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Gravitational and third-body perturbations can be modeled with sufficient precision for most applications in low

Earth orbit.However, owing to severeuncertainty sources andmodeling limitations, computationalmodels of satellite

aerodynamics and solar radiation pressure are bound to be biased. Aiming at orbital propagation consistent with

observed satellite orbital dynamics, real-time estimation of these perturbations is desired. In this paper, a particle

filter for the recursive inference and prediction of nongravitational forces is developed. Specifically, after assuming a

parametric model for the desired perturbations, the joint probability distribution of the parameters is inferred by

using a prescribed number of weighted particles, each consisting of one set of orbital elements and one set of

parameters. The particle evolution is carried out bymeans of an underlying orbital propagator, and the Bayes rule is

used to recursively update weights by comparing propagated orbital elements with satellite observations. The

proposed formulation uses mean orbital elements as the only available measurements. This feature makes the

algorithm a potentially valuable resource for space situational awareness applications, such as space debris

trajectories prediction from two-line elements, or for onboard force estimation fromGlobal Positioning System data.

High-fidelity simulations show that nongravitational perturbations can be estimated with 20% accuracy.

I. Introduction

TO DATE, satellite drag and solar radiation pressure (SRP)
estimation were mostly carried out by means of high-sensitivity

accelerometers [1]. Nonetheless, force estimators using only satellite
observations where also proposed. The method of dynamic model
compensation (DMC)was arguably themost popular example of this
class [2]: first, an underlying parametric model of the unknown
perturbation was adopted; then, the parameters of the model were
assumed to be first-order Gauss–Markov processes and were
appended to the state vector of a recursive estimator (most often an
extended Kalman filter). Provided with sufficiently dense and
accurate satellite observations (i.e., standard deviations of 5 m for the
position and 1 mm∕s for the velocity), DMC was successfully
applied to the estimation of the atmospheric force [3]. However, no
other process noise except the atmospheric force itself was
considered in [3], so this result was arguably not representative of a
real-life scenario. In addition, the requirements on the accuracy and
rate of observationswere extremely severe for several applications. In
[4], forces on the order of 10−3 N∕kg were accurately estimated by
means of DMC. Dense measurements and analogous noise to [3]
were considered. Similar accuracywas obtainedwhen differentiation
of Global Positioning System (GPS) data was implemented [5].
However, this accuracywas far from being sufficient to estimate drag
or SRP that, in general, was three or more orders of magnitude
smaller. Real-time estimation of local atmospheric density variations
was tackled in [6] by recursively computing corrections of the Jacchia
71 atmospheric model. Here, range data and information on the solar

and geomagnetic activity proxies were processed to carry out the
estimation. Simultaneous estimation of both the ballistic coefficient
and atmospheric densitywas then addressed in [7] by using real range
data, where the separability and observability of the two quantities
was demonstrated.
Batch estimators were used for ground-based estimation using

observations [8]. In this case, measurement noise could be largely
relaxed, e.g., two-line elements (TLEs) were used in [9], but they
were not suitable for recursive implementation. An alternative
approach based on optimal control policieswas recently developed in
[10]. This technique was able to account for both atmospheric drag
and SRP and could be naturally extended to complex models of the
force, but it was also unsuitable for recursive estimation.
In the broader context of Bayesian estimation of dynamical

systems, sequential Monte Carlo (SMC) algorithms, which include
particle filters, are valuable tools for optimally approximating the
posterior distribution of hidden Markov processes [11,12].
Compared to Kalman filtering techniques, particle filters do not
require any assumption on either the linearity of the system or the
nature of the noise. Such generality is obtained at the price of a greater
computational burden. Particle filters were used in several problems
in astrodynamics, e.g., space object tracking [13], orbit determination
[14,15], and relative state estimation [16,17]. However, to the best of
our knowledge, there has not been an attempt of nongravitational
force estimation using particle filters, which is available in the
literature.
In this paper, we develop an SMC algorithm for the recursive

inference of nongravitational perturbations from satellite observa-
tions with no supporting in situ acceleration measurements. Our
approach is conceptually similar to DMC but, in addition to the
aforementioned advantages and drawbacks of SMC,we show that the
proposed algorithm provides good estimates of the nongravitational
perturbations, even when fairly inaccurate measurements and a
modest underlying propagator are used and no information on the
current space weather is available. Under these conditions, the
probability density function (PDF) of the prior and likelihood are
highly non-Gaussian. In addition, severe uncertainty generally
affects the prior knowledge of the parameters of the nongravitational
model, i.e., drag and reflectivity coefficient. Hence, our method is
capable of dealing with significant uncertainties and, through
Bayesian inference, estimating the nonconservative forces. This is

Received 21 February 2016; revision received 8 August 2016; accepted for
publication 9 August 2016; published online 24 October 2016. Copyright ©
2016 by the American Institute of Aeronautics and Astronautics, Inc. All
rights reserved. All requests for copying and permission to reprint should
be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090
(print) or 1533-3884 (online) to initiate your request. See also AIAA Rights
and Permissions www.aiaa.org/randp.

*Postdoctoral Researcher, Space Structures and Systems Laboratory,
Aerospace andMechanical EngineeringDepartment; lamberto.dellelce@ulg.
ac.be.

†Doctoral Student, Distributed Space Systems Laboratory, Faculty of
Aerospace Engineering; ohadby@technion.ac.il.

‡Associate Professor, Distributed Space Systems Laboratory, Faculty of
Aerospace Engineering; pgurfil@technion.ac.il. Associate Fellow AIAA.

