
M2 MPA - Computational Algebraic Geometry

Final exam - duration: two hours

November 30th, 2020

Exercise 1 Let f(x0, x1, x2, x3) and g(x0, x1, x2, x3) be two homogeneous polynomials in R =
C[x0, x1, x2, x3] of degree 3 and 2 that define a cubic surface H and a quadratic surface Q in
P3, respectively.

1. We assume that H and Q intersect in a curve C. Show that this implies that (f, g) is a
regular sequence in R.

2. Give a minimal graded finite free resolution of R/I.

3. Compute the Hilbert polynomial of the intersection curve C. What is the degree of this
curve?

Solution 1

1. The polynomial f being nonzero, it is a nonzero divisor in R. Since H and Q cut out a
curve then f and g have no common factors (otherwise H and Q would have a surface as
a common component of dimension 2). Now, if h and k are polynomials in R such that
hf+kg = 0 we deduce that f divides k, which means that g is not a zero divisor in R/(f).

2. Since (f, g) is a regular sequence in R, its associated Koszul complex is a F.F.R. of R/I:

0→ R(−5)

 −g
f


−−−−−−→ R(−3)⊕R(−2)

(f,g)−−−→ R.

It is clearly a minimal resolution.

3. Using the F.F.R. of R/I we get:

HP(R/I, t) = HP(R, t)−HP(R, t− 2)−HP(R, t− 3) + HP(R, t− 5)

=

(
t+ 3

3

)
−
(
t+ 1

3

)
−
(
t

3

)
+

(
t− 2

3

)
= 6t− 3.

The curve is of degree 6.

Exercise 2 Let k be a commutative ring and f1, . . . , fn be n homogeneous polynomials in
k[x1, . . . , xn] of degree d1, . . . , dn ≥ 1 respectively. Moreover, suppose given n homogeneous
polynomials g := (g1, . . . , gn) in k[x1, . . . , xn] of the same degree d ≥ 1. The goal of this exercise
is to prove that the following equality holds in k:

Res(f1 ◦ g, . . . , fn ◦ g) = Res(g1, . . . , gn)d1d2...dnRes(f1, . . . , fn)d
n−1
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1. Justify that it is enough to prove the above formula over a universal ring of coefficients.
Describe this ring.

2. Show that there exists an integer N such that for all i = 1, . . . , n

gNi Res(f1, . . . , fn) ∈ (f1 ◦ g, . . . , fn ◦ g).

3. Deduce that

Res(f1 ◦ g, . . . , fn ◦ g) = εRes(g1, . . . , gn)λRes(f1, . . . , fn)µ

with λ, µ positive integers and ε = ±1.

4. Conclude with the help of the specialization fj 7→ ujx
dj
j , gj 7→ vjx

d
j for all j.

5. Make explicit the behavior of the resultant under a linear change of coordinates.

Solution 2

1. By definition, the resultant is a universal object: it is first defined in the universal setting
and then defined over any commutative by specialization (there is always a ring map from
Z to any commutative ring). In our setting, the universal ring A is the polynomial ring
built from the coefficients of the fi’s and gj ’s over the ring integers.

2. The resultant is an inertia form, so there exists N such that for all i = 1, . . . , n we have

xNi Res(f1, . . . , fn) ∈ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)).

Substituting xi by gi(x1, . . . , xn) in the above equality gives the claimed relation (notice
that the resultant belongs to A and hence does not depend on the xi’s).

3. Using the relations obtained in the previous question and the divisibility property of the
resultant, we get that

Res(f1 ◦ g, . . . , fn ◦ g) divides Res(gN1 Res(f1, . . . , fn), . . . , gNn Res(f1, . . . , fn))

in A. But since Res(f1, . . . , fn) ∈ A, by homogeneity and multiplicativity of the resultant
we have

Res(gN1 Res(f1, . . . , fn), . . . , gNn Res(f1, . . . , fn)) = Res(f1, . . . , fn)n(Nd)
n−1

Res(gN1 , . . . , g
N
n )

= Res(f1, . . . , fn)n(Nd)
n−1

Res(g1, . . . , gn)N
n
.

