M2 MPA - Computational Algebraic Geometry

Mid-term exam - duration: one hour

October 21st, 2021

Exercise 1 Let I be an ideal in $k[x, y, z]$, where k is an algebraically closed field. A primary decomposition of I is given by

$$
I=(x) \cap(x, y-z+1) \cap(x, y, z-1) .
$$

What are the associated primes of I ? what are the embedded primes and the minimal primes? Give a geometric description (possibly with a drawing).

Exercise 2 Let I be a homogeneous ideal in $R=k[x, y, z]$, where k is a field. Assume that R / I admits the following graded finite free resolution:

$$
0 \rightarrow R(-3)^{2} \rightarrow R(-2)^{3} \rightarrow R
$$

1. How many generators, and of which degree, define the ideal I.
2. Compute the Hilbert series of R / I.
3. Deduce the dimension and degree of $V(I)$.
4. What is the Hilbert polynomial of R / I ?

Exercise 3 Let $R=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field, and I be an ideal in R.

- Prove that the radical of a principal ideal is principal.
- Show that the following inclusions hold but are strict in general:

$$
\sqrt{I} \sqrt{J} \subseteq \sqrt{I J} \text { and } \operatorname{LT}(\sqrt{I}) \subseteq \sqrt{\operatorname{LT}(I)}
$$

(where a monomial order has been chosen for the second inclusion).
Exercise 4 Let I and J be two ideals in $R=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field.

1. Let t be a new indeterminate and consider the ideal $L=t \times I+(1-t) \times J$ of $R[t]$ (where the products are formed by multiplying generators by t and $(1-t)$ respectively).
i) Show that $I \cap J=L \cap R$.
ii) Deduce how the intersection of two ideals can be computed by means of Gröbner basis.
2. Let us write $J=\left(f_{1}, \ldots, f_{m}\right)$ and let $f \in R$.
i) Show that $(I: J)=\cap_{i=1}^{m}\left(I:\left(f_{i}\right)\right)$ and that $(I:(f))=(I \cap(f)) f^{-1}$, which means the ideal of the elements in $I \cap(f)$, divided by f.
ii) Explain how quotient ideals can be computed by means of Gröbner basis computations.
3. The saturation of I by J is defined as the ideal $\left(I: J^{\infty}\right)=\cup_{i \in \mathbb{N}}\left(I: J^{i}\right)$.
i) Prove that there exists an integer s such that $\left(I: J^{\infty}\right)=\left(I: J^{s}\right)$.
ii) Write $J=\left(f_{1}, \ldots, f_{m}\right)$, then prove that $\left(I: J^{\infty}\right)=\cap_{i=1}^{n}\left(I:\left(f_{i}\right)^{\infty}\right)$.
iii) Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$, t be a new indeterminate and consider the ideal $I_{t}:=I+(t f-1) \subseteq R[t]$. Prove that $\left(I:(f)^{\infty}\right)=I_{t} \cap R$.
iv) From the previous results, explain how the saturation of I by J can be computed by means of Gröbner basis computations.
