
Numerical investigation of the dynamical environment of
65803 Didymos

L. Dell’Elce a,⇑, N. Baresi b, S.P. Naidu c, L.A.M. Benner c, D.J. Scheeres b
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Abstract

The Asteroid Impact & Deflection Assessment (AIDA) mission is planning to visit the Didymos binary system in 2022 in order
to perform the first demonstration ever of the kinetic impact technique. Binary asteroids are an ideal target for this since the deflec-
tion of the secondary body can be accurately measured by a satellite orbiting in the system. However, these binaries offer an extre-
mely rich dynamical environment whose accurate investigation through analytical approaches is challenging at best and requires a
significant number of restrictive assumptions. For this reason, a numerical investigation of the dynamical environment in the vicinity
of the Didymos system is offered in this paper. After computing various families of periodic orbits, their robustness is assessed in a
high-fidelity environment consisting of the perturbed restricted full three-body problem. The results of this study suggest that several
nominally stable trajectories, including the triangular libration points, should not be considered as safe as a state vector perturba-
tion may cause the spacecraft to drift from the nominal orbit and possibly impact one of the primary bodies within a few days.
Nonetheless, there exist two safe solutions, namely terminator and interior retrograde orbits. The first one is adequate for obser-
vation purposes of the entire system and for communications. The second one is more suitable to perform close investigations
of the primary body.
! 2016 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Didymos; AIDA mission; Restricted three-body problem

1. Introduction

Current estimates indicate that 15! 4% of the Near-
Earth Asteroid (NEA) population is made of binary sys-
tems (Margot et al., 2002; Pravec et al., 2006, 2016). Thus,
it is not surprising that several spacecraft missions have
been envisaged to explore asteroid pairs in the Solar
System.

A notable example is the Asteroid Impact & Deflection
Assessment (AIDA) mission (Cheng et al., 2015): an inter-

national collaboration between NASA and ESA consisting
of two spacecraft to be launched in 2020 towards the bin-
ary asteroid 65803 Didymos (Benner et al., 2010). The
ESA satellite, also known as the Asteroid Impact Mission
(AIM), will arrive first to characterize the dynamical envi-
ronment in the proximity of the target binary and will pre-
pare for the arrival of the NASA spacecraft, the Double
Asteroid Redirect Test (DART). DART’s mission is to
impact at 6.25 km/s against the smaller of the primary bod-
ies, named ‘secondary’ hereafter, thereby performing the
first ever experiment of the kinetic impactor technique.
At the time of impact, AIM will be observing the collision
and collect valuable data to determine any changes in the
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orbital pattern and internal structure of the secondary
body. This will be done in conjunction with data provided
by additional landers and 3U CubeSats to be deployed
upon arrival at the destination in safe operating locations
that are yet to be selected. This is because the dynamical
environment about binary asteroids is so challenging that
the existence of orbits where the satellites would be bound
to either of the bodies is actually still open to debate.

The main problem encountered in modeling the dynam-
ics about binary asteroids is that the orbit of the secondary
body about the primary is strongly non-Keplerian due to
irregular shapes, spin-orbit coupling, and the influence of
solar radiation pressure (SRP) and solar gravity. In addi-
tion, according to the current model (ESA, 2015), the sec-
ondary body orbits around the primary in an equatorial
orbit with an estimated eccentricity of 0.03. This already
eliminates a great number of candidate periodic orbits that
can be found in the vast literature concerning the circular
restricted three-body problem (CR3BP) (Szebehely, 1967).

All of these forces yield a very rich dynamical environ-
ment that was the subject of several investigations found
in literature. Scheeres and Bellerose laid out the foundation
of what is now known as the restricted Hill full four-body
problem (RHF4BP) by deriving the equations of its closest
approximations, i.e., the restricted Hill four-body problem
(RH4BP) and the restricted full three-body problem
(RF3BP) (Scheeres and Bellerose, 2005). Here, ‘restricted’
denotes that one body, namely the spacecraft, is massless
and, as such, it does not affect the motion of the binary,
while ‘full’ indicates that the attitude and orbital dynamics
of the attractors are coupled. In particular, the authors
modeled the shape of one of the two primaries as a tri-
axial ellipsoid, thereby showing for the first time that the
irregular mass distribution of the asteroids significantly
affected the stability of CR3BP-based solutions. Similar
results were also obtained in Gabern et al. (2006) using
Hamiltonian formalism and normal forms. Here, the pri-
maries were approximated as a sphere and a three-
mascon rigid body in a T configuration admitting stable
regions of motion, despite the tidal force of the Sun being
taken into account. Indeed, periodic orbits in the RF3BP
were also found in Bellerose and Scheeres (2005), where
the primaries were considered to be in a long-axis configu-
ration, i.e., the secondary was in a relative equilibrium with
a primary ellipsoid along its minimum axis of inertia. Yet,
none of the computed solutions in both Gabern et al.
(2006) and Bellerose and Scheeres (2005) included the
effects of SRP, which is known to be significant in the vicin-
ity of small bodies (Bellerose et al., 2009).

For all these reasons, in this paper we envision a fully
numerical approach describing the motion of a mass parti-
cle subject to the gravitational attraction of a constant-
density polyhedron (the primary) (Naidu et al., 2016) and
a constant-density tri-axial ellipsoid (the secondary), while
being perturbed by the third-body attraction of the Sun

and cannonball SRP. The model, hereby referred to as
the perturbed restricted full three-body problem
(PRF3BP), is applied to investigate the dynamical environ-
ment in the proximity of the binary asteroid 65803 Didy-
mos and assess whether regions of robust motion can be
found in the system.

