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Orbital lifetime estimation is a problem of great timeliness and importance in astrodynamics. In view of the

stochastic nature of the thermosphere and of the complexity of dragmodeling, any deterministic assessment of orbital

lifetime is likely to be bound to failure. This is why the present paper performs uncertainty quantification of satellite

orbital lifetime estimation. Specifically, this paper focuses on the probabilistic characterization of the dominant

sources of uncertainty inherent to low-altitude satellites. Uncertainties in the initial state of the satellite and in the

atmospheric drag force, as well as uncertainties introduced by modeling limitations associated with atmospheric

density models, are considered. Mathematical statistics methods, in conjunction with mechanical modeling

considerations, are used to infer the probabilistic characterization of these uncertainties from experimental data and

atmospheric density models. This characterization step facilitates the application of uncertainty propagation and

sensitivity analysis methods, which in turn allows gaining insight into the impact that these uncertainties have on the

orbital lifetime. The proposed developments are illustrated using one CubeSat of the QB50 constellation.

Nomenclature

A = surface, m2

Ap = geomagnetic activity index, deg
B = Boltzmann constant, J∕K
Cb = ballistic coefficient, m2∕kg
Cd = drag coefficient
cN = cumulative distribution function of a standard normal

random variable
d = number of parameters of a generic probability density

function
e = orbital eccentricity
F = cumulative distribution function of a random variable
F10.7 = daily solar radio flux, sfu
�F10.7 = 81-day averaged solar radio flux, sfu
f = force per mass unit, N∕kg
g, z = generic vectorial functions
h = spacecraft altitude from the equatorial radius, m
I = support of a random variable
i = orbital inclination, deg
L = likelihood function
m = mass of the spacecraft, kg
mj = molecular mass of the gas species j, g∕mol
n = number of samples
nj = number density of the gas species j, m−3

p = probability density function of a random variable
p = vector of parameters
pN = standard normal distribution
q = quaternion defining the attitude of the spacecraft
r = position in the Earth centered inertial frame, m

R = universal gas constant, J∕molK
s = entropy of a random variable
T = local atmospheric temperature, K
Tw = wall temperature, K
t = time, s
U = uniform random variable defined on [0,1]
v = velocity in the Earth centered inertial frame, m∕s
vej = norm of the ejection velocity, m∕s
vinc = incident velocity, m∕s
vmp;j = most probable thermal velocity of the gas species

j, m∕s
vre = reemitted velocity, m∕s
vTAS = true airspeed of spacecraft, m∕s
W = bulk velocity to most probable thermal velocity ratio
x = generic deterministic variable
X = generic random variable
Z, Ψ = standard Gaussian random variable
α = energy accommodation coefficient
β = bias error of a numerical model
δ = angle of attack, deg
ϵ = roll angle, deg
η = model error of a numerical model (stochastic

variable)
Θ = spherical angle (azimuth) of the ejection velocity, deg
μ = mean value of a random variable
ν = Earth gravitational constant, m3s−2

ρ = atmospheric density, kg∕m3

σ = standard deviation of a random variable
φ = linear shape function
ψk = angle between the normal of the face k and the relative

velocity of the air, deg
ϑ = parameter of a probability density function
ϑ = vector of parameters of a probability density function
χ = spherical angle (declination) of the ejection

velocity, deg
Ω = right ascension of the ascending node, deg
ωe = Earth spin vector, rad∕s

Subscripts and superscripts

d = drag
e = relative to the initial orbital eccentricity
g = gravitational
h = relative to the initial altitude from the equatorial radius
j, k, m = generic indexes
i = relative to the initial orbital inclination
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l = relative to the initial conditions prior to ejection and
launcher accuracy

max = upper bound
min = lower bound
nj = relative to the jth gas species
O = oxygen
pert = perturbation
p = perigee
ref = reference condition
T = relative to the local atmospheric temperature
X = relative to the random variable X
0 = relative to initial conditions

I. Introduction

T HE continuing growth of space debris is a problem of great
concern to the astrodynamics community. Most national

space agencies and the Inter-Agency Space Debris Coordination
Committee now firmly accept a maximum orbital lifetime [1].
Specifically, spacecraft must now be able to deorbit within 25 years
from protected regions, namely from low Earth orbits (LEO) and
geostationary orbits (GEO). Spacecraft most often exploit chemical
propulsion for this purpose, although novel deorbiting strategies,
including electrical propulsion [2], solar sails [3], and tethers [4], are
currently being investigated as well. In other cases, proving through
supporting long-term orbit propagations that the natural orbital decay
of the spacecraft requires less time than the prescribed 25-year limit
may suffice to satisfy the requirement. In this context, the design and
optimization of deorbiting strategies require reliable orbital lifetime
estimation.
Lifetime estimation began with the early space age with the

method developed by Sterne [5], which was based upon analytic
expressions for the rate of change of apogee and perigee. Ladner and
Ragsdale [6] improved this method and through recommendations in
the choice of the most sensitive parameters, they emphasized the
importance of uncertainties. Orbital propagation efficiency was then
improved by Chao and Platt [7] thanks to a novel set of simplified
averaged equations of classical orbital elements. The adequate
treatment of atmospheric density led to renewed interest in lifetime
estimation. For instance, Fraysse et al. [8] described good practices
for lifetime computation of LEO satellites where drag may be
significant and introduced the concept of equivalent solar activity.
However, owing to various experimental and modeling limita-

tions, various parametric uncertainties and modeling errors impede
accurate orbital lifetime estimation. For example, Monte Carlo
simulations performed in the position paper on space debris
mitigation [9] indicated that the orbital lifetime of a spacecraft with an
initial 36; 000 × 250 km orbit can vary between about 8 years (with a
relative frequency of 5%) to about 70 years (with a relative frequency
also of 5%). Oltrogge and Leveque [10] provide another example of
the variability of three different lifetime estimation tools in the
analysis of orbital decay of CubeSats. Variations of the order of 50%
were observed between predicted and observed lifetime.
Dominant sources of parametric uncertainties andmodeling errors

in orbital lifetime estimation include uncertainties in atmospheric
properties, in the initial state of the satellite, and in physical properties
of the satellite. First, although remarkable efforts were performed to
gain insight into the nature of the atmosphere [11–13], a complete and
thorough understanding of the mechanisms that determine the gas
composition, the temperature, and other atmospheric properties has
not been achieved yet; even if further detailed models were available,
their efficient numerical implementation would be prohibitive. In
addition, most atmospheric models available in the literature rely on
the correlation of the density with solar and geomagnetic activity
indicators, which are subject to uncertainties themselves. Next,
uncertainty in the initial state of the satellite may arise either because
the mission design status, e.g., some initial orbital parameters, is not
known yet or because of experimental limitations, e.g., limitations
associated with GPS or two-line elements (TLEs) datasets. Finally,
uncertainties in the physical properties of the satellite may concern
the drag and reflectivity coefficients, the mass, and the geometry.

