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This paper is devoted to the probabilistic uncertainty quantification of orbital lifetime estimation of low-altitude

satellites. Specifically, given a detailed characterization of the dominant sources of uncertainty, wemap this input into

a probabilistic characterization of the orbital lifetime through orbital propagation. Standard Monte Carlo

propagation is first considered. The concept of drag correction is then introduced to facilitate the use of polynomial

chaos expansions and to make uncertainty propagation computationally effective. Finally, the obtained probabilistic

model is exploited to carry out stochastic sensitivity analyses, which in turn allow gaining insight into the impact

uncertainties have on orbital lifetime. The proposed developments are illustrated using one CubeSat of the QB50

constellation.

Nomenclature

A = surface, m2

Ap = geomagnetic activity index, deg
Av = Avogadro number, mol−1

aα = αth coefficient of the surrogate model
Cd = drag coefficient
E = objective function in the polynomial chaos expansion

method
e = orbital eccentricity
F = cumulative distribution function of a random variable
F10.7 = daily solar radio flux, solar flux units
�F10.7 = 81-day-averaged solar radio flux, solar flux units
f, g = generic functions
h = spacecraft altitude from the equatorial radius, m
hgeo = local altitude from reference ellipsoid, m

I = support of a random variable
i = orbital inclination, deg
Lat = latitude of the spacecraft, deg
Lon = longitude of the spacecraft, deg
M = dimension of the random vector X
m = mass of the spacecraft, kg
N = number of samples
nj = number density of the gas species j, m−3

p = probability density function of a random variable
r = position in the Earth-centered inertial frame, m
T = local atmospheric temperature, K
Tw = wall temperature, K
t = time, s
vej = ejection velocity, m∕s
vej = norm of the ejection velocity, m∕s
vTAS = true airspeed of the spacecraft, m∕s
X = generic stochastic variable
X = generic stochastic vector
x = generic deterministic vector
Y = variable of interest, lifetime, day

y = single realization of the variable of interest
z = generic parameter
α = multi-index
δ = angle of attack, deg
ϵ = roll angle, deg
η = model error of a numerical model
Θ = spherical angle (azimuth) of the ejection velocity, deg
λ = product between drag coefficient and total den-

sity, kg∕m3

μ = mean value of a random variable
ρ = atmospheric density, kg∕m3

Σ = drag correction factor
σ = standard deviation of a random variable
χ = spherical angle (declination) of the ejectionvelocity, deg
Ψα = multivariate polynomial with order defined by α
ψ j = univariate polynomial of order j
Ω = right ascension of the ascending node, deg

Subscripts

dim = dimensional
j, k = generic indexes
l = relative to the initial conditions before ejection and

launcher accuracy
nj = relative to the jth gas species
ref = reference condition
T = relative to the local atmospheric temperature
X = relative to the vector X
Y = relative to the variable of interest
0 = relative to initial conditions

Superscript

nom = nominal condition

I. Introduction

S ATELLITE orbit propagation is a problem for which uncertainty
plays a central role [1,2]. Still, uncertainty quantification and

propagation is a relatively recent research topic in the astrodynamics
community. Park and Scheeres [3] derived fundamental results on the
Fokker–Planck equations. Specifically, they proved the integral
invariance of the probability density function for diffusionless
systems. By exploiting this property and by expressing the analytical
solution of a nominal nonlinear trajectory with a Taylor expansion,
they developed an analytical representation of the uncertainty pro-
pagation of normally distributed initial states. Nonlinear propagation
resulted in a progressive distortion of the distribution of the
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propagated states, which became nonnormal. By exploiting adaptive
Gaussian mixture models, Giza et al. [4] achieved a tractable
expression of the solution of the Fokker–Planck equation, which
enabled efficient propagation of uncertainties. In the same work, a
simplified drag model was introduced in the dynamic system.
Analytical propagation of uncertainties in the two-body problemwas
then achieved by Fujimoto et al. [5].
The simple numerical implementation, the very relaxed hypotheses,

and, more fundamentally, the independence of the convergence rate
with respect to problem dimension make the Monte Carlo (MC)
simulation method one of the most popular approaches for uncertainty
propagation [6]. If the computational cost of a single evaluation of the
model is high or if a fine convergence of the statistics of the variable of
interest has to be achieved, a well-converged MC propagation may
become prohibitive. It is precisely the case for orbital lifetime, which is
characterized by a nonlinear long-period propagation and by a large
standard deviation. Smart MC sampling techniques (e.g., Markov-
chainMonteCarlo) and stochastic expansion techniques overcome this
issue by drastically reducing the number of necessary samples. This is
why Jones et al. [7–9] introduced the polynomial chaos expansion
(PCE) method [10] in astrodynamics.
The main focus of the present paper and of its companion [11] is

the prediction of the uncertainties in the orbital lifetime of satellites at
low altitudes. Because of the stochastic nature of the atmosphere and
the complexity of drag modeling [12], such a prediction should be
embedded in an appropriate probabilistic framework. This is why
a computationally efficient and nonintrusive propagation of the
uncertainties affecting orbital lifetime calculations is proposed
herein. StandardMCand PCEmethods are both considered, and their
performance is compared. Because the cost of PCE (and of stochastic
collocation techniques in general) is intimately related to the
dimension of the problem (i.e., it grows exponentially with the
number of evaluations when considering fully tensorized expansions),
a novelmethodology for condensing the uncertainvariables inherent to
the drag force into a single randomvariable, termed the drag correction
factor, is developed. Once a probabilistic description of orbital lifetime
is achieved, information about the propagation mechanisms and the
relative importance of the different uncertainty sources can be carried

out using sensitivity analysis. Global sensitivity analysis is used for
attributing percentage of the standard deviation of the lifetime to its
inputs. Local sensitivity analysis is also considered for assisting
decision and managing uncertainty during the mission design phase.
To illustrate the proposed methodology, the standard two-unit

CubeSat of theQB50 constellation [13], proposed by thevonKármán
Institute for Fluid Dynamics in Belgium, is considered. This case
study is particularly relevant for two reasons. First, the objective of
the constellation is to study in situ the spatial and temporal variations
in the lower thermosphere. The initial circular orbit will have an
altitude of 320 km where atmospheric drag, one of the dominant
uncertainty sources in astrodynamics, is significant. Second, it is a
real-life mission that should be launched in mid-2015; hence, the
results described here can be useful not only to the astrodynamics
community but also to the CubeSat developers. The simulation
parameters are summarized in Table 1. We point out that some
findings of the paper are intimately related to this specific case study.
Specifically, theQB50 orbit is near circular, whichmakes uncertainty
in the eccentricity insignificant. Another important assumption
concerns the order of magnitude of the lifetime (or of the remaining
lifetime if the satellite is already in orbit), which is assumed to be on
the order of a fraction of the 11 year solar cycle. This latter
assumption ismore intrinsic to the proposedmethodology because of
the particular characterization of the space weather that was carried
out in the companion paper [11].
The paper is organized as follows. Section II briefly reviews the

outcome of the characterization of the uncertainty sources carried out
in [11]. Section III computes the probability density function (PDF)
of the orbital lifetime using standard MC propagation and presents
interesting findings that can be drawn from this PDF. A reduction of
the number of uncertainty sources is then performed in Sec. IV
through a preliminary sensitivity analysis and the concept of drag
correction factor. This reduction paves the way for an efficient
exploitation of PCE in Sec. V. Section VI is devoted to a more
thorough sensitivity analysis, and Sec. VII describes a second test
case involving the NanoSail-D2 spacecraft. Finally, conclusions of
this study are drawn in Sec. VIII.

