them as examples of realizations, along with our choices of
actual implementation. The three following uses are thus considered as real-size applications.

5.1. Storage of the screen state

We want to write a LISP toplevel function that saves the state of some “view” from the CENTAUR
screen. What we want is to provide a checkpoint mechanism. When one saves the contents of a view,
nothing happens in the view. One may then do every modification one wants on the displayed program.
If one wants to undo the modifications, and come back to the exact stored state, we shall provide another
LISP function, which restores on the screen the previously stored state of the view. The first function will
be called photograph, and should put the saved state into the global variable called picture. The LISP
code uses the input routine get_access.

(defvar picture ())

(de photograph (view_name)
(let ((view ({name}:view view_name)))
(setq picture (cons ({tree}:copy (view-tree-root view))
;This is the copy of the entire tree
(get_access view))
;This is the path to the designated subtree(s)

)

The reverse function, which will be called restore_picture, will use the output routine send_access.

(de restore_picture (view_name)
(let ((view ({name}:view view_name)))
(view-tree-root view (car picture)
;This is to write the entire tree in the view

(view-tree-k  view (car (send_access (cdr picture)
(car picture)))
) ;This is to set the highlighted zone

;to the first designated subtree
({interface}:affiche view)
;This is to refresh the view
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These functions may be called from the user level, or embedded in a bigger program. This example is still
short, and could not be solved with the “pointer” method.

We chose to apply functions written in LISP for many reasons:
- In CENTAUR, the user level is a LISP level.

- LISP is lower level, therefore faster than PROLOG, and we don’t need to traverse the paths by ourselves,
which could be more cleanly done in PROLOG.

- The routines get_access and send _access, since they use the VTP routines, and since VTP is written
in LISP, are easier to write in LISP.

5.2. Incremental recomputation of synthesized attributes

Let’s suppose we have a TYPOL predicate that computes a synthesized value on the given tree. This
means that every computed value depends only on the subtree it was computed on, and that the result does
not change when the corresponding subtree is not modified. This is an ideal case to recompute this value
incrementally.

For instance, this predicate could compute the value of an expression that contains no variables. In
fact, it may also evaluate expressions with variables, provided the environment containing the values of
these variables is given, and does not change between a computation an the incremental reevaluation. This
predicate could also be a type-checking, provided the type-checking algorithm was modified to remove all
inherited attributes, which is possible in some cases.

Let’s also suppose that, for every node in the tree, the more up-to-date computed value of the corre-
sponding subtree is stored is some way, and can be read or re-written. We suppose this, just not to mix many
different problems, but the fact is that it may be easier, and faster, not to store these values everywhere,
but only on some nodes. That does not change the solution of the problem we focus on here. Let’s write
our predicate, for instance:

FIXED_ENVIR + TREE: VALUES

The typical TYPOL rules that define our predicate are:

(1> pl—levl pl‘Tz:Ug p"Tg:’U3 V = V1 xV3 xV3
pFnode(Tq, Ty, T3):v

pE Ty pET v, vV o= vyeu,
p - list_node[T; . T,] : v

(3) p F atomic_value z:z

Now we want to modify these rules to obtain an incremental system. The principle we will use is based
on the question: “Was the currently visited node modified partially since the latest evaluation, or is it totally
intact since then?”

So the first thing to write is a system that collects all the successive modifications, and gathers them in a
path. All the modifications are seen more easily from the LISP side of CENTAUR, so this part will be written
in LISP. First, we define a global variable, modified, that will contain the path to the modified subtrees.
Since we want to keep track of modifications since the last evaluation, we must check that modified is reset
to () (LISP concrete syntax for crossroad| ), after every evaluation, incremental or not.

Now, every operation that modifies a subtree must be trapped in some way. This depends on the
implementation of CENTAUR, and will not be discussed here. We just suppose that some call is made after
every modification, which is:

(update_modified path)

11—



where path designates the newly modified subtree, to be added to modified. The principle of adding
two paths has been explained earlier, and programmed in LISP in a more efficient way. The definition of
update_modified is then:

(defvar modified ())

(de update_modified (added_path)
(setq modified
(add_paths modified added_path)
)

)