Although all these uncertainties exist for every mission, their relative
importance is case-dependent.
Although there is a large body of literature concerning lifetime

estimation, uncertainty quantification (UQ) of orbital propagation is
a more recent research topic. By expressing the analytical solution
with a Taylor series expansion and by solving the Fokker–Planck
equation, Park and Scheeres [14] were able to propagate Gaussian
uncertainty in the initial states of a nonlinear deterministic evolution
problem. Nonlinear dynamics propagation resulted in a progressive
distortion of the probability distribution of the states, which became
non-Gaussian. Further work on the propagation of the uncertainty in
the initial states by means of the Fokker–Planck equation was
performed by Giza et al. [15], who were also able to efficiently
propagate uncertainty by considering a simplified drag model.
Analytical propagation of uncertainties in the two-body problemwas
then achieved by Fujimoto et al. [16]. Concerning uncertainty
propagation techniques, Jones et al. introduced the polynomial chaos
expansion (PCE) method in astrodynamics [17,18]. Important issues
in lifetime estimation are summarized by Saleh et al. [19], whereas
Scheeres et al. [20] pointed out the existence of a rigorous and
fundamental limit in squeezing the state vector uncertainty. In
summary, nonlinear and long-period dynamics propagation [21], as
well as severe uncertainty sources, make UQ of orbital lifetime a
difficult problem.
We view probabilistic UQ of orbital lifetime estimation as a three-

step problem. The first step involves using methods from
mathematical statistics in conjunction with mechanical modeling
considerations to characterize the uncertainties involved in the orbital
lifetime estimation problem as one or more random variables. The
second step is to map this probabilistic characterization of inputs
through the orbital propagator into a probabilistic characterization of
the orbital lifetime; this can be achieved in several ways, which
include Monte Carlo simulation [22] and stochastic expansion
methods such as those based on polynomial chaos [23,24]. The third
step involves using the probabilistic model thus obtained to gain
insight into the impact that the input uncertainties have on the orbital
lifetime, for example, by carrying out stochastic sensitivity analyses.
In this paper, we focus on the first step, i.e., the probabilistic
characterization of the dominant sources of uncertainty involved in
the lifetime estimation of low-altitude satellites. Uncertainties in
the initial state of the satellite and in the atmospheric drag force,
as well as uncertainties introduced by modeling limitations
associated with atmospheric density models, are considered. The
proposed probabilistic characterization facilitates the application of
uncertainty propagation and sensitivity analysis methods, which we
postpone to a companion paper [25].
To illustrate the proposedmethodology, the standard two-unit (2U)

CubeSat of the QB50 constellation [26] proposed by the vonKarman
Institute for Fluid Dynamics in Belgium is considered. This case
study is particularly relevant for two reasons. First, the objective of
the constellation is to study in situ the spatial and temporal variations
in the lower thermosphere. The initial circular orbit will have an
altitude of 320 km where atmospheric drag, one of the dominant
uncertainty sources in astrodynamics, is significant. Second, it is a
real-life mission that should be launched in mid-2015; hence, the
results described here can be useful not only to the astrodynamics
community, but also to the CubeSat developers. The simulation
parameters are summarized in Table 1.
The remainder of this paper is organized as follows. Section II

details themodeling assumptions and identifies the dominant sources

Table 1 Nominal parameters for simulations

Variable Value

Initial conditions initial altitude 320 km
eccentricity 0
orbital inclination 79 deg
launch date April 2015

Spacecraft properties mass 2 kg
size 0.2 m × 0.1 m × 0.1 m
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of uncertainty. Section III summarizes two stochastic methods for
uncertainty characterization. Subsequently, the characterization of
the uncertainties in the initial conditions and in the drag force is
examined in Secs. IV and V, respectively. Finally, Sec. VI briefly
discusses the probability density function of the orbital lifetime of a
2U QB50 CubeSat resulting from the propagation of uncertainties
carried out in the companion paper.

II. Modeling Assumptions and Uncertainty
Source Identification

The motion of the center of gravity of a nonpropelled Earth
orbiting spacecraft is governed by Newton’s second law

�r � −
ν

r3
r� fpert�r; _r; t;p; q� (1)

with the following initial conditions

r�t0� � r0; _r�t0� � _r0 (2)

here, r is the spacecraft position vector in an Earth centered inertial
frame (ECI), ν � 3.986 · 1014 m3s−2 is the Earth’s gravitational
constant, r0 and _r0 are the initial position and velocity vectors,
respectively, and fpert is the perturbing force per unit mass, which is a
function of parameters p�t� and of the spacecraft attitude q�t�.
The gravitational constant is known with high accuracy, ν �

3.986 · 1014 m3s−2 � 8 · 105 m3s−2 [27]; hence, it is supposed to be
deterministic in this work. Thus, the uncertainties in the spacecraft
dynamics, and, in particular, in the orbital lifetime, originate from the
initial conditions and the perturbing forces, as shown in Fig. 1. The
main perturbations for a LEO spacecraft are due to the gravity, i.e.,
nonspherical harmonics of the Earth’s gravity field and third-body
disturbances of sun and moon fg to the atmospheric drag fd and to
the solar radiation pressure (SRP) fSRP; hence, fpert ≃ fg�
fd � fSRP. Their respective orders of magnitude depend on the
considered orbit. Figure 2 illustrates the amplitude of these
perturbations for a 2U CubeSat for various LEO altitudes. Minor
perturbing forces include radiation pressure of the Earth albedo,
which is due to the diffuse reflection of the sunlight, relativistic
accelerations, tides, and third-body perturbations of the planets.
Nonetheless, they are at least one order of magnitude smaller than
SRP, so that their influence can be safely neglected for most
applications. Both the Earth’s gravitational attraction and third-body
perturbations are considered as deterministic quantities in this study
because they can be modeled with extremely high accuracy.
Concerning the Earth’s attraction, Fraysse et al. [8] reported that it is
sufficient to include zonal harmonics up to J4 for lifetime estimation.

Special cases may require a more complete modeling of the
perturbing agents. For instance, if sectorial perturbations have very
little influence on long-term propagations in LEO, we note that some
special orbits could require a more detailed modeling of the gravity
field, e.g., it is recommended to include zonal harmonics up to J15 for
orbits with inclination close to 63.4 deg. Lamy et al. propose a survey
of these resonance effects in [28].
Figure 3 provides the numerical evidence that this recommenda-

tion is valid for our QB50 case study. Because of the strong
nonlinearity of this problem, the convergence of the relative error is
not monotonic, especially if zonal-only perturbations are considered.
As a result, the relative error tends to stabilize at a value of about 0.1%
beyond order 4; this error can be safely neglected with respect to
the large uncertainties inherent to orbital lifetime estimation. The
modeling of the perturbing force due to SRP is a challenging
and demanding task. However, SRP can usually be neglected for
low altitudes, as confirmed in Fig. 2, and it is also considered
deterministic in this work. We therefore assume in the context of this
study that only the perturbations due to atmospheric drag play an
important role for UQ of orbital lifetime estimation. Besides the large
magnitude of drag perturbations in LEO, this assumption is
supported by the fact that drag is uncertain in nature and does not
exhibit any relevant compensation throughout one orbit, e.g., it is
responsible for a monotonic decrease of the semimajor axis.

