Exercises - Regular Sequences

M2 MPA - Computational Algebraic Geometry

September 30, 2020

A sequence $\{a_1, \ldots, a_s\}$ of elements in a commutative ring R is called a *regular sequence* if

- i) $(a_1,\ldots,a_s) \neq R$
- ii) a_i is a nonzerodivisor in $R/(a_1, \ldots, a_{i-1})$ for all $i = 1, \ldots, s$.

An ideal generated by a regular sequence in called a *complete intersection ideal*.

Exercise 1 Show that the property of being a regular sequence depends on the order of the elements. For that purpose, one can consider the ring R = k[x, y, z] and the two sequences (x, y(1-x), z(1-x)) and (y(1-x), z(1-x), x).

Exercise 2 Let $\{a_1, \ldots, a_s\}$ be a regular sequence in R. Show that the sequence obtained by permutation of a_i and a_{i+1} is regular if and only if a_{i+1} is not a zerodivisor in $R/(a_1, \ldots, a_{i-1})$.

Exercise 3 Graded Nakayama Lemma

Let $R = \bigoplus R_i$ a graded ring and M a graded R-module such that $M_i = 0$ for i sufficiently negative. Set $R_+ := \bigoplus_{i>0} R_i$. Show that if $R_+M = M$ then M = 0.

Exercise 4 Let $\{a_1, \ldots, a_s\}$ be a regular sequence of homogeneous elements in a graded ring R. Then, show that this sequence remains regular after any permutation of its elements (hint: use previous exercises).

Exercise 5 Let $\{a_1, \ldots, a_s\}$ be a regular sequence in a commutative ring R. Show that for all

$$g \in Syz(a_1, \dots, a_s) := \{(h_1, \dots, h_s) \in \mathbb{R}^s \text{ such that } \sum h_i a_i = 0\}$$

there exists a skew-symmetric matrix M with coefficients in R such that

$$g = M \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_s \end{pmatrix}$$