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Optimization of fuel consumption is a key driver in the design of spacecraft maneuvers.
For this reason, growing interest in propellant-free maneuvers is observed in the
literature. Because it allows us to turn the often-undesired drag perturbation into a
control force for relative motion, differential drag is among the most promising pro-
pellantless techniques for low-Earth orbiting satellites. An optimal control approach to the
problem of orbital rendez-vous using differential drag is proposed in this paper. Thanks to
the scheduling of a reference maneuver by means of a direct transcription, the method is
flexible in terms of cost function and can easily account for constraints of various nature.
Considerations on the practical realization of differential-drag-based maneuvers are also
provided. The developments are illustrated by means of high-fidelity simulations includ-
ing coupled 6-degree-of-freedom simulations and an advanced aerodynamic model.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Optimization is a key factor in mission design, especially
when dealing with formation flying, where severe size and
weight constraints may strongly limit the performance of the
propulsive system. Nowadays, propellantless techniques for
formation flying, e.g., solar sail [1], geomagnetic [2], and
Coulomb formation flying [3], are envisaged as possible
solutions to either reduce or even remove the need for on-
board propellant. This paper focuses on a propellantless
technique based on the differential drag concept. By control-
ling the surface exposed to the residual atmosphere, it is
possible to change the magnitude of the atmospheric drag
and therefore to create a differential force, between one
spacecraft (chaser) and either another spacecraft or a desired
target point. This force can be exploited to control the
relative position between the chaser and the target in the
orbital plane, which enhances the maneuverability of small
satellites in low-Earth orbits (LEO). Specifically, nanosatellites
ll rights reserved.
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are becoming popular because of their modest cost and
development time. Differential drag provides them with an
effective means to perform long range relative maneuvers
with an arguably large flexibility.

The exploitation of differential drag for LEO spacecraft
was first introduced by Leonard [4], who developed a
strategy for controlling the cross section aimed at achieving
a rendez-vous within the linear dynamics equations of Hill–
Clohessy–Wiltshire. The idea of decomposing the relative
motion into a mean and a harmonic component was also
proposed in order to gain deep insight into the physical
behavior of the problem. However, the methodology relied
upon several restrictive assumptions, including circular
orbits, a point mass Earth, and a uniform atmosphere. Moti-
vated by the desire to consider more representative scenar-
ios, Bevilacqua et al. included the secular perturbations of the
Earth's oblateness in Leonard's method [5]. They also pro-
posed a hybrid approach combining differential drag and
continuous low-thrust [6] aimed at enhancing out-of-plane
controllability. Finally, a novel approach for bang–bang con-
trol based on an adaptive Lyapunov control strategy was
developed to account for nonlinear orbital dynamics [7].
Kumar and Ng implemented the solution in a high-precision
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propagator [8] and they highlighted the importance of
accurate mean states estimation in order to prevent the
solution from drastic deterioration. Lambert et al. [9] over-
came this issue by exploiting a conversion from osculating to
mean orbital elements of both the target and the chaser.
Targeting long-term cluster keeping and collision avoidance
using differential drag, Ben-Yaacov et al. [10] proposed a
nonlinear control approach based on mean and osculating
differential elements, respectively.

This large body of literature emphasizes that differential
drag is regarded as a promising technique for LEO satellites,
since it allows us to turn the often-undesired drag pertur-
bation into a control force for relative motion. This results
into the reduction, or even the removal, of propellant needs
for some missions and into a consistent weight and volume
saving. Nonetheless, relevant uncertainties in drag model-
ing make its practical realization a challenge, especially if no
other propulsive means is available to accommodate them.
The ORBCOMM constellation is the first application of the
differential drag technique in space, though it is only
limited to station-keeping [11]. The forthcoming missions
QARMAN, JC2sat, and SAMSON highlight the overall interest
in the technique [12–14].

The present study has a twofold objective:
�
 First, a novel formulation of the rendez-vous maneuver
using differential drag is proposed. This is an improved
version of the optimal control approach which we devel-
oped in [15]. The method consists of three main blocks,
namely the drag estimator, the maneuver planner, and
the on-line compensator. The drag estimation is carried
out by means of a simple density model which, none-
theless, is able to detect the main features of the upper
atmosphere. The planner is then in charge of the sche-
duling of an optimal reference path. A Radau pseudos-
pectral transcription is exploited for the numerical reso-
lution. This results in an extreme flexibility for the choice
of the cost function, and it facilitates the inclusion of con-
straints of arbitrary nature. Though Ben-Yaacov et al. and
Kumar et al. [10,16] proposed continuous control
approaches, most of the literature on differential drag
considers the bang–bang control of the cross section.
When the relative ballistic coefficient is imposed through
attitude control, the assumption of bang–bang control
is restrictive, especially for small satellites with limited
power available. The proposed formulation results in
time-continuous control of the cross section. Finally, on-
line compensation relying on a model predictive control
(MPC) algorithm is implemented to account for uncer-
tainties and unmodeled dynamics.
�
 Second, some practical challenges that are intimately
related to the exploitation of the differential drag in a
realistic scenario are addressed. For this purpose, high-
fidelity 6-degree-of-freedom (DoF) propagation including
advanced drag modeling and detailed space environment
are exploited to validate the algorithm. As an example,
we note that the entire literature on differential drag
assumes that drag is proportional to the cross-section
of the spacecraft and that it is the only component of
the aerodynamic force. Realistic drag modeling is clearly
missing in the literature on differential drag and it is
therefore considered in this paper. In addition, the pre-
sent paper assumes that the two satellites have different
geometries, which result in different ballistic properties.