Article in Advance / 1

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

O
L

O
R

A
D

O
 o

n 
O

ct
ob

er
 2

6,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

04
85

 

http://dx.doi.org/10.2514/1.G000485
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.G000485&domain=pdf&date_stamp=2016-10-26


actually an alternative to current methods because it uses the full
power of nonlinear estimation, whereas the extended Kalman filter
cannot deal, by definition, with large uncertainties.
The filter developed herein works by updating the empirical

distribution of a finite number of weighted particles. Each particle
consists of one set of orbital elements and some parameters (e.g.,
drag and reflectivity coefficients) used to evaluate a prescribed
parametric model for nongravitational forces. Particles are updated
by means of an underlying orbital propagator, and they are assigned
weights based on the error between propagated orbital elements and
satellite observations. Secular effects of the nongravitational
perturbations allow “good” particles to emerge when weights are
recursively updated.
Mean orbital elements are exploited as the only measurements.

They can be obtained either by converting GPS states using a contact
transformation or by using TLEs. The first option is pursued in this
paper. Such a transformation is undoubtedly a noise source, so that
onemay argue that direct GPSmeasurements should be used instead.
Nonetheless, averaged elements have two compelling features: first,
their dynamics exhibit robustness for mismodeling of high-degree
gravitational harmonics; second, they pave the way to the
exploitation of computationally efficient analytical and semi-
analytical techniques (e.g., SGP4) to propagate particles.
The paper is organized as follows. Section II discusses the

mathematical background on the SMC and outlines the algorithm of
the filter. Section III details the different ingredients of the problem of
nongravitational force estimation. Insight and caveats on the choice
of the parameters of the filter are discussed aswell. Finally, numerical
simulations in a high-fidelity environment are carried out in Sec. IV.

II. Sequential Monte Carlo for Parameter
and State Estimation

Let P ∈ IP and fXτ ∈ IX; τ ∈ N�g be an IP-valued vector of
uncertain parameters and an IX-valued discrete-time �m� 1�th-
order Markov process indexed by nonnegative integers (namely,
τ ∈ N�) and provided with transitional prior distribution:

Xτ�1j�xτ; xτ−1; : : : ; xτ−m;p� ∼ f�xτ�1jxτ; : : : ; xτ−m;p� ∀ t ≥ m

(1)

respectively; here, f�xτ�1jxτ; : : : ; xτ−m;p� is the PDF defining how
the process evolves given outcomes of the parameters’ vector and the
past m� 1 realizations of the state, i.e., P � p;Xτ−j � xτ−j
∀ j � 0; : : : ; m. Some IY-valued observations fYτ ∈ IY; τ ∈ N�g,
conditionally independent in time, are available:

Yτj�xτ; : : : ; x0;p� ∼ g�yτjxτ;p� ∀ t ≥ 0 (2)

The PDF g�yτjxτ;p� is referred to as marginal likelihood
distribution. Equations (1) and (2) define a hidden Markov
model (HMM).
The filtering problem consists of estimating the marginal posterior

distribution of the process, which is the joint PDF of P and Xτ
conditional to the observations Y0; : : : ;Yτ [12]:

pdf�xτ;pjy0; : : : ; yτ� ∝ g�yτjxτ;p� pdf�xτ;pjy0; : : : ; yτ−1� (3)

The analogy with Kalman filtering is established by considering f
and g as nonlinear and non-Gaussian generalizations of the predictor
and innovation equations, respectively, and the marginal of the
posterior distribution as the updated state and covariance estimates.
A closed-form solution of Eq. (3) is not generally available.

Particle filters approximate the posterior by means of SMC sampling
of Eq. (3). If direct sampling from pdf�xτ;pjy0; : : : ; yτ−1� is not
possible or inconvenient, an auxiliary proposal distribution of
q�xτ�1;pjyτ�1; xτ; : : : ; xτ−m� is used, yielding the importance
sampling approach. In theory, any PDF can be used as importance
distribution, provided that its support covers IX and IP. However,
the adequate choice of the proposal distribution is crucial for

achieving good performance of the filter and avoiding

degeneracy [18].
Several SMC formulations exist [11,12], but most of them do not

consider parameter estimation. Our algorithm is mainly inspired by

the work of Liu and West [19], which combined state and parameter

estimation by means of artificial evolution and kernel smoothing of

parameters. The filter works by propagating a set of n particles from τ
to τ� 1. Each particle consists of the last m� 1 states, a set of

parameters, and a weight:

jth particle ≔
n
x�j�τ ; : : : ; x�j�τ−m;p

�j�
τ ;w�j�

τ

o
j � 1; : : : ; n (4)

Weights are nonnegative and satisfy
P

1
j�0 w

�j�
τ � 1

The notation p�j�
τ indicates the outcome of P for the jth particle at

time τ. A Monte Carlo approximation of the posterior at time t is
given by the empirical measure

pdf�xτ;pjy0; : : : ; yτ� ≈
Xn
j�1

w�j�
τ δ�xτ − x�j�τ �δ�p − p�j�

τ � (5)

where δ�·� is the multidimensional Dirac delta function. We note that

this measure is referred to as a PDF with an abuse of notation, since

the Dirac delta function is not absolutely continuous with respect to

the Lebesgue measure.
The procedure for the recursive update of the particles consists of

three steps:
1) The first step is prediction. The prediction of the states is

provided by their expected value at time τ� 1:

~x�j�τ�1�
Z
IX

xτ�1q
�
xτ�1;p

�j�
τ

��yτ�1;x
�j�
τ ; :::;x�j�τ−m

�
dxτ�1; j�1; :::;n

(6)

Artificial evolution of the parameters using kernel smoothing

consists of using a Gaussian mixture model (GMM) to update p�j�
τ

[19]. A prior update is given by the location of the GMM’s kernels:

~p�j�
τ�1 � γp�j�

τ � 1 − γ

n

Xn
i�1

p�i�
τ ; j � 1; : : : ; n (7)

where γ ∈ �0; 1� is a discount factor for the dispersion of the variance
of the parameters. Section III.B provides further insight into this
parameter.
Theweights of themixture’s kernels are computedwith the outcomes
of Eqs. (6) and (7):

~w�j�
τ�1 ∝ w�j�

τ α
�
yτ�1; ~x

�j�
τ�1; x

�j�
τ ; : : : ; x�j�τ−m; ~p

�j�
τ�1

�
(8)

Here, the function α is defined as

α�yτ�1; xτ�1; xτ; : : : ; xτ−m;p�

� f�xτ�1jxτ; : : : ; xτ−m;p�g�yτ�1jxτ�1;p�
q�xτ�1;pjyτ�1; xτ; : : : ; xτ−m�

(9)

2) The second step is resampling.Whenmultiple recursive updates
are performed, weights might become unevenly distributed, with
most of them approaching zero. When this happens, only one to very
few particles efficiently contribute to the measure of Eq. (5), for
which the variance degenerates and the posterior distribution is not
adequately approximated, whereas thememory to store a particle and
the computations involved in its update are independent of the
specific value of theweight. In otherwords, a huge effort is devoted to
propagating particles with vanishing weights, for which the
contribution to Eq. (5) is negligible. This issue is referred to as
degeneracy.

To prevent degeneracy from occurring, a new set of uniformly
weighted particles is resampled from Eq. (5). This is achieved
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by sampling n integer coefficients (k�j�j � 1; : : : ; n) with
values in In � f1; 2; : : : ; ng and corresponding probabilities
f ~w�1�

τ�1; ~w
�2�
τ�1; : : : ; ~w

�2�
τ�1g:

k�j� ∼mnpdf
�
kjIn; w

�1�
τ�1; : : : ; w

�n�
t�1

�
; j � 1; : : : ; n (10)

Here, mnpdf�· jIn; w
�1�
τ�1; : : : ; w

�n�
τ�1� denotes the In-valued

multinomial distribution. After resampling, predicted weights are
reset to ~w�j�

τ�1 � �1∕n�, j � 1; : : : ; n.
Several existing algorithms perform resampling at each time

step. Because secular effects of nongravitational forces need long
observation windows to become appreciable, recursive updates
are needed to identify good particles, i.e., good particles have to
collect multiple “good marks” before they can be distinguished
from bad ones. For this reason, we discourage systematic
resampling in this problem. Hence, we resample only if both of the
following conditions are satisfied: 1) At least r time steps elapse
since the last resampling. 2) The degeneracy indicator
1∕

P
n
j�1 � ~w�j�

τ�1�2 is below a prescribed threshold. We note that
the indicator is in the range �1; n� and it equals the two corner cases
1 and n if either all weights but one are equal to zero or the particles
are uniformly weighted, respectively.

If resampling does not occur, the weights ~w�j�
τ�1 are not modified

and k�j� � j ∀ j ∈ �1; n�.
3) The third step is update. As an update, all kernels of the GMM

used for artificial evolution share the same variance:

Vτ � �1 − γ2� 1

n − 1

Xn
j�1

�
p�j�
τ − �pτ

��
p�j�
τ − �pτ

�
T

(11)

where �pτ � �1∕n�Pn
i�1 p

�i�
τ . The coefficient �1 − γ2� is introduced

so that the unweighted mixture preserves both the mean and variance

of the sample �p�1�
τ ;p�2�

τ ; : : : ;p�n�
τ �.

Hence, states and parameters are updated by sampling from the
GMM and importance distribution, respectively:

p�j�
τ�1 ∼N

�
pτ�1

�� ~p�k�j��
τ�1 ;Vt

�
(12)

x�j�τ�1 ∼ q
�
xτ�1

��yτ�1; x
�k�j��
τ ; : : : ; x�k

�j��
τ−m ;p�j�

τ�1

�
(13)

w�j�
τ�1 ∝ ~w�j�

τ�1

α
�
yτ�1; x

�j�
τ�1; x

�k�j��
τ ; : : : ; x�k

�j��
τ−m ;p�j�

τ�1

�
α
�
yτ�1; ~x

�k�j��
τ�1 ; x

�k�j��
τ ; : : : ; x�k

�j��
τ−m ; ~p�k�j��

τ�1

� (14)

for j � 1; : : : ; n.

III. Nongravitational Force Estimation

After detailing the general algorithm in Sec. II, we now apply it to
nongravitational force estimation: first, the various constituents of the
filter are defined; second, the transitional, marginal likelihood and
proposal PDF are inferred by means of maximum likelihood
estimation; and, finally, an insight into the choice of the filter parameters
is provided. All forces are taken to be per mass unit in what follows.
Let Δt and torb be the (dimensional) time step of the filter and the

orbital period, respectively. Denote by Eτ ≡ E�τΔt� the six-
dimensional set of orbital elements at time τΔt. Its averaged
counterpart �Eτ is defined as

�Eτ �
1

torb

Z
torb∕2

−torb∕2
E�τΔt� t� dt (15)

Noisy observations of the averaged orbital elements are available.
Although advanced models for the measurement noise can be
exploited, additive noise Ξτ is used in this work because it facilitates
the inference of the PDF g. Thus, the measurement equation reads