Now, at some moment, the user asks for a recomputation, by calling the execution of the TYPOL
predicate. So let’s modify this TYPOL program. Since we are going to work in TYPOL now, we need to
use the PROLOG version of the path. The new first rule of the TYPOL program will be:

get_modified () m pk TREE:v reset_modified
pFTREE:v

where “get_modified” first takes the value of the LISP variable modified, then translates it to a PRO-
LOG term, and unifies it with the free variable 7. Now all the rules of the original TYPOL program must
be modified, since we want every predicate to be called with the value of the path, from the current node,
towards its modified subtrees. We will thus need the predicate “divide”, implemented in TYPOL exactly
like it was defined earlier, but for PROLOG syntax. For instance the predicate

P / crossroad|[start_path(son(2),all())] — P2

will now be written:
P /[sp(2,all)] — P,

and will be abbreviated into:
PP,

The new TYPOL rules are then:
(1)

7Ti>71'1 7r3>7r2 7r3>7r3 m pETi:vy 7o pbkTy:vy 73 pkT3:vg v = vy xvy*vg store(v)
Wpl—node(Tl,Tg,T3):v

(2" ”—l’m T =7, m opk Ty 7w p kT v, v = v ev, store(v)
m p b list_node[Ty . T,]:v

store(x)
w pF atomic_value x:x

(3

The rule (2’) is the typical example where we need to consider lists in our way, and not as n-arity
nodes. If we consider the chain of inference rules that leads to, say, the third son of a list, TYPOL will
force us to apply three inference rules. Now if lists were n-arity nodes, the ATOMIC_STEP to apply would
be son(3). But the computing of this son(3) is not local to one of the inference rules, and cannot be done
before execution time. In other words, we need to use some kind of a global variable, or an index, to decide,
in the rule (2), what is the actual rank of the “car” son Tj, and the actual rank at which the “cdr”, T,,
will start. In our solution, the sequence of left() may be considered as this index. So it is compulsory for
us to consider son(3) as two left(), and one right().
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Now our modified program is still equivalent to the first one, and is not incremental yet. To make it
incremental at last, we just need to add one rule that traps the case where the current subtree was not
modified at all:

) read_store(v)
[] pF TREE:v

To finish this section, let’s just remark that, in the case where values are not stored everywhere, this
rule becomes

has_store(TREE) read_store(v)

09 [] pF TREE:v

5.3. Forward-backward source-code mapping

This is our biggest example so far. It is also the one which requires the most sophisticated tools
on paths. On the other hand, it can be viewed just as a special case of the previous section. What we
have is a translator, written in TYPOL. Our example is the translator from ASPLE towards SML (Stack
Machine Language), which is just similar to any translator or small compiler, provided it doesn’t use a global,
inherited, environment (cf previous section), and provided there is no optimization performed. Therefore,
the translator can be considered as the evaluator of a synthesized attribute, which is the translated version.

Now what we want is a little different from an incremental translator that we could obtain like in the
previous section. What we want is to define the mapping from some subtree of the source file, towards the
corresponding part of the code file, forward and backwards. This is why we can’t handle simplifications,
because it destroys the links between parts of the source, and parts of the code.

This mapping can be seen as a major improvement to an incremental translator: while the incremental
evaluator constantly stores and reads the values of every subtree, which can waste memory space and cpu
time, we may here take profit of the fact that the result of the computation is already stored in the translated
or compiled file. So this source-code mapping gives us the equivalent to the “read_store” predicate of the
previous section.

Now, how shall we manage to obtain this mapping? The input must be a subtree, in the source or in the
code file. So must be the output. In our context, subtrees are nothing but paths. So we need to transform
the translator to obtain a program that translates paths in the source into paths in the code, and conversely.

5.3.1. The given translator

We are going to show here some TYPOL rules, which define the translator we are starting from. This
translator goes from a type-checked ASPLE program to SML code, which looks a little like assembly language.

We must emphasize that, when the result of a translation is the concatenation of two list of machine
instructions, the translator doesn’t really concatenate these two lists, but instead puts them side to side
in a higher level list. This can be considered a lazy method, but it has no bad consequences. Only, when
traversing a list, one must be careful to traverse also the elements of this list, when they are lists themselves.
Moreover, when we pretty-print the code, these extra levels of list do not appear, and everything looks as if
the lists were concatenated.

On the other hand, this “hidden” structure of the code will be of great help for us, because the con-
catenation would have lost some structure, and the mapping would have been harder.