To improve the realism of our simulations, we also
account for second-order effects on the orbital motion of
the smaller body about the primary due to its shape, the
eccentricity of the secondary orbit, and the oblateness of
the primary body (McMahon and Scheeres, 2013). These
effects induce librations of the secondary as seen in the
corotating frame of the primaries that can destabilize
motion in the proximity of DART’s target. This is
observed for several types of orbits about the smaller body
that could be potential candidates for the AIM mission.
Therefore, the inclusion of secondary shape and attitude,
eccentricity, and oblateness effects is paramount for the
purposes of our analysis.

Finally, targeting robust orbital regions, several candi-
date trajectories are considered, including triangular libra-
tion points, planar symmetric periodic orbits derived from
the CR3BP, and terminator orbits (Scheeres, 1999). All of
the considered trajectories are tested with a Monte Carlo
simulation that runs different realizations of Didymos orbi-
tal and physical parameters as specified in ESA (2015). The
results of the numerical investigation are shown in Section 4
after reviewing the equations of motion implemented in
our high-fidelity orbit propagator in Section 2 and the pro-
posed candidate trajectories in Section 3. Additional results
on the identified robust orbits are finally provided in Sec-
tion 5. Conclusions are given in Section 6.

2. Dynamical environment

This section offers a brief overview of the dynamical
environment that was used to perform high-fidelity simula-
tions. The definition of the reference frames and relevant
transformations used herein is disclosed in Appendix A.

Following the notation in Scheeres and Bellerose (2005),
the dynamics of the satellite within the Didymos system is
modeled via the PRF3BP. Here, ‘perturbed’ means that
additional perturbations acting on the spacecraft are con-
sidered. Specifically, we consider non-spherical mass distri-
bution of the primaries, SRP, and third-body attraction of
the Sun. Most equations of the PRF3BP and of more
advanced systems are derived in Scheeres and Bellerose
(2005).

Dimensionless quantities are used in this paper. Denote
by m1 and m2 the masses of the attractors, and by G the uni-
versal gravitational constant. Length and time are normal-
ized by means of the nominal semi-major axis of the binary
orbit, a, and of the inverse nominal mean motion,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a3
Gðm1þm2Þ

q
, respectively. We note that the secondary com-
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pletes one orbital revolution about the primary in 2p as the
mean motion in normalized units is now equal to n ¼ 1.
Dimensionless inertia of the attractors is obtained by using
the coefficients mja2, with j ¼ 1; 2 for the primary and sec-
ondary body, respectively.

The equations of motion (EoM) are integrated by means
of the MATLAB solver ode113, which is a variable-order
and step-size Adams-Bashforth-Moulton integrator
(Shampine and Reichelt, 1997). The relative tolerance of
the adaptive step is set to 10&13.

2.1. Binary dynamics

Evaluating the coupled attitude and orbital motion of
two arbitrarily-shaped masses can be computationally
intense and it adds unnecessary complexity for the scope
of the paper. For this reason, three assumptions are intro-
duced to simplify the problem without losing the funda-
mental dynamics:

' The spin of the bodies is parallel to their orbital momen-

tum, i.e., ẐCkẐ1kẐ2, as shown in Fig. 1.
' The secondary is modeled as a tri-axial ellipsoid with
I2;x; I2;y , and I2;z as the moments of inertia along the prin-
cipal axes. The primary is modeled as an oblate spher-
oid, so that I1;x ¼ I1;y ¼ I1;eq and the inertia about the
polar axis is I1;z.

' The main body has constant spin, x1Ẑ1.

These assumptions are in good agreement with the cur-
rent radar observations of the Didymos system, which sug-
gest that the primary is roughly spheroidal and
synchronous rotations of the secondary are likely (Naidu
et al., 2016). Indeed, the same hypotheses were made in
the current reference model provided by ESA (2015).

Based on the aforementioned assumptions, a reduced-
order system modeling the full two-body problem can be
derived as in McMahon and Scheeres (2013). Denote by
d;/, and h the distance between the barycenters of the
attractors, the libration of the secondary and the argument
of latitude, respectively. This notation is illustrated in
Fig. 2. Their EoM are (McMahon and Scheeres, 2013)

€d ¼ K & I2;z _/
I2;z þ ld2

 !2

d & 1

l
@V
@d

;

€/ ¼ 2
K & I2;z _/
I2;z þ ld2

_d
d
& 1

ld2 þ
1

I2;z

" #
@V
@/

;

_h ¼ K & I2;z _/
I2;z þ ld2 ;

ð1Þ

where dots denote derivatives with respect to the dimen-
sionless time and l ¼ m2

m1þm2
denotes the mass parameter.

The mutual potential, V, is given by

V ðd;/Þ ¼ & l
d

1þ 1

2d2 I1;z & I1;eq
$ %

& 1

2
I2;x þ I2;y
$ %&'

þI2;z þ
3

2
I2;y & I2;x
$ %

cos 2/
()

;

and the free angular momentum, K, is an integral of
motion that follows from the independence of the system
Lagrangian with respect to the argument of latitude h.
The constant value of K is deduced from the initial states
by solving the last of Eqs. (1) for the free angular momen-
tum itself, i.e.,

K ¼ I2;z þ ld2ð0Þ
$ %

_hð0Þ þ I2;z _/ð0Þ:

In the context of the elliptic restricted three-body prob-
lem (ER3BP), the binary orbit is usually assumed to be
Keplerian with librations of the secondary body due to
simple kinematics relationships. In contrast, the model dis-
cussed in this section yields a dynamical coupling between
the libration angle and the distance between the centers of
mass of the two attractors that may lead to unstable oscil-
lations. Sufficient conditions for the boundedness of the
librations of the secondary in this model are assessed in
McMahon and Scheeres (2013). All the simulations per-
formed in this work are such that these conditions are
satisfied.