Yτ � �Eτ � Ξτ (16)

where Ξτj �Eτ ∼ g �E�ξτj �Eτ� and g �E�ξτj �Eτ� ≡ g� �Eτ � ξτjxτ�. Typical

means to gather measurements of averaged elements include either

converting osculating elements provided by GPS data with a contact

transformation (e.g., by means of the Brouwer model [20]) or using

TLEs, which are available for most low-Earth orbit objects. The

former option is pursued in this paper, and a first-order Brouwer–

Lyddanemodel is used [21]. Although the contact transformation is a

noise source, exploiting averaged elements enhances the robustness

for mismodeling of high-degree gravitational harmonics. In addition,

analytical and semianalytical techniques can be naturally integrated

into the algorithm to propagate particles.
Averaged elements constitute part of the state variables. In

addition, the desired nongravitational force f �ng� is also included, so
that

Xτ �
�

�Eτ

f �ng�
τ

�
(17)

Let _E�E; f� be the right-hand terms of the Gauss variational

equations (GVEs) for a prescribed set of osculating elements E and a

perturbing force f�E; t�. In this work, we use equinoctial elements,

for which the definition and corresponding GVEs are given in

Appendix A. Averaging the GVEs and integrating from time τΔt to
�τ� 1�Δt yield the averaged increment from �Eτ to

�Eτ�1:

Δ �Eτ �
Z �τ�1�Δt

τΔt

�
1

torb

Z
torb∕2

−torb∕2
_E�E�t� s�; f�E; t� s�� ds

�
dt (18)

Because the GVEs are linear in the perturbing force, the

propagation of averaged elements can be recast as

�Eτ�1 � �Eτ � Δ �E�g�
τ � Δ �E�ng�

τ � Δ �E�noise�
τ (19)

where Δ �E�g�
τ and Δ �E�ng�

τ denote the contributions to Δ �Eτ due to

gravitational and nongravitational perturbations, respectively;

Δ �E�noise�
τ includes the effects of all remaining nonmodeled forces,

e.g., truncated gravitational harmonics, tides, and relativistic effects.

The aforementioned underlying propagator defines which

perturbations are included in Δ �E�g�
τ , and it approximates

�Δ �E�g�
τ � Δ �E�ng�

τ �. For the sake of conciseness, integration errors

are not explicitly mentioned in Eq. (19), but they are automatically

accounted forwhile estimating theHMMaccording toSec. III.A. The

remaining perturbation Δ �E�noise�
τ is modeled as an I �E-valued

stochastic process distributed according to

Δ �E�noise�
τ

���� �Eτ; : : : ; �Eτ−m

�
∼ f �E

�
ξτ
�� �Eτ; : : : ; �Eτ−m

�
(20)

Parametric models of the aerodynamic and SRP perturbations are

used to propagate f �ng�
τ :

f �ng�
τ�1 � ΛT

τ

8><
>:
f �drag�

�
�Eτ � Δ �Eτ;pτ; �τ� 1�Δt

�
f �srp�

�
�Eτ � Δ �Eτ;pτ; �τ� 1�Δt

�
9>=
>; (21)

Λτ

����f �ng�
τ ; : : : ; f �ng�

τ−m;p
�
∼ fΛ

�
λτ
��f �ng�

τ ; : : : ; f �ng�
τ−m;p

�
(22)

Here, fΛτ ∈ �R��2; τ ∈ N�g is an �R��2-valued multiplicative

noise modeling aleatory uncertainties, e.g., due to solar and

geomagnetic activity or attitude of a tumbling debris. In this work,

f �drag� and f �srp� read

f �drag�� �E;p; t� � −
1

2
ρ� �E;p�Cb�p; t�vtasvtas (23)
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f �srp�� �E;p; t�

�

8><
>:

0 if r · r⊙r⊙ > 0 and
			r− �

r · r⊙r⊙

�
r⊙
r⊙

			 ≤ req

−P⊙Cr�p� Ssrp�t�m
r⊙
r3
⊙

otherwise

(24)

where vtas� �E�, r� �E�,m, Ssrp, P⊙�t� � 4.56 · 10−6 N∕m2, r⊙�t�, and
req are the satellite’s velocity with respect to the atmosphere, its
position, mass, and cross-sectional area with respect to the sun
direction, the radiation pressure, the sun position vector in
astronomical units, and the mean equatorial radius, respectively; the
atmospheric density ρ, ballistic coefficient Cb, and reflectivity
coefficient Cr are prescribed parametric models, e.g., exponential
atmosphere or harmonic expansion as illustrated in the case study
detailed in Sec. IV.D; temporal variations of Cb and Ssrp are due to
available information on attitude dynamics. Indeed, more advanced
models can be used but the specific underlying propagator may limit
their choice. This is further discussed in Sec. IV, where the
performance of two propagators is compared.
Finally, the process noise due to Δ �Eτ and Λτ can reasonably be

assumed as statistically independent, yielding

f
�
xτ�1�ξτ; λτ�

��xτ; : : : ; xτ−m;p�
≡ f �E

�
ξτj �Eτ; : : : ; �Eτ−m

�
fΛ

�
λτ
��f �ng�

τ ; : : : ; f �ng�
τ−m;p

�
(25)

where xτ�1�ξτ; λτ� denotes the outcome of Xτ�1 given the
realizations ξτ and λτ of the processes defined in Eqs. (20) and (22),
respectively.

A. Inference of the Hidden Markov Model via Maximum Likelihood
Estimation

Targeting practical implementation of the filter, a model of the
importance distribution q and of the various PDFs of the HMM
(namely, g �E , f �E , and fΛ) is required. This can be achieved by means
of maximum likelihood estimation, which involves selecting an
adequate “labeled” PDF (e.g., multivariate Gaussian or mixture
model) followed by inferring suitable values to its parameters from
available data.
Consider a set ofn samples s1; : : : ; sn of a randomvariable S and a

PDF pS�s;ϑ�, where ϑ is the set of parameters defining the
distribution, e.g., the mean and variance for a Gaussian distribution.
According to the maximum likelihood method, these parameters are
chosen such that they are consistent (e.g., positive definite
covariance) and maximize the log-likelihood function

L�ϑ� �
Xn
j�1

log


pS�sjjϑ�

�
(26)

In this work, we use GMMs as labeled distributions. Hence, ϑ
consist of the weights, means, and variances of the kernels. GMMs
provide flexibility in the representation of bothmarginal distributions
and correlations. In addition, samples can be easily drawn from
GMMs and their evaluation is straightforward.
The uncertainty characterization proposed in [22] is used to

generate samples of the “true” averaged elements. For this purpose,
the outer and inner integrals of Eq. (18) are accurately evaluated by
means of the Dormand–Prince method based on a seventh-order
Runge–Kutta method followed by high-order Gauss quadrature,
respectively.