We show here only some representative rules. The ASPLE operators are written in normal style, while
the SML ones are in italic style:

(1) F stms[ | — coms| ]
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FSTM — ¢ F STMS — ¢o

2
(2) F STM; STMS — coms|ei, ¢2)
(3) FEXP —c¢ FSTMS; — ¢ F STMS; — ¢o
F if EXP then STMS; else STMS, — coms[block(coms|e, fjpl, c1,ujp2,Ibl1, cq, 1bl2])]
(4) F deref(id X) — coms[ldo(sml_id X)]
(5) FEXP — ¢
F deref(EXP) — coms|e, ind()]
(6) Fid X — coms[lao(sml_id X)]

The rules (1) and (2) are about the translation of the “list of statements” construct. They are rather
obvious, and we may underline the fact that the result is not a flattened list of instructions, because we do
not concatenate the two lists of instructions ¢; and ¢a. As a result, it is easier to distinguish in the translated
code, what comes from the first statement (¢;), and what comes from the rest (cz). Another remark is that
the tree structure of the translation is different from the tree structure of the source. That is what interests
us in mapping paths from the source to the code.

The rule (3) is just another example of classical compilation of the “if then else” construct. Again, the
resulting list of statements is not flat. We want to emphasize here that, since this translator is more of a
compiler, information that was stored in the structure of the tree (the “if then else”), is transformed into
instructions (the jumps and labels) that are at the same level than any other instruction. That can be a
difference between plain translators and compilers.

Conversely, some parts of the compiled code, which can now be designated in the code because they are
subtrees by themselves, do not correspond to something precise in the source. On the source side, the “if”
itself could not be designated, because it was not a subtree by itself, but the top node of a bigger subtree.
In that case, the problem is: What can we do if the user asks for the code—source mapping of the fjpl
instruction. The most precise thing to show in that case is the whole “if then else” subtree.

The rules (4), (5) and (6) are here to show an code optimization that doesn’t upset us. The special case
of deref(id X) gives a more efficient code than the rules (5) and (6). This optimization is not a problem
because it is done locally, during the normal traversal of the tree, and doesn’t need an environment or
methods of “peep hole”.

Except for these simple cases, optimizations give us many problems. In the case where the translation
needs an environment, this environment given by another part of the source (the declarations for instance),
we need a little extra care to define the source-code mapping. For instance, if the source file doesn’t change,
we need to memorize this environment, and give it as a parameter to the mapping predicate.

One interesting problem doesn’t show up in the ASPLE—SML program. Suppose a translator goes
from a language where declarations may be grouped if of the same type, towards another language, where
declarations are just one list of binary mappings identifier—type. In that case, we might find the following
rules:

(7) FTYPE — ¢ FIDENTS, t —c¢
Fvar IDENTS : TYPE — ¢
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FIDENT — ¢; FIDENTS, t — co
F IDENT,IDENTS, t— lmaps[mapsto(ci,t).cs]

(8)

The TYPE subtree maps to many subtrees in the translated part. That is why paths are particularly
relevant, since they can designate many subtrees at a time. On the other hand, if the user points on only
one t subtree in the translated part, one has to tell him that this ¢ is closely linked to the others, and that it
cannot be modified alone. So one has to be careful to write the source«~code mapping in a clever and useful
way.

5.3.2. The principles of our mapping

We want to define a predicate that means that two paths, one in the source, one in the code, correspond to
each other. The PROLOG philosophy drives us to consider the same predicate, with differently instantiated
variables, for different purposes. For instance, if we want to check that two given paths correspond, the
two PROLOG variables standing for these paths will be instantiated from the start. If we want to compute
the code mapping corresponding to a given source path, we instantiate only the variable standing for the
source path, and the predicate solving should instantiate the other variable with the code path. Also, if we
instantiate the code path, we should obtain as a result the source path.

When one looks at TYPOL rules in a very theoretic way, this gives no problem, since the order in
which predicates are solved is not specified. Unsolved predicates are just constraints that give the result.
But this doesn’t run correctly, because TYPOL is compiled into C-PROLOG [1], and the order in which
predicates are solved is fixed arbitrarily at compile time. So the translator, which could be so nice and simple
“theoretically”, has to be written in a more heavy way, to control the order of resolution by hand.

Some hope may be in using other, more sophisticated controls, like those of PROLOG-II [2], or MU-
PROLOG [7]. In these languages, one resolution may be frozen, until some of its parameters are instantiated.
But we haven’t tested this deeply enough yet, and we fear some new problems may arise.