Fig. 1 Schematic representation of UQ of orbital lifetime in LEO. White box: deterministic modeling, gray box: stochastic modeling, black box:

unmodeled dynamics.
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Fig. 2 Order of magnitude of the perturbing forces on a standardQB50
spacecraft.
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The popular Runge–Kutta 8(7) [29] is exploited as a numerical
integrator for orbital propagation. To reduce the computational
burden,we select a relative precision of 10−9, which provides an error
of 10−2% with respect to a precision of 10−13.

III. Stochastic Methods for Uncertainty
Characterization

Within a probabilistic UQ framework, the objective of char-
acterization is to model the sources of uncertainty involved in the
problem under study as one or more random variables X with values
in the support IX. The extension of the methods discussed in this
section to the multivariate case is straightforward, but we preferred
to illustrate the scalar case to ease the notation. This requires that
an adequate probability distribution, or, if X is continuous, its
probability density function (PDF) pX: IX → R� be assigned to
these random variables. The information available for obtaining this
distribution typically consists of one or more of the following
sources. First, various types of experimental data can be available.
Next, there can be mechanical laws that impose constraints on the
values that the random variables may take (for example, mechanical
laws can require that an uncertain atmospheric density be positive);
these constraints act as sources of information because the inferred
probability distribution must assign a vanishing probability to those
values of the random variables that do not satisfy these constraints.
Finally, various other sources can contribute information, for
example, in the form of nominal values.
Methods from mathematical statistics are most often used in

conjunction with mechanical modeling considerations to infer a
characterization of uncertainties from the available information.
Providing an exhaustive account of all available methods from
mathematical statistics is beyond the scope of this paper; instead, we
confine ourselves to a succinct presentation of two fundamental
methods.
It is common practice in statistics to use uppercase letters to

denote random variables; by contrast, lowercase letters indicate
deterministic variables.We use this system of notation in this section,
which focuses on the mathematical aspects. However, this rule is not
respected elsewhere in the paper, when dealing with physical
variables.

A. Maximum Likelihood Estimation

The firstmethod involves selecting an adequate labeled probability
distribution, followed by inferring suitable values for its parameters
from data, for example, by using the method of maximum likelihood
(MLE). By labeled probability distribution we mean Gaussian,
uniform, and other probability distributions given in catalogs in the
literature. Consider a set ofn samples x1; : : : ; xn of a randomvariable
X and a PDFpX�x; ϑ1; : : : ; ϑd�, where ϑ1; : : : ; ϑd are the parameters
defining the distribution, e.g., themean and the standard deviation for
the normal distribution. According to the maximum likelihood
method, the d parameters of the PDF have to be chosen such that they
are consistent, e.g., they have a positive standard deviation, and
maximize the likelihood function

L�ϑ1; : : : ; ϑd� �
Yn
j�1

pX�xj; ϑ1; : : : ; ϑd� (3)

In practice, the logarithm of the likelihood function is generally
considered as the objective function in order to reduce numerical
errors due to the product of small numbers.
Care should be taken to select a labeled PDF that is consistent with

the physical constraints; for example, the Gaussian probability
distribution should not be selected to characterize an uncertain
atmospheric density because its support is the whole real line and its
selection would thus lead to the assignment of a nonvanishing
probability to negative values.

B. Maximum Entropy

If no adequate labeled probability distribution is available, the
possibility of constructing a new adequate distribution can be
considered, using, for example, the maximum entropy principle
[30]. The maximum entropy principle states that the probability
distribution with the largest entropy should be selected from among
those that are consistent with the available information. The entropy
of a continuous random variableXwith PDF pX�x� and support IX is
defined as

sX � −
Z
IX

pX�x� log pX�x� dx (4)

For most of the sources of uncertainty that we characterize using the
principle of maximum entropy, the probability distribution is
obtained as the one that maximizes entropy

max
pX

sX�pX� (5)

from among those that are consistent with available information of
the following formZ

IX

pX�x� dx − 1 � 0;

Z
IX

xpX�x� dx − μX � 0;

Z
IX

�x − μX�2pX�x� dx − σ2X � 0

(6)

here IX � �xmin; xmax�, μX and σX are a given support, a given mean,
and a given standard deviation, respectively. The exact analytical
solution to this constrained optimization problem can be obtained
using Lagrange multipliers, and it is the truncated Gaussian
distribution with support IX and with second-order statistical
descriptors μX and σX. We stress that these are the second-order
descriptors of the actual PDF, i.e., the truncated normal distribution,
and not of the associated unbounded normal distribution

pX�x; ~μX; ~σX; xmin; xmax� �
1

~σX

pN

�
x− ~μX
~σX

�

cN

�
xmax− ~μX

~σX

�
− cN

�
xmin− ~μX

~σX

� (7)

Here, pN , cN , ~μX, and ~σX are the PDF and the cumulative distribution
function (CDF) of the standard Gaussian distribution and the
parameters of the associated unbounded Gaussian distribution,
respectively. Here, ~μX and ~σX, are obtained by solving

~μX � �pX�xmin� − pX�xmax�� ~σ2 � μX;

�1� �xmin − ~μX�pX�xmin� − �xmax − ~μX�pX�xmax�
− �pX�xmin� − pX�xmax��2 ~σ2X � ~σ2X � σ2X

(8)

where the dependency of pX on its parameters are omitted for the
sake of conciseness.
For more general applications of the maximum entropy principle,

the numerical solution of the problem is an alternative. An interesting
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Fig. 3 Error on the orbital lifetime in the nominal case in function of the
order of the gravity model.
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approach that is particularly suitable for high-dimensional problems
was proposed by Soize [31]. A simple numerical implementation is
proposed in the Appendix and it is illustrated for the characterization
of the initial altitude.