B. Considerations for the Choice of the Filter Parameters

A satisfactory tradeoff between accurate and rapid convergence is
achieved by carefully setting up the parameters of the filter. The first
parameter to consider is the number of particlesn. Increasingn nearly
linearly increases the overall computational burden. However, there
must be enough particles to adequately represent the posterior

distribution and to delay degeneracy. This is particularly true during

the early phase of the estimation, when uncertainty in the parameters

p is still very large. An adaptive choice of n is encouraged. This can

be achieved during the resampling step.
Because of the aforementioned secular effects of nongravitational

perturbations, and becausemeasurement are statistically independent

of time, increasing the filter’s time step Δt and resampling rate r
enhances the signal-to-noise ratio and, as such, improves the

convergence of the estimation. Augmenting r is preferred when high-
fidelity models of the nongravitational force are used because large

time steps will reduce sensitivity to short-period variations.

Nonetheless, degeneracy may occur for large r. Based on our

experience, the product rΔt should be on the order of one-to-few

orbital periods.
Neglected gravitational harmonics are the major source of

process noise for averaged orbital elements. The order of the HMM

�m� 1� is a crucial parameter for mitigating their impact.

Specifically, Earth’s rotation causes relevant correlations in the time

series of the noise after about one day. For example, Fig. 1 depicts

the autocorrelation of the process noise of the averaged orbital

elements for the case study detailed in Sec. IV. Ideally, the order of

the HMM should be large enough to cover this interval, but this may

dramatically increase the required memory to store particles and

augment the complexity of the importance and marginal prior

distribution. Figure 1 also shows that all autocorrelations are close to

one when the time step is below 10 min; so, we suggest usingm � 1
if the filter’s time step is of this order of magnitude. In this case,

using m � 0 would result in extremely severe process noise,

whereas larger m would be an unnecessary waste of computational

resources.
Finally, the parameter γ regulates the memory of the particles:

according to Eqs. (7) and (11), the parametersp are nearly unchanged

after being updated if γ ≃ 1; on the contrary, they lose most memory

of their previous value if γ ≃ 0. According to [19], values between

0.96 and 0.99 are reasonable for this parameter. We sustain this

recommendation herein, owing to the need for multiple updates to

identify good particles.
Table 1 summarizes all these caveats.

IV. Numerical Simulations

The simulations discussed herein have a twofold objective,

namely, providing some easily reproducible results and illustrating

how the filter behaves in a realistic environment. For this purpose,

four scenarios of increasing complexity are addressed. They differ in

both the simulated environment and the underlying filter’s

propagator.
The simulated environment can be one of the following:
1) The first environment is low precision. Only Earth’s oblateness

and the drag force are modeled. The atmospheric density is assumed
to be uniform, and the ballistic coefficient is given by

Fig. 1 Autocorrelation of the process noise of averaged elements using
the analytical propagator.
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Cb�t� �
Cd

m
�Sd�t� � Sd;0� (27)

where Cd and Sd;0 are the drag coefficient and a constant cross-
sectional area, respectively.
2) The second environment is high-precision orbit propagation

(HPOP) with constant solar activity. Gravitational harmonics up to
the order and degree of 10, third-body perturbations of the sun and
moon, aerodynamic force, and SRP are accounted for. The Sentman
model is used to compute the aerodynamic force as a function of the
geometric and ballistic properties of the satellite, as described in [23].
Variable accommodation of the energy and thermal flow are
assumed, and the NRLMSISE-00 [24] atmospheric model is used. A
parallelepiped-shaped satellite is considered, and the attitude is such
that one geometrical axis points toward the orbital angular
momentum vector; whereas the pitch angle, which is defined as the
angle between the orbital velocity and the normal to the smallest face
of the parallelepiped, is imposed.
3) The third environment is HPOPwith time-varying solar activity.

The same perturbations of the previous environment are accounted
for. The historical data of the solar activity are used.
Two different propagators are implemented in the filter:
1) The first propagator is analytical. This is based on the analytical

model proposed in [25] and outlined in Appendix B, which assumes
an oblate planet and uniform atmosphere, i.e., vertical rarefaction,
day–night bulge, and all other temporal and spatial variations of the
atmospheric density are neglected. The low computational cost
comes to the price of restrictions on the nongravitational forcemodel,
which needs to be consistent with the aforementioned assumptions.
Specifically, SRP is neglected, and only the averaged drag can be
estimated. The vector of parameters is p � �Cd; Sd;0�T .
2) The second propagator is numerical. This propagator lies on the

other side of the spectrum and consists of brute force integration of
Eq. (6), which enables extreme flexibility. Hence, the 20th-order
Gauss quadrature and trapezoidal rule are used to compute the inner
and outer integrals, respectively. The term Δ �E�g�

τ includes
gravitational harmonics up to the order and degree of four and
third-body perturbations of the sun and moon. Both SRP and
instantaneous atmospheric force are estimated. For this purpose, the
atmospheric density is expanded in Fourier series to account for near-
periodic variations due to orbital eccentricity, atmospheric bulge, and
Earth’s oblateness:

ρ � ρ0

�
1�

Xnexp
j�1

�
cj cos�jL� � sj sin�jL�

�

(28)

where cj, sj, nexp, and L denote the coefficients, the order of the
expansion, and the true longitude defined in Appendix A,
respectively. The vector of parameters is thus

p � �Cd; Sd;0; c1; s1; : : : ; cnexp ; snexp ; Cr�T

Appending ρ0 to p is useless because ρ0 is systematically

multiplied by Cd. Choosing an arbitrary ρ0 in the filter may shift the

values of Cd, but it does not affect the error in the atmospheric force.