So one parameter of our mapping will be the direction of the mapping. Another important parameter
is the source program itself. The reason is that it doesn’t make any sense, to ask if two paths correspond,
if the program itself is not given. So the source is needed. On the other hand, it is redundant to give the
code; since we are working with a translator, and we have the source, we are at least able to guess the code!

So the typical predicate we shall write is:
d+-TREE: 7, & 7.

which reads: “In the case where the direction of the mapping is d, the path n, in the source tree TREE
corresponds to the path 7. in the code (or conversely, according to d)”

At once, we may define the most straightforward cases, where one of the paths is known and either
empty or all. In that case, the value of the other path is obviously the same. Then we may write:

is_empty_path(ms) set_empty _path(7.)

(S1) —F TREE: 7, & T,
(S2) is_empty_path(r.) set_empty_path(7)
2 —F TREE: 7, & 7.
(Ss) is_all_path(ms) set_all_path(m.)
’ —+ TREE: 7, & 7,
is_all_path(w.) set_all_path(7s)
(S4)

—F TREE: 7, & 7.
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or even, if we don’t fear the order of resolution (which is the case here):

empty_path(7s) empty_path(7.)
d+-TREE: 7, & 7.

(Ss)

all_path(m,) all_path(m,.)
d+FTREE: 7, & m,

(Se)

where (S;) is short for (S;) and (S3), and (Sg) for (S3) and (S4). Now, for each rule of the translator, we are
going to see what we can deduce for the source«code mapping. Let us consider the rule (3):

FEXP — ¢ FSTMS; — ¢ F STMS;s — ¢

(3) F if EXP then STMS; else STMSy; — coms[block(coms|e, fjpl, c1,ujp2, b1, ca, 1bl2])]

If we know the path in the source, we can divide it by son(1), son(2) and son(3), to obtain the sub-paths
in EXP, STMS; and STMS,. Now, let’s suppose that we know how to map these three sub-paths in their
three sub-trees, and it gives us three paths in the code, wg, 71 and m2. Now that we know the paths in the
subtrees ¢, ¢; and co, it is easy to compute the resulting path in:

coms[block(comsle, fjpl, c1,ujp2,bll, ca, 1bl2])]

Of course, from code path to source path, things are to be done in the reverse order. Since we must
control the evaluation by hand, we cannot just write down the constraints on paths, but we have to order
them differently according to the direction. This is tedious, and will be isolated in the two predicates
PATH BEFORE and PATH_AFTER. The rule (3) gives us the new rule:

PATH BEFORE<d, 7° & 7°, [in . i] & [ﬂn L uﬂr]], [r§, 75, m5] < 7§, 75, 7S], status>
d+EXP:75 & 7§ dF STMS; :nj & 7f dF STMSy : 715 & 75

1.2 3 11 lirrl rrrerl
PATH_AFTER< status, d, 75 & ¢, [—; = 5] & [—; —; — |, [75, 75, 73] & [x§, 75, 75]>

!
(3) d - if EXP then STMS; else STMSy : 7% < 7€

Of course, every other rule from the translator is going to be transformed exactly in the same manner.
We give to the calls to PATH BEFORE and PATH_AFTER all the information they might need, and in fact
more that that in many cases.

For instance, if we translate paths in the source—code direction, then PATH BEFORE is going to
perform the first part of what we wrote previously, ie divide the given path 7° by the three sequences of
ATOMIC_STEPs : 1, 2 and 3. That will be all. We can see that all the other arguments were not used, but
we couldn’t guess it before execution time. Conversely, PATH_AFTER only has to deduce from the three
paths 7§, 7§ and 75 and the three sequences of steps 111, 11rrl and 11rrrrl, the value of 7°.

But if we translate paths in the reverse order, PATH BEFORE is going to do some other work, which
uses the other arguments, and PATH_AFTER will also change its behavior.

The use of the variable status is different. It is here to solve the problem we described previously: What
happens when the user wants the code—source mapping of fjpl ? This problem must be detected during
the PATH_BEFORE operation. When the process of dividing the input path by all the sequences of steps
loses something, ie when some designated subtree doesn’t appear any longer in the computed sub-paths,
then it means that the result must be the corresponding global subtree. In that case, PATH_BEFORE gives
back sub-paths that are all equal to all, and PATH_AFTER gives always all as its result. the status is here
for PATH_AFTER to know what PATH BEFORE decided.