II. Review of Uncertainty Source Characterization

A prerequisite for uncertainty propagation is that the relevant
sources of uncertainty have been identified and properly characterized,
that is, their PDF has been determined (e.g., using parametric or
nonparametric statistical methods). The two main sources of un-
certainties that were found to be important in [11] are the initial states
and the atmospheric drag. Table 2 lists the 15 uncertain variables that
were investigated during the uncertainty characterization process. The
corresponding distributions together with the identified parameters are
also given in this table.
The uncertainties in the initial conditions are due to launch date t0,

launcher injection accuracy, a partial knowledge of the orbital
parameters, and the ejection velocity vej. A preliminary combination

Table 1 Nominal parameters
for the simulations

Variable Value

Initial conditions

Initial altitude 320 km
Eccentricity 0
Orbital inclination 79 deg
Launch date April 2015

Spacecraft properties

Mass 2 kg
Size 0.2 × 0.1 × 0.1 m

Table 2 Summary of the uncertainty sources of the problem

Variable Symbol Units Stochastic modeling

Launch date t0 day Uniform in [4 Jan. 2015, 4 Jan. 2015]
Initial altitude (before injection) h0;l km Truncated Gaussian �0;�∞�, 320 km mean, 2.5 km standard
Initial inclination (before injection) i0;l deg Gaussian with 89 deg mean and 0.03 deg standard
Initial eccentricity (before injection) e0;l — — Truncated Gaussian �0;�∞�, 0 mean, 3.5 × 10−4 standard
Initial RAAN (before injection) Ω0;l deg Uniform in [0, 360] deg
Ejection velocity (norm) vej m∕s Uniform in �1; 1.5� ms−1

Ejection velocity (azimuth) Θ deg Uniform in [0, 360] deg
Ejection velocity (elevation) χ deg Cosine distribution in �−90; 90� deg
Daily solar activity F10.7 sfu Histogram distribution correlated with �F10.7 and AP
18 day averaged solar activity �F10.7 sfu Histogram distribution correlated with F10.7 and AP
Geomagnetic index Ap — — Histogram distribution correlated with F10.7 and �F10.7

Model error of the jth number density ηnj — — Gaussian distribution
Model error of the temperature ηT K Truncated Gaussian, temperature dependent
Angle of attack δ deg Gaussian with 0 deg mean and 5∕3 deg standard
Roll angle ϵ deg Uniform in [0, 360] deg
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of the uncertainties in the Keplerian parameters is achieved bymeans
ofMCpropagation following the scheme in Fig. 1. Cartesian position
r0 and velocity vl before orbital injection are generated according to
the distributions of the altitude h0;l, eccentricity e0;l, inclination i0;l,
and right ascension of the ascending node (RAAN) Ω0;l. The final
velocity v0 is calculated by adding the ejection velocity generated
with the distributions of the norm of the ejection velocityV and of the
spherical angles χ andΘ. Eventually, the initial Cartesian states after
ejection, r0 and v0 � vl � vej, are used to compute the cor-
responding initial orbital parameters h0, e0, i0, andΩ0. The results of
this propagation are a slightlywider distribution for the initial altitude
(which still remains Gaussian) and a distortion of the distribution of
the eccentricity, as illustrated in Fig. 2, whereas the distributions of
the other variables remain unchanged.As explained in [11], the initial
true anomaly and argument of perigee were removed from the
uncertainty sources.
The uncertainty in the drag force takes its origin from the inherent

variability of atmospheric conditions. This variability is due both to
stochastic processes in nature (e.g., thermospheric winds and space
weather) and to the unmodeled dynamics of the atmosphere (i.e.,
model driven uncertainty), which is a function of the level of accuracy
of the mathematical implementation of the atmosphere and which
reflects the evidence that in situ measurements of atmospheric
properties do not match the estimations of the models. In this study,
we consider the NRLMSISE-00 atmospheric model, whose
correlation with space weather is achieved through the daily solar
radio flux F10.7, 81-day-averaged solar radio flux �F10.7, and
geomagnetic activity Ap indices. Other atmospheric models
generally require the characterization of different proxies. Model
uncertainty is accounted for herein by correcting the outputs
of NRLMSISE-00 (i.e., number densities of gas species and
temperature) with the random variables ηnj and ηT , respectively.
These stochastic variables are characterized according to the bias
and standard deviations between the NRLMSISE-00 and in situ
observations provided by Picone et al. in [14].
Concerning the characterization of the space weather proxies,

different approaches were proposed in the literature to address this
important problem [15–17]. Considering them as stochastic pro-
cesses complicates the uncertainty propagation because the problem
belongs to the family of stochastic differential equations [18]. As an
alternative for use in orbital lifetime estimation, Fraysse et al.

introduced the concept of constant equivalent solar activity [19]. The
idea is to consider a constant solar flux and geomagnetic index
throughout the propagation. If the satellite has a 25 year lifetime for
the chosen constant equivalent solar activity, then its lifetime for
possible future solar activities will also be 25 years with a probability
of 50%. This technique is particularly appropriate for very long
propagations on the order of one or several solar cycles. In the
companion paper [11], we proposed another approach to the
problem. It was also based upon the idea of using an effective solar
activity, but it was only suitable for propagations on the order of a
fraction of the solar cycle. Instead of a deterministic effective solar
activity, we considered a random effective solar activity. The main
underlying assumption was that neglecting variations of the space
weather proxies with respect to their averaged value in time does not
yield drastic variations of the orbital lifetime. To verify this
conjecture, we performed two sets of simulations where the solar
activity is modeled by means of 1) time series and 2) its temporal
average. Then, we compared the resulting orbital lifetime in the two
cases, which, for the sake of clarity, we refer to as “true” and
“approximated” lifetime, respectively. Specifically, we exploited the
stochastic process proposed byWoodburn andLynch [20] to generate
several realizations of the solar activity, andwe computed statistics of
the difference between the realizations of the true and the
approximated lifetime. Finally, we compared this result with the
difference between the nominal and the realizations of the true
lifetime. The nominal (deterministic) lifetimewas computed with the
trend of the solar activity according to the long-term Schatten’s
predictions.‡ The standard deviation of this difference was one order
of magnitude larger than the one of the error between true and
approximated lifetime, as illustrated in Fig. 3a. Hence, considering
the mean value of each realization of the space weather proxies
instead of their complete time history does not introduce significant
error compared with the variability of the lifetime. For this reason,
F10.7, �F10.7, and Ap can be considered in the context of this study as
three different random variables that are constant during a single
simulation. The characterization of the PDFs of the proxies was
finally achieved by identifying amission window in the dimensionless
solar cycle and by exploiting historical data of the same dimensionless
window of the past cycles to generate the distributions, as illustrated in
Fig. 3b.We emphasize that the proposed characterization and handling
of the space weather proxies is a conservative assumption, because it
leads to an overestimation of the variance of the variable of interest
(VOI). In fact, if the selected data set of historical data includes singular
events like the Halloween storms of 2003, it means that the cor-
responding values of the proxies are part of the event space, though
they may only occur with an extremely modest probability. On the
contrary, modeling solar activity with a stochastic process cannot lead
to realizations with a mean value that is as large as the peaks of
these singular events. Nonetheless, this is also why the proposed
methodology is limited to the case of orbital lifetimes (or remaining
lifetime if the satellite is already inorbit) on the order of a fraction of the
solar cycle, otherwise the overestimation of the uncertainty in the VOI
would be excessive.
Another uncertainty source in the estimation of the drag is the