The paper is organized as follows. The rendez-vous
problem and the notations are defined in Section 2.
Section 3 describes the different building blocks of the
proposed optimal control strategy. The simulation envir-
onment is detailed in Section 4. Numerical simulations
based on the QARMAN mission are detailed in Section 5.
Finally, Section 6 summarizes the main results of this
study and discusses the future directions of our work.

2. Modeling assumptions and reference frames

This study focuses on the rendez-vous problem
between two satellites, namely the target and the chaser,
using differential drag as the only control force. It is ass-
umed that the orbits of the satellites are near-circular and
quasi-coplanar. Though the former assumption could be
eventually removed, it is not the case for the latter, which
comes from the extremely modest authority of the differ-
ential drag in the out-of-plane direction. Specifically, Ben-
Yaacov et al. showed that the controllability is two orders
of magnitude smaller in this direction even for highly
inclined orbits [17]. For this reason, only the in-plane
position and velocity of the relative dynamics are controlled
herein.

The reference frames and the coordinates exploited in
the paper are defined as follows:
�
 Mean local vertical local horizontal (LVLH) frame: The
origin is in the target. The x̂ and ẑ axes point toward the
mean position vector and the mean orbital momentum of
the target,respectively. The ŷ-axis completes the right-
hand frame. In what follows,in-plane mean relative curvi-
linear coordinates, ð ~x; ~y; ~vx; ~vyÞ,and their decomposition
into mean and oscillatory components of the trajectory,
ð ~xm; ~ym; ~xo; ~yoÞ,are exploited instead of the Cartesian
mean relative position and velocity, ðx; y; vx; vyÞ. The
graphical interpretation of the curvilinear coordinates is
illustrated in Fig. 1(b). We point out that a twofold use of
the word ‘mean’ is done to indicate both the averaging of
the orbital elements and the mean component of the
relative trajectory. The decomposition of the curvilinear
states into mean and oscillatory component is such that
~x ¼ ~xmþ ~xo and ~y ¼ ~ymþ ~yo. In order to ease the flow of
the discussion, the operations involved in the definition
of these variables are postponed to Appendix A.
�
 Chaser's body frame. The origin is in the center of mass of
the chaser. The x̂b, ŷb, and ẑb axes form a right-hand frame
and they are aligned with the principal axes of the chaser.

These frames are illustrated in Fig. 1(a).
Differential drag is imposed by changing the ballistic

coefficient of the chaser. This can be achieved either by
means of the reorientation of solar panels or through
attitude control. The second option is considered herein,



Fig. 1. Frames and coordinates. (a) Reference frames. (b) Cartesian and curvilinear coordinates.

Fig. 2. Attitude dynamics of the chaser. The target is supposed to fly with
the long axis aligned to the orbital velocity direction.

1 In the experience of the authors, the maximum update rate of the
reference path should not go beyond 5 days.
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this is resulting into the coupling between rotational and
translational degrees of freedom. Depending on the specific
actuators considered, attitude constraints of various nature
are introduced into the problem. In this paper, the combi-
nation of three reaction wheels and 3-axis magnetotorquers
is exploited. The resulting constraints are the saturation of
the wheel's momentum and their maximum available
torque, and the maximum dipole of the magnetotorquers.

The target is assumed to be passive, i.e., its ballistic
coefficient cannot be controlled. The proposed methodology
is only applicable if the attitude of the target is predictable.
This includes not only fully-stabilized configurations, but
also spinning and tumbling satellites. Scheduled maneuvers
can be included as well. On the contrary, the method fails
if the target performs, for example, attitude and orbital
maneuvers or solar panel reconfigurations which were not
expected before the beginning of the rendez-vous maneu-
ver. Without loss of generality, it is supposed that the target
is 3-axis stabilized in its minimum-drag configuration. The
same methodology applies for spinning and tumbling
target, while minor modifications should be included to
account for prescribed maneuvers of the target.

Because the satellites considered in the case study in
Section 5 are CubeSats without deployable panels, they are
modeled with a parallelepiped shape and the principal
axes are assumed to be aligned with the edges of the
parallelepiped. This is very appropriate when considering
satellites with body-mounted solar arrays. The contribu-
tion to the aerodynamic force and torque of possible
appendices, e.g., antennas, is neglected. This assumption
facilitates the computation of the aerodynamic force in the
high-fidelity simulations and the notations in the paper.
However, it does not jeopardize the generality of the
proposed formulation, which is independent from the
specific geometry, provided that minimum and maximum
drag configuration of the chaser are identified.

Considering the scheme in Fig. 2, the reference attitude
of the two satellites is such that:
�
 the target's long axis is toward its orbital velocity
direction, vt;
�
 the ẑb axis is toward ẑ . The magnitude of the differ-
ential drag is changed by pitching the chaser about ẑb.
The pitching angle is given by

δ¼ cos �1 vc
Jvc J

� ŷb

� �
sign vc � x̂b

� �
; ð1Þ

where vc is the osculating orbital velocity of the chaser
and ŷb is toward the long axis of the chaser.