The sequences of steps that appear in the rule (3’) are computed easily from rule (3). For instance the
sequence 11rrl is the sequence of moves that goes from the top of the generated code:

coms[block(coms|e, fjpl,c1,ujp2,1bll, ca, 1bl2])]

to the subtree ¢; corresponding to STMSy, and it is also the sequence by which one must divide the path
¢ into the generated code, to obtain the sub-path #{ into the generated sub-code ¢;.
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We are ready now to show the definitions of our two fundamental predicates PATH BEFORE and
PATH_AFTER:

set PATH_BEFORE is

divide<n®, STEPS®, PATHS?, status>
<—,m < ¢, STEPS® & STEPS®, PATHS® < PATHS®, status>

(PBy)

divide<n©, STEPS®, PATHS®, status>

PB
(PBz) <—,7° & n°,STEPS® & STEPS®, PATHS® < PATHS®, status>

end PATH BEFORE;
set PATH_AFTER is

multiply<PATHS®, STEPS®, 7¢, status>
<status, —, 7° & ¢, STEPS® © STEPS®, PATHS® < PATHS >

(PA1)

multiply<PATHS®, STEPS®, 7°, status>
<status, —,w* < 7¢, STEPS® & STEPS®, PATHS® < PATHS >

(PA2)

end PATH _AFTER;

where the predicates “divide” and “multiply” have rather intuitive meanings, and will be precisely defined
in the next section.

This is exactly what we required for the source—code and the code—source directions. Please notice
that we did not include yet the definitions of theses two predicates for the two other important cases:

- When the two paths are given, and that we just want to check if they do correspond. In this case, we
will write d = ®, and we should add the corresponding rules to PATH_ BEFORE and PATH_AFTER.
PATH BEFORE should do all the work, and PATH_AFTER has nothing to do. So we add:
to PATH_ BEFORE:

divide<n®, STEPS®, PATHS?, ok> divide<n¢, STEPS®, PATHS®, ok>

(PBs) <®,n* < w¢,STEPS® & STEPS®, PATHS® & PATHS®, ok>

and to PATH_AFTER:

(PA3) <status,®,7° < w°, STEPS® & STEPS®, PATHS® & PATHS >

- When no path is given, it means that the user wants to generate (all the) couples of corresponding
paths. In this case, we will write d =+, and we will add the rules:
to PATH_BEFORE:

(PB,) <o, 7 & 7°, STEPS® < STEPS®, PATHS® « PATHS®, ok>

to PATH_AFTER:

multiply<PATHS®, STEPS®, 7%, ok> multiply<PATHS®, STEPS®, 7¢, ok>
<status, —, 7 < w¢,STEPS® & STEPS®, PATHS® < PATHS®>

(PAy4)

We would like to insist once more: all that is heavy, and we should try to find new ways of controlling
PROLOG execution, in order to simplify these two predicates. When we find a way of writing just a set of
constraints which get solved as soon as possible, then the program will be much clearer.

In some cases, where the rule to transform is more complex, like the rules (7) and (8) of the previous
section, the predicates PATH BEFORE and PATH _AFTER are still controlling the execution too weakly.
We have then to put the “divide” and “multiply”, according to the chosen value of the direction d. This
means that there will be two rules (7’) and (8’), in the case where d =—, and two other, (7”) and (8”) in
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the case where d =«. It is not hard to write these rules. The method is to wait for dividing or multiplying
paths until all the input arguments are known. That is easy when the direction d is known.

Now we can build the final transformed TYPOL program, which will be made with the rules (S5) and
(Se), then all the original rules modified like (3’), then the definitions of PATH BEFORE and PATH_AFTER.
To finish, we have to put two top rules, to interface with the user. These rules will look like:

gettree<asple,root, TREE> get_access<n®> —F TREE:7° & 7n¢ show_code<n®>

(T1) <—>

gettree<asple, root, TREE> get_access<n®> «F TREE:7® < 7¢ show_source<n®>
<>

(T2)

The actual rules may be slightly different because of the centaur implementation, but we will not care
here. We are now going to discuss the routines used to manipulate paths, which are:

- Input-Output routines, namely “get_access”, “show_source” and “show_code”.
- Test routines, all_path and empty_path.

- Destructor and Constructor routines, which are “divide” and “multiply”. This “divide” is more complex
than the one we described in previous chapters.

5.3.3. The higher level manipulations on PATHS we need

The first thing to do is to choose in what language we are going to define these “predicates”. Two main
choices appear.