attitude of the satellite, which in this study ismodeledwith the angle δ
between the spacecraft’s long axis and thevelocity and the roll angle ϵ
(see Fig. 4).
In summary, Fig. 5 shows the precombination step together with

the 12 uncertain sources that will be propagated in the next section.

III. Uncertainty Propagation viaMonte Carlo Sampling

The mapping y � g�x� is considered for which the stochasticM-
dimensional input vector x and the (scalar) VOI y are defined on the
supports IX and IY , respectively. MC propagation is a means of
quantifying uncertainty in the VOI by mapping uncertainties in the
inputs through the model g�·�. The generation of a set of N
realizations x1; x2; : : : ; xN of the stochastic vectorX according to the

Fig. 1 Precombination of the uncertainties in the initial states.

Fig. 2 PDF of the initial eccentricity after injection.

‡This nominal trend is the deterministic component of the time series
generated by Woodburn and Lynch [20].
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joint PDF of its elements is the first step of the MC propagation.
Because most of the existing random number generators can only
providewith uniformly or normally distributed independent samples,
the realization of correlated samples with arbitrary marginal dis-
tributions can be carried out bymeans of aRosenblatt transformation.
In this way, the joint PDF is transformed into a set of uncorrelated
standard Gaussian distributions Z, from which MC samples can be
directly generated [21]:

Z1

..

.

ZM

9>=
>; →

chol�C�

8>>>><
>>>>:

Ξ1 !
cN�ξ1�

U1 !
F−1
X1
�u1�

X1

..

.

ΞM !
cN�ξM�

UM !
F−1
XM
�uM�

XM

(1)

where CN is the cumulative distribution of the standard Gaussian
random variable; Ξ1; : : : ;ΞM,U; : : : ; UM, andFX1

; : : : ;FXM are a
set ofM-correlated standard Gaussian random variables, a set ofM-
correlated uniform random variables with support [0, 1], and the
cumulative distribution functions of the marginal distributions of X,
respectively; chol�C� is the Cholesky decomposition [22] of the
correlation matrix of Ξ1; : : : ;ΞM, and it relates them to the cor-
responding set of uncorrelated standard Gaussian distribution [i.e.,
Ξ � chol�C�TX]. For continuous random variables, the mapping
from X to Z is bijective.
The direct evaluation of the mapping for each generated sample

leads toN samples of the VOI fromwhich statistics can be computed.
Specifically, the second-order descriptors are given by

μ�N�Y �
1

N

XN
j�1

yj (2)

σ�N�Y �

���������������������������������������������
1

N − 1

XN
j�1
�yj − μ�N�Y �

2

vuut (3)

The convergence and rate of convergence of MC propagation are
ensured by the law of large numbers and the central limit theorem
under limited assumptions. This and more general results on the
convergence of MC analysis are available in [23,24]. If the mean
value μY of the VOI exists, the law of large numbers states that the
sample mean μ�N�Y converges almost surely to μY asN increases. If the
standard deviation σY of the VOI exists and if Lindeberg’s condition
is satisfied, the central limit theorem states that the error μ�N�Y − μY is a
normally distributed random variable with zero mean and standard
deviation σY∕

����
N
p

. We stress that μY and σY are not a property of
the mapping g�x�, because they are intimately related to the
characterization of the uncertainty sources, and they cannot account
for uncertainty sources that are not modeled.
The MC algorithm was used to compute the orbital lifetime of

one nanosatellite of the QB50 constellation considering the 12
uncertainty sources in Fig. 5. Figure 6 shows that 20,000 evaluations
were necessary for achieving the convergence of the mean value
within�1 day with a confidence level of 3σ. The convergence of the
higher-order statistical descriptors is also depicted in this figure.
Because a single orbital propagation lasts 10 min on average, the
complete propagation was run on a computer cluster thanks to the
parallelization capabilities of the DAKOTA software [25]; it resulted
in an accumulated computational burden of 139 days.

Fig. 3 Characterization of the space weather proxies and validation of the use of the effective solar activity.

Fig. 4 Notation of the attitude angles; vTAS is the relative incoming
airspeed.

Fig. 5 Schematic representation of the uncertainty propagation
process.

Fig. 6 Convergence of the statistical descriptors of orbital lifetime (MC
propagation). The envelope of the shaded area is determined using the
bounds μY � 3�σY∕

�����

N
p
�.
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Histogram distribution and Gaussian kernel density estimation
[26,27] were then implemented to derive a nonparametric re-
presentation of the PDF of orbital lifetime. They are presented in
Fig. 7. Very useful information can be inferred from Figs. 6 and 7:
1) The mean orbital lifetime is 84.3 days, which is somewhat

smaller than the desired lifetime of three months. We note that the
mean does not correspond to the peak of the distribution because the
PDF is characterized by a nonnegligible (positive) skewness.
2) The standard deviation amounts to 37.5 days, which results

in standard deviation to mean ratio of about 0.45. This reflects
a substantial, but expected, variability of orbital lifetime that
invalidates any deterministic estimation of this quantity.
3) The lifetime can be as short as 14 days and as long as 347 days

depending on the considered input sample. The minimum and
maximum lifetime correspond to an initial altitude h of 316 and
322 kmand a daily radio fluxF10.7 of 72 and 273 solar flux units (sfu),
respectively.
Figure 8 depicts the complementary cumulative distribution

function (CCDF) of orbital lifetime. It shows that there is a 6%
probability to have a lifetime of 150 days or more. Conversely, there
is a nonnegligible probability (i.e., 18%) to have a lifetime shorter
than 50 days, which may compromise the success of the mission.
Further analysis of these results will be performed in Sec. VI using
stochastic sensitivity analysis.