IV. Uncertainty Characterization of Initial Conditions

As discussed in Sec. II, the two main sources of uncertainties
considered in the present study are those in the initial states and
atmospheric drag. Uncertainty characterization of the initial states is
strongly related to the current status of the mission. Two scenarios
may occur.
The spacecraft is in orbit. The uncertainty in the initial states

depends onmeasured data, whereas the initial epoch can generally be
considered as deterministic. TLEs and GPS are two common
measurement techniques. The former is responsible for wider
dispersion than the latter, but it is often the only option available for
debris and nanosatellites. Relevant work on TLEs uncertainty was
performed by Vallado [32] and Flohrer et al. [33]. Kahr et al. [34]
estimated the uncertainty in the TLE’s positioning of nano and
microsatellites by means of GPS data. In the same paper, it is shown
that the exploitation of intermittent GPS data, in conjunction with
TLEs, can enhance the accuracy of few-day predictions by one order
of magnitude.
The mission is still in a design phase, which is the scenario studied

in this paper. In this case, uncertainty in the initial states is related to
the launch vehicle injection accuracy and to the deployment strategy.
The set of nominal initial conditions may also not be fully defined,
e.g., the initial right ascension of the ascending node (RAAN)may be
unknown.
For the QB50 network, the reference initial conditions prior to the

deployment are href0;l � 320 km, iref0;l � 79 deg, and eref0;l � 0 [26],
where href0;l , i

ref
0;l , and e

ref
0;l are the initial altitude above the equatorial

radius, the orbital inclination, and the eccentricity, respectively.
Keplerian elements are used for orbit parametrization because the
true anomaly is the only fast variable in this parameter set. Mean
elements, instead of osculating elements, are considered to avoid an
important sensitivity of the lifetimewith respect to the initial anomaly
resulting from short-period variations of the semimajor axis. Doing
so, we can remove the initial anomaly from the uncertainty sources.
Because the reference orbit is circular, the characterization of the
initial argument of perigee is not relevant either. As no information is
available yet, the initial RAAN is modeled as an aleatory variable
with uniform uncertainty between 0 and 360 deg, in accordance with
the maximum entropy principle.
The uncertainty in h0;l, i0;l, and e0;l depends on the accuracy of the

launcher. Standard deviations of the Keplerian elements consistent
with the performance of current launchers used for LEO are con-
sidered, namely, σh � 2.5 km, σi � 0.03 deg, and σe � 3.5 · 10−4.
These three variables are supposed to be independent because no
information about their correlation is usually provided, and
univariate PDFs are constructed in the following.
The initial altitude of the spacecraft is a nonnegative random

variable, so that its support isR�. Themean and standard deviation of
the PDF are constrained to be equal to the nominal values href0;l and σh,

respectively. Thus, according to the maximum entropy principle, h0;l
is modeled as a truncated Gaussian distribution with supportR� and
with the imposed second-order descriptors, as shown in Fig. 4a. A
similar problem is solved for the initial orbital eccentricity (Fig. 4b)
and inclination. For these variables, the support is [0,1] and R,
respectively.
The initial date t0 is the last parameter necessary to fully define the

initial state prior to the deployment of the constellation. The launch is
foreseen forApril 2015 [26].However, because of the frequent delays
in space missions, t0 is modeled as a uniform random variable
between April 1, 2015 and April 1, 2016. Awider launch window is
not necessary, because the long-term variations in the atmospheric
models are not considered herein.
A second source of uncertainty for the initial conditions is the

deployment of the QB50 constellation. Even though the exact
strategy for deployment is still unknown, the nanosatellites will be
ejected thanks to a spring-loaded pusher plate with an ejection
velocity between 1 and 1.5 ms−1. Though negligible with respect to
the orbital speed, the ejection velocity may be responsible for
uncertainties of the order of launcher accuracy. For example, an
ejection velocity in the flight direction leads to an increment of the
semimajor axis of 2.6 km, which is larger than σh. Therefore, the
ejection velocity is modeled as a vector with norm vej and direction
uniformly distributed in �1.0; 1.5� ms−1 and in the space, respectively.
Parameterizing the direction with azimuth Θ and elevation χ yields

pΘ;χ�Θ; χ� �
1

360

cos χ

2
�deg−2� (9)

Here, Θ and χ are defined in �0; 360� deg and �−90; 90� deg,
respectively. This distribution is uniform over the radian sphere and it
is obtained by considering that the infinitesimal surface with these
parameters is given by cos χdΘdχ.

V. Uncertainty Characterization of Atmospheric Drag

The second main source of uncertainty considered in this paper is
the atmospheric drag. The drag force per unit of mass is computed
using the empirical equation

fd � −
1

2
CbρvTASvTAS (10)

where Cb, ρ, vTAS, and vTAS are the ballistic coefficient, the
atmospheric density, the true airspeed (TAS), and its modulus,
respectively. According to Vallado and Finkleman [35], all the terms
involved in Eq. (10) and the equation itself are affected by
uncertainties.
In this paper, the TAS is calculated using the assumption of a

corotating atmosphere

vTAS � _r − ωE × r (11)

where ωE is the Earth’s angular velocity. This means that we do not
consider the upper-thermosphere winds, which can be of the order of
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Fig. 4 PDF of the initial altitude and eccentricity prior to deployment (maximum entropy principle).
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several hundreds of meters per second [36–38]. However, the basic
dynamics of the wind involve a movement from daylight to
nighttime, which approximately results in a compensation of their
effects throughout one orbit. Relevant work on the determination
of these winds from experimental data is performed in [39], and
different models are available in the literature [40,41]. The
thermospheric cooling trend [42] is also ignored herein.
We stress that the drag force is just one component of the

aerodynamic force. Lift and side forces are also considered in our
simulations, although their orders of magnitude and influence on
lifetime are much smaller.

A. Atmospheric Model

The dominant uncertainty source in the drag estimation is the
atmospheric density. One of the most advanced atmospheric models
is NRLMSISE-00, which is a global, i.e., from ground to exosphere,
empirical model developed by the U.S. Naval Research Laboratory.
The model is calibrated by means of mass spectrometer, incoherent
scatter, and accelerometer measurements. Two important inputs of
the model are the daily and 81-day averaged radio flux indices, F10.7

and �F10.7. The 3-hour geomagnetic index ap is another input of the
model, but, for long-period propagations, its daily average Ap can
be exploited. The other inputs required by NRLMSISE-00 are the
position of the spacecraft and the Julian date (JD), which are
computed throughout the numerical integration of the equations
of motion. Although they depend on random variables, e.g.,
JD�t� � t� t0, they are not primary sources of uncertainty. Given
these inputs, NRLMSISE-00 is able to estimate the number densities
of helium, atomic and molecular oxygen, atomic and molecular
nitrogen, argon, and hydrogen, together with the local atmospheric
temperature. The total mass density is deduced directly from these
outputs.