For long-term scenarios, an exponential term has to be introduced in

Eq. (28) to account for the vertical rarefaction due to orbital decay.

The specific environment and propagator used in the four

scenarios and the simulation setup are detailed in Tables 2 and 3,
respectively. Scenarios 1 to 3 estimate a total of eight variables (i.e.,
six states and two parameters), whereas scenario 4 estimates 13
variables (i.e., six states and seven parameters). The number of

samples is adapted during the resampling step. Specifically, n is
reduced by 1% whenever at least 100 distinct coefficients k�j� are
extracted from the multinomial distribution. On the contrary, n is
increased by 5% when this condition is not satisfied. We note that

adapting the number of particles is not of use for a real-life onboard
implementation. However, this is done here becausewewant to show

Table 2 Simulated environment and underlying propagator
for the various case studies

Filter’s propagator Environment

Scenario 1 Analytical Low-fidelity (J2 � uniform atmosphere)
Scenario 2 Analytical HPOP, constant solar activity
Scenario 3 Analytical HPOP, time-varying solar activity
Scenario 4 Numerical HPOP, time-varying solar activity

Table 1 Influence of the filter’s parameters on the quality of the estimation

Parameter Benefits when increased Drawbacks when increased

n Enhanced representation of the posterior Computational cost increases
Convergence when p has large variance

Δt Improved signal-to-noise ratio Low sensitivity to short-period variations
r Improved signal-to-noise ratio Degeneracy might occur
m Reduced sensitivity to process noise Increased memory to store particles

Enhanced convergence Increased complexity PDFs
γ Enhanced identification of good particles Diversity particles after multiple updates

Table 3 Parameters of the simulations

Value Scenario

Initial orbital elements
Semimajor axis 6828.137 km 1–4
Eccentricity 10−3 1–4
Inclination 98 deg 1–4
Argument of perigee 120 deg 1–4
Right ascension of the ascending node 30 deg 1–4
True anomaly 15 deg 1–4
Epoch 4 Jan. 2012 2–4

Ballistic properties
Mass 3 kg 1–4
Size 0.3 × 0.1 × 0.1 m 1–4
Pitch 0.35π�t∕torb� 1–4
Drag coefficient 2.2 1

Modeled 2–4
Surface Sd;0 5 · 10−3 m2 1

Modeled 2–4
Atmospheric modeling
Density 2.4 g · km−3 1
Daily and 81-day averaged solar
activity F10.7

150 2

Historical data 3–4
Geomagnetic index Kp 4 2–4

Filter parameters
Number of particles n ∈ �100; 3000� 1–4
Filter’s time step Δt torb 1

60 min 2–3
3 min 4

Resampling rate r ceil�torb∕Δt� 1–4
HMM order m 0 1

2 2
3 3
1 4

Discount factor γ 0.99 1-4
Number of kernels of the GMM 1 1

5 2–4
Order of the Fourier expansion nexp 2 4
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that the filter is able to converge evenwith a very broad and inaccurate
PDF of p. However, this requires a rather large number of samples in
the early phases of the estimation to adequately cover IP.
Measurement noise is mainly due to the first-order Brouwer–

Lyddane contact transformation [21]. In addition, GPS noise is
modeled as noncorrelatedwhite noisewith a standard deviation equal
to 5 m and 2 cm∕s for the position and velocity components,
respectively. This modeling of the GPS noise is not realistic and
colored noise should be considered instead. Nonetheless, the
contribution of GPS noise is negligible compared to the noise
introduced by the contact transformation.

A. Scenario 1

In this scenario, the distributions of the HMM are streamlined by
using a single kernel for the GMM and m � 0, so that both the
measurement and process noise are modeled as white noises.
Because the filter’s propagator and the simulated environment share
the same orbital perturbations, process noise is only due to the
approximations introduced to achieve the analytical solution in [25].
Figure 2 depicts the convergence of the parameters and the error in

the averaged drag. Very broad and biased initial PDFs of the
parameters are deliberately exploited to emphasize the robustness of
the algorithm. Specifically, we used

p0 ∼ U

0
@"

0.8C�true�
d

0.1S�true�d;0

#
;

"
1.6C�true�

d

1.7S�true�d;0

#1A (29)

where C�true�
d and S�true�d;0 are the values listed in Table 3, and U�a; b�

denotes the multivariate uniform distribution with lower and upper
bounds a and b, respectively. Dotted curves denote the envelope of
the particles, whereas shaded regions outline 99% confidence bounds
deduced by the empirical measure of Eq. (5). After resampling, the
envelope is narrowed down to gather particles close to the high-
confidence region.
BothCd and Sd;0 are not converging to the true value, and themean

relative error ofSd;0 is particularly pronounced (almost 20%) because
its contribution to the ballistic coefficient is less important compared
to Cd. Nonetheless, convergence of the averaged drag is faster, and
error drops below 1% after barely 15 iterations, which correspond to
about one day. Such enhanced performance is due to the relevant
negative correlation between Cd and Sd;0 depicted in Fig. 3. This
finding can be generalized: the joint convergence of the parameters is

aimed at minimizing error in the nongravitational force and not in the

single components of p.