3. Optimal control approach

The proposed optimal control strategy consists of three
modules: (i) the drag estimator evaluates the ballistic
coefficient of the two satellites, (ii) the maneuver planner
schedules an optimal reference trajectory, (iii) the on-line
compensator corrects the deviations from the reference
path due to unmodeled dynamics and uncertainties. The
high-level control strategy is illustrated in Fig. 3.

The drag estimator and the maneuver planner are
activated only a few times during the complete maneuver,
e.g., they could be executed either when the divergence
between the real and the planned path is beyond a given
threshold or after a fixed time-step of one-to-few days.1 In
this work, we execute these two modules once at the
beginning.

Targeting a computationally-efficient formulation of
the problem, the dynamical system exploited by the
controller, named the control plant, cannot account for all
the complex dynamics characterizing the high-fidelity



Fig. 3. High-level optimal control strategy. The asterisk denotes the reference trajectory and control.
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simulation environment. The definition of the control
plant requires the introduction of a certain number of
underlying assumptions discussed in the following.

First, drag is assumed to be the only component of the
aerodynamic force, the ballistic coefficient is constant and
fitted with a polynomial function of the exposed surface
to the incoming wind. Section 3.1 provides with more details
on the estimation of the ballistic properties of the satellites.

Second, considering the scheme illustrated in Fig. 2 and
the notations of Section 2, the control plant assumes that
the attitude of the target is three-axis stabilized, while the
attitude of the chaser is stabilized in the x̂b and ŷb

directions. The rotation about the ẑb direction of the
chaser is controlled via a reaction wheel with inertia Iw,
maximum torque Tw, angular velocity with respect to the
spacecraft ωw, and operating range ½ωw;l;ωw;u�. Unlike the
other methods proposed in the literature, the controlled
variable, u, is not the differential drag, but the torque
provided to the reaction wheel. Magnetotorquers are
exploited to desaturate the wheel in permanence by
introducing a torque in the ẑb direction that is propor-
tional to �ωw. So, the pitch angle δ, its time derivative,
and ωw are the only attitude dynamics variables intro-
duced in the control plant.

Finally, as anticipated in Section 2, only the in-plane
movement is considered. The translational dynamics equ-
ations of the control plant are expressed in terms of
mean decomposed curvilinear relative states, which are
smoother than the Cartesian or the curvilinear coordi-
nates. This facilitates the convergence of the optimization
problem discussed in Section 3.1.

Thus, the dynamic variables considered by the con-
troller are ~xm, ~ym, ~xo, ~yo, δ, _δ, and ωw.

3.1. Drag estimator

This module is in charge of the estimation of the
ballistic properties of the two satellites. For this purpose,
it requires that their accurate position is monitored for an
observation time tobs. The attitude of the satellites is
imposed throughout this period.

If a single pose is sufficient for the determination of the
ballistic coefficient of the target, this is not the case for the
chaser. The reason is that the ballistic coefficient is not
proportional to the cross section. A number of nposeZ2
poses with different pitch angles δi; i¼ 1;…;npose must be
observed. Each pose is monitored for a time equal to
tobs=npose. A trade-off between the accuracy and the dura-
tion of the estimation is mandatory. Because the real
environment is largely more complex than the control
plant, e.g., the controller assumes that the ballistic coeffi-
cient does only depend on the pitch angle, we suggest that
the number of poses must be kept as small as possible.

The ballistic coefficient is estimated by minimizing the
drift between observed and simulated inertial positions.
Simulated data are generated on-board through a low-
precision propagation including J2 gravitational effect and
drag perturbation only. The aerodynamic force of the
simulated data is given by

Fd ¼ �1
2 ρCb JvTAS JvTAS ð2Þ

where vTAS ¼ v�Ωe � r, Cb, ρ, r, v, andΩe are the airspeed,
the ballistic coefficient, the atmospheric density, the iner-
tial position and velocity, and the Earth's angular velocity,
respectively. A basic analytical model is exploited to
estimate the density:

ρ r;θ; i;A;B;C;D
� �¼ A 1þB cos θ�C

� �� �
exp

r�re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e2e sin 2 i sin 2 θ

q
D

0
@

1
A
ð3Þ

where θ, i, ðA;B;C;DÞ, re, and ee, are the mean argument of
latitude and orbital inclination, the calibration coefficients
of the model, and the Earth's equatorial radius and
eccentricity, respectively. Though relatively simple, this
model is able to outline the more relevant characteristics
of the upper atmosphere, namely the exponential vertical
structure, the day–night bulge, and the Earth's oblateness.
Neglecting these contributions results into inconsistent
predictions of the short-term evolution of the density, e.g.,
the day–night bulge is responsible for variations of
approximatively a factor of 5 at 500 km according to
[27], which lead to the generation of an unreliable refer-
ence path (see Section 3.2).

The coefficients of the model are orbit-dependent and
they are tuned using a more advanced model, i.e., Jacchia
71 in this work, by minimizing the root mean square error
between the density provided by Eq. (3) and the advanced
model during one orbit.

The estimation is performed by solving:

Cb;t ¼ arg min
Cb

Z tobs

0
ðrobs;t�rsim;tðCbÞÞ2 dt

� �� �

Cb;cðδiÞ ¼ arg min
Cb

Z ðtobs=nposeÞi

ðtobs=nposeÞði�1Þ
ðrobs;c�rsim;cðCbÞÞ2 dt

 !" #
;

i¼ 1;…;npose ð4Þ
Here, robs and rsim are the observed and simulated inertial
position, respectively. The subscripts t and c indicate the
target and the chaser, respectively. The process of the



Real trajectory
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On-board propagation
(J2 + simplified drag)

Simple density model 
tuned with Jacchia 71

Estimated ballistic
coefficient

Fig. 4. Schematic representation of the estimation of the ballistic coefficient.
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computation of the ballistic coefficient is illustrated in
Fig. 4.