1. Solar and Geomagnetic Proxies

Correlation between gas density and space weather proxies, e.g.,
solar radio flux and geomagnetic index, is crucial in the development
of an atmospheric model. The sensitivity of the orbital lifetime with
respect to these variables is very substantial [43]. This section focuses
on the characterization of the solar and geomagnetic random
variables. Different approaches were proposed in the literature to
address this important problem. Among them, Ashrafi et al. [44]
developed a prediction tool based on chaos theory, and proved that it
is more suitable than statistical approaches for short-term prediction.
Watari [45] and Loskutovet al. [46] introducedmethodologies for the
identification of periodic and chaotic components and for solar
activity forecasting based on singular spectrum analysis. To generate
realizations of realistic future solar flux trajectories (geomagnetic
activity was not considered), Woodburn and Lynch [47] proposed to
superpose to the trend of the trajectory a scalar exponential Gauss–
Markov sequence.
The consideration of time-varying series complicates the

uncertainty propagation because the problem belongs to the family
of stochastic differential equations [48]. As an alternative for use in
orbital lifetime estimation, Fraysse et al. introduced the concept of
constant equivalent solar activity [8]. The idea is to consider a
constant solar flux and geomagnetic index throughout the pro-
pagation. If the satellite has a 25-year lifetime for the chosen constant
equivalent solar activity, then its lifetime for possible future solar
activities will also be 25 years, with a probability of 50%. The
equivalent solar flux is a function of the ballistic coefficientCb and of
the altitude of the apogee hp, whereas the daily geomagnetic index is
set to 15. This technique is particularly appropriate for very long
propagations in the order of one or several solar cycles.
In thiswork, we propose another approach to the problem. It is also

based upon the idea of using an effective solar activity, but it is more
suitable for propagations of the order of a fraction of the solar cycle.
Instead of a deterministic effective solar activity, we consider a
random effective solar activity. The main underlying assumption is
that neglecting variations of the spaceweather proxies with respect to
their averaged value in time, does not yield drastic variations of the

orbital lifetime. To verify this conjecture, we performed two sets of
simulations where the solar activity is modeled by means of 1) time
series and 2) its temporal average. Then, we compared the resulting
orbital lifetime in the two cases, which, for the sake of clarity,we refer
to as true and approximated lifetime, respectively. Specifically, we
exploited the stochastic process proposed by Woodburn and Lynch
[47] to generate several realizations of the solar activity, and we
computed statistics of the difference between the realizations of the
true and the approximated lifetime. The schematic representation of
this process is illustrated in Fig. 5a. The resulting distribution has a
mean value of 0.5 day and a standard deviation of 2.4 days. Finally,
we compared this result with the difference between the nominal and
the realizations of the true lifetime. The nominal lifetime is computed
with the trend of the solar activity according to the long term
Schatten’s predictions and it is deterministic. This nominal trend
is the deterministic component of the time series generated by
Woodburn and Lynch [47]. The standard deviation of this difference
is one order ofmagnitude larger than the one of the error between true
and approximated lifetime, as illustrated in Fig. 5b. Hence, these
results support that F10.7, �F10.7, and Ap can be considered in the
context of this study as three different random variables that are
constant during a single simulation. Their characterization is
discussed in the following.
Here, F10.7, �F10.7, and AP are characterized using the data

measured over the last 50 years provided by the CelesTrak database
[49]. Bearing in mind that QB50 has a lifetime of a few months and
that the launch window is [April 2015, April 2016], the portion of the
solar cycle between [October 2014, October 2016] is considered to
be conservative. Thus, only the data of the previous cycles that
correspond to the same portion of the solar cycle are exploited for
uncertainty characterization. Because of the important variations in
correspondence of the solar maxima and of the variability in the
period of the solar activity, the identification of the selected dataset is
achieved by identifying the minima of the solar flux curve smoothed
by a moving-average filter of 2-year width. These minima are then
used to define a dimensionless position between two consecutive
minima of the solar cycle. This process is illustrated for the daily solar
flux in Fig. 6; a similar process can be carried out for �F10.7 and Ap.
The data in the shaded windows are retained for uncertainty
characterization of the solar weather proxies.
Figures 7 and 8 illustrate the correlations between the retained

datasets of the three proxies and their marginal distributions
(histograms in Fig. 8), respectively. The statisticalmodelmust be able
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a) Schematic representation of the computation of the error when 
mean value of each realization is considered

b) Probability distribution of the error

Fig. 5 Comparison between the PDF of the error between true and
approximated orbital lifetime (solid curve), and the PDF of the error
between true and nominal lifetime (dashed curve).
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to represent both the marginal distributions of and the correlation
between the three variables. For this purpose,F10.7, �F10.7, and AP are
modeled by the following Gaussian copula [50]

Z1

Z2

Z3

9=
;�!

chol�C�

8>>>><
>>>>:
Ξ1 �!

cN�ξ1�
U1 �!

F−1
F10.7
�u1;ϑF10.7�

F10.7

Ξ2 �!
cN�ξ2�

U2 �!
F−1

�F10.7
�u2;ϑ �F10.7

�
�F10.7

Ξ3 �!
cN�ξ3�

U3 �!
F−1
Ap
�u3;ϑAp�

Ap

(12)

Here, Z1, Z2, and Z3 are independent standard Gaussian random
variables, Ξ1, Ξ2, and Ξ3 are correlated standard Gaussian random
variables, and chol�C� is the Cholesky decomposition of their
correlation matrix. It yields �Ξ1;Ξ2;Ξ3� � �Z1; Z2; Z3�chol�C�, U1,
U2, and U3 are correlated uniform random variables with support
[0,1],F �·� is the cumulative distribution functionCDFof themarginal
distribution that is chosen to fit the model, and ϑ�·� is the vector of
parameters defining the distribution.
The identification of the parameters of the statistical model is

achieved bymeans of theMLE, as described in Sec. III.A. The design
variables of the MLE problem are the parameters of the marginal
PDFs and the three off-diagonal elements of the correlation matrix

pF10.7; �F10.7;Ap

� pF10.7; �F10.7;Ap
�F10.7; �F10.7; Ap;ϑF10.7

;ϑ �F10.7
;ϑAp ; C1;2; C2;3; C3;1�

(13)

Physical constraints impose that the chosen distributions of the solar
flux indices are defined on R�, whereas the support of the
geomagnetic indicator is [0,400].
Several labeled PDFs and nonparametric histogram distributions

were tested to model the marginal PDFs. On the one hand, labeled
distributions are interesting because the resulting model can be tuned
with a very limited number of parameters. On the other hand,
histogram distributions are able to represent, with the highest fidelity,
the statistical content of the dataset, but several parameters are
necessary to tune the model, i.e., the heights of each bin.

Among the different labeled distributions we tested, beta
distributions generated the maximum likelihood. However, the
histogram model performed better. This result is illustrated in Fig. 8,
which presents the beta and histogram marginal PDFs for the three
variables. If the distributions ofF10.7 andAp appear to be sufficiently
well fitted by the beta distributions, this is not the case for �F10.7, and
histogram distributions for the marginal PDFs are retained.