- Since we have started from a TYPOL program, and we produce another TYPOL program, we may
choose to do everything in PROLOG. In that case, only the input-output routines have to be defined
in LISP, since they are system-dependent, and the CENTAUR system kernel is written in LISP. The
transformed program runs in PROLOG of course, and we program all test and destruction-construction
routines in PROLOG too. In this case, the best choice is to manipulate paths in their PROLOG syntax.

- The other choice is to leave the paths in their LISP form. In that case, the input-output routines are
nearly the same, except that they use paths in their LISP syntax. That might be a little easier since
these routines are in LISP. Now, the test and destruction-construction predicates, which are still called
from the PROLOG side, could translate their inputs, then compute, and at last translate back to LISP.
This is awfully slow. The best method is to have these predicates call directly LISP routines. From
the PROLOG side, all that can be found in the paths is a pointer to a LISP term, and we know how
to call a LISP routine from PROLOG, which is especially easy when the arguments are already known
from the LISP side. What happens in that case is that the actual paths never cross the LISP-PROLOG
border, and they are never translated. This should save time. All the complex computations are done
in LISP, which is ordinary considered faster than PROLOG.

So we tried both methods, and we were a little surprised that the alllPROLOG method is not much slower
than the all-LISP one. This is because PROLOG is sometimes very good, for traversal of structures for
instance, and because the PROLOG calls to LISP are sometimes slow. Nevertheless, the all-LISP solution
pleases us more, because we think the interfacing can be improved, and that we still believe LISP is more
efficient for very complex manipulations. Another reason is that the real structure of paths is hidden from
the user.

For the remaining of this paper, we will fix our choice on the all-LISP solution. Input-output routines
are not very interesting to describe here, although it was not easy to write them, because they are related
to the CENTAUR implementation, and one has to know a lot about VTP to write them correctly. We will
focus on test, destruction and construction routines. What interests us here is the central algorithm, and
the communication between PROLOG and LISP, again, will not be described.

- Test routines are easy to write. For instance, “all_path(7)” means that 7 unifies with the pointer to the
lisp path ’all. Thus, the definitions are:

getsymb<"all” , 7>
all_path(r)
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getsymb<” ()", 7>
empty_path(r)

In fact, we have hacked a little further, as we shall mention later.

The destruction routine is “divide”. It is customary to call it a destruction routine because it splits a
path into sub-paths, and it is the only one which is allowed to look into the structure of a path. For
the other routines of the TYPOL program, a path is just an object whose structure is hidden. What
we want is a function that divides a path by every element of a list of sequences of steps. It must give
back a list of paths. Therefore this divide is a “map” of the previous divide, on a list of sequences of
steps. This divide must also detect the case where the division looses something, and it must generate
the correct status. Here follows our implementation. The top function is called split_status.

(de split_status (access Istart)
(if (let ((access_bis (copylist access)))

(lost access_bis lstart) ;What part of the path is lost in division
)
(cons (all_all Istart) ’lost) ;Then, all result paths are *all
(cons (split access Istart) ’ok) ;Else, divide normally

)
)

(de split (access Istart)
(let ((index 0))
(while Istart
(vset globalvector index (splitl access (nextl Istart)))
;This to divide by the first steps sequence
(setq index (add index 1))

index ;The result is in the global vector globalvector

)

(de splitl (access start)

(cond ((null start) access)
((eq access ’all) ’all)
(t (let ((good_way (assq (car start) access)))
(when good _way (splitl (cdr good_way) (cdr start)))))
) ;This is the classical definition of the old “divide”

)

(de lost (access Istart)
;The function lost removes in access all that may be designated by lstart
(ifn lstart (clean access)
(lost (lostl access (car lIstart)) (cdr Istart)))
) ; While lost1 removes only what is designated by one steps sequence

(de lostl (access start)
(cond ((null access) 0)

((null start) 0))
((eq access ’all) ’all)
(t (let ((good_way (assq (car start) access)))

(when good_way
(rplacd good_way
(lost1 (cdr good_way) (cdr start))))
access)) ;Similar to splitl
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(de all_all (Istart)
(let ((index 0))
(while Istart
(vset globalvector index ’all)
(setq index (add index 1))
(nextl lstart)

) index
)
)
(de clean (access) ;This is to put in normal form
(cond ((null access) 0
((eq access ’all) *all)
(t (let ((first_access (clean (cdar access))))

(ifn first_access (clean (cdr access))
(rplacd (car access) first_access)
(rplacd access (clean (cdr access))))))
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- The construction routine is “multiply”. It is also clear why we call it a “construction” function. The
algorithm is to concatenate each sequence of atomic steps to the corresponding path, which gives a list
of paths, then to add all these paths together, while being careful to keep this final path in normal form.
The top function is called merge.