2.2. Spacecraft dynamics

Denote by r ¼ x; y; z½ )T the position vector of the satellite
in the co-rotating frame C illustrated in Fig. 1. The EoM of
r are:

Fig. 1. Co-rotating reference frame. The origin coincides with the
barycenter of the Didymos system.

Fig. 2. Reduced DoF of the binary orbit as viewed from the ẐP axis.
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€x&€hy&2 _h _y¼ _h2x&ð1&lÞðxþldÞ
r31

&l½x&ð1&lÞd)
r32

þf x;

€yþ€hxþ2 _h _x¼ _h2y&ð1&lÞy
r31

&ly
r32

þf y ;

€z¼&ð1&lÞz
r31

&lz
r32

þf z:

ð2Þ

Here, r1 and r2 are the distances of the satellite from the

barycenter of the attractors, and f ¼ f x; f y ; f z

* +T
is the per-

turbing force.
Three perturbations are included in f . First, non-

spherical attractors are considered. Specifically, a
constant-density polyhedron (Werner and Scheeres, 1996)
and a constant-density tri-axial ellipsoid (Scheeres, 1994)
are used to model the gravitational force of the primary
and secondary body, respectively. The shape model of the
primary is roughly spheroidal and has a volume equivalent
diameter of about 780 m (Naidu et al., 2016). The primary
is slightly oblate and has a nominal J 2 value of approxima-
tively 0:001 under a uniform density assumption. It has an
equatorial ridge similar to (but not as prominent as) the
ones seen on the primaries of other binary and triple sys-
tems such as 1999 KW4 (Ostro et al., 2006), 1994 CC
(Brozović et al., 2011), and 2000 DP107 (Naidu et al.,
2015). The equatorial ridge is somewhat irregular and has
a * 300 m long facet. The primary shape model is defined
by 1000 vertices and 1996 triangular facets with an effective
resolution of * 50 m. Visible range extents of the sec-
ondary in radar delay-Doppler images suggest a diameter
between 150 and 180 m (Naidu et al., 2016). The radar data
also suggest that the secondary spin is, on average, syn-
chronous with the binary orbit. Second, a cannonball model
is used to model the SRP, i.e., the force is systematically direc-
ted in the opposite direction of the Sun, whereas the magnitude
scales as the inverse of the squared distance between the space-
craft and the Sun itself. Finally, solar gravity is also accounted
for. To compute the two latter perturbations, we assume that the
heliocentric orbit of Didymos is Keplerian and characterized by
the orbital elements listed in Table 1.

3. Candidate trajectories

Various orbits are considered as possible trajectories for
the AIM satellite in the Didymos system. Some results
could potentially be of use for the CubeSats ejected by
the mother-craft, as well. These solutions are computed
under several assumptions, so that their robustness in the
high-fidelity environment needs to be later assessed as in
Section 4.

We stress that this survey is not comprehensive and it is
limited to candidates which are considered to be of interest
for the AIDA mission. For example, Halo orbits or planar
orbits about collinear libration points are neglected
because they are either unstable or not robust with respect
to the various perturbations discussed in Section 2.

3.1. Triangular libration points

The first candidate solution are the triangular libration
points L4 and L5, i.e., the two equilibrium points in the

co-rotating frame that do not lie on the X̂C axis (Arnold
et al., 1993, Chap. 2.5). These points are stable in the
framework of the CR3BP. Nonetheless, stability is no more
guaranteed for low mass ratio when non-spherical attrac-
tors are considered (Scheeres and Bellerose, 2005).

Libration points cannot be rigorously defined in the
high-fidelity environment because of the presence of exter-
nal perturbations and eccentricity effects. Hence, they are
computed by assuming that the primary and the secondary
are a point mass and a tri-axial ellipsoid, respectively. In
addition, SRP, and third-body attraction of the Sun are

neglected and it is assumed that _dðtÞ ¼ /ðtÞ ¼ 0 8t > 0.
Under these hypotheses, the triangular points of Didy-

mos are located at 0:491X̂C ! 0:866ŶC. The associated lin-
earized systems admits two pairs of complex conjugate
eigenvalues, namely !0:97i and !0:26i, so that these equi-
libria are stable, which makes them a suitable candidate for
the robustness analysis. A parametric study on the stability
of libration points under the assumptions of this section is
discussed in Scheeres (2012, Chap. 9.3).

3.2. Symmetric planar periodic orbits

Planar orbits are of interest because of their proximity
to one or both primaries, which makes them suitable for
a thorough inspection of the system. Here, we only con-
sider trajectories that are symmetric with respect to the

X̂C axis.
Periodic solutions are computed by means of the

predictor-corrector algorithm detailed in Baresi et al.
(2016) and Scheeres (2012). Solutions in the high-fidelity
environment discussed in Section 2 would be isolated, at

Table 1
Parameters of the Didymos system.