IV. Reduction of the Uncertainty Sources

Although appealing by its simple numerical implementation and
by the independence of the convergence rate with respect to the
number of uncertainty sources, the MC method has a rate of
convergence of order N−1∕2, which may demand computational
resources that are not within reach. Stochastic expansion techniques,
such as PCE described in Sec. V, have the capability to drastically
reduce the number of necessary samples. However, one limitation of
PCE is that the number of quadrature points necessary for the
evaluation of the surrogate model depends both on the dimension of
the stochastic domain and on the order of the expansion, as detailed in

Sec. V.A. For this reason, the number of input random variables with
an associated high polynomial order should not be too large.
Considering the 12 uncertainty sources of this study together with
their nonlinear relations with the VOI, uncertainty propagation
cannot be addressed as such using PCE. For this reason, the
possibility to obtain a reduced set of uncertainty sources is
investigated in this section.

A. Uncertainty in the Initial Orbital Parameters

A preliminary sensitivity analysis for the initial orbital parameters
is first achieved to seewhether one or several of these variables can be
removed from the set of input variables. It consists of measuring the
difference between the lifetime computed for the nominal conditions
and the lifetime computed by applying a perturbation of one standard
deviation to each input sequentially. Because the initial RAAN and
launch date are uniformly distributed, the sensitivity analysis is
performed by keeping these two variables as parameters. To this end,
a grid of 9 × 11 uniform intervals is considered for the initial RAAN
and date, respectively. Table 3 lists the minimum and maximum
relative variations of the lifetime on the grid considering
perturbations of the initial altitude, eccentricity, and inclination.
The variations due to the drag correction factor, which is defined in
the next section, are also shown for the purpose of comparison. This
table shows that the initial inclination and eccentricity are responsible
for tiny variations of the orbital lifetime; they can be safely neglected
in our analysis. We note that this finding is related to the QB50 case
study. In addition, the argument of perigee could also be a relevant
variable for eccentric orbits. On the contrary, given the high cost of
out-of-plane maneuvers, neglecting uncertainty in the inclination is a
more general result. For the sake of completeness, we also note that,
for long-term propagations, uncertainty in the initial true anomaly is
irrelevant if initial states are provided in terms of mean elements.
In conclusion, targeting a reduction of the dimension of the

problem, a preliminary sensitivity analysis is encouraged. Case-
dependent results should be expected from this analysis.

B. Uncertainty in the Drag Force

1. Drag Correction Factor

We now propose to reduce all the uncertainties affecting the drag
force into a single stochastic variable through a precombination
process analogous to the one illustrated in Fig. 1. This method is
developed ad hoc for the problem of uncertainty quantification of
lifetime in low Earth orbit (LEO), but the methodology could be
extended to other problems in astrodynamics.
The drag force is calculated through the NRLMSISE-00

atmospheric model [14] in our orbital propagations. This model
gives an estimation of the number densities of the different gas
species nmodel

j and of the local atmospheric temperature Tmodel for
specified longitude (Lon), latitude (Lat), Julian date (JD), altitude
from ellipsoid hgeo, solar F10.7, �F10.7, and geomagnetic activity Ap
indices:

�nmodel
j ; Tmodel� � NRLMSISE

− 00 �Lon;Lat; JD; hgeo; F10.7; �F10.7; Ap� (4)

To account for the inherent uncertainty of atmospheric conditions,
corrected atmospheric properties were defined in [11] using random
variables ηnj and ηT :

0 100 200 300 400
0

0.004

0.008

0.012

0.016

Lifetime [day]

P
D

F
 [1

 / 
da

y]

 

 
Histogram
Density Kernel

Fig. 7 Histogram and kernel density estimations of the PDF of the
orbital lifetime (MC propagation).

0 75 150 225 300
0

25

50

75

100

Lifetime [day]

C
C

D
F

 [%
]

Fig. 8 Complementary cumulative distribution function of orbital
lifetime (MC propagation).

Table 3 Preliminary sensitivity analysis: minimum/maximum
variations of the lifetime for 1σ perturbation of the input

Minimum variation, % Maximum variation, %

Initial altitude 5.3 6.4
Initial eccentricity 0.01 0.11
Initial inclination 2.4 × 10−4 0.01
Drag correction factor 28.4 33.3
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nj � nmodel
j exp�ηnj� (5)

T � Tmodel � ηT (6)

The resulting atmospheric density is

ρ � 1

Av

X
j

njmj

whereAv is the Avogadro number andmj is the molar mass of the jth
species. The drag coefficient is computed using the updated Sentman
model [28–30]:

Cd � Cd �Lon;Lat; JD; hgeo; vTAS; Tw; ηT; ηnj ; δ; ϵ� (7)

where vTAS, Tw, δ, and ϵ represent the bulk velocity of the air with
respect to the satellite, the wall temperature, and the angles
characterizing satellite attitude, respectively. The dependency on the
wall temperature is omitted in the remainder of this paper because of
the low sensitivity of the drag coefficient with respect to this
variable [11,12].
The variable λ is introduced as the product between the drag

coefficient and the atmospheric density:

λ � Cdρ
� λ �Lon;Lat; JD; hgeo; vTAS;F10.7; �F10.7; Ap; ηT; ηnj ; δ; ϵ� (8)

The inputs before the semicolon are computed as a function of the
current states and time during the propagation, whereas the other
inputs are stochastic variables that were characterized in [11].
A nominal value is now defined for each stochastic variable.
Specifically, ηnomT � ηnomnj � 0, whereas the nominal value of the
other parameters is selected as the expected value of their
distribution. The drag correction factor Σ is defined as

Σ�
λ�Lon;Lat;JD;hgeo;vTAS;F10.7; �F10.7;Ap;ηT;ηnj ;δ;ϵ�

λ�Lon;Lat;JD;hgeo;vTAS;Fnom
10.7; �F

nom
10.7;A

nom
p ;ηnomT ;ηnomnj ;δ

nom;ϵnom�

�
λ�Lon;Lat;JD;hgeo;vTAS;F10.7; �F10.7;Ap;ηT;ηnj ;δ;ϵ�

λnom�Lon;Lat;JD;hgeo;vTAS�
(9)

so that, without any loss of generality, the drag force is given by

Fd � −
1

2

ArefCd
m

ρvTASVTAS � −
1

2

Aref

m
ΣλnomvTASVTAS (10)

where Aref and m are a reference surface and the mass of the
spacecraft, respectively. Equation (10) is just a mathematical
manipulation because the drag correction factor is formally defined
as a function of all the inputs of drag force; the two expressions of the
drag force in Eq. (10) are equivalent. In the following, we introduce

assumptions aimed at approximating the drag correction factor to
convert it into a random variable that accommodates all the modeled
uncertainty sources in the drag force. The main advantage of this
method is that the uncertainties inherent toF10.7, �F10.7,Ap, ηT , ηnj , δ,
and ϵ can be combined into the only variable Σ, thereby reducing
greatly the number of random variables for the subsequent pro-
pagation of orbital lifetime using PCE.
Equation (9) shows that the drag correction factor is, in principle, a

