M2 MPA - Computational Algebraic Geometry

Final exam - duration: 3 hours

November 30, 2021

Exercise 1 Let $R=k[x, y]$ where k is an algebraically closed field.

1. Give a primary decomposition of the ideal $(x, y(y-1))$. What is the corresponding variety in \mathbb{A}_{k}^{2} ?
2. Using the above example, show that a radical ideal is not always a prime ideal.
3. Show that a radical and primary ideal is prime.

Exercise 2 Let I be a homogeneous ideal in $R=k[x, y, z, w]$, where k is a field. Assume that R / I admits the following graded finite free resolution:

$$
0 \rightarrow R(-5) \oplus R(-4) \rightarrow R(-3)^{3} \rightarrow R
$$

1. How many generators, and of which degree, define the ideal I.
2. Compute the Hilbert series of R / I.
3. Deduce the dimension and degree of $V(I)$.
4. What is the Hilbert polynomial of R / I ?

Exercise 3 Let I be an ideal in $R=k\left[x_{1}, \ldots, x_{n}\right], k$ an algebraically closed field, $f \in I$, and G be a Gröbner basis of the ideal $I+\left(1-x_{n+1} f\right)$ of $R\left[x_{n+1}\right]$. Then, show that $f \in \sqrt{I}$ if and only if G contains a constant.

Exercise 4 Let $V=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right\} \subset \mathbb{A}_{\mathbb{C}}^{2}$ be n distinct points in the affine plane such that $a_{i} \neq a_{j}$ for all i, j. We denote by x, y the coordinates of $\mathbb{A}_{\mathbb{C}}^{2}$ and set $R=\mathbb{C}[x, y]$. We also define the Lagrange interpolation polynomial

$$
h(x)=\sum_{i=1}^{n} b_{i} \prod_{j \neq i} \frac{x-a_{j}}{a_{i}-a_{j}} \in \mathbb{C}[x] .
$$

1. Show that $h\left(a_{i}\right)=b_{i}$ for all $i=1, \ldots, n$ and $\operatorname{deg}(h) \leq n-1$.
2. Prove that $h(x)$ is the unique polynomial of degree $\leq n-1$ such that $h\left(a_{i}\right)=b_{i}$ for all $i=1, \ldots, n$.
3. Prove that $I(V)=(f(x), y-h(x))$, where $f(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)$ (hint: divide $g \in I(V)$ by $\{f(x), y-h(x)\}$ using the lexicographic order $y>x)$.
4. Prove that $\{f(x), y-h(x)\}$ is the reduced Gröbner basis of $I(V) \subset R$ for the lexicographic order $y>x$.

Exercise 5 Let $f(x)=a_{0} x^{m}+\cdots+a_{m-1} x+a_{m}$ and $g(x)=b_{0} x^{n}+\cdots+b_{n-1} x+b_{n}$ be two univariate polynomials in x with coefficients in a field k. We assume that $a_{0} \neq 0, b_{0} \neq 0$ and $n \geq m \geq 1$. If we divide g by f we get $g=q f+r$, where $\operatorname{deg}(r)<\operatorname{deg}(f)=m$. Then, assuming that r is not a constant, show that

$$
\operatorname{Res}_{m, n}(f, g)=a_{0}^{n-\operatorname{deg}(r)} \operatorname{Res}_{m, n-\operatorname{deg}(r)}(f, r)
$$

Exercise 6 Let f_{1}, \ldots, f_{n-1} be linear forms and f_{n} be a homogeneous polynomial of degree $d \geq 1$ in the variables x_{1}, \ldots, x_{n}. We denote by $M=\left(u_{i, j}\right)_{1 \leq i \leq n-1,1 \leq j \leq n}$ the matrix of coefficients of f_{1}, \ldots, f_{n-1} and for all $i=1, \ldots, n$ we define $\Delta_{i}=(-1)^{n+i} \operatorname{det}\left(M_{i}\right)$, where M_{i} is the submatrix of M obtained by removing the $i^{\text {th }}$ column.

1. Show that for all $i, j \in\{1, \ldots, n\}, \Delta_{i} x_{j}-\Delta_{j} x_{i} \in\left(f_{1}, \ldots, f_{n-1}\right)$.
2. If g is a homogeneous polynomial of degree D, deduce that for all $i=1, \ldots, n$,

$$
g\left(\Delta_{1}, \ldots, \Delta_{n}\right) x_{i}^{D}-\Delta_{i}^{D} g\left(x_{1}, \ldots, x_{n}\right) \in\left(f_{1}, \ldots, f_{n-1}\right) .
$$

3. Deduce that $f_{n}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ is an inertia form of f_{1}, \ldots, f_{n}.
4. Prove that $\operatorname{Res}\left(f_{1}, \ldots, f_{n}\right)=f_{n}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$.
5. Compute the resultant of $f_{1}=u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}, f_{2}=v_{1} x_{1}+v_{2} x_{2}+v_{3} x_{3}$ and $f_{3}=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}$.

Exercise 7 Let $I=\left(f_{1}, \ldots, f_{s}\right)$ be a proper ideal in $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

1. If $n=1$, show that I is a principal ideal, say $I=\left(r\left(x_{1}\right)\right)$, and that $\mathbb{C}\left[x_{1}\right] /\left(r\left(x_{1}\right)\right)$ is a \mathbb{C}-vector space of finite dimension. What is this dimension?
2. Prove that if $V(I)$ is a finite set of points, then $\mathbb{C}\left[x_{i}\right] \cap I \neq\{0\}$ for all $i=1, \ldots, n$.
3. Prove that if $\mathbb{C}\left[x_{i}\right] \cap I \neq\{0\}$ for all $i=1, \ldots, n$, then R / I is a finite dimensional \mathbb{C}-vector space.
4. Deduce that $V(I)$ is a finite set of points if and only if R / I is a finite dimensional \mathbb{C}-vector space.
5. From now on, we assume that $V(I)$ is a finite set of distinct points $\left\{p_{1}, \ldots, p_{r}\right\}$ and we consider the map of \mathbb{C}-vector spaces

$$
\begin{aligned}
\varphi: R / I & \rightarrow \mathbb{C}^{r} \\
f & \mapsto\left(f\left(p_{1}\right), \ldots, f\left(p_{r}\right)\right) .
\end{aligned}
$$

Explain why this map is well defined.
6. Prove that $\operatorname{dim}_{\mathbb{C}}(R / I) \geq r$, where $\operatorname{dim}_{\mathbb{C}}(R / I)$ denotes the dimension of R / I as a \mathbb{C}-vector space (hint: prove that φ is surjective).
7. Prove that $\operatorname{dim}_{\mathbb{C}}(R / I)=r$ if and only if $I=\sqrt{I}$.