Value Units

Physical parameters
Mass parameter, l 9:214 + 10&3 –
Total mass 5:278 + 1011 kg
Primary ellipsoid semi-axes 399, 392, 380 m
Secondary ellipsoid semi-axes 103, 79, 66 m
Primary spin rate 7:723 + 10&4 rad/s

Binary orbit
Semi-major axis 1180 m
Pole ecliptic longitude 310 deg
Pole ecliptic latitude &84 deg

Heliocentric orbit
Semi-major axis 1.645 AU
Eccentricity 0.384 –
Inclination 3.408 deg
Argument of perigee 319.20 deg
RAAN 73.256 deg
Mean anomaly 195.97 deg
Epoch 2007/01/31 UTC
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best, because of the multiple time-dependent forcing terms
appearing in the term f of Eq. (2). Hence, the same
assumptions introduced in Section 3.1 are used to find peri-
odic orbits.

Five families were identified, namely: direct interior,
direct exterior, retrograde interior, retrograde exterior,
and circum-secondary retrograde orbits (CSO). The stabil-
ity of direct and retrograde interior and exterior orbits was
studied in the context of the 1999 KW4 binary system
(Scheeres, 2012, Chap. 9.4) under the same assumptions
discussed herein. CSO are well known stable orbits of plan-
etary binary systems, where they are named distant retro-
grade orbits, but, to the best of our knowledge, their
stability was never studied in the context of small bodies.

Direct orbits have the advantage to exhibit a slower
dynamics in the co-rotating frame. For the same reason,
they are also more prone to be significantly affected by
the gravitational perturbations of the two primaries.
Fig. 3 depicts a sample trajectory for each of them. Here,
dots denote the x-axis crossing, i.e., the location on the

X̂C axis corresponding to the crossing of the surface of sec-

tion that we used to enforce the periodicity of the orbit.
Direct exterior orbits are apparently retrograde when
observed in the co-rotating frame.

The x-axis crossing and the associated tangential veloc-
ity of the solutions are depicted in Fig. 4(a). Because of the
symmetries of the problem, these two components fully
identify the orbit. The largest part of the branch of direct
interior orbits is characterized by two solution for the same
x-axis crossing at different velocities, whereas all the other
families can be parametrized by means of the x-axis cross-
ing only. The stability indices of the considered periodic
orbits are shown in Fig. 4(b) as a function of the x-axis
crossing location. Each of them is defined as the sum of
one pair of reciprocal non-unitary eigenvalues of the mon-
odromy matrix (Howell, 1984), which explains the occur-
rence of two lines per initial conditions. The orbit is
stable when all of the stability indices are real and smaller
than 2. The entire branches of direct interior orbits and
CSO are stable. However, the proximity of the indices of
high-velocity direct interior orbits and large CSO to the
stability bounds makes their robustness questionable. Both

Fig. 3. Sample of each family of planar symmetric orbits in the corotating frame.
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interior and exterior retrograde orbits are mostly stable if
fairly distant from the secondary body. Finally, only direct
exterior orbits sufficiently far from the secondary are
stable. All unstable solutions are neglected in the robust-
ness analysis of Section 4.

3.3. Terminator orbits

Terminator orbits offer a privileged position for observ-
ing the overall binary system and for communication pur-
poses between a mothercraft and other satellites located,
for example, in the planar orbits described in Section 3.2
or landed on a primary body.

Terminator orbits are such that the orbital angular
momentum points toward the Sun direction, as illustrated
in Fig. 5. The required rotation of the right ascension of

the ascending node (RAAN) is achieved by means of the
SRP.

In this work, terminator orbits are computed by assum-
ing that the satellite is only subject to the point-mass grav-
ity of Didymos and SRP.

For a desired semi-major axis, a, frozen orbit conditions
are met by choosing the orbital eccentricity as in Scheeres
(1999):

e ¼ cos tan&1 3

2

Cr

B
U
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

ll,aH 1& e2Hð Þ

r" #& (
;

where l and l, are the Didymos and solar gravitational
parameters, respectively, aH and eH denote the semi-
major axis and eccentricity of the heliocentric orbit, respec-
tively, Cr is the reflectivity coefficient, B is the satellite’s
mass to cross sectional area ratio, U ¼ 1367 W m&2 indi-
cates the solar flux at 1 AU, and c is the speed of light.

Fig. 4. Families of planar symmetric orbits. Shaded regions denote the encumbrance of the primaries.
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If the desired semi-major axis is excessively large, the
action of the SRP may tear off the satellite from the Didy-
mos system. A sufficient condition for the stability of the
terminator orbit derived in Scheeres (2012, Chap. 12) states
that a should be chosen to satisfy

a 6 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

max f srp

,, ,,,, ,,$ %
s

; ð3Þ

where f srp denotes the specific force due to the SRP. In the
same reference, an alternative necessary and sufficient con-
dition, which was derived in a completely different frame-
work than Eq. (3), states that the maximum semi-major

axis should be no larger than
ffiffiffi
3

p
times the outcome of

Eq. (3). Fig. 6 depicts the maximum semi-major axis
according to these two criteria as a function of B

Cr
for the

Didymos system. This diagram can be used to estimate

the maximum semi-major axis of the terminator orbit that
should be considered for the robustness analysis of
Section 4.

In the high-fidelity simulations, the frozen orbit is ini-
tialized as a Keplerian orbit about the total mass of the sys-
tem. Various semi-major axes are tested to investigate the
minimum distance from Didymos at which the satellite
can be safely placed.