function of the stochastic inputs of the problemandofLon, Lat, JD,h,
and vTAS, which we refer to as “state-dependent” variables, because
they can be deduced from the current states of the satellite and
propagation time. Indeed, they generally also depend on the random
variables of the problem. For instance, the Julian date is given by
JD � JD0 � t. A critical assumption we make here is that the
correlation between the drag correction factor and the state-
dependent variables is negligible, which means that the error in the
dragmadewhen considering the nominal conditions of the stochastic
variables instead of their current conditions weakly depends on the
state-dependent variables. This assumption is not given, and it needs
to be validated. Section IV.B.2 discusses its validation.
Provided that this assumption is valid, the idea behind the

proposed method is to characterize the drag correction factor as
a random variable by temporally modeling the state-dependent
variables as random. In thisway, the PDFof the drag correction factor
can be evaluated through the evaluation of Eq. (9).
The modeling of the state-dependent variables is performed by

answering the question:What is the probability to have a certainvalue
of the variable during themission? Because the orbit of the case study
is near circular, latitude and longitude are modeled as uniform
randomvariableswith supportILat � �−i; i�where i � 79 deg is the
reference orbital inclination and ILon � �−180; 180� deg, respec-
tively. Given the one year launch window, the Julian date is modeled
as a uniform random variable with support I JD � �1 Jan:; 31Dec:�.§
To compute the joint distribution of z and vTAS, orbital propagations
were carried out for various levels of solar and geomagnetic activities,
whereas all the other parameters were set to their nominal value.
Altitude and velocity were sampled with a fine time step to generate
the distributions of Fig. 9. In particular, each dotted line is a
distribution relative to one specific orbital propagation, whereas
the histograms are built by considering all the samples of all the
simulations. The dotted curves were added to Fig. 9 to show that the
percentage of the orbital time spent at a certain altitude is not strongly
affected by the duration of the lifetime itself (which in these
simulations spans from about 40 to 90 days). Strictly speaking, the
satellite falls slowly in quiet periods, but the percentage of its orbital
time spent at a certain altitude is similar to the one obtained during an
active period. The distributions of the velocity are extremely narrow,
so that, even if their shape changes from one propagation to the other
(compared with the altitude), it will not yield significant variations of
the drag correction factor. An important correlation of −97% relates
the two marginal PDFs.
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a) Altitude
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b) Velocity
Fig. 9 PDF of the altitudehgeo and of the velocity vTAS. Each dotted line shows the distribution obtainedwith the samples of a single orbital propagation.
Histogram are evaluated with the samples of all the propagations.

§The NRLMSISE-00 model does not take into account long-term trends;
specifying the year is therefore irrelevant.
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We stress that this characterization of the state-dependent variables
is intimately related to our case study. Specifically, the uniform
characterization of the latitude does not hold for elliptic orbits. In that
case, they should be characterized together with the orbital altitude
and velocity by means of numerical evaluation of their distributions
through a certain number of supporting orbital propagations. Their
correlations should be accounted for as well. We also note that the
correlation between longitude and Julian date can be significant for
sun-synchronous orbits. Because the considered orbit is not sun-
synchronous, the local sidereal time is uniformly distributed between
0000 and 2400.
The PDF of the drag correction factor resulting from the

Monte Carlo propagation of 106 samples of the different input
variables is presented in Fig. 10. The PDF shows that the error due to
drag estimation with nominal conditions for the stochastic inputs can
be as severe as 200% (i.e., when Σ � 3). Even if the uncertainty can
be reduced as more information about the mission is available (e.g.,
precise knowledge of attitude dynamics), Sec. IV.B.2 will show that
the main contributor to the drag correction factor is the solar activity,
whose uncertainty is irreducible.

2. A Priori and A Posteriori Validation of the Assumption

The values of two statistical indicators are given in Table 4 to
validate the assumption of weak dependency of the formal definition
of the drag correction factor [i.e., Eq. (9)], with respect to the state-
dependent variables. Spearman’s rank correlation measures if the
relationship between the drag correction factor and the considered
input variable can be described using a monotonic relation. It is
defined as Pearson’s correlation coefficient, but the values of the
variables are replaced with their ranks. The total-effect Sobol index,

defined between zero and one, is a measure of the contribution of the
uncertainty of the considered input variable in the generation of the
uncertainty in the drag correction factor. In other words, it indicates
the contribution of an input in the generation of the uncertainty in the
VOI. This contribution also accounts for the interaction of the input in
analysis with the others. More details on Sobol indices are available
in Sec. VI.A.
Spearman indices show that the five state-dependent inputs are

weakly correlated with the drag correction factor, as it was assumed.
Conversely, this factor is strongly correlated with a subset of the
uncertain parameters, namely, the solar and geomagnetic activity
indices, and the model correction factors of total oxygen and
molecular nitrogen. Sobol indices confirm these findings.We refer to
this validation as a priori, because it automatically comes with the
evaluation of the PDF of the drag correction factor. This cannot be
considered generally valid, and it needs to be verified for each
specific case study.
A posteriori validation of the assumption can also be carried out

by comparing the outcome ofMonte Carlo propagations for orbital
lifetime for both the full and reduced set of uncertain parameters.
The results are depicted in Figs. 11 and 12. Table 5 summarizes the
error between the two propagations in terms of the first four
moments and of the relative entropy, which can be seen as a
nonsymmetric measure of the difference between two probability
distributions. The absolute error on the mean value is less than
two days, which is largely smaller than the standard deviation.
Furthermore, the error does not grow radically with the order of the
moments with the consequence that the two distributions have a
very similar shape (compare with Fig. 7). Overall, the proposed
reduction strategy gives results that are in good concordance
with those obtained with the full set of uncertain variables;
they therefore confirm that the state-dependent variables play a
very modest role in the characterization of the drag correction
factor.
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Fig. 10 PDF of the drag correction factor Σ (MC propagation with 106

samples).