The necessary condition for the exploitation of the
differential drag is that the estimated ballistic coefficient
of the target must be such that minðCb;cðδiÞÞ oCb;to
maxðCb;cðδiÞÞ. In this case, the target is said to be feasible.
Finally, the ballistic coefficient of the chaser is fitted with a
polynomial of order npose�1 in function of the exposed
cross section

S¼ Sxj sin δjþSyj cos δj ð5Þ
where Sx and Sy are the surface of the faces of the chaser
with normal x̂b and ŷb, respectively.

The outputs of the drag estimator are the fitted ballistic
coefficient of the chaser, Cb;cðδÞ, and the constant ballistic
coefficient of the target, Cb;t .

3.2. Maneuver planner

The maneuver planner schedules an optimal reference
trajectory for the rendez-vous maneuver. The trade-off
between computational cost and accuracy is the key driver
of the synthesis of the planner.

The optimal control problem is solved with a hp-
adaptive Radau pseudospectral transcription [19] using
the software GPOPS. Direct transcriptions are arguably
the most flexible way to deal with optimal control pro-
blems because constraints of various nature can be natu-
rally included in the formulation. The core idea of direct
techniques is the discretization of the time history of the
state and control variables. Dynamics equations are then
enforced as equality constraints in a nonlinear program-
ming (NLP) problem. The design variables of the NLP are
the state and control variables in the grid points. Four
main blocks constitute every pseudospectral method:
function generator (i.e., dynamics equations), discretiza-
tion, optimization, convergence analysis. Specifically,
GPOPS tackles the discretization by means of an implicit
Gaussian quadrature based on the Legendre–Gauss–Radau
collocation points. This approach lends to an hp-adaptive
strategy for the convergence analysis and mesh refine-
ment. The optimization is carried out by means of the
sparse solver SNOPT.

The maneuver planning problem is posed in the Bolza
form

unðtÞ ¼ arg min
uðtÞ

Z tf

0
Lð ~xm; ~ym; ~xo; ~yo; δ; _δ;ωw;u; tÞ dt

� �� �
subject to ð6Þ

ωwA ½ωw;l;ωw;u�; jujrTw;
jMmagðωw; tÞjrMmag;maxðtÞ 8 tA ½0; tf � ð7Þ

~xmð0Þ ¼ ~xm;0; ~xoð0Þ ¼ ~xo;0; δð0Þ ¼ δ0; _δð0Þ ¼ 0

~ymð0Þ ¼ ~ym;0; ~yoð0Þ ¼ ~yo;0; ωwð0Þ ¼ωw;0 ð8Þ

~xmðtf Þ ¼ ~ymðtf Þ ¼ ~xoðtf Þ ¼ ~yoðtf Þ ¼ 0 ð9Þ

_~xm ¼ 2c
ð2�c2ÞωΔFd δ; ~xmþ ~xo; ~ymþ ~yo; t

� �
_~ym ¼ ð2�5c2Þω

2c
~xm

_~xo ¼
ð2�c2Þω

2c
~yo�

2c
ð2�c2ÞωΔFd δ; ~xmþ ~xo; ~ymþ ~yo; t

� �
_~yo ¼ �2ωc ~xo
€δ ¼ I�1

zz ððrcg � Fd;cÞ � ẑb�Mmagðωw; tÞ�uÞ
_ωw ¼ ðI�1

zz þ I�1
w Þu� I�1

sat ððrcg � Fd;cÞ � ẑb�Mmagðωw; tÞÞ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

8tA 0; tf
	 


ð10Þ
whereω, c, Izz,ΔFd, u, Mmag, and rcg are the orbital angular
velocity, the Schweighart–Sedwick coefficient (defined in
Appendix A) the rotational inertia of the chaser without
the reaction wheel about the ẑb direction, the estimated
differential drag, the torque provided by the reaction
wheel, the de-saturating torque of the magnetic rods,
and the position of the center of mass of the chaser in
the body frame, respectively.

The initial guess for the NLP is provided by the
analytical solution of Bevilacqua et al. [7]. As in the case
of our control plant, this solution relies on the linearized
Schweighart–Sedwick equations of relative motion [18],
but it provides a bang–bang control for the differential
drag, whose magnitude is assumed to be constant. The
maneuvering time, tf, is determined by the initial guess
and it is not part of the design variables of the problem.

The performance index, defined in Eq. (6), is aimed at
minimizing a desired convex functional, L, to be chosen
according to the needs of the mission. Few examples
include the dissipated to collected power ratio, i.e., con-
sumption of the attitude control system over the incoming
solar power, the mean squared differential drag (as dis-
cussed in Section 5.2), the optimization of a geometrical
feature of the trajectory (as shown later in Eq. (14)).

Physical constraints include the maximum available
torque, the operating range of the wheel, and the satura-
tion of the magnetic coils. They are naturally introduced
through the path constraints of Eq. (7).

Eqs. (8) and (9) express the initial and rendez-vous
conditions, respectively.