4. Robustness analysis

The robustness of the solutions discussed in Section 3 is
now assessed by means of a Monte Carlo (MC) analysis.
Various uncertainty sources are considered for this pur-
pose, namely:

' the initial eccentricity of the binary orbit, eð0Þ;
' the initial longitude of the secondary body, hð0Þ;
' the initial libration of the secondary body, /ð0Þ;
' satellite properties, namely the reflectivity coefficient, Cr,
and the mass to cross sectional area ratio, B.

Uniform distributions are used to model the marginal
probability density function (PDF) of each variable in
agreement with the maximum entropy principle
(Shannon, 1948). Typical values of past missions to aster-
oids detailed in Scheeres (2012) are used for the bounds
of B. The five uncertainty sources are assumed to be uncor-
related. Fig. 7 summarizes the probabilistic modeling of the
sources.

We note that the support of most uncertainty sources is
likely to be reduced when more detailed information on
Didymos will be available. For this reason, the results pre-
sented in this section are reasonably conservative.

The probability of impacting one of the attractors or of
escaping the Didymos system is determined by propagating
1000 trajectories from as many independent identically dis-

Fig. 5. Example of a terminator orbit. The red arrow points toward the
Sun. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 6. Maximum semi-major axis of the terminator as a function of the SRP.
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tributed samples of the aforementioned sources. This num-
ber of samples results from a trade-off between conver-
gence of the results and computational cost. We
systematically check that 1000 samples yield a satisfactory
convergence of the probability of interest to derive our con-
clusions. Specifically, we verify that the convergence of any
variable of interest is within 1% at 3r confidence for all the
identified robust orbits. For each sample of the uncertain
set, the numerical integration of the EoM is stopped
whenever

' the spacecraft enters the circumscribing sphere sur-
rounding the primary body,

' the spacecraft enters the circumscribing sphere sur-
rounding the secondary body, or

' the spacecraft escapes from the system, i.e., its distance
from the barycenter exceeds the radius of the Hill’s
sphere of influence,

aH ð1& eH Þ
l

3l,

" #1=3

;

where l and l, denote the Didymos and Solar gravita-
tional parameters, respectively.

For the sake of conciseness, we refer to these three
events as ‘failure’. If failure does not occur, the simulation
is stopped after either tS ¼ 30 days for the triangular libra-
tion points and planar orbits, or tS ¼ 400 days for the ter-
minator orbits, owing to their slower dynamics.

Our goal is to find ‘safe’ stable trajectories in the sense
that they do not fail almost surely before a prescribed time
tS , i.e.,

find r0; _r0½ ) such that Pfailure r0; _r0; tSð Þ ¼ 0; ð4Þ

where r0; _r0½ ) are the initial position and velocity vectors of
the propagated object, and Pfailure is defined as

Pfailureðr0; _r0; tÞ ¼ Pr tfailure 6 t
$ ,,rð0Þ ¼ r0; _rð0Þ ¼ _r0Þ:

Here, PrðajbÞ denotes the probability of the event a given
the event b, and tfailure is the time when a failure occurs.1

For the sake of conciseness, we use the short-hand notation
PfailureðtÞ whenever possible. In what follows, Pfailure is esti-
mated for each considered pair of r0 and _r0 by means of the
MC propagation where the number of failing trajectories is
divided by the number of samples.

Indeed, Eq. (4) is ill posed and it may admit either none,
one, or infinite solutions depending on the effects and range
of the uncertainty sources.

We only consider the natural dynamics of the satellite,
i.e., active control to maintain the orbit is neglected. The
epoch of the simulation is set to the nominal beginning
of the AIDA mission operations, namely April 1st, 2022.
The other parameters of the Didymos system are detailed
in ESA (2015) and summarized in Table 1.

4.1. Triangular libration points

Fig. 8 depicts the probability of failure as a function of
the desired mission window t, showing that the 60% of the
sample trajectories did not survive for more than 30 days.
Interestingly, PfailureðtÞ is non-negligible for mission win-
dows of the order of 1 day, which roughly corresponds to
two orbital revolutions of the secondary body about the
primary. This performance would further deteriorate if
uncertainty in the injection velocity were accounted for.

In this study, the eccentricity of the binary orbit is an
uncertainty source and libration points are computed by
neglecting it, as discussed in Section 3.1. The robustness
of these points may be possibly enhanced if the eccentricity
is known and it is accounted for in the definition of the
dynamical substitutes that appear in the corresponding
ER3BP. Regardless, the importance of the eccentricity
and initial longitude of the binary orbit is hereby disclosed

1 Note that tfailure ! 1 for stable orbits that are robust with respect to
the entire uncertain set.

Fig. 7. Uncertainty sources. All of them are modeled by means of uniform distributions with range indicated in the figure.
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in Fig. 9(a), which shows the values of these variables for
the non-failing samples. No successful sample exists for
high eccentricity when the initial longitude is such that
the secondary is close to the periapsis or apoapsis of the
binary’s orbit. Similarly, success is only systematically
achieved for very low SRP and initial longitude close to
90 or 270 deg, as depicted in Fig. 9(b).

Analogous results are obtained for L5. Therefore, we
conclude that triangular libration points are not good can-
didates for the purposes of the AIDA mission.