Table 4 Spearman and
Sobol indices of the drag

correction factor with respect
to all the inputs

Input Spearman, % Sobol, %

F10.7 75.84 55.92
�F10.7 79.34 62.13
Ap 28.68 7.84
ηHe 0.57 0.90
ηO 37.90 15.50
ηN2

25.00 7.30
ηAr −0.04 0.90
ηH −0.22 0.90
ηN 1.38 0.91
ηT 1.52 0.94
δ 0.33 1.28
ϵ −0.34 0.91
Lon 0.04 0.96
Lat 0.05 0.78
JD 0.41 1.01
hgeo −3.19 0.92
vTAS 3.14 0.87
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Fig. 11 Convergence of the mean value of the lifetime with the MC
propagation. Bounds are given by μY � 3�σY∕

�����

N
p
�, where μY , σY , andN

are the final mean value, the final standard deviation, and the current
number of samples, respectively.
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Fig. 12 Histogram and density kernel estimation of the PDF of the
lifetime obtained through the MC propagation of the reduced set of
uncertainty sources (20,000 samples).
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V. Efficient Uncertainty Propagation via Polynomial
Chaos Expansion

A. Theoretical Background

PCE belongs to the family of stochastic expansion methods [10].
These algorithms generally involve two steps, namely, the con-
struction of a computationally efficient surrogatemodel of the system
and the stochastic propagation through both analytical and numerical
evaluation of the surrogate model. Several techniques are available to
calculate the coefficients of the expansion. They involve embedded
projection, collocation, and nonintrusive projection [31–33]. This
latter technique is discussed in this paper.
Consider a set of M uncertain independent variables X �
�X1; : : : ; XM�T defined on the support IX and with joint PDF

pX�x� �
YM
j�1

pXj�xj�

The deterministic application y � g�x� with g: IX → IY maps a
single sample of X into a sample of the VOI Y, which is the lifetime
here. PCE consists in determining a polynomial surrogate model
ĝ�X� such that

g�x� ≈ ĝ�x� �
Xαmax

α�0
aαΨα�X� (11)

where
1) α � �α1; α2; : : : ; αM�T ∈ NM is a multi-index vector. The

summation on α is such that

Xαmax

α�0
�·� �

Xαmax
1

α1�0

Xαmax
2

α2�0
: : :

Xαmax
M

αM�0
�·� (12)

2) αmax � �αmax
1 ; αmax

2 ; : : : ; αmax
M �T ∈ NM is a user-supplied

vector defining the maximum order of the polynomial model for
each component of X.
3) �Ψ0; : : : ;Ψαmax � is a basis of multivariate polynomials that are

orthonormal with respect to the inner product h·; ·ipX , defined as
hf; gipX � ∫ IX

f�x�g�x�pX�x� dx. The generic term Ψα is given by

Ψα�x� �
YM
j�1

ψ
αj
j �xj� (13)

where �ψ0
j ; : : : ;ψ

αmax
j

j � is a basis of univariate polynomials of order
�0; : : : ; αmax

j � orthonormal with respect to h·; ·ipXj (e.g., Hermite and
Legendre polynomials for standard normal and uniform distributions
on [−1, 1], respectively).
4) aα is anM-order tensor of unknown coefficients.

The choice of the coefficients aα is performed by minimizing the
functional

E � 1

2
kg − ĝk2pX ≡

1

2
hg − ĝ; g − ĝipX (14)

Bysetting thederivative ofEwith respect toaα to zero andbyexploiting
the orthonormality of the basis, the optimality conditions write

aα � hg;ΨαipX ; for α � 0; : : : ;αmax (15)

ProperGaussian quadrature rules are generally exploited for an efficient
numerical computation of the integrals involved in Eq. (15). A
multidimensional grid with αmax

j � 1 gauss points in the jth variable is
implemented, which results in

YM
j�1
�αmax
j � 1�

evaluations of the model g.
Statistical properties of the VOI can then be evaluated by

numerical evaluation of the surrogate model using, for example, MC
propagation. However, second-order descriptors can be directly
deduced from the coefficients aα by taking advantage of the
orthonormal properties of the basis

μY � a0 (16)

σ2Y �
Xαmax

α�0
a2α − a20 (17)

B. Orbital Lifetime Computations

The DAKOTA software [25] is used for computing the PDF of the
orbital lifetime through PCE. The reduced set of uncertainty sources
Σ, h0, t0, andΩ0 identified in Sec. IV is considered for this purpose; a
summary of the reduction process is given in Fig. 13. Histogram,
Gaussian, and two uniform distributions are exploited to model their
univariate PDFs, respectively. Even though ad hoc univariate-
orthogonal polynomial bases can be generated for any distribution,
wemapped our variables into standard distributions to take advantage
of labeled polynomials. The normal and uniform distributions were
then mapped to standard normal distribution and uniform dis-
tributions on [−1, 1], respectively. For the histogram distribution,
isoprobability transformations [34] toward both standard normal and
uniform distribution on [−1, 1] were considered. According to the
convergence criteria defined later in this section, the former
distribution was found to be more effective and was therefore
retained.
We note that mixing different bases in the presence of correlated

inputs might yield to a degradation of the convergence rate of the
expansion. In this case, mapping all the input into standard Gaussian
variables by means of a Rosenblatt transformation can be beneficial.
The choice of the order αmax

j of the polynomials was performed by

computing the PCE, Y
�αmax
j �

j for each scalar component Xj, while

setting the other components to their nominal values. The minimum
order αmax

j , which provides a weighted mean-squared distance

(MSD) with respect to the expansion at the previous order smaller

than the 1% of the expected value of Y
�αmax
j �

j , is selected. Figures 14–

17 present the convergence for the four variables. As desired, the
absolute value of the coefficients of the expansion depicted in the top-
right diagrams decreases exponentially for high-order polynomials.
The selected orders are 4, 2, 9, and 0 for Σ, h0, t0, and Ω0,
respectively.¶

Figure 18 shows the response surfaces obtained with the
multivariate PCE. The same qualitative behavior for the univariate
response curves in Figs. 14–16 is recognized. Overall, PCE requires
only 150 evaluations of the model for the determination of the
multivariate expansion. This is a significant improvement over the

Table 5 Error between the MC propagation with full and
reduced set of uncertainty sources

Reduced set, day All variables, day Error, %

Mean 82.6 84.3 −2.01
Standard deviation 36.6 37.5 −2.40��������
M3

3
p

39.2 37.7 3.98��������
M4

4
p

56.9 54.5 4.40
Relative entropy — — — — 0.45

¶First-order Hermite polynomial should have been retained for the initial
RAANaccording to themean-squared distance. However, in view of the small
influence of this variable on the VOI, zero-order polynomials can be safely
chosen.
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MC propagation of Sec. III where 20000 samples were necessary for
an adequate convergence of the mean value. In addition, the criterion
used for the choice of the order of the PCE expansion is based upon
the convergence of the PDF, which is more severe than the
convergence of the mean value. Finally, we note that the high-order
polynomial characterizing the sensitivity of the VOI with respect to
the launch date is due to the nonmonotonic response illustrated in the
bottom diagram of Fig. 16. The number of evaluations of the model
could be reduced even further if a narrower launch window were
identified.
Analytical second-order descriptors are deduced from the PCE

coefficients according to Eqs. (16) and (17); they are given in Table 6.
In this table, the convergence is also verified by comparing the
obtained results bothwith a refined PCEmodel where the order of the

univariate polynomials is increased by one and with direct MC
propagation of the reduced set. All these results indicate that the
selected PCE is adequately converged.
Finally, MC propagation using the surrogate model is realized to

estimate the PDF of the orbital lifetime. Figure 19 illustrates the
density kernel estimation of the PDF obtained for PCE, MC with the
reduced set of inputs, and MC with the complete set of inputs. As
discussed in Sec. IV.B.2, the assumptions introduced for the
characterization of the drag correction as a random variable are
responsible for a discrepancy in the mean value of the VOI on the
order of two days, which is small compared with the standard
deviation of the VOI itself. In addition, with only 150 samples, the 3-
sigma confidence bounds in the mean value of the VOI for the MC
propagation is as large as 10 days. For these reasons, the compromise
between the loss of accuracy due to the reduction of the uncertainty
sources and the enhanced computational efficiency given by PCE is
satisfactory.

