--- Matrix completion restart R=QQ[x12,x13,x14,x15,x23,x24,x25,x34,x35,x45,x11,x22,x33,x44,x55,MonomialOrder=>Lex] M=matrix{{x11,x12,x13,x14,x15},{x12,x22,x23,x24,x25},{x13,x23,x33,x34,x35},{x14,x24,x34,x44,x45},{x15,x25,x35,x45,x55}} J=minors(3,M); isPrime J degree J codim J transpose gens J transpose gens gb J -- one equation indep of diagonal elements. eliminate({x11,x22,x33,x44,x55},J) -- gives directly the equation -- Lagrange multiplier restart R=QQ[l,x,y,z,MonomialOrder=>GRevLex] -- l>x>y>z f=x^3+2*x*y*z-z^2 -- function h=x^2+y^2+z^2-1 -- constraint J=ideal jacobian matrix{{f+l*h}} Js=gens gb J transpose Js -- Héron formula restart R=QQ[x,y,s,a,b,c,MonomialOrder=>Lex] I= ideal (b^2-(a-x)^2-y^2,c^2-x^2-y^2,2*s-a*y) M=transpose gens gb I E=M_(0,0) factor (E-16*s^2) -- 3-color maps R=QQ[x1,x2,x3,x4,MonomialOrder=>Lex] f1=x1^3-1 f2=x2^3-1 f3=x3^3-1 f4=x4^3-1 Q12=(factor(x1^3-x2^3))#1#0 Q13=(factor(x1^3-x3^3))#1#0 Q14=(factor(x1^3-x4^3))#1#0 Q23=(factor(x2^3-x3^3))#1#0 Q24=(factor(x2^3-x4^3))#1#0 Q34=(factor(x3^3-x4^3))#1#0 I=ideal(f1,f2,f3,f4,Q12,Q13,Q14,Q23,Q24,Q34) transpose gens gb I R=QQ[x1,x2,x3,MonomialOrder=>Lex] f1=x1^3-1 f2=x2^3-1 f3=x3^3-1 Q12=(factor(x1^3-x2^3))#1#0 Q13=(factor(x1^3-x3^3))#1#0 Q23=(factor(x2^3-x3^3))#1#0 I=ideal(f1,f2,f3,Q12,Q13,Q23) transpose gens gb I -- your own more complex map restart R=QQ[x1,x2,x3,x4,x5,MonomialOrder=>Lex] f1=x1^3-1 f2=x2^3-1 f3=x3^3-1 f4=x3^3-1 f5=x3^3-1 Q12=(factor(x1^3-x2^3))#1#0 Q13=(factor(x1^3-x3^3))#1#0 Q14=(factor(x1^3-x4^3))#1#0 Q23=(factor(x2^3-x3^3))#1#0 Q25=(factor(x2^3-x5^3))#1#0 Q34=(factor(x3^3-x4^3))#1#0 Q35=(factor(x3^3-x5^3))#1#0 Q45=(factor(x4^3-x5^3))#1#0 I=ideal(f1,f2,f3,f4,f5,Q12,Q13,Q14,Q23,Q25,Q34,Q35,Q45) transpose gens gb I