The differential equations (10) govern the relative move-
ment and attitude dynamics. Since the direct transcription
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enforces dynamics equations as equality constraints in a
NLP optimization problem, the proper choice of the differ-
ential equations is the core of the trade-off between
accuracy and computational efficiency of the planner:
�

Fi
ef
the planner is required to be consistent with the real
dynamics. Consistency implies that all the dominant
effects are modeled. This includes short-period and
altitude-dependent variations of the drag. When pro-
pagating the open-loop control, we observed that
neglecting short-period variations reflects in inconsis-
tent predictions of the oscillatory movement, while
neglecting altitude dependency results in larger in-
track errors at the end of the maneuver.
�
 targeting computational efficiency, we want that only
the dominant effects are modeled in the planner. This
excludes all the orbital perturbations but the drag and
secular J2 effects. The same simplified drag modeling of
the drag estimation module is used, i.e., Eqs. (2) and (3).
We note that the aerodynamic force must be projected
in the orbital velocity direction to yield the differential
drag. Assuming circular orbits, it holds

ΔFd ¼ Rz � ~y
rtþ ~x

� �
Fd;c ~x; ~y; tð Þ�Fd;t tð Þ

� �
� ŷ ð11Þ

where Rz is the rotation matrix about the ẑ direction.
Further efficiency is achieved by expressing relative
dynamics in terms of decomposed curvilinear variables,
which are ‘smoother’ and more decoupled than relative
states. Finally, in our previous method [20], the right-
hand term of the differential equation directly accou-
nted for nonlinear dynamics, as illustrated by the solid
path in Fig. 5. Considering linearized dynamics (dotted
path) largely enhances computational efficiency with
limited loss of accuracy.

We stress that the only input of the planner are the
initial conditions and the outputs of the drag estimator.

The outputs of the planner are the reference control
and states in function of time, namely un, ~xn

m, ~y
n

m, ~x
n

o, ~y
n

o, δ
n,

_δ
n

, ωn
w.
3.3. On-line compensator

On-line compensation is mandatory to account for
unmodeled dynamics and uncertainties. The former issue
arises from the assumptions introduced in the definition of
the control plant. In addition, the density model of the
g. 5. Schematic representation of the computation of the right hand term o
ficiency is achieved using the linearized equations of motion. The nomencla
drag estimator is another source of unmodeled dynamics,
because different atmospheric models generate different
outputs given the same inputs. The latter issue reflects the
practical difficulties in the prediction of stochastic pro-
cesses like the solar and geomagnetic activity proxies and
thermospheric winds [21].

No matter the origin, the effect of all these perturba-
tions is the deviation of the observed trajectory from the
scheduled path. A model predictive control algorithm is
developed to cope with such deviations.

At each evaluation, the on-line compensator solves a
problem analogous to the maneuver planner. The only
differences are the boundary conditions, the fixed horizon,
and the performance index.

Initial conditions are provided by the current states at the
beginning of the evaluation at time t. MPC is based upon the
receding horizon principle, i.e., the final time is fixed to tþth,
where th is the horizon. The computed corrected control is
then applied to the plant for a time tcrth.

The performance index is aimed at minimizing the
divergence from the reference pathZ tþ th

t
½Wx;mð ~xm� ~xn

mÞ2þWx;oð ~xo� ~xn

oÞ2þWy;mð ~ym� ~yn

mÞ2

þWy;oð ~yo� ~yn

oÞ2þWδðδ�δnÞ2þW _δ
_δ
2� dτ ð12Þ

where W ð�Þ are user-defined weights. A direct contribution of
the controlled variable is not included, because its variation is
dominated by the variations of δ. W _δ is aimed at minimizing
spurious oscillations of the pitch angle. The proper selection
of the weights is not trivial, and stability issues may arise.
Large Wδ means high confidence in the reference path, but a
less efficient tracking of the reference trajectory itself. We
tested different setups with initial in-track distances ranging
up to 300 km. Setting coefficients such that the three con-
tributions have the same order of magnitude resulted in a
stable controller within this range. However, our future
research will investigate a robust and automatic procedure
for tuning the coefficients. Ideally, a largeWδ is more suitable
for the first phase of the maneuver.
4. Simulation environment

The numerical simulations of the rendez-vous maneu-
ver performed in this study are carried out in a highly-
detailed environment. Both attitude and orbital dynamics
of the target and the chaser are propagated in their
complete nonlinear coupled dynamics.
f the translational differential equations of the controller. Computational
ture of the operators is detailed in Appendix A.



Table 1
Differences. between the simulation environment and the plant of the controller.

Simulation environment Control plant

Orbital dynamics Full nonlinear osculating relative dynamics. Linearized equations for mean curvilinear relative states.
Attitude

dynamics
3 DoF Euler equations. Single DoF dynamics about the pitch axis.

Atmospheric
model

NRLMSISE-00 with short-term stochastic variations. Geodetic
altitude from the reference ellipsoid.

Exponential vertical structure and sinusoidal periodic variations
(day-night). Geocentric altitude from the reference ellipsoid.

Aerodynamic
force

Sentman's model with more recent updates. Drag force only. Cubic polynomial fitting of the estimated
ballistic coefficients with the different poses.

Gravitational
model

Harmonics up to order and degree 10. J2 secular effect.

Other
perturbations

Luni-solar third-body perturbations, solar radiation pressure.
Nutation, precession and polar wandering.