VI. Stochastic Sensitivity Analysis

Uncertainty propagation allows us to obtain a statistical
description of the VOI, which is useful for estimating precisely the
variability affecting this quantity. The present section is devoted to
stochastic sensitivity analysis for gaining insight into the nature of the
propagation itself. Such an analysis is relevant for engineering
purposes, particularly for decision making and for assessing the
efforts needed to reduce uncertainties on the VOI. Both global and
local sensitivity analyses are conducted in this study.

Fig. 13 Schematic representation of the proposed reduction of the
uncertainty sources.

Fig. 14 Drag correction factor:mean-squared distancebetween consecutive orders (top left), normof thePCEcoefficients (top right), and response curve
(bottom).
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Fig. 15 Initial altitude: mean-squared distance between consecutive orders (top left), norm of the PCE coefficients (top right), and response curve
(bottom).
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A. Global Sensitivity Analysis

The objective of global sensitivity analysis is to measure the
contribution of each stochastic source in the generation of the
uncertainty of the VOI, measured through its variance. The total-
effect sensitivity index for the input Xj is the expected value of the
variance of the VOI given all the variables but Xj [35,36]

E�Var�YjX∼j�� (18)

whereX∼j means all the elements ofX except the component j. The
sensitivity index can be interpreted as the portion of the uncertainty in
the VOI that can be attributed to the input Xj and its interactions with
other variables. The sensitivity indices are often normalized with the
variance of the VOI. These dimensionless coefficients are referred to
as total-effect Sobol indices in the literature.
The numerical computation consists of the integration of

E�Var�YjX∼j�� �
Z
IX∼j

�Z
IXj

g�x�2pXjjX∼j
�xjjx∼j� dxj

−
�Z

IXj

g�x�pXjjX∼j
�xjjx∼j� dxj

�
2
�
pX∼j
�x∼j� dx∼j (19)

where

pXjjX∼j
�xjjX∼j� ≡

pX
pX∼j

is the conditional probability of xj givenX∼j. For a set of independent
variables,

pX∼j
�x∼j� �

YN
k�1;k≠j

pXk�xk� (20)

Both deterministic and nondeterministic integration techniques can
be implemented for the numerical computation of Eq. (19). The
computation of the integrals can be sped up by evaluating a surrogate
model if available. In addition, if the surrogate model is built with
PCE, Sudret demonstrated that total-effect sensitivity indices can be
analytically deduced from the coefficients of the expansion [37]. For
an orthonormal basis and an independent set of inputs, it follows that

E�Var�YjX∼j�� �
Xαmax

α s:t: αj>0

a2α (21)

Table 7 lists the Sobol indices obtained in the case study. The drag
correction factor is by far the most important contributor to the
uncertainty in the orbital lifetime. This result confirms that a more
profound knowledge of drag in rarefied flows and of thermospheric
models would be highly beneficial, as heavily stressed in the
literature (e.g., [12,20,29,38–40]). However, the stochastic nature of
processes such as solar and geomagnetic activities invalidates any
deterministic modeling of the drag, as confirmed by the Sobol indices
of the drag correction factor in Table 4. This is why stochastic
modeling of this problem is particularly relevant and important.
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Fig. 16 Launchdate:mean-squareddistance between consecutive orders (top left), normof the PCEcoefficients (top right), and response curve (bottom).
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Fig. 17 Initial RAAN: mean-squared distance between consecutive orders (top left), norm of the PCE coefficients (top right), and response curve

(bottom).
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The launch date also has a nonnegligible Sobol index, but this
uncertainty will be progressively reduced (and eliminated) in the
function of the advancement of mission design. The Sobol index of
the initial altitude shows that, unlike drag, improving launcher
accuracy would only result in a very modest improvement of the
knowledge of orbital lifetime.We note that the impact on uncertainty
of initial orbital parameters of an already orbiting object determined
with two-line elements (TLE) fitting is potentially much more
substantial [41].

B. Local Sensitivity Analysis

Derivatives of theVOIwith respect to variations of a nominal input
are particularly useful in the framework of a deterministic mission
analysis and design, because they suggest the “direction” in which
the input should be modified to improve nominal performance.
Likewise, derivatives of the variance of the VOI with respect to
nominal values provide valuable insight into the direction in which
the input should be modified to reduce uncertainties. The results of
these analyses can be conflicting, and a compromise is then to be
achieved. For example, consider a variation in the nominal initial
altitude. The derivative of the lifetime with respect to the initial
altitude would suggest to increase this parameter to maximize the
lifetime. However, because the derivative of the variance is likely to
be positive, uncertainty in the lifetime would also increase. It might
therefore happen that the expected augmentation in lifetime due to a
higher altitude is jeopardized by the higher uncertainty level.
Local sensitivity analysis provides a quantitative means of

addressing this compromise between performance and robustness. It
is therefore complementary to the global analysis described in the
preceding section. It amounts to computing the derivatives of the
variance of the VOI, with respect to a generic parameter z related to
the characterization of the PDF of the inputs. This analysis is local in
the sense that the results are related to a specific point of the input
space IX.
Finite differences are a common way to numerically estimate the

derivatives [42]. Pseudoanalytical evaluations are an interesting
alternative [43]. To this end, we consider the derivatives of the mean
and variance of the VOI with respect to a generic parameter z:

∂μY
∂z
� E

�
∂Y
∂z

�
(22)

∂σ2Y
∂z
� 2E

�
Y
∂Y
∂z

�
− 2E�Y�E

�
∂Y
∂z

�
(23)

where the derivatives of the VOI with respect to the parameter z are
derived by means of the chain rule

∂Y
∂z
� ∂g�X�

∂z
� ∂g�Xdim�X; z; : : : ��

∂z
� �∇Xdim

g�T ∂Xdim

∂z
(24)

where Xdim are dimensional inputs. The expected values are
numerically integrated by means of either deterministic quadrature
rules or nondeterministic MC techniques. Once again, the surrogate
model obtained with the PCE is extremely useful to enhance
computational performance:

�∇Xdim
g�T ∂Xdim

∂z
≈ �∇Xdim

ĝ�T ∂Xdim

∂z
(25)

If the problem of the increase in initial altitude is reconsidered, we
obtain for the QB50 case study:
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a) Orbital lifetime in function of initial altitude and drag correction
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Fig. 18 Response surface obtained with the PCE.
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Fig. 19 Comparison of the PDFs obtained with PCE, MC simulation
with the reduced set of inputs, andMCsimulationwith the complete set of
inputs.