2. Model Uncertainty

Targeting practicality and efficient numerical computation, the
most popular atmosphericmodels exploit a limited number of proxies
to take the correlation between density and stochastic processes into
account. This is why the uncertainty characterization of the density
should also consider the uncertainty related to the discrepancy of the
model with respect to reality. For instance, Scholz et al. compared
the atmospheric densities given by different models including
NRLMSISE-00, DTM-2009, JB-2008, and GITM [51]. They
observed deviations in the order of 50% considering the same
environmental conditions. In addition to the discrepancies among
different models, Pardini et al. [52], Bowman and Moe [53], and
Bowman and Hrncir [54] studied the biases of different models by
comparing physical and fitted drag coefficients. Overestimation of
the density at low altitudewas observed for all themodels, with peaks
of the order of 20%. The oversimplified physical drag modeling
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exploited for the tuning of old models and the absence of long-
term thermospheric cooling are responsible for this systematic
overestimation.
To cope with model uncertainty of NRLMSISE-00, the work of

Picone et al. [55] is exploited in this paper. They performed a
statistical analysis between the NRLMSISE-00 model and
experimental data and tabulated the biases and standard deviations
of the gas composition and temperature for different ranges of
altitudes, for in situ and ground-based measurements, and for quiet
(Ap ≤ 10), active (Ap ≥ 50), and all geomagnetic conditions. Biases
for number density of gas species nj and for the temperature T are
defined as

β�k�nj � exp

�
E

�
log

n�data;k�j

n�model�
j

��
− 1 (14)

β�k�T � E

�
T�data;k� − T�model�

�
(15)

respectively. Superscripts model and data correspond to the outputs
of the NRLMSISE-00 model and experimental data, respectively.
Here, E�•� denotes the expectation operator with respect to the
different measurements within a single dataset, k. The corresponding
standard deviations are

σ�k�nj �

���������������������������������������������������������������������
E

�
log2

n�data;k�j

n�model�
j

�
− log2�β�k�nj � 1�

vuut (16)

σ�k�T �

����������������������������������������������������������������������
E

��
T�data;k� − T�model�

�
2
�
− β�k�2T

s
(17)

In what follows, the measurements for all levels of geomagnetic
activity in the altitude range �200; 400� km are considered. This is
where most of the lifetime will be spent in our test case. The residual
lifetime below 200 km is in the order of one day. To account for this
variability, we define random variables, denoted ηnj and ηT , for each
of the outputs of NRLMSISE-00 such that the corrected atmospheric
properties are given by

nj � n�model�
j exp�ηnj � (18)

T � T�model� � ηT (19)

These random variables are considered constant throughout a single
orbit propagation. They are characterized using the maximum
entropy principle in the following. Because the available information
is given in terms of the bias and standard deviation and because their
support is R, the random variables ηnj are characterized by a normal
distribution with second-order descriptors

μnj � E

�
log

�
1� β�k�nj

��
(20)

σnj �

�����������������������������������������������
E

�
σ�k�2nj � μ�k�2nj

�
− μ2nj

s
(21)

here the expectation operator is with respect to the different datasets.
For the random variable ηT , nonnegativity of the temperatures

must be enforced, i.e., IηT � �−T;∞�. The resulting distribution
depends on the temperature T and no feasible solution exists for
T < −βT , βT being themeanvalue of β�k�T across the different datasets.
In practice, however, this temperature range is not physically
meaningful; it is never reached using the NRLMSISE-00model. The
resulting distribution is a truncated Gaussian with left bound equal to
−T and second-order descriptors βT and σT . We note that the
distributions converge to the unbounded normal distribution for
T ≫ −βT � 3σT , as illustrated in Fig. 9.

The obtained second-order statistical descriptors of ηnj and ηT are
listed in Table 2.

B. Ballistic Coefficient

The computation of the ballistic coefficient

Cb �
CdAref

m
(22)

where Cd, Aref , and m are the dimensionless drag coefficient, the
reference surface, and the mass of the spacecraft, respectively, is a
very challenging and important problem for LEO propagation. The
drag coefficient is itself a function of the atmospheric conditions,
i.e., gas composition and external temperature, of the physical
properties of the spacecraft, i.e., the mass and geometry, of its
attitude, of the wall temperature, and of the gas–surface interaction.
Two complementary approaches exist for the determination of

the drag coefficient. The first consists of its computation from
observation of the orbital dynamics of the spacecraft, and it is referred
to as fitted drag coefficient. This method does not require a physical
modeling of the aerodynamic force, but it just assumes an underlying
atmospheric model. The result is a coefficient that is consistent with
the observed dynamics and that rectifies the bias of the atmospheric
model. However, fitted coefficients can be computed only after the
launch. The second approach consists of estimating aerodynamic
coefficients by means of physical models. This method does not
require an atmospheric model and it is appropriate for prelaunch
analyses. However, the resulting coefficient can become biased
with respect to observations. In this paper, the second approach is
considered.
A large body of literature on the determination of physical drag

coefficients is available, see [56,57]. For complex satellite
geometries, direct simulation Monte Carlo (DSMC), which uses
probabilisticMonte Carlo simulations to solveBoltzmann’s equation
for finite Knudsen number fluid flows, is arguably the only way of
computing this coefficient. However, this technique is extremely
computationally intensive and does not lend itself to UQ. For simple
geometries such as a CubeSat, semi-empirical analytic methods
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Fig. 9 PDFof themodel correction factor of the temperature in function
of the external temperature (maximum entropy principle).

Table 2 Global biases and standard deviations of
the model correction factors of the outputs of

NRLMSISE-00 for all levels of geomagnetic activity

and an altitude range of �200;400� km

Output Mean Std

Temperature, K −27.9 121.2
Helium, % 8.0 34.7
Total oxygen, % 1.6 25.4
Molecular nitrogen, % −1.1 35.9
Argon, % 18.6 52.0
Hydrogen, % 4.0 31.4
Atomic nitrogen, % −15.7 53.0
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relying on the decomposition into elementary panels provide an
accurate and computationally effective alternative. The semi-analytic
method considered in this work is based upon the research of
Sentman [58] and Cook [59] and upon the more recent contributions
of Moe and Moe [60], Sutton [61], Fuller and Tolson [62], and
Pilinski et al. [63]. The method is efficiently summarized in [39].
Consider a one-sided elementary panel, say the kth spacecraft

panel, oriented with an angle ψk between the bulk velocity of the
flow, v, and its normal, and provided with surface Ak. Given the ratio
of the bulk velocity to the most probable thermal velocity of the jth
gas species

Wj �
v

vmp;j

� v
�
2
BT

mj

�−1∕2
(23)

where B andmj are Boltzmann’s constant and the molecular mass of
the jth species, respectively, the dimensionless drag coefficient is
provided by Sentman’s formula