Now, since we are in the universal setting, over A, Res(f1, . . . , fn) and Res(g1, . . . , gn) are
both irreducible polynomials that are moreover coprime (they do not depend on the same
variables). It follows that

Res(f1 ◦ g, . . . , fn ◦ g) = εRes(g1, . . . , gn)λRes(f1, . . . , fn)µ (1)

for some non negative integers λ, µ and an invertible element ε in Z.

4. Using this specialization, (1) yields the equality

Res(u1v
d1
1 x

dd1
1 , . . . , unv

dn
n xddnn ) = εRes(v1x

d1
1 , . . . , vnx

dn
n )λRes(u1x

d1,...,unx
dn
n

1 )µ.

Applying the homogeneity and multiplicativity properties of the resultant we get

∏
i

(
uiv

di
i

)dn−1 d1...dn
di = ε

(∏
i

vd
n−1

i

)λ(∏
i

u
d1...dn

di
i

)µ
,

so we deduce that ε = 1, µ = dn−1 and λ = d1 . . . dn.
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5. If the gi’s are linear forms gi =
∑n

i=1 ai,jxj then we know that

Res(g1, . . . , gn) = det(ai,j)i,j=1,...,n.

In this case, we get

Res(f1 ◦ g, . . . , fn ◦ g) = det(ai,j)
d1d2...dnRes(f1, . . . , fn).

The resultant is said to be invariant under a linear change of coordinates.

Exercise 3 We suppose given n+ 1 homogeneous polynomials f0, . . . , fn in R = C[s, t] of the
same degree d ≥ 1. We denote by I the ideal generated by f0, . . . , fn and we assume that
V (f0, . . . , fn) = ∅.

1. Show that R/I admits a finite free resolution of the form

0→ ⊕ni=1R(−d− µi)→ Rn+1(−d)→ R

where the µi’s are non negative integers such that
∑n

i=1 µi = d.

2. We consider the curve C ∈ P3 which is obtained as the image of the parameterization

P1 → P3

(s : t) 7→ (s3 : s2t : st2 : t3).

Define f0 = s3, f1 = s2t, f2 = st2 and f3 = t3. Give the finite free resolution of R/I in
this particular case and provide the maps.

3. Denoting by x0, . . . , x3 the coordinates in P3, describe the equations in R[x0, . . . , x3] of
the symmetric algebra SymA(I) of I from the syzygies obtained in the previous question.

4. Admitting that the annihilator over A = k[x0, . . . , x3] of the graded component of SymA(I)
of degree ν ≥ 1 with respect to s, t yields the defining ideal of C, build a 2×3-matrix with
entries in A that could serve as an implicit representation of this curve. Explain what this
means.

Solution 3

1. We proceed as in the lectures where we proved this result for n = 2. The syzygy module
of I is free because of Hilbert Syzygy Theorem. It follows that R/I has a F.F.R. of the
form

0→ ⊕Ni=1R(−d− µi)→ ⊕ni=0R(−d)→ R.

Now, as V (I) = ∅ the Hilbert polynomial of R/I is the null polynomial. It follows that

0 = HP(R/I, t) = HP(R, t)−
n∑
i=0

HP(R(−d), t) +
N∑
i=1

HP(R(−d− µi))

= (t+ 1)− (n+ 1)(t− d+ 1) +
N∑
i=1

(t− d− µi + 1)

= (N − n)t+ 1 + (n+ 1−N)(d− 1)−
N∑
i=1

µi.

This implies that N = n and then that d =
∑n

i=1 µi. Notice that if the fi’s are linearly
independent then µi > 0 for all i, otherwise we have a syzygy with constant coordinates.
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2. For this particular example, we have
∑3

i=1 µi = 3 and µi ≥ 1 for all i because f0, . . . , f3
are clearly linearly independent. So we need to find three syzygies of degree 1 which are
linearly independent. Looking at the definition of the fi’s, it appears that tfi− sfi+1 = 0
for all i = 0, 1, 2. These three syzygies are clearly linearly independent and hence they
provide a basis of the syzygy module of I.

3. Following the lectures, the equations of the symmetric algebra are obtained by writing
syzygies and replacing the fi’s by the xi’s. Here we get:

Li = txi − sxi+1, i = 0, 1, 2.

It follows that SymR(I) = R[x0, x1, x2, x3]/(L0, L1, L2).

