Probabilistic Assessment of the Lifetime of Low-Earth-Orbit Spacecraft: Uncertainty Characterization

Lamberto Dell’Elce, Maarten Arnst, and Gaëtan Kerschen
University of Liège, 4000 Liège, Belgium
DOI: 10.2514/1.G000148

Orbital lifetime estimation is a problem of great timeliness and importance in astrodynamics. In view of the stochastic nature of the thermosphere and of the complexity of drag modeling, any deterministic assessment of orbital lifetime is likely to be bound to failure. This is why the present paper performs uncertainty quantification of satellite orbital lifetime estimation. Specifically, this paper focuses on the probabilistic characterization of the dominant sources of uncertainty inherent to low-altitude satellites. Uncertainties in the initial state of the satellite and in the atmospheric drag force, as well as uncertainties introduced by modeling limitations associated with atmospheric density models, are considered. Mathematical statistics methods, in conjunction with mechanical modeling considerations, are used to infer the probabilistic characterization of these uncertainties from experimental data and atmospheric density models. This characterization step facilitates the application of uncertainty propagation and sensitivity analysis methods, which in turn allows gaining insight into the impact that these uncertainties have on the orbital lifetime. The proposed developments are illustrated using one CubeSat of the QB50 constellation.

Nomenclature

\[A = \text{surface, } \text{m}^2 \]
\[A_p = \text{geomagnetic activity index, } \text{deg} \]
\[B = \text{Boltzmann constant, J/K} \]
\[C_{bh} = \text{ballistic coefficient, } \text{m}^2/\text{kg} \]
\[C_d = \text{drag coefficient} \]
\[c_N = \text{cumulative distribution function of a standard normal random variable} \]
\[d = \text{number of parameters of a generic probability density function} \]
\[e = \text{orbital eccentricity} \]
\[F = \text{cumulative distribution function of a standard normal random variable} \]
\[F_{10.7} = \text{daily solar radio flux, sfu} \]
\[F_{10.7} = \text{81-day averaged solar radio flux, sfu} \]
\[f = \text{force per mass unit, N/kg} \]
\[g, z = \text{generic vectorial functions} \]
\[h = \text{spacecraft altitude from the equatorial radius, m} \]
\[I = \text{support of a random variable} \]
\[i = \text{orbital inclination, deg} \]
\[L = \text{likelihood function} \]
\[m = \text{mass of the spacecraft, kg} \]
\[m_j = \text{molecular mass of the gas species } j, \text{g/mol} \]
\[n = \text{number of samples} \]
\[n_j = \text{number density of the gas species } j, \text{m}^{-3} \]
\[p = \text{probability density function of a random variable} \]
\[p = \text{vector of parameters} \]
\[p_N = \text{standard normal distribution} \]
\[q = \text{quaternion defining the attitude of the spacecraft} \]
\[r = \text{position in the Earth centered inertial frame, m} \]

\[R = \text{universal gas constant, J/molK} \]
\[s = \text{entropy of a random variable} \]
\[T = \text{local atmospheric temperature, K} \]
\[T_w = \text{wall temperature, K} \]
\[t = \text{time, s} \]
\[U = \text{uniform random variable defined on } [0,1] \]
\[v = \text{velocity in the Earth centered inertial frame, m/s} \]
\[v_{ej} = \text{velocity of the ejection, m/s} \]
\[v_{inc} = \text{incident velocity, m/s} \]
\[v_{mp,j} = \text{most probable thermal velocity of the gas species } j, \text{m/s} \]
\[v_{re} = \text{reemitted velocity, m/s} \]
\[W_{TAS} = \text{true airspeed of spacecraft, m/s} \]
\[x = \text{generic deterministic variable} \]
\[X = \text{generic random variable} \]
\[Z, \Psi = \text{standard Gaussian random variable} \]
\[\alpha = \text{energy accommodation coefficient} \]
\[\beta = \text{bias error of a numerical model} \]
\[\delta = \text{angle of attack, deg} \]
\[\epsilon = \text{roll angle, deg} \]
\[\eta = \text{model error of a numerical model (stochastic variable)} \]
\[\Theta = \text{spherical angle (azimuth) of the ejection velocity, deg} \]
\[\mu = \text{mean value of a random variable} \]
\[\nu = \text{Earth gravitational constant, m}^3\text{s}^{-2} \]
\[\rho = \text{atmospheric density, kg/m}^3 \]
\[\sigma = \text{standard deviation of a random variable} \]
\[\varphi = \text{linear shape function} \]
\[\psi_k = \text{angle between the normal of the face } k \text{ and the relative velocity of the air, deg} \]
\[\theta = \text{parameter of a probability density function} \]
\[\Theta = \text{vector of parameters of a probability density function} \]
\[\chi = \text{spherical angle (declination) of the ejection velocity, deg} \]
\[\Omega = \text{right ascension of the ascending node, deg} \]
\[\omega_z = \text{Earth spin vector, rad/s} \]

