
M2 MPA - Computational Algebraic Geometry

Mid-term exam - duration: one hour

October 22nd, 2020

Exercise 1

1. Let Q be a primary ideal and let P be the radical of Q. Show that P is a prime ideal and
that P is the smallest prime ideal containing Q.

2. Let Q = (x2, xy) ⊂ C[x, y, z]. Show that the radical of Q is prime. Is Q a primary ideal?

Solution 1 1. (See notes of the first lecture). Let f, g be such that fg ∈ P =
√
Q. Then

there exits an integer m such that fmgm ∈ Q. As Q is primary this implies that either
fm ∈ Q, hence f ∈

√
Q, or either there exits an integer m′ such that gmm

′ ∈ Q, hence
g ∈
√
Q. We deduce that P =

√
Q is a prime ideal.

Now, Let P ′ be a prime ideal such that Q ⊂ P ′. Then we have
√
Q = P ⊆

√
P ′ = P ′.

2. We have (x2) ⊂ Q ⊂ (x) so the radical of Q is equal to (x), which is a prime ideal. Q
is not primary because xy ∈ Q but x /∈ Q and yn /∈ Q for any integer n (because any
element in Q is divisible by x).

Exercise 2 Let f(x, y) be a homogeneous polynomial of degree d ≥ 1 in the graded ring
R = C[x, y] and denote by I the ideal generated by f , i.e. I = (f) ⊂ R. Describe the Hilbert
function of R/I. What is its Hilbert polynomial?

Solution 2 For any integer i = 0, . . . , d−1 we have HF(R/I, i) = HF(R, i) = i+1, in particular
HF(R/I, d− 1) = d. Then, for all i ≥ d we have

HF(R/I, i) = HF(R, i)−HF(I, i) = i+ 1− (i− d+ 1) = d.

The Hilbert polynomial is hence the constant polynomial that is equal to d.

Exercise 3 Let f1 = xy − x, f2 = x2 − y in C[x, y] with the grlex ordering and x > y. Build a
Gröbner basis of the ideal I = (f1, f2).

Solution 3 We start with G = {f1, f2}. We first compute the S-polynomial

S(f1, f2) = xf1 − yf2 = −x2 + y2.

Then we reduce it by the division algorithm

S(f1, f2) = −f2 + y2 − y.

1



We define f3 = y2 − y and add it to G which is now G = {f1, f2, f3}. Now, we get

S(f1, f3) = yf1 − xf3 = 0

and
S(f2, f3) = y2f2 − x2f3 = x2y − y3.

The reduction of S(f2, f3) by G gives

S(f1, f3) = yf2 − yf3 + 0

and hence G is a Grobner basis.

Exercise 4 Let R = C[x1, . . . , xn] and let f and g be two homogeneous polynomials of positive
degree d and e respectively. We assume that f and g have no common factor in R and we
denote by I the ideal generated by f and g, i.e. I = (f, g) ⊂ R.

1. Show that R/I has a finite free resolution of the form

0→ F2 → F1 → F0 → R/I → 0.

Describe explicitly the graded free R-modules Fi and the maps in this finite free resolution.

2. What is the Hilbert series of R? What are the Hilbert series of F0, F1 and F2?

3. Deduce that the Hilbert series of R/I is of the form P (t)/(1− t)n−2 where P (t) ∈ Z[t] is
such that P (1) 6= 0.

4. Finally, deduce that V (I) is of dimension n − 2 and degree P (1). What is the value of
P (1) in terms of d and e? (hint: 1/(1− t)n−2 is the Hilbert series of a polynomial ring in
n− 2 variables).

Solution 4

1. F0 = R and F1 = R(−d) ⊕ R(−e) as the first map is given by the generators, that is to
say

∂1 : F1 → F0 : (p, q) 7→ pf + qg.

The kernel of ∂1 corresponds to couples p, q such that pf + qg = 0. Since f and g have
no common factors and that R is a UFD we deduce that f divides q, i.e. q = fq′, and g
divides p, i.e. p = gp′. In addition we have gp′f+fg′g = 0 from we deduce that p′+q′ = 0.
Therefore, the kernel of ∂1 corresponds to elements of the form h(−g, f) where h is any
homogeneous polynomials; it is hence isomorphic to R. Taking into account the grading
we get F2 = R(−d− e) and the map

F2 → F1 : h 7→ h(−g, f)

is injective, so that the resolution stops at the second step.

2. From the definition: HS(R, t) = HS(F0, t) = 1/(1− t)n, HS(F1, t) = (td + te)/(1− t)n and
HS(F2, t) = td+e/(1− t)n.
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3. Applying Hilbert series to the exact sequence obtained in the first question we get

HS(R/I, t) = HS(F0, t)−HS(F1, t) + HS(F2, t)

=
1− td − te + td+e

(1− t)n
=

(1− td)(1− te)
(1− t)n

=
(1 + t+ · · ·+ td−1)(1 + t+ · · ·+ te−1)

(1− t)n−2
=:

P (t)

(1− t)n−2
.

We have P (1) = de 6= 0.

4. We know that

HS(C[x1, . . . , xn−2], t) =
1

(1− t)n−2
= (1 + (n− 2)t+ · · ·+

(
n− 3 + i

n− 3

)
ti + · · · )

where
(
n−3+i
n−3

)
= (i+n−3)(i+n−4)···(i+1)

(n−3)! is a polynomial in i of degree n − 3 and leading

coefficient equal to 1/(n − 3)!. Now, if P (t) :=
∑l

j=0 cjt
j then the coefficient of ti in

HS(R/I, t) is equal to
l∑

j=0

cj

(
n− 3 + i− j

n− 3

)
,

assuming that i is sufficiently high. This is a polynomial of degree n − 3 in i and its
leading coefficient is equal to

l∑
j=0

cj ×
1

(n− 3)!
=

P (1)

(n− 3)!
=

de

(n− 3)!
.

The Hilbert polynomial HP(R/I, i) ofR/I is hence a polynomial of degree n−3 and leading
coefficient de/(n− 3)!. It follows that V (I) ⊂ Pn−1 is of dimension n− 3 (codimension 2)
and of degree de.

Exercise 5 Show that the rank of the Sylvester matrix of two polynomials f(x), g(x) ∈ C[x]
of degree m and n respectively is equal to m + n − deg(gcd(f, g)), where deg(gcd(f, g)) is the
degree of the greatest common divisor of f(x) and g(x).

Solution 5 The Sylvester is the matrix of the map of C-vector spaces

C[x]<n ⊕ C[x]<m → C[x]<m+n : (u, v) 7→ uf + vg. (1)

Let h be the gcd of f and g and denote by δ its degree. We have f = hf ′ and g = hg′ with f ′

and g′ coprime polynomials.
Now, let (u, v) be an element in the kernel of (1). We have uf + vg = 0 = h(uf ′ + vg′).
We deduce that f ′ divides v, i.e. v = f ′v′, and g′ divides u, i.e. u = g′u′. Moreover we get
uf ′ + vg′ = f ′g′(u′ + v′) = 0 and hence v′ = −u′. Finally, we proved that (u, v) = u′(g′,−f ′)
where u′ is a polynomial in C[x]<δ. As any element of this form is obviously in the kernel of
(1) we deduce that the kernel of the Sylvester matrix is of dimension δ, and hence its rank of
dimension m+ n− δ.
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