Table 6 Convergence of the multivariate PCEa

PCE PCE refined MC reduced set Units

Mean 82.2 82.1 (0.06%) 82.6 (0.52%) Day
Standard deviation 36.4 36.6 (−0.41%) 36.6 (0.51%) Day��������
M3

3
p

39.1 39.3 (−0.60%) 39.2 (0.36%) Day��������
M4

4
p

56.7 57.1 (−0.69%) 56.9 (0.32%) Day
Relative entropy — — 0.06% 0.06% — —

aErrors with respect to the PCE model are listed in parentheses.
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∂μY
∂μh
� 1.87

day

km
(26)

∂σY
∂μh
� 1

2σY

∂σ2Y
∂μh
� 0.86

day

km
(27)

Because the difference between the derivative of the mean and of the
standard deviation is largely greater than zero, a small increase of the
nominal initial altitude is a wise choice for an increase in lifetime.
Indeed, for an arbitrary small variation of the nominal initial altitude
δμH , the lower 1-sigma confidence bound of the perturbed mean
~μY − ~σY is

μ̂Y − ~σY ≈ μY − σY �
�
∂μY
∂μh

����
μh

−
∂σY
∂μh

����
μh

�
|��������������{z��������������}

>0

δμh > μY − σY (28)

Because the PDF of the VOI is nonnormal, there is no point in
generalizing Eq. (28) for larger intervals of confidence. For the
analysis of different intervals of confidence, the CCDF is more

adequate, which indicates the confidence at which the VOI is higher
than a certain value. Figure 20 illustrates the CCDF for the nominal
case andwith a 1%perturbation of μH. Because the perturbed curve is
always greater than the nominal curve, the applied perturbation is
useful to efficiently increase the lifetime. However, this result cannot
be generalized for any δμH, and MC propagation of the perturbed set
of uncertainty sources is mandatory to estimate the CCDF, unless an
adequate labeled PDF is identified to represent the lifetime (e.g., with
the maximum likelihood principle).

VII. Another Test Case: NanoSail-D2 Mission

A second test case, the deorbiting of the NanoSail-D2 spacecraft
developed by NASA [44], is briefly discussed in this section. This
spacecraft is a 4 kg three-unit CubeSat, the objective of which was to
deploy in orbit a 10 m2 solar sail. It was ejected from FASTSAT on
17 January 2011, and it deployed its sail three days later. Reentry
happened on 17 September 2011 (i.e., after a 240 day lifetime).
Targeting the probabilistic assessment of the lifetime of NanoSail,

amethodology similar to the one discussed in the present paper and in
[11] is considered. We note that the attitude of this spacecraft is not
controlled, which leads to a very wide distribution of the cross
section. In addition, the initial orbital altitude is much larger (i.e.,
about 650 km). Because the full TLE data set was not available, the
initial states were characterized according to the TLEmeasured right
after the ejection. Intrinsic accuracy of the TLE was considered to
characterize the covariance of the initial position [45].
The sensitivity analysis revealed that the drag correction factorwas

the only relevant uncertainty in the assessment of the uncertainty in
the lifetime. With Sobol indices around 0.6 for both the daily and the
averagedF10.7, solar activity was found to be the variable responsible
for most of the uncertainty in the drag correction factor. The Sobol
index for the cross-sectional area was 0.08, whereas model error on
the molecular nitrogen drastically dropped with respect to the
QB50 case.
Because the drag correction factor is the dominant source of

uncertainty, it results in a very efficient PCE-based propagation,
because only eight evaluations of theVOIwere necessary for a proper
convergence of the surrogate model. The PDF given by PCE is
compared with that of the full MC propagation in Fig. 21. The error
between the moments of the two distributions are listed in Table 8.
The agreement between the second-order descriptors is very
satisfactory, which gives us further confidence in the proposed
methodology and, in particular, in the reduction strategy. It is
interesting to note that the lifetime of the actual mission (i.e., 240
days) is not far from themean of the computed distribution.However,
the loss of partial information in the definition of the drag correction
factor is responsible for a smoothing of the distribution of the VOI
(Fig. 21), which results in larger discrepancies in the higher order
moments.
Finally, the large variability of the lifetime indicates that a purely

ballistic deorbiting like in the NanoSail case is not an effective
technique from the uncertainty point of view, because the adequate
identification of a narrow reentry window is not possible. This result
is supported by facts: the reentry of NanoSail was announced to
happen on 29November (i.e., 73 days after the experienced one; 30%
error). The fact that the Sobol index of the cross section is relatively
modest compared with the one of the solar weather proxies suggests
that the variation in lifetime is more due to the long nominal mission

Table 7 Sobol indices for the
QB50 case studya

Variable Units

Drag correction 0.911
Initial altitude 0.022
Launch date 0.084
Initial RAAN 0.000

aThese dimensionless indices indicate the

contribution of each uncertainty source in the

generation of the uncertainty in the orbital

lifetime.

0 50 100 150 200 250 300 350 400 450
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lifetime [day]

C
C

D
F

 [ 
]

 

 
Nominal
Perturbed

Fig. 20 CCDF of the orbital lifetime in nominal conditions and with a
1% perturbation on the nominal initial altitude.
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Fig. 21 PDForbital lifetime ofNanoSail-D2.MCpropagation of the full
set of uncertainties against PCE of the reduced set.

Table 8 Moments of the lifetime of NanoSail-D2a

Reduced set
(PCE), day

All variables
(MC), day Error, %

Mean 212.4 217.0 −2.1
Standard deviation 197.9 206.2 −4.0��������
M3

3
p

294.5 325.7 −9.6��������
M4

4
p

442.3 517.9 −14.6

aError between the MC propagation with full set of uncertainty

sources against PCE with the reduced set.
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lifetime, making it subject to large variations in the atmospheric
environment, rather than to the sail itself. For this reason, similar
results may be encountered for more traditional spacecraft with a
similar nominal remaining lifetime.
Finally, we point out that this result depends on the particular

mission window considered, which is limited to a quiet period of the
solar cycle. Active periods are characterized by larger variability and
uncertainty of the solar flux, so that, even if a smaller expected value
of the lifetime occurred, the standard deviation to expected value ratio
might also have been larger.

VIII. Conclusions

The focus of this paper was on propagation and sensitivity analysis
of the uncertainties affecting the lifetime of an LEO object, whose
remaining duration is on the order of a fraction of the solar cycle.
Standard Monte Carlo propagation was found to be computationally
intensive and was effectively replaced by polynomial chaos ex-
pansions. Because the cost of this latter method is intimately related
to problem dimension, all the uncertainties affecting the drag force
were condensed into a single random variable, which was termed the
drag correction factor. In both case studies considered, the probability
density function of orbital lifetime was characterized by a large
standard deviation, which confirms that a deterministic assessment of
lifetime should not be attempted. The subsequent sensitivity analysis
revealed that the drag force, and, in particular, the drag correction
factor, is by far the main contributor to lifetime variability.
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