Subscripts and superscripts

\[d = \text{drag} \]
\[e = \text{relative to the initial orbital eccentricity} \]
\[g = \text{gravitational} \]
\[h = \text{relative to the initial altitude from the equatorial radius} \]
\[j, k, m = \text{generic indexes} \]
\[i = \text{relative to the initial orbital inclination} \]
Although all these uncertainties exist for every mission, their relative importance is case-dependent. Although there is a large body of literature concerning lifetime estimation, uncertainty quantification (UQ) of orbital propagation is a more recent research topic. By expressing the analytical solution with a Taylor series expansion and by solving the Fokker–Planck equation, Park and Scheeres [14] were able to propagate Gaussian uncertainty in the initial states of a nonlinear deterministic evolution problem. Nonlinear dynamics propagation resulted in a progressive distortion of the probability distribution of the states, which became non-Gaussian. Further work on the propagation of the uncertainty in the initial states by means of the Fokker–Planck equation was performed by Giza et al. [15], who were also able to efficiently propagate uncertainty by considering a simplified drag model. Analytical propagation of uncertainties in the two-body problem was then achieved by Fujimoto et al. [16]. Concerning uncertainty propagation techniques, Jones et al. introduced the polynomial chaos expansion (PCE) method in astrodynamics [17,18]. Important issues in lifetime estimation are summarized by Saleh et al. [19], whereas Scheeres et al. [20] pointed out the existence of a rigorous and fundamental limit in squeezing the state vector uncertainty. In summary, nonlinear and long-period dynamics propagation [21], as well as severe uncertainty sources, make UQ of orbital lifetime a difficult problem.

We view probabilistic UQ of orbital lifetime estimation as a three-step problem. The first step involves using methods from mathematical statistics in conjunction with mechanical modeling considerations to characterize the uncertainties involved in the orbital lifetime estimation problem as one or more random variables. The second step is to map this probabilistic characterization of inputs through the orbital propagator into a probabilistic characterization of the orbital lifetime; this can be achieved in several ways, which include Monte Carlo simulation [22] and stochastic expansion methods such as those based on polynomial chaos [23,24]. The third step involves using the probabilistic model thus obtained to gain insight into the impact that the input uncertainties have on the orbital lifetime, for example, by carrying out stochastic sensitivity analyses. In this paper, we focus on the first step, i.e., the probabilistic characterization of the dominant sources of uncertainty involved in the lifetime estimation of low-altitude satellites. Uncertainties in the initial state of the satellite and in the atmospheric drag force, as well as uncertainties introduced by modeling limitations associated with atmospheric density models, are considered. The proposed probabilistic characterization facilitates the application of uncertainty propagation and sensitivity analysis methods, which we postpone to a companion paper [25].

To illustrate the proposed methodology, the standard two-unit (2U) CubeSat of the QB50 constellation [26] proposed by the von Karman Institute for Fluid Dynamics in Belgium is considered. This case study is particularly relevant for two reasons. First, the objective of the constellation is to study in situ the spatial and temporal variations in the lower thermosphere. The initial circular orbit will have an altitude of 320 km where atmospheric drag, one of the dominant uncertainty sources in astrodynamics, is significant. Second, it is a real-life mission that should be launched in mid-2015; hence, the results described here can be useful not only to the astrodynamics community, but also to the CubeSat developers. The simulation parameters are summarized in Table 1.

The remainder of this paper is organized as follows. Section II details the modeling assumptions and identifies the dominant sources

Table 1 Nominal parameters for simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial conditions</td>
<td></td>
</tr>
<tr>
<td>initial altitude</td>
<td>320 km</td>
</tr>
<tr>
<td>eccentricity</td>
<td>0</td>
</tr>
<tr>
<td>orbital inclination</td>
<td>79 deg</td>
</tr>
<tr>
<td>launch date</td>
<td>April 2015</td>
</tr>
<tr>
<td>Spacecraft properties</td>
<td></td>
</tr>
<tr>
<td>mass</td>
<td>2 kg</td>
</tr>
<tr>
<td>size</td>
<td>0.2 m × 0.1 m × 0.1 m</td>
</tr>
</tbody>
</table>
of uncertainty. Section III summarizes two stochastic methods for uncertainty characterization. Subsequently, the characterization of the uncertainties in the initial conditions and in the drag force is examined in Secs. IV and V, respectively. Finally, Sec. VI briefly discusses the probability density function of the orbital lifetime of a 2U CubeSat resulting from the propagation of uncertainties carried out in the companion paper.