None.

External torques Gravity gradient and aerodynamic torque computed with
Sentman's model and more recent updates.

Simplified aerodynamic torque consisting of the cross product
between the drag and the aerodynamic-to-gravity center
distance vector.

Attitude control Three-axis magnetic coils and three reaction wheels.
Quaternion feedback control algorithm. Magnetic coils
desaturate wheels in permanence.

Single reaction wheel about the pitch angle. Magnetic coils
desaturate the wheel in permanence. The control torque is
determined by the planner and on-line compensator.
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The orbital perturbations include aerodynamic force, a
detailed gravitational field with harmonics up to order and
degree 10, solar radiation pressure and third-body pertur-
bations of sun and moon. The external torques are due to
aerodynamics and gravity gradient, and the models pro-
posed by Wertz [22] for the reaction wheels and magnetic
rods are exploited.

In this study, the modeling of the aerodynamic pertur-
bation assumes thermal flow, variable accommodation of
the energy, and non-zero re-emission velocity. Under
these hypotheses, the three extensively-used simplifica-
tions involved in drag modeling fall into defect. Specifi-
cally, it is not true that the drag is the only component of
the aerodynamic force, that the drag coefficient is con-
stant, and that the drag is proportional to the surface
exposed to the incoming flow. In Section 5, we show that
abandoning these simplifying assumptions has impact on
the maneuver's accuracy.

A large body of literature on the determination of
physical aerodynamic coefficients is available, see, e.g.,
[23,24]. For complex satellite geometries, direct simulation
Monte Carlo (DSMC) is arguably the only way of comput-
ing these coefficients. However, this technique is extre-
mely computationally intensive. For simple convex
geometries, semi-empirical analytic methods relying on
the decomposition into elementary panels provide an
accurate and computationally-effective alternative. The
semi-analytic method considered in this work is based
upon the research of Sentman [25] and Cook [26] and
upon more recent contributions. The method is efficiently
summarized in Ref. [27].

This method was used in our orbital propagator to
compute the aerodynamic coefficients of the satellites at
every time step. An analogous model is used for the
aerodynamic torque.

The atmospheric model exploited in the propagator is
NRLMSISE-00 [28]. Short-term random variations are
included by adding a second-order stationary stochastic
process to the total mass density. The power spectral
density of the process is the one proposed by Zijlstra
[29] rescaled for the altitude of the maneuver. The
atmosphere is assumed to co-rotate with the Earth, but
thermospheric winds are neglected.

We note that the calibration of the simple model defined in
Eq. (3) was not performed with the same model exploited for
the high-fidelity simulations, i.e., Jacchia 71 and NRLMSISE-00,
respectively. This is motivated by the scope of the paper to
consider a realistic scenario. In this way, the controller does not
know the exact structure of the atmosphere.

Table 1 summarizes the main features of the simulation
environment and compares them to the counterpart of the
control plant discussed in Section 3

For the sake of clarity, in the remainder of the paper we
will refer to high-precision propagation with the adjec-
tives ‘observed’ or ‘real’. This will avoid confusion with
data generated by the control plant, which we will refer to
as ‘simulated’.

5. Case study

The proposed case study consists of the rendez-vous
between two satellites of the QB50 constellation [30].
QB50 will be a constellation of 40 double and 10 triple
CubeSats [31]. The launch is planned for 2016. The con-
stellation will be deployed on a highly-inclined near-
circular LEO, and the satellites will be separated by several
tens or hundreds kilometers.

The QB50 requirements for the ‘standard 2U CubeSats’ [32]
impose that the long axis of the CubeSat must be aligned with
the orbital velocity. One of these standard CubeSats is
considered to be the target. QARMAN, a 3U CubeSat of the
constellation developed by the Von Karman Institute for Fluid
dynamics and the University of Liège, will be the chaser. Both
the target and the chaser are assumed to be equipped with 3-
axis magnetotorquers and 3 reaction wheels with spin axes
aligned with the geometric axes of the CubeSat. Quaternion
feedback algorithm [33] is exploited to follow the required
attitude of the two satellites.

Table 2 lists the input parameters of the numerical
simulations.

The results of the three different modules of the
controller are analyzed separately in the following.



Table 2
Simulation parameters.

Mean elements of the target Semi-major axis 6728�103 m
Eccentricity 0.001
Inclination 98 deg
RAAN 45 deg
Argument of perigee 0 deg
True anomaly 0 deg
Julian date 2,455,287.5 days

Initial relative states In-track position, i.e., ~y 50�103 m
Radial position, i.e., ~x 100 m
Out-of-plane position, i.e., z 20 m
In-track velocity, i.e., ~vy 0 m s�1

Radial velocity, i.e., ~vx 0 m s�1

Out-of-plane velocity, i.e., vz 0 m s�1

Initial target's attitude (LVLH) Pitch, roll, yaw 0 deg
Initial chaser's attitude (LVLH) Pitch, roll, yaw 0 deg
Space weather Daily solar flux 200 sfu

81-day averaged flux 155 sfu
Geomagnetic index Kp 4

Target properties Mass 2 kg
Dimensions 0:1� 0:2� 0:1 m3

Inertia Iy ¼ 8� 10�3 kg m2,

Ix ¼ Iz ¼ 3 � 10�3 kg m2

Offset of the center of mass 0:01yb m
Chaser properties Mass 4 kg

Dimensions 0:1� 0:3� 0:1 m3

Inertia Iy ¼ 25 � 10�3 kg m2,

Ix ¼ Iz ¼ 5 � 10�3 kg m2

Offset of the center of mass 0:01yb m
Attitude actuators Wheels’ maximum torque 0:03 � 10�3 N m

