Exercises - Regular Sequences

M2 MPA - Computational Algebraic Geometry

September 30, 2020

A sequence $\left\{a_{1}, \ldots, a_{s}\right\}$ of elements in a commutative ring R is called a regular sequence if
i) $\left(a_{1}, \ldots, a_{s}\right) \neq R$
ii) a_{i} is a nonzerodivisor in $R /\left(a_{1}, \ldots, a_{i-1}\right)$ for all $i=1, \ldots, s$.

An ideal generated by a regular sequence in called a complete intersection ideal.
Exercise 1 Show that the property of being a regular sequence depends on the order of the elements. For that purpose, one can consider the ring $R=k[x, y, z]$ and the two sequences $(x, y(1-x), z(1-x))$ and $(y(1-x), z(1-x), x)$.

Exercise 2 Let $\left\{a_{1}, \ldots, a_{s}\right\}$ be a regular sequence in R. Show that the sequence obtained by permutation of a_{i} and a_{i+1} is regular if and only if a_{i+1} is not a zerodivisor in $R /\left(a_{1}, \ldots, a_{i-1}\right)$.

Exercise 3 Graded Nakayama Lemma

Let $R=\oplus R_{i}$ a graded ring and M a graded R-module such that $M_{i}=0$ for i sufficiently negative. Set $R_{+}:=\oplus_{i>0} R_{i}$. Show that if $R_{+} M=M$ then $M=0$.

Exercise 4 Let $\left\{a_{1}, \ldots, a_{s}\right\}$ be a regular sequence of homogeneous elements in a graded ring R. Then, show that this sequence remains regular after any permutation of its elements (hint: use previous exercises).

Exercise 5 Let $\left\{a_{1}, \ldots, a_{s}\right.$ be a regular sequence in a commutative ring R. Show that for all

$$
g \in \operatorname{Syz}\left(a_{1}, \ldots, a_{s}\right):=\left\{\left(h_{1}, \ldots, h_{s}\right) \in R^{s} \text { such that } \sum h_{i} a_{i}=0\right\}
$$

there exists a skew-symmetric matrix M with coefficients in R such that

$$
g=M\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{s}
\end{array}\right)
$$