II. Modeling Assumptions and Uncertainty Source Identification

The motion of the center of gravity of a nonpropelled Earth orbiting spacecraft is governed by Newton’s second law

$$\ddot{r} = -\frac{\mu}{r^3} r + \mathbf{f}_{\text{pert}}(r, \dot{r}, t, p, q)$$

with the following initial conditions

$$r(t_0) = r_0, \quad \dot{r}(t_0) = \dot{r}_0$$

here, r is the spacecraft position vector in an Earth centered inertial frame (ECI), $\nu = 3.986 \cdot 10^{14}$ m3s$^{-2}$ is the Earth’s gravitational constant, r_0 and \dot{r}_0 are the initial position and velocity vectors, respectively, and \mathbf{f}_{pert} is the perturbing force per unit mass, which is a function of parameters $p(t)$ and of the spacecraft attitude $q(t)$.

The gravitational constant is known with high accuracy, $\nu = 3.986 \cdot 10^{14}$ m3s$^{-2}$, and \mathbf{f}_{pert} is the perturbing force per unit mass, which is a function of parameters $p(t)$.

The main perturbations for a LEO spacecraft are due to the gravity, i.e., nonspherical harmonics of the Earth’s gravity field and third-body disturbances of sun and moon f_S to the atmospheric drag f_d and to the solar radiation pressure (SRP) f_{SRP}; hence, $\mathbf{f}_{\text{pert}} \approx f_S + f_d + f_{SRP}$. Their respective orders of magnitude depend on the considered orbit. Figure 2 illustrates the amplitude of these perturbations for a 2U CubeSat for various LEO altitudes. Minor perturbing forces include radiation pressure of the Earth albedo, which is due to the diffuse reflection of the sunlight, relativistic accelerations, tides, and third-body perturbations of the planets. Nonetheless, they are at least one order of magnitude smaller than SRP, so that their influence can be safely neglected for most applications. Both the Earth’s gravitational attraction and third-body perturbations are considered as deterministic quantities in this study because they can be modeled with extremely high accuracy. Concerning the Earth’s attraction, Frayssé et al. [8] reported that it is sufficient to include zonal harmonics up to J_2 for lifetime estimation. Special cases may require a more complete modeling of the perturbing agents. For instance, if sectorial perturbations have very little influence on long-term propagations in LEO, we note that some special orbits could require a more detailed modeling of the gravity field, e.g., it is recommended to include zonal harmonics up to J_{15} for orbits with inclination close to 63.4 deg. Lamy et al. propose a survey of these resonance effects in [28].

Figure 3 provides the numerical evidence that this recommendation is valid for our QB50 case study. Because of the strong nonlinearity of this problem, the convergence of the relative error is not monotonic, especially if zonal-only perturbations are considered. As a result, the relative error tends to stabilize at a value of about 0.1% beyond order 4; this error can be safely neglected with respect to the large uncertainties inherent to orbital lifetime estimation. The modeling of the perturbing force due to SRP is a challenging and demanding task. However, SRP can usually be neglected for low altitudes, as confirmed in Fig. 2, and it is also considered deterministic in this work. We therefore assume in the context of this study that only the perturbations due to atmospheric drag play an important role for UQ of orbital lifetime estimation. Besides the large magnitude of drag perturbations in LEO, this assumption is supported by the fact that drag is uncertain in nature and does not exhibit any relevant compensation throughout one orbit, e.g., it is responsible for a monotonic decrease of the semimajor axis.

![Fig. 1 Schematic representation of UQ of orbital lifetime in LEO. White box: deterministic modeling, gray box: stochastic modeling, black box: unmodeled dynamics.](image)

![Fig. 2 Order of magnitude of the perturbing forces on a standard QB50 spacecraft.](image)
The popular Runge–Kutta 8(7) [29] is exploited as a numerical integrator for orbital propagation. To reduce the computational burden, we select a relative precision of 10^{-9}, which provides an error of 10^{-7}% with respect to a precision of 10^{-13}.