4.2. Symmetric planar periodic orbits

The MC propagation of the uncertainty sources was
applied to five members of each family introduced in Sec-
tion 3.2. Figs. 10–17 illustrate their probability of failure
before 30 days and relevant correlations between failure
events and uncertainty sources. The size of the attractors
is depicted to provide graphical insight in the distance of
the orbits from the primaries. The graphics of the probabil-
ity of failure of direct interior orbits is different because of

the non-monotonicity of the branch as a function of the x-
crossing.

Direct interior orbits generally fail by impacting the
main body, as shown in Fig. 10. Here, Pfailureð30 dayÞ is
minimized when the x-axis crossing of the family occurs

Fig. 8. Probability of failure as a function of the mission window when the satellite is initially parked in L4.

Fig. 9. Relevant correlations for the successful and failing samples after 30 days when the satellite is initially parked in L4.

Fig. 10. Probability of failure of direct interior orbits.
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at the farthest distance from the primary body. If the Cr to
B ratio is low and the orbit is initiated when the secondary
is close to its apoapsis, no failure is observed, as shown in
Fig. 11(a). Furthermore, Fig. 11(b) discloses that the sec-
ond condition is beneficial in general as it doubles the min-
imum time of failure.

According to Figs. 12 and 15, all direct and retrograde
exterior orbits have nearly 100% probability of failure,
which is mainly due to the occurrence of an impact with
the secondary body. Although these orbits are stable in
the simplified environment discussed in Section 3.2, their
slow dynamics causes high sensitivity with respect to the
eccentricity of the binary orbit.

Differently from the previous candidate trajectories,
most retrograde interior orbits are extremely robust, as
shown in Fig. 13. Failure is almost surely avoided for x0
ranging from about 0:47 to 0:73 km, i.e.,

Pfailureðr0ðx0Þ; _r0ðx0Þ; tS ¼ 30 dayÞ ¼ 0 8x0
2 ½0:47; 0:73) km;

which makes this region safe with respect to the uncertainty
sources considered, and a very good candidate for the
AIDA mission. Although the real trajectory can consider-
ably drift from the design orbit, as shown in Fig. 16, it
never enters the circumscribing sphere of the attractors
during the entire simulation window and for all possible
realizations of the uncertainty sources. This robustness is
due to the high velocity of the orbits with respect to the
corotating frame, which enables an efficient averaging of
the gravitational perturbations due to the non-spherical
shape of the primary. Fig. 14 discloses that SRP triggers
the failure of the largest members of the retrograde interior
family. Once again, the initial longitude of the binary orbit
is of primary importance, as all failures occur when it is
close to 180 deg.

Fig. 11. Failure events of the third direct interior orbit. The same symbol convention of Fig. 9(b) is used.

Fig. 12. Probability of failure of direct exterior orbits.
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Finally, CSO are also seen to fail in most cases, with
greater probability of impacting the primary body when
the size of the orbit is large (see Fig. 17). In this case, the
initial eccentricity of the orbit and the SRP are mainly
responsible for the impacts.

In conclusion, only retrograde interior orbits are accept-
able for the purposes of the mission.

4.3. Terminator orbits

Various terminator orbits with nominal dimensionless
semi-major axis ranging from 1:25 to 7:5 are considered
for the MC analysis. During the 400 days propagation win-
dow, the heliocentric orbit transits the perihelion, where
perturbations due to the Sun reach their maximum.

Fig. 18 shows the probability of failure after 400 days as
a function of the semi-major axis. The closest orbit exhibits
a very large probability of failure, which is mostly due to

Fig. 13. Probability of failure of retrograde interior orbits.

Fig. 14. Failure events of the fourth retrograde interior orbit. The same
symbol convention of Fig. 9(b) is used.

Fig. 15. Probability of failure of retrograde exterior orbits.
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impacts with the secondary body. Further analysis shows
that uncertainty in the magnitude of the SRP, i.e., Cr

B , exhi-
bits the largest correlation with the impacting time. Yet, a
sharp decrease of Pfailure is observed for the second orbit

with a ’ 1:8 km. Here, the failure happens only in 2.4%
of the simulations, with 1.5% due to an impact with the sec-
ondary and 0.9% due to an escape. The failure of this orbit
is mostly due to insufficient authority of the SRP and, in

Fig. 16. Sample trajectory of the retrograde interior family. Here, eð0Þ ¼ 0:03; hð0Þ ¼ 180 deg; /ð0Þ ¼ 10 deg, and B ¼ 20 kg m&2.

Fig. 17. Probability of failure of CSO.

Fig. 18. Probability of failure of terminator orbits.
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lesser extent, to the initial longitude of the binary orbit, as
shown on Fig. 19(a).

We also note that the third orbit has much larger failure
probability than the second one, i.e., about 9%, although
the two orbits have very similar semi-major axis values.
This peak is due to a 2 : 1 resonance between the orbital
period and the binary’s period that causes a growing ‘sling’
effect that destabilizes the orbit fairly quickly (Fig. 20(a)).
As such, resonant orbits should be avoided in the mission
design phase.

Orbits with semi-major axis ranging from 2.4 to 3.5 km
do not fail almost surely and, as such, they could be consid-
ered as safe for the purposes of the AIDA mission. For
instance, consider the plots of Figs. 20(b) and 21 illustrat-
ing a sample terminator orbit with initial semi-major axis
equal to 3:5 km. As it can be seen, frozen orbit conditions
are met with satisfactory accuracy. Specifically, the trend of
the RAAN accurately follows the heliocentric true anom-
aly of Didymos (Fig. 21(a)), and the eccentricity is confined
between 0.06 and 0.11 (Fig. 21(b)). Also notice that oscilla-
tions of the RAAN are slightly amplified in the proximity
of the perihelion, i.e., when SRP is maximized. Yet, solar
perturbations do not lead to escape from the system as long
as the nominal semi-major axis of the spacecraft is less than
4 km.