C�k;j�d �
�
Pk;j���
π
p � cos ψk

�
1� 1

2W2
j

�
Zk;j

� cos ψk
2

vre
vinc

� ���
π
p

Zk;j cos ψk� Pk;j
��

Ak
Aref

�24�

with

Pk;j �
exp�−W2

j cos
2 ψk�

Sj

Zk;j � 1� erf�Wj cos ψk�

vre
vinc
�

��������������������������������������������������
1

2

�
1� α

�
4RTw
v2

− 1

��s
(25)

where vre, vinc,R, Tw, and α are the velocity of the reemitted particles
and of the incoming particles, the specific gas constant, the spacecraft
wall temperature, and the energy flux accommodation coefficient,
respectively. This latter coefficient is an indicator of the gas–surface
interaction. It determines whether the reflected particles retain their
mean kinetic energy (for α � 0) or they acquire the spacecraft wall
temperature Tw (for α � 1) [39]. The numerical simulations we
carried out pointed out that the term 4RTwv

−2 is very small with
respect to 1. We therefore consider it as deterministic with
Tw � 300 K. For the energy accomodation coefficient, to our
knowledge, data for its stochastic characterization are not available,
and we model it as α � 5.10−7nOT�1� 10−7nOT�−1, as suggested
by Pilinski et al. [64].
Summing up the contributions of the panels with a positive

contribution to the drag and of the different gas species, Eq. (22) is
recast into

Cb �
Aref

m

X
k;j

�
nj
ntot

C�k;j�d

�
(26)

This equation was used in our orbital propagator to compute the
ballistic coefficient at every time step. The main contribution to
uncertainty depends on the outputs of the atmospheric model, which
were already characterized in the previous section. Another
contribution is spacecraft attitude, which determines the angles ψk.
The requirements for a standard QB50 spacecraft impose that the
angle δ between the CubeSat’s long axis and the velocity be smaller
than 5 degwith 3 − σ confidence [65]. There is no requirement on the
roll angle ϵ. According to the maximum entropy principle, the
attitude angles δ and ϵ are modeled as a Gaussian random variable
with zero mean and a standard deviation of 5∕3 deg, and a uniform
random variable with values in �0; 360� deg, respectively. We
emphasize that this analysis does not account for the commissioning,
which in the case of QB50 is required to be within the first two

orbiting days. For other spacecraft, commissioningmight last several
weeks, especially for nanosatellites with limited attitude control.
During commissioning, the spacecraft is tumbling and considering
this phase would require six degree-of-freedom propagation and the
characterization of the initial angular rates, which is beyond the scope
of this paper.
We note that the results of the discussed analytic method were

compared with full-blown DSMC simulations performed at the von
Karman Institute for Fluid Dynamics. Table 3 shows that errors in the
order of 1% were achieved, thus validating our approach. Another
interesting finding from this table is that the ballistic coefficient is
indeed insensitive with respect to wall temperature.

VI. Probability Density Function of Orbital Lifetime

Tables 4 and 5 presents an overview of our characterization of the
uncertainty sources affecting the orbital lifetime of the standard
QB50 satellite in our study. As already mentioned, we postpone to a

Table 3 Errors between the analytic and DSMC-based numerical
predictions for the ballistic coefficienta

Altitude,
km

Angle of
attack, deg

Wall
temperature, K

Analytical,Cb
[m2∕kg]

Relative error,
%

120 0.00 273.15 1.21e − 02 0.36
120 0.00 298.15 1.21e − 02 0.38
120 0.00 323.15 1.21e − 02 0.38
120 5.00 273.15 1.34e − 02 1.34
120 5.00 298.15 1.34e − 02 1.33
120 5.00 323.15 1.34e − 02 1.34
120 10.00 273.15 1.51e − 02 0.89
120 10.00 298.15 1.51e − 02 0.86
120 10.00 323.15 1.51e − 02 0.85
120 15.00 273.15 1.69e − 02 1.10
120 15.00 298.15 1.69e − 02 1.08
120 15.00 323.15 1.69e − 02 1.05
200 0.00 273.15 1.33e − 02 -0.03
200 0.00 298.15 1.34e − 02 -0.02
200 0.00 323.15 1.34e − 02 -0.02
200 5.00 273.15 1.46e − 02 3.40
200 5.00 298.15 1.47e − 02 3.39
200 5.00 323.15 1.47e − 02 3.38
200 10.00 273.15 1.59e − 02 0.66
200 10.00 298.15 1.59e − 02 0.66
200 10.00 323.15 1.60e − 02 0.65
200 15.00 273.15 1.76e − 02 0.03
200 15.00 298.15 1.76e − 02 0.04
200 15.00 323.15 1.76e − 02 0.04
280 0.00 273.15 1.38e − 02 0.01
280 0.00 298.15 1.38e − 02 0.01
280 0.00 323.15 1.38e − 02 -0.01
280 5.00 273.15 1.51e − 02 4.11
280 5.00 298.15 1.51e − 02 4.10
280 5.00 323.15 1.52e − 02 4.09
280 10.00 273.15 1.63e − 02 1.22
280 10.00 298.15 1.63e − 02 1.21
280 10.00 323.15 1.63e − 02 1.22
280 15.00 273.15 1.79e − 02 0.16
280 15.00 298.15 1.79e − 02 0.16
280 15.00 323.15 1.79e − 02 0.16
350 0.00 273.15 1.40e − 02 −0.02
350 0.00 298.15 1.40e − 02 -0.01
350 0.00 323.15 1.41e − 02 −0.01
350 5.00 273.15 1.54e − 02 4.43
350 5.00 298.15 1.54e − 02 4.40
350 5.00 323.15 1.54e − 02 4.41
350 10.00 273.15 1.65e − 02 1.50
350 10.00 298.15 1.65e − 02 1.49
350 10.00 323.15 1.65e − 02 1.49
350 15.00 273.15 1.80e − 02 0.20
350 15.00 298.15 1.80e − 02 0.20
350 15.00 323.15 1.81e − 02 0.21

aFull accommodation of the energy is considered for both the analytical and the

numerical approaches.
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companion paper [25] the propagation of these uncertainties to the
orbital lifetime. For completeness, Fig. 10 depicts the PDF obtained
in [25] using Monte Carlo simulation. We found a random orbital
lifetime with a mean value of 84 days and a standard deviation of 38
days, thus reflecting substantial, but expected, uncertainty. In
addition, the lifetime can be as short as 14 days and as long as 347
days depending on the sample considered. These results are clearly of
great significance both for mission designers and satellite operators.
Because lifetime has a large standard deviation, a well-converged

Monte Carlo propagation is expensive. This is why stochastic
collocation techniques are also considered in [25] for uncertainty
propagation.