Wheels’ operating range ½�6000;6000� rpm
Wheels’ inertia 0:25 � 10�6 kg m2

Magnetic rods’ dipole 0:2 A m2

On-line compensator's weights Wx;m; Wy;m; Wx;o; Wy;o 1 m�2

Wδ 104 rad�2

W _δ 108 s2 rad�2
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5.1. Drag estimator

In this work, we selected npose ¼ 4 and we observed
each pose during 2 orbits, so that tobs ¼ 2torbnpose ¼ 8torb,
where torb is the mean orbital period of the target.

Fig. 6 compares the real drag force of the target with
the one estimated with the identified Cb;t and the simpli-
fied density model of the drag estimator (Eq. (3)). As
anticipated, the controller does not know the exact struc-
ture of the atmosphere. This is emphasized by the relevant
difference between the estimated and the real drag force
in Fig. 6. Nonetheless, the good match between the simple
and the largely more advanced Jacchia 71 model, validates
our claim stating that the former is able to detect the main
features of the structure of the upper atmosphere.

5.2. Maneuver planner

The first cost function considered consists of the mean-
squared differential drag:

1
tf

Z tobs þ tf

tobs
ΔF2d ~x; ~y; tð Þ dt: ð13Þ

This objective is aimed at achieving a trajectory that can be
robustly followed: minimizing the differential drag used by
the planner results in the maximization of the remaining
differential drag that can be exploited to compensate for
deviations from the reference path. In other words, this
objective function avoids bang–bang-like solutions. This
latter, in fact, is such that differential drag is for most of
the time at its extreme values, so that on-line compensation
cannot provide two-sided maneuverability. We note that
the lower bound of the integral is tobs, because the planned
maneuver starts right after the observation period neces-
sary for the estimation of the ballistic properties.

Fig. 7 illustrates the scheduled trajectory generated by
the planner. The reference pitch exhibits a gradual transi-
tion from a maximum to a minimum differential drag
configuration. This is consistent with the above explana-
tion on the purpose of the cost function. At the end of the
scheduled path, exact rendez-vous conditions are met, as
imposed by Eqs. (9).

The interest in the proposed approach is its flexibility,
i.e., the trajectory can be optimized according to the needs
of the mission. Assume, for example, that a smooth relative
trajectory is envisaged. The objective function of the
planner can then be selected as follows:

1
tf

Z tobs þ tf

tobs

~x2oþ ~y2
o

� �
dt ð14Þ

Fig. 8 illustrates the obtained solution considering this
cost function. The benefit of the optimization process is
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Fig. 6. Drag force of the target. The solid line is the real drag. The dashed
line is the estimated drag with the simple atmospheric model. The dash-
dot line is the estimated drag with the Jacchia 71 model.

Fig. 7. Minimum-differential-drag off-line (i.e., scheduled) maneuver. In
the upper figure, the color indicates the elapsed time since the beginning
of the maneuver, including the drag estimation time. (For interpretation
of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

Fig. 8. ‘Flattest trajectory’ off-line maneuver (i.e., scheduled). In the
upper figure, the color indicates the elapsed time since the beginning
of the maneuver, including the drag estimation time. (For interpretation
of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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evident. Achieving this trajectory with other approaches
would be at best challenging.

We note that the initial position in Figs. 7 and 8 is different
from the one provided in Table 2 because the reference path
starts after the drag estimation phase. This gap emphasizes
the importance of limiting the duration of such phase.

5.3. On-line compensator

The horizon and the control time of the on-line
compensator are set to th ¼ 2tc ¼ 2torb. This combination
allows for an adequate averaging of short period variations
that are the most critical to predict. The on-line controller
is thus activated once per orbit, and it computes an open
loop control with two-orbit horizon.

Fig. 9 illustrates the obtained trajectory in the high-
fidelity simulations and the corrected pitch angle. The
overshoot in the ŷ direction at the end of the scheduled
maneuver, tf þtobs, is of the order of 250 m. In our opinion,
the on-line compensator is able to track the reference path
with an adequate accuracy, given the limitations and the
uncertainties inherent to differential drag. For the sake of
completeness, Fig. 10 depicts the on-line solution for the
‘flat’ trajectory.

The importance of the weights of the reference pitch
angle and its derivative in the cost function of the on-line
compensator is illustrated in Fig. 11. Here, the weights
related to the tracking and the derivative of the pitch are
removed from the objective function of the MPC algo-
rithm, i.e., Wδ ¼W _δ ¼ 0. In this case, the quality of the
tracking of the reference path is essentially unchanged, but
the corrected pitch exhibits spurious oscillations. This time
history of the pitch is more demanding for the attitude
control system and results in larger power consumption.

The accuracy of the maneuver is affected by the
assumptions used in the development of the control plant.
This is shown in Fig. 12, where a zoom of the terminal
phase of the maneuver is illustrated. The rendez-vous
conditions are met with a precision of the order of 20 m,
which is worse than the precision shown in previous
works, e.g., [15]. This loss of accuracy needs to be con-
sidered when including collision avoidance constraints.
The reason why it is not possible to improve the accuracy
further is that the satellites have different geometries and
masses. Recalling that the aerodynamic coefficients are
computed on the actual geometry at every time step of the
high-fidelity simulations and that drag is not proportional
to the exposed surface, it follows that the real zero-
differential drag configuration is unknown. In addition,
the MPC algorithm is open-loop over the control horizon.