For larger semi-major axes, SRP effects are strong
enough to tear off the satellite from the system, as depicted
in Fig. 19(b). In this example, all failures of orbits with
semi-major axis equal to 4.7 km occur in correspondence
of the crossing of the Didymos perihelion, i.e., after about
200 days.

5. Additional results on robust orbits

In Section 4 we identified two robust solutions, namely
the planar interior retrograde and the terminator orbits.

Some additional results are now presented for these candi-
date trajectories of potential interest for the AIDA mission.

5.1. Errors in injection velocity

The safe regions identified in Section 4 are intimately
related to the natural dynamics of the Didymos system.
Nonetheless, the real-life exploitation of any orbit has to
account for uncertainty in the initial states. Quantifying
the amount of tolerable uncertainty in the injection velocity
would be valuable information for system design purposes.
However, this goes beyond the scope of the paper, which is
why we limit the present analysis to assessing how much
the robustness of the safe solutions deteriorates for a pre-
scribed uncertainty in the injection velocity. Hence, we
included in the MC analysis a uniform uncertainty of
!2 cm=s in the norm of the initial velocity.

Fig. 22(a) depicts the probability of failure for retro-
grade interior orbits initialized with this additional source
of uncertainty. Differently from the previous results, the
probability of impacting with either of the two primaries
is now significantly increased. Yet, an optimum value is still
attained for x-crossings close to 0:6 km. Here, the probabil-
ity of failure is as low as 1:5%.

The same analysis is also repeated for terminator orbits
(Fig. 22(b)). Here, the lowest probability of failure is
approximately 6% and it is attained for semi-major axis
close to 3 km. Nevertheless, 2 cm=s uncertainty is an extre-
mely pessimistic bound for terminator orbits as it repre-
sents 17% of the initial orbital velocity. In addition, we
note that the minimum failure time occurs after about 50,
150, and 85 days for the terminator orbits with semi-
major axes 2.4, 3.0, and 3:5 km, respectively (Fig. 23). This
amount of time enables the possibility to formulate and
apply orbital corrections in a real-life scenario. Also notice
that most of the trajectories at 3:0 km and 3:5 km fail when
Didymos is approaching the perihelion and for large injec-

Fig. 19. Failure events of the seventh terminator orbit. The same symbol convention of Fig. 9(b) is used.
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Fig. 20. Sample trajectories of the terminator orbits as seen from the Sun direction. The dotted line denotes the sphere with radius equal to the Didymos
semi-major axis.

Fig. 21. Perturbed frozen terminator orbit. The initial semi-major axis is equal to 3:5 km.
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tion errors that increase the relative velocity of the space-
craft with respect to the binary asteroid.

5.2. Inclined interior retrograde orbits

Although very close to the primary body, planar interior
orbits are not the best candidates for gravity measurements
as they lack information on the non-equatorial field.
Hence, this paragraph is aimed at investigating the effects
of orbital inclination on this orbital family.

To fulfill this task, we model the inclination and initial
RAAN of the spacecraft as uniformly distributed random
variables in the range ½90; 180) deg and ½0; 360) deg, respec-
tively, and repeat our Monte Carlo analysis. The results of
our investigation are shown in Fig. 24 and illustrate that
the probability of failure for inclinations larger than

163 deg is still below 1%. As such, inclined interior retro-
grade orbits should be considered as safe and of scientific
interest for the purposes of the AIDA mission due to their
capability of sensing most of the primary’s gravitational
field.

6. Conclusions

This paper offered a numerical investigation of the
Didymos dynamical environment. After computing and
assessing the robustness of various families of periodic
orbits, two safe solutions were identified, which may be
of use for the forthcoming AIDA mission. The first are fro-
zen terminator orbits, which ensure global coverage of the
binary system and are suitable for communication pur-
poses. The second is the family of planar inner retrograde

Fig. 22. Failure probability by adding !2 cm=s uniform uncertainty to the norm of the injection velocity.
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orbits, which allows for thorough inspections of the main
body. A moderate inclination can be safely added to the
latter orbits to enhance the sensing of the primary’s gravi-
tational field.
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Appendix A. Reference frames

The following is a list of reference frames used by the
propagator.

Inertial frame, I , is centered at the Sun and oriented

such that the X̂ I unit vector is pointing towards the ver-

nal equinox, Ẑ I is perpendicular to the ecliptic plane,

and Ŷ I ¼ Ẑ I - X̂ I completes the right-handed triad.
Heliocentric perifocal frame, H , is centered at the Sun

and oriented such that X̂H points towards the perihelion

of the binary asteroid eccentric orbit about the Sun, ẐH

is perpendicular to the orbital plane of Didymos, and

ŶH ¼ ẐH - X̂H completes the right-handed triad.The
transformation from coordinates in I to coordinates
in H is

X̂H ¼ cosxH cosXH & sinxH sinXH cos iHð Þ X̂ I

þ cosxH sinXH þ sinxH cosXH cos iHð Þ Ŷ I

þ sinxH sin iH Ẑ I ;

ŶH ¼ & sinxH cosXH þ cosxH sinXH cos iHð Þ X̂ I

þ & sinxH sinXH þ cosxH cosXH cos iHð Þ Ŷ I

þ cosxH sin iH Ẑ I ;

ẐH ¼ sinXH sin iH X̂ I & cosXH sin iH Ŷ I þ cos iH Ẑ I ;

where iH ;XH , and xH are the heliocentric inclination, lon-
gitude of ascending node, and argument of perihelion of
Didymos, respectively.