VII. Conclusions

The present study performed a probabilistic characterization of the
dominant sources of uncertainty involved in the lifetime estimation of

low-altitude satellites. The developments were illustrated using one
CubeSat of the QB50 constellation. Uncertainties in the initial state
of the satellite and in the atmospheric drag force, as well as
uncertainties that may be introduced by atmospheric density models,
were considered. Future improvements of the methodology could
consider thermospherical winds, the correlation of the atmospheric
temperature with solar activity, and the characterization of the initial
states measures through TLEs or GPS data. Provided that sufficient
information is available, the methodology could also be extended
to other quantities of interest, such as, the SRP. The proposed
characterization of the space weather proxies is only appropriate for
medium-length propagations, where the mission window can be
identified within a fraction of the solar cycle. The extension to very
long predictions could be investigated through the use of the
equivalent solar activity.
The proposed probabilistic characterization facilitates the applica-

tion of uncertainty propagation and sensitivity analysis methods to
allow insight to be gained into the impact that these uncertainties have
on the orbital lifetime, aswill be described in a companion paper [25].

Appendix: Numerical Implementation
of the Maximum Entropy Principle

In this Appendix, a numerical implementation of the principle
based on piecewise linear shape functions is carried out. The support
IX � �xmin; xmax� is divided intoM uniform intervals of width Δx �
xmax−xmin

M with nodes x0; x1; : : : ; xM. If either xmin or xmax is
unbounded, a finite xmin or xmax should be selected such the PDF
value at this modified bound is practically zero.
The generic PDF is constructed using linear shape functions φi�x�

pX�x� �
XM
j�0

φj�x�ϑj (A1)

where ϑj is nonnegative and represents the evaluation of the PDF at
node xj, whereas φj is such that

φ0�x� �
(
x1−x
Δx if x0 ≤ x < x1
0 otherwise

φj�x� �

8>>><
>>>:

x−xj−1
Δx if xj−1 ≤ x < xj

xj�1−x
Δx if xj ≤ x < xj�1
0 otherwise

for j � 1; : : : ;M − 1

φM�x� �
(
x−xM−1

Δx if xM−1 ≤ x ≤ xM
0 otherwise

(A2)

According to Eq. (4), the entropy of the synthesized PDF is

SX � −
Δx2

4

XM
j�1

SX;j (A3)

where

SX;j �

8>><
>>:

0 if ϑj � ϑj−1 � 0

2ϑj�3 log�ϑjΔx� − 1� if ϑj � ϑj−1
ϑ2j �2 log�ϑjΔx�−1�−ϑ2j−1�2 log�ϑj−1Δx�−1�

ϑj−ϑj−1
otherwise

(A4)

Equations (5) and (6) are therefore recast into

max
ϑ0; : : : ;ϑM

SX�ϑ0; : : : ;ϑM� s:t: (A5)

Table 4 Summary of uncertainty characterization

Variable Symbol Units Stochastic modeling

Launch date t0 day uniform in [1/04/2015, 1/04/
2016].

Initial altitude (prior to
injection)

h0;l km truncated Gaussian �0;�∞�,
320 km mean, 2.5 km std

Initial inclination
(prior to injection)

i0;l deg normal with 89 deg mean and
0.03 deg std

Initial eccentricity
(prior to injection)

e0;l – truncated Gaussian �0;�∞�, 0
mean, 3.5 · 10−4 std

Initial RAAN (prior to
injection)

Ω0;l deg uniform in �0; 360� deg

Ejection velocity
(norm)

vej m∕s uniform in �1; 1.5� ms−1

Ejection velocity
(azimuth)

Θ deg uniform in �0; 360� deg

Ejection velocity
(elevation)

χ deg cosine distribution in
�−90; 90� deg

Daily solar activity F10.7 sfu histogram distribution (Fig. 8a)
81-day averaged solar
activity

�F10.7 sfu histogram distribution (Fig. 8b)

Geomagnetic index Ap – histogram distribution (Fig. 8c)
Model error of the jth
number density

ηnj – Gaussian with parameters listed
in Table 2

Model error of the
temperature

ηT K truncated Gaussian, temperature
dependent (Fig. 9)

Angle of attack δ deg Gaussian with 0 deg mean and
5∕3 deg std

Roll angle ϵ deg uniform in �0; 360� deg

0 100 200 300 400
0

0.004

0.008

0.012

0.016

Lifetime [day]

P
D

F
 [1

 / 
da

y]

Histogram
Density kernel

Fig. 10 PDF of the orbital lifetime for a QB50 CubeSat [25].

Table 5 Summary of
uncertainty correlations

Variables Correlation, %

F10.7 and �F10.7 86
F10.7 and AP 14
�F10.7 and AP 13
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IX �
Z
IX

pX�x; ϑ0; : : : ; ϑM� dx � Δx
�
ϑ0
2
�
XM−1

j�1
ϑj �

ϑM
2

�
� 1

(A6)

ϑj ≥ 0 j � 0; : : : ;M (A7)

z�ϑ0; : : : ; ϑM� ≥ 0 (A8)

g�ϑ0; : : : ; ϑM� � 0 (A9)

Equations (A6) and (A7) impose that pX satisfies the properties of
a PDF, whereas the available information related to the specific
problem is expressed by Eqs. (A8) and (A9). For instance, the
moments of the distribution are often known and can be expressed in
terms of the shape functions. For the second-order descriptors, it
follows that

μX�
1

Δx

XM
j�1

��
x3j
6
−
xjx

2
j−1

2
�
x3j−1
3

�
ϑj−1�

�
x3j−1
6

−
xj−1x

2
j

2
�
x3j
3

�
ϑj

�

(A10)

σ2X �
1

Δx

XM
j�1

��
−
1

4
x4j;j−1 �

2μX � xj
3

x3j;j−1

−
2μXxj − μ2X

2
x2j;j−1 � μ2Xxjx

1
j;j−1

�
ϑj−1

�
�
1

4
x4j;j−1 −

2μX � xj−1
3

x3j;j−1

�
2μXxj−1 − μ2X

2
x2j;j−1 − μ2Xxj−1x

1
j;j−1

�
ϑj

�
�A11�

where xkj;m � xkj − xkm. All the other constraints of the problem
should also be expressed as a function of the design variables
ϑ0; : : : ; ϑM.
This implementation through linear shape functions turned out to

be computationally effective in our simulations, as discussed in
Secs. IV and V, but it can also be extended to any suitable family of
shape functions.
Figure 11 displays the application of the method to the initial

altitude prior to ejection and the weighted divergence

�������������������������������������������������������������Z
R
�p �X� �x� − ~p �X� �x��2 ~p �X� �x� d �x

s
with �X � X

σX
(A12)

between the discrete PDFs p �X� �x� computed using the numerical
implementation of the maximum entropy principle and the analytical
solution ~p �X� �x�. We note that this norm attributes high weights to

errors corresponding to high probabilities. The figure shows that
the convergence rate is quadratic for the three cases. We note that the
solution of the optimization problem showed no sensitivity to the
initial guess.
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