(de merge (vector lstart)
(let ((index 0)

(res ()
)

(while Istart
(setq res
(merge_two res
;This is to add two paths
(attach (nextl Istart) (vref vector index)))
;And attach is to concatenate a sequence of steps in front of a path

(setq index (add index 1))

res

)

(de merge_two (accessl access2)
(cond ((null accessl) access2)

((null access2) accessl)

((eq accessl ’all) ’all)

((eq access2 ’all) ’all)

(t (mapc (lambda (way) (setq accessl (merge_list accessl way)))

access2)

accessl)
;For each STARTED_PATH n access2, add it to accessl
;in a way that keeps accessl in normal form

) scf the algorithm to add two paths, given in section 4.2.

(de merge list (access way)
(let ((same_way (assq (car way) access)))
(ifn same_way

(cons way access)
;If no STARTED_PATH in access starts like way, then just add way

(rplacd same_way (merge two (cdr same _way) (cdr way)))
;Else, add the two corresponding sub-paths

access

)

) scf the algorithm to add two paths, given in section 4.2.

(de attach (start access)
(cond ((null access) ())
((null start) access)
(t (list (cons (car start)
(attach (cdr start) access))))
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5.3.4. Final hacks and performances

To increase the speed of the resulting program, we finally “hack” it in two ways. These two “dirty
tricks” are:

- The predicates all_path and empty_path just disappear. The reason is that, inside a given CENTAUR
session, the LISP pointers towards the atoms () and ’all keep the same value. So we added a prolog
rule on top of our program, whose function is

1) First to discover the two values of these pointers

2) Then to assert the new rule that replaces (S5), which is
dFTREE: 7y < 7

where 7 is the pointer to ()
3) Then to do the same for ’all
4) Finally to retract itself from the PROLOG list of rules.

This manipulation speeds the program up, because it reduces the number of resolution calls in prolog.
Before, every call of the standard predicate could unify to (S5) and (Sg), and then failed very often, and
then only found the correct rule. Now, these calls are unified only when it is going to work, and one
step of resolution is spared.

- The sequences of atomic steps, like 11rrl, are of absolutely no use on the PROLOG side, since the only
thing we do with them is to pass them as arguments to the lisp functions split_status and merge.
This is a waste of time, because it means we have to translate the PROLOG term 11rrl to its LISP
form each time we use it. Why not, instead, keep it all the time in LISP syntax, and keep it on the
PROLOG side only by an identifier. For instance, each time the sequence of steps “2” appears, which
is often, we replace it by an identifier, say “id2”, which is the name of a LISP variable, whose value has
been set to (2), once and for all. This saves a considerable amount of time, which was wasted in the
PROLOG—LISP translations.

We finally present the performances of our source<»code mapping. Our reference is the time to translate an
ASPLE program (A small program of about 60 lines) to its SML code, using the TYPOL translator. We
measured times on a Sun3/75, with a 68020 processor.

Time of translation ~ 0.14

In fact, we should compare with a source«»code mapping, written without paths. This program would be
some kind of a translator that checks, for each traversed node, whether the current pointer is or not equal
to the searched one. Thus, we think such a program would be slower than a plain translator. Anyway, let’s
suppose the reference time is 0.14. The time taken by our mapping is nearly the same in both directions.
It is nearly proportional to the depth of the designated tree in the source tree. The maximum depth of our
total tree is about 30.

Depth Average Time

1..5 0.02 £0.01

10..15 0.07 £0.02

15..20 0.10 +0.03

25..30 0.15 +0.03

We also have found good results for the behavior in limit cases. For instance, if we point on some region

like the fjpl, which corresponds only to the global if-then-else subtree, then all this subtree is shown. Also,
when a subtree corresponds to many, all the corresponding subtrees are shown in a row.
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6.

CONCLUSION

What we have presented here is just another technique to designate and manipulate subtrees. We needed

it in the CENTAUR context, because the previous method was a little too weak and system dependent, but
we think this path technique can be adapted to any system that manipulates trees. All the routines to use
paths haven’t been written yet, but we think they should be written only as the need for them arises.
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