Pseudo-inertial frame, P , is centered at the barycenter of

the binary system and oriented such that X̂P points
towards the ascending node of the secondary body at

epoch, ẐP is parallel to the pole of the system, and

ŶP ¼ ẐP - X̂P completes the right-handed triad.The
transformation from coordinates in I to coordinates
in P is

X̂P ¼ & sin kX̂ I þ cos kŶ I

ŶP ¼ & cos k sin bX̂ I & sin k sin bŶ I þ cos b Ẑ I ;

ẐP ¼ cos k cos b X̂ I þ sin k cos b Ŷ I þ sin b Ẑ I ;

where k and b are the ecliptic longitude and latitude of the
pole, respectively.Furthermore, observed that both the
orbital momentum of the secondary body and the rota-

Fig. 23. Time of failure of the safe terminator orbits as a function of the
initial injection velocity error. Triangles, stars, and diamonds refer to the
cases a ¼ 2:4 km, a ¼ 3:0 km, and a ¼ 3:5 km, respectively.

Fig. 24. Failure of the inclined interior retrograde orbits with x-crossing equal to 0.5.
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tional axes of the primaries are assumed to be parallel to

Ẑp as discussed in Section 2.
Co-rotating frame, C, is centered at the barycenter of

the binary system and oriented such that ẐC is parallel

to ẐP ; X̂C is toward the line joining the barycenter of

the attractors, and ŶP ¼ ẐP - X̂P completes the right-
handed triad.The transformation from coordinates in
P to coordinates in C is

X̂C ¼ cos h X̂P þ sin h ŶP ;

ŶC ¼ & sin h X̂P þ cos h ŶP ;

ẐC ¼ ẐP ;

where h denotes the true longitude of the secondary body.
Body-fixed frame of the primary, B1, is centered at the
barycenter of the primary body and oriented such that

Ẑ1 is parallel to the pole of the system, and

X̂1 ¼ cos# X̂P þ sin# ŶP ;

Ŷ1 ¼ & sin# X̂P þ cos# ŶP ;

where # ¼ x1 ðt & t0Þ þ #0. Here, x1 and #0 denote the spin
rate of the primary body and the phase of the B1 frame at
epoch, respectively.

Body-fixed frame of the secondary, B2, is centered at the
barycenter of the secondary body and oriented such that

X̂2; Ŷ2, and Ẑ2 are toward the minimum, medium, and
maximum axes of inertia of the tri-axial ellipsoid,
respectively.The transformation from coordinates in B2

to coordinates in C is

X̂2 ¼ cos/ X̂C þ sin/ ŶC;

Ŷ2 ¼ & sin/ X̂C þ cos/ ŶC;

Ẑ2 ¼ ẐC;

where / is the libration angle shown in Fig. 2.
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Brozović, M., Benner, L.A., Taylor, P.A., et al., 2011. Radar and optical
observations and physical modeling of triple near-earth asteroid
(136617) 1994 CC. Icarus 216 (1), 241–256. http://dx.doi.org/
10.1016/j.icarus.2011.09.002.

Cheng, A.F., Atchison, J., Kantsiper, B., et al., 2015. Asteroid impact and
deflection assessment mission. Acta Astronaut. 115, 262–269. http://
dx.doi.org/10.1016/j.actaastro.2015.05.021.

ESA, 2015. Asteroid Impact Mission: Didymos Reference Model AD3.
Technical Report. European Space Agency.

Gabern, F., Koon, W.S., Marsden, J.E., 2006. Parking a spacecraft near
an asteroid pair. J. Guid., Control, Dyn. 29 (3), 544–553. http://dx.doi.
org/10.2514/1.15138.

Howell, K.C., 1984. Three-dimensional, periodic, ‘halo’ orbits. Celest.
Mech. 32 (1), 53–71. http://dx.doi.org/10.1007/bf01358403.

Margot, J.L., Nolan, M.C., Benner, L.A.M., et al., 2002. Binary asteroids
in the near-earth object population. Science 296, 1445–1448. http://dx.
doi.org/10.1126/science.1072094.

McMahon, J.W., Scheeres, D.J., 2013. Dynamic limits on planar libration-
orbit coupling around an oblate primary. Celest. Mech. Dyn. Astron.
115 (4), 365–396. http://dx.doi.org/10.1007/s10569-012-9469-0.

Naidu, S.P., Benner, L.A.M., Brozovic, M., et al., 2016. Shape and spin
state of Didymos. In: The 4th Workshop on Binaries in the Solar
System.

Naidu, S.P., Margot, J.L., Taylor, P.A., et al., 2015. Radar imaging and
characterization of the binary near-earth asteroid (185851) 2000
DP107. Astron. J. 150 (2), 54. http://dx.doi.org/10.1088/0004-6256/
150/2/54.

Ostro, S.J., Margot, J.L., Benner, L.A.M., et al., 2006. Radar imaging of
binary near-earth asteroid (66391) 1999 KW4. Science 314 (5803),
1276–1280. http://dx.doi.org/10.1126/science.1133622.
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