However, in our opinion, it is not the scope of
differential-drag maneuvers to achieve the highest preci-
sion, especially given the limited out-of-plane controll-
ability. In the numerical simulations, in fact, out-of-plane
oscillations are of the same order of the accuracy of the
terminal phase.

Finally, Fig. 13 shows that the method works also for
very large initial relative distances. The tracking of the
scheduled path is much less accurate but eventually the
on-line compensator manages to achieve the success of the
maneuver. For a better tracking, the scheduled path could
be updated sporadically. Indeed, because the number of
design variables grows up with the maneuvering time, the
computational demand of the reference path is larger.

6. Conclusion

This paper proposed a three-step optimal control app-
roach for differential-drag-based maneuvers. The method
allows us to optimize the trajectory according to the needs of



Fig. 10. ‘Flattest trajectory’ maneuver. In the upper figure, the black-
dotted and the colored line are the planned and the on-line trajectories,
respectively. The color indicates the elapsed time since the beginning of
the maneuver, including the drag estimation time. In the bottom figure,
the dashed and the solid lines are the scheduled and the on-line pitch
angles, respectively. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

Fig. 11. Minimum-differential-drag on-line maneuver without tracking of
the reference pitch angle. In the upper figure, the black-dotted and the
colored line are the planned and the on-line trajectories, respectively. The
color indicates the elapsed time since the beginning of the maneuver,
including the drag estimation time. In the bottom figure, the dashed and
the solid lines are the scheduled and the on-line pitch angles, respec-
tively. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

Fig. 12. Minimum-differential-drag on-line maneuver. Zoom of the
terminal phase. The black-dotted and the colored line are the planned
and the on-line trajectories, respectively. The color indicates the time
since the beginning of the maneuver. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of
this paper.)

Fig. 9. Minimum-differential-drag on-line maneuver. In the upper figure,
the black-dotted and the colored line are the planned and the on-line
trajectories, respectively. The color indicates the elapsed time since the
beginning of the maneuver, including the drag estimation time. In the
bottom figure, the dashed and the solid lines are the scheduled and the
on-line pitch angles, respectively. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of
this paper.)

Fig. 13. Minimum-differential-drag long-range maneuver. The initial in-
track relative position is 300 km. The black-dotted and the colored line
are the planned and the on-line trajectories, respectively. The color
indicates the elapsed time since the beginning of the maneuver, including
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the mission and to naturally include constraints of various
nature within the problem, e.g., minimum distance or
volume avoidance constraints.

The method was tested with high-precision simula-
tions of a rendez-vous maneuver between satellites with
different masses and geometries and advanced drag
modeling.

Future work will further improve the scenario, i.e., by
including thermospheric winds and realistic relative state
estimation and acquisition, and identify and assess the
importance of the uncertainty sources in the performance
of the maneuver.
the drag estimation time. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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Appendix A. Variable transformations

This annex details the change of variables discussed in
the paper.
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target position
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Fig. 14. Curvilinear relative state estimation from osculating orbital elements.
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osc2mean: this transformation consists in: (1) mapping
the osculating Earth centered inertial (ECI) coordinates
into classical keplerian elements, (2) converting osculating
to mean elements [34], (3) recovering mean cartesian
position from the mean elements.

abs2rel: absolute coordinates are converted into rela-
tive states in the LVLH frame. In this paper, we only focus
on the in-plane components, which we refer to as x and y.

cart2curv: curvilinear coordinates are mandatory for
middle and long range maneuvers. Mapping relative to
curvilinear coordinates is achieved through the transfor-
mation

~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrtþxÞ2þy2

q
�rt ; ~vx ¼ _x cos Δθ� _y sin Δθ

~y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrtþxÞ2þy2

q
Δθ; ~vy ¼ _x sin Δθþ _y cos Δθ

ðA:1Þ

where rt is the current mean radius of the target's orbit,
and Δθ¼ tan �1y=ðrtþxÞ. This transformation is illu-
strated in Fig. 1(b).

rel2dec: relative states are decomposed into a mean and
an oscillatory component, ð ~xm; ~ymÞ and ð ~xo; ~yoÞ, respec-
tively. Schweighart and Sedwick proposed a decomposi-
tion that accounts for the secular variations of the J2
perturbation [18]. Though this transformation is rigorous
for circular orbits, small distances and Hill coordinates, it is
also valuable for curvilinear variables [35], so that it holds

~xm ¼ 4c2

2�c2
~xþ 2c

ð2�c2Þω ~vy; ~xo ¼ ~x� ~xm

~ym ¼ ~y� 2c
ð2�c2Þω ~vx; ~yo ¼ ~y� ~ym ðA:2Þ

where c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3J2 R2

e=8r
2
t ð1þ3 cos 2itÞ

q
is the Schweighart

Sedwick coefficient, while ω, Re, and it are the orbital
pulsation, the Earth radius, and the inclination of the
reference orbit of the target, respectively.

Fig. 14 illustrates the chain of transformations that
drives to the estimation of the decomposed curvilinear
states.
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