B. Scenario 2

This simulation serves as a transition from the previous example to

a more realistic scenario. Process noise is now dominated by

neglected perturbations. The filter’s time step is now set to 1 h to take

advantage of the relevant correlations illustrated in Fig. 1.

The convergence of parameters and error in the averaged

aerodynamic force is illustrated in Fig. 4. The same qualitative

behavior of the previous case study is observed, although the

convergence rate is unsurprisingly reduced because of the more

severe process noise. The error stabilizes below 10% after a couple of

days, and it does not exceed this threshold because space weather

dynamics are neglected, and the orbital decay is moderate within the

simulation window.

C. Scenario 3

Figure 5 depicts the convergence of the present case study.

Although confidence bounds ofP after about 20 days are comparable

to the bounds obtained in the second scenario, the error in the

averaged aerodynamic force is larger and unsteady.

Increasing the number of particles in this scenario does not

improve the accuracy of the estimation error in the drag because this

qualitatively different behavior is due to solar activity, which is a

Fig. 2 Scenario 1. Convergence of the parameters P and error in the
averaged aerodynamic force. Shades of gray in the bottom figure denote
the confidence level.

Fig. 3 Scenario 1. Correlation (corr) between Cd and Sd;0.

Fig. 4 Scenario 2. Convergence of the parameters P and error in the
averaged aerodynamic force. Shades of gray in the bottom figure denote
the confidence level.
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stochastic process in nature. For this reason, we cannot mitigate its
impact on the uncertainty in the aerodynamic force without using
other data than satellite state observations. Figure 6 shows the
evolution of the averaged drag, which varies up to 50% during the
simulation. The trend is captured within the 99% confidence bounds
of the estimation, but these bounds remain relatively large in time;
they are thus responsible for the broad distribution of the estimation
error. We reiterate that the filter ignores the current value of the solar
activity. Enhanced performance can be achieved by providing
additional information on some spaceweather proxies to the filter and
by correlating them withΛ. Nonetheless, we note that the estimation
error is still below 20%. We believe that this is a significant result
given the modest data used by the filter and the large amount of
uncertainty related to the use of mean elements and a simple
analytical propagator.
The current scenario uses the most realistic environment and the

least computationally demanding filter among the proposed case
studies; so, we wish to briefly comment on the possibility to
implement the algorithm on board. Because the filter’s time step can
be rather large, the computational time to accomplish one iteration is
not critical even for low-end microcontrollers. Available memory is
the main issue. On top of the memory required to store and evaluate
the PDFs of themodel and to perform basic algebraic operations, two
sets of particles need to be held inmemory. Recalling that one particle

is defined according to Eq. (4) and assuming double-precision
variables, the memory required to store two particle sets is

2n�m dim�X� � dim�P� � 1�8 B (30)

where 8 B is the size of one double-precision variable. This number
can be reduced by noting thatm − 1 past states are shared by the two
sets, but we consider the conservative value of Eq. (30) in the context
of this gross estimation. Figure 7 illustrates the number of samples
used during the simulation. Once the estimation is sufficiently
converged, the filter uses less that 500 samples on average, which
correspond to 192 kB according to Eq. (30). With these caveats in
mind, the algorithm should be reasonably implementable on
microcontrollers with 512 kB of memory.

D. Scenario 4

The filter of this case study uses numerical integration to propagate
particles, which enables the possibility to compute both the
instantaneous aerodynamic and SRP forces. Uniform uncertainty of
�20% on all coefficients of the series expansion of Eq. (28) is used at
the initial step.
The convergence of the error in the aerodynamic force is illustrated

in Fig. 8. After the fourth day, the variance of the error grows up. The
same qualitative behavior is also observed, and even accentuated,
when the number of particles is increased, as depicted in Fig. 9, where
50,000 particles are used to carry out the estimation. This mechanism
is due to the fact that the second-order harmonic expansion used to
model the density cannot mimic the whole complexity of the
atmosphere. Hence, once the estimation process has sufficiently
converged, the diversity of the particles is highly reduced and the
Fourier coefficients are stuck in a very narrow support. To mitigate
this issue, it is possible to add a rejuvenation step after resampling to
reintroduce some diversity as discussed in [26]. However, this result
outperforms the previous one because the instantaneous force is now
estimated, which exhibits variations of one order of magnitude due to

Fig. 5 Scenario 3. Convergence of the parameters P and error in the

averaged aerodynamic force. Shades of gray in the bottom figure denote
the confidence level.

·

Fig. 6 Scenario 3.Dotted anddashed curves denote atmospheric density
and its orbital average, respectively.

Fig. 7 Scenario 3. Number of samples as a function of time.

Fig. 8 Scenario 4. Error in the instantaneous aerodynamic force.
Shades of gray denote the confidence level.
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orbital eccentricity, day–night atmospheric variations, and Earth’s
oblateness. In particular, we note that even advanced atmospheric
models may have local differences on the order of several tens of
percent. Figure 10 shows that these variations are adequately
captured by the filter.
In this scenario, the number of particles is always larger than 1000

because of the smaller filter’s time step and the greater dimension of
the problem, which facilitates degeneracy. We also note that the
various states and parameters are not equally important. For example,
because of the small filter’s time step, themarginal PDFof the process
noise of the states P1, P2, Q1, and Q2 is much narrower than their
corresponding marginal of the measurement noise, so that the
contribution of their observations is practically insignificant for the
purposes of the estimation. If more parameters have to be estimated
(e.g., more harmonics for the atmospheric density or a different
perturbation model are used), the curse of dimensionality may occur
because of the high dimension of the problem. In this case, more
advanced formulations of the filter should be considered (e.g.,
Hamiltonian Monte Carlo [27] or particle flow [28,29] and optimal
transport [30]), forwhich the key idea is to continuously introduce the
effects of the observations to let particles gradually migrate toward
peaks of the likelihood.
Finally, the convergence of the reflectivity coefficient is depicted

in Fig. 11. The estimation of this parameter is not striking because, as
claimed in Sec. IV.A, the filter minimizes the error in the
nongravitational force so that it cannot distinguish between its two
components: the aerodynamic force, which is estimated with 20%
accuracy, is one order of magnitude larger than the SRP so that the
latter has a minor impact on the evolution of the averaged elements
and, consequently, on the inference of the particles weights.
Nonetheless, the reflectivity coefficient is estimated with less than a
20% accuracy, which is not completely despicable considering that
the algorithm ignores the physical bounds of Cr.