4. By taking the component of degree 1 with respect to s, t of SymR(I), we get

⊕2
i=0R1−µi [x0, . . . , x3](−1)

(L0,L1,L2)1−−−−−−−→ R1[x0, . . . , x3]→ SymR(I)1 → 0

where the matrix is given by (
−x1 −x2 −x3
x0 x1 x2

)
.

The variety cut out by the 2-minors of this matrix is exactly the curve C (which is known
as the twisted cubic).

Exercise 4

The famous “Four Color Theorem” shows that only four
colors are needed to color planar map so that no bordering
regions have the same color. Typical examples are a colored
world map, a colored map of the states of the USA, or a
colored map of the French regions (see the side picture). In
this exercise, we will provide a method to determine if three
colors are sufficient for a particular map.

1. Could you provide a simple planar map to illustrate that three colors are not always
enough to color it so that no bordering regions have the same color?

2. The three colors are represented by a complex cubic root of the unit and each region is
represented by a variable xi. Justify that for each region we have the polynomial equation

x3i − 1 = 0.

3. Let xj and xk be two neighboring regions. As neighboring regions cannot have the same
color, show that xj and xk must satisfy a polynomial equation of degree 2.
(Hint: use that x3j − x3k = 0).

4. Deduce from the previous questions that there exists a polynomial system such that a
map with n regions can be colored with three colors if and only if there exists at least one
solution to this polynomial system.

5. Given a particular map, explain how you would use a computer algebra system to deter-
mine if it can be colored with three colors.
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Solution 4

1. It is easy tp design small maps that cannot be colored with three colors. An example
(from wikipedia):

2. The equation x3i = 1 has three distinct complex roots {1,j,j2} that can be bijectively
associated to three colors.

3. If xj and xk are two neighboring regions then the variables xj and xk are not allowed to
take the same value. Since

0 = x3j − x3k = (xj − xk)(x2j + xjxk + x2k)

we deduce that the polynomial x2j + xjxk + x2k vanishes if and only if xj 6= xk, always

under the assumption that x3j = 1 and x3k = 1.

4. For all i we set fi = x3i − 1 and for all couple (j, k) we set gj,k = x2j + xjxk + x2k. These
are polynomials in C[x1, . . . , xn]. Consider the algebraic affine variety V defined by all
the fi’s and the gj,k’s such that xj and xk are neighboring regions. We deduce that the
map can be colored with three colors, so that no bordering regions have the same color,
if and only if V 6= ∅.

5. To conclude, by Hilbert Nullstellensatz we have to decide if 1 ∈ I, where I is the ideal
generated by the equations defining V . This can be done by computing a Grobner basis
of I, a task that can/must be done with a computer algebra system.

Exercise 5 Let M be a finitely generated A-module, show that if M is generated by q elements
then

annA(M)q ⊂ F0(M) ⊂ annA(M).

Solution 5
Choose a presentation of M :

Ar
(ai,j)−−−→ Aq

(x1,...,xq)−−−−−−→M → 0. (2)

Notice that one can always assume r ≥ q since one can easily add trivial columns to the matrix
(ai,j). Let N be a q × q submatrix of (ai,j). Then

NT

 x1
...
xq

 = 0.

Multiplying this equality on the left by the matrix of cofactors of NT we get that det(N)xi = 0
for all i, from we deduce that F0(M) ⊂ annA(M).
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Now, let a ∈ annA(M). Starting from (2), we have the following presentation of M :

Aq ⊕Ar
(a·Idq |ai,j)−−−−−−−→ Aq

(x1,...,xq)−−−−−−→M → 0

where a · Idq is the diagonal matrix where all the diagonal elements are equal to a. Thus, for all
integer ν ≥ 0 we have (Fitting ideals are independent on the choice of the presentation matrix)

detq−ν+1(ai,j) = detq−ν+1(a · Idq|ai,j) ⊃ a · detq−ν(ai,j).

It follows that for all ν ≥ 1
annA(M)Fν(M) ⊂ Fν−1(M). (3)

To conclude, we use (3) iteratively to get that

annA(M)qFq(M) ⊂ annA(M)q−1Fq−1(M) ⊂ · · · ⊂ F0(M)

and we observe that Fq(M) = A since M is generated by q elements and that F0(M) ⊂
annA(M), as already proved.
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