V. Conclusions

The filter proposed herein does not require in situ accelerometers.
Sequential measurements of mean orbital elements are processed
instead. The secular effects of nongravitational perturbations allow
good particles to be identified after a sufficient training period, even
when coarse and arguably sporadic measurements are used.
High-fidelity numerical simulations show that nongravitational

forces can be estimated within a 20% error using a first-order contact
transformation and no information on the actual solar activity. This
result is strongly dependent on the specific underlying orbital
propagator, which has to be chosen according to the available
computational resources.However, themethodology is presented in a
general framework, which can be straightforwardly adapted to any
desired propagator ranging from numerical brute-force integration to
semianalytical or analytical techniques.

Appendix A: Gauss Variational Equations
for Equinoctial Elements

Let a, e, i,ω,Ω, and f be the classical orbital elements, namely, the
semimajor axis, the eccentricity, the orbital inclination, the argument
of perigee, the right ascension of the ascending node, and the true
anomaly, respectively. Equinoctial elements are defined as [31]

E �
�
a;P1 � e sin�ω�Ω�; P2 � e cos�ω�Ω�;Q1 � tan

i

2
sinΩ;

Q2 � tan
i

2
cosΩ; L� ω�Ω� f

�
T

Here, L is referred to as true longitude.
The GVEs for the equinoctial elements are [31]

_a � 2a2

h

�
�P2 sinL − P1 cosL�fp;r �

p

r
fp;t




_P1 �
r

h

�
−
p

r
cosLfp;r �

�
P1 �

�
1� p

r

�
sinL

�
fp;t

− P2�Q1 cosL −Q2 sinL�fp;h



_P2 �
r

h

�
p

r
sinLfp;r �

�
P2 �

�
1� p

r

�
cosL�fp;t

� P1�Q1 cos L −Q2 sinL�fp;h



_Q1 �
r

2h
�1�Q2

1 �Q2
2� sinLfp;h

_Q2 �
r

2h
�1�Q2

1 �Q2
2� cosLfp;h

_L � h

r2
−
r

h
�Q1 cosL −Q2 sinL�fp;h

Fig. 10 Scenario 4. Aerodynamic force estimation. The white-dashed
line represents the true force.

Fig. 11 Scenario 4. True and estimated reflectivity coefficients.Fig. 9 Scenario 4. Estimation by using 50,000 samples. Error in the
instantaneous aerodynamic force. Shades of gray denote the confidence
level.
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where p, r, h, fp;r, fp;t, and fp;h are the semilatus rectum, the
magnitude of the position vector and angular momentum, and the
components of the specific perturbing force in the local-vertical/
local-horizontal frame, respectively.

Appendix B: Analytical Propagator

Near-Circular Orbits in the Uniform Density of an Oblate Planet.
Let �aτ, �eτ, �iτ, �ωτ, �Ωτ, and �Mτ be the averaged classical orbital
elements at the initial time. Here, the averaged mean anomaly �Mτ is
considered instead of its true counterpart. Assuming near circular
orbits [i.e.,O� �e2τ � � 0] and uniform atmospheric density ρ, analytical
propagation of the averaged equinoctial elements according to [25] is
given by

�aτ�1 � �aτ − Cbρ
��������
μ �aτ

p
Δt� 1

4
�Cbρ

��������
μ �aτ

p
Δt�2

�P1;τ�1 �
�eτ�����
�aτ

p
� �����

�aτ
p

−
1

2
Cbρ

���
μ

p
Δt



sin �ϖτ�1

�P2;τ�1 �
�eτ�����
�aτ

p
� �����

�aτ
p

−
1

2
Cbρ

���
μ

p
Δt



cos �ϖτ�1

�Q1;τ�1 � tan
�iτ
2
sin

�
�Ωτ −

k2 cos �iτ
Cbρμ

�
1

�a3τ�1

−
1

�a3τ

�


�Q2;τ�1 � tan
�iτ
2
cos

�
�Ωτ −

k2 cos �iτ
Cbρμ

�
1

�a3τ�1

−
1

�a3τ

�


�lτ�1 � �lτ �
���
μ

p � �����
�aτ

p � ����������
�aτ�1

p �
2 �aτ �aτ�1

×
�
1 −

k2�−4cos2 �iτ � cos �iτ � 1�
μ

� �a2τ � �aτ �aτ�1 � �a2τ�1�
�a2τ �a

2
τ�1



Δt

where

�ϖτ�1 � �ωτ � �Ωτ −
k2�−5cos2 �iτ � 2 cos �iτ � 1�

4
���
μ

p
�a3τ �a

3
τ�1

× � �a2τ � �aτ �aτ�1 � �a2τ�1�
� �����

�aτ
p

� ����������
�aτ�1

p �
Δt

and μ, Δt, and �l � �ω� �Ω� �M denote the Earth’s gravitational
parameter, the time step, and the averaged mean longitude,
respectively. The constant k2 is defined as k2 � �μJ2r2eq∕2�, with req
being the mean equatorial radius.
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