III. Stochastic Methods for Uncertainty Characterization

Within a probabilistic UQ framework, the objective of characterization is to model the sources of uncertainty involved in the problem under study as one or more random variables X with values in the support I_X. The extension of the methods discussed in this section to the multivariate case is straightforward, but we preferred to illustrate the scalar case to ease the notation. This requires that an adequate probability distribution, or, if X is continuous, its probability density function (PDF) p_X: $I_X \rightarrow \mathbb{R}^+$ be assigned to these random variables. The information available for obtaining this distribution typically consists of one or more of the following sources. First, various types of experimental data can be available. Next, there can be mechanical laws that impose constraints on the values that the random variables may take (for example, mechanical laws can require that an uncertain atmospheric density be positive); these constraints act as sources of information because the inferred probability distribution must assign a vanishing probability to those values of the random variables that do not satisfy these constraints. Finally, various other sources can contribute information, for example, in the form of nominal values.

Methods from mathematical statistics are most often used in conjunction with mechanical modeling considerations to infer a characterization of uncertainties from the available information. Providing an exhaustive account of all available methods from mathematical statistics is beyond the scope of this paper; instead, we confine ourselves to a succinct presentation of two fundamental methods.

It is common practice in statistics to use uppercase letters to denote random variables; by contrast, lowercase letters indicate deterministic variables. We use this system of notation in this section, which focuses on the mathematical aspects. However, this rule is not respected elsewhere in the paper, when dealing with physical variables.

A. Maximum Likelihood Estimation

The first method involves selecting an adequate labeled probability distribution, followed by inferring suitable values for its parameters from data, for example, by using the method of maximum likelihood (MLE). By labeled probability distribution we mean Gaussian, uniform, and other probability distributions given in catalogs in the literature. Consider a set of n samples x_1, \ldots, x_n of a random variable X and a PDF $p_X(x; \theta_1, \ldots, \theta_d)$, where $\theta_1, \ldots, \theta_d$ are the parameters defining the distribution, e.g., the mean and the standard deviation for the normal distribution. According to the maximum likelihood method, the d parameters of the PDF have to be chosen such that they are consistent, e.g., they have a positive standard deviation, and maximize the likelihood function

$$L(\theta_1, \ldots, \theta_d) = \prod_{j=1}^{n} p_X(x_j; \theta_1, \ldots, \theta_d)$$

In practice, the logarithm of the likelihood function is generally considered as the objective function in order to reduce numerical errors due to the product of small numbers.

Care should be taken to select a labeled PDF that is consistent with the physical constraints; for example, the Gaussian probability distribution should not be selected to characterize an uncertain atmospheric density because its support is the whole real line and its selection would thus lead to the assignment of a nonvanishing probability to negative values.

B. Maximum Entropy

If no adequate labeled probability distribution is available, the possibility of constructing a new adequate distribution can be considered, using, for example, the maximum entropy principle [30]. The maximum entropy principle states that the probability distribution with the largest entropy should be selected from among those that are consistent with the available information. The entropy of a continuous random variable X with PDF $p_X(x)$ and support I_X is defined as

$$s_X = - \int_{I_X} p_X(x) \log p_X(x) \, dx$$

For most of the sources of uncertainty that we characterize using the principle of maximum entropy, the probability distribution is obtained as the one that maximizes entropy

$$\max_{p_X} s_X(p_X)$$

from among those that are consistent with available information of the following form

$$\int_{I_X} p_X(x) \, dx - 1 = 0, \quad \int_{I_X} x p_X(x) \, dx - \mu_X = 0,$$

$$\int_{I_X} (x - \mu_X)^2 p_X(x) \, dx - \sigma_X^2 = 0$$

here $I_X = [\min_X, \max_X]$, μ_X and σ_X are a given support, a given mean, and a given standard deviation, respectively. The exact analytical solution to this constrained optimization problem can be obtained using Lagrange multipliers, and it is the truncated Gaussian distribution with support I_X and with second-order statistical descriptors μ_X and σ_X. We stress that these are the second-order descriptors of the actual PDF, i.e., the truncated normal distribution, and not of the associated unbounded normal distribution

$$p_X(x; \bar{\mu}_X, \bar{\sigma}_X, \min_X, \max_X) = \frac{1}{\bar{\sigma}_X \sqrt{2 \pi}} e^{-\frac{(x - \bar{\mu}_X)^2}{2 \bar{\sigma}_X^2}}$$

Here, p_X, x, $\bar{\mu}_X$, and $\bar{\sigma}_X$ are the PDF and the cumulative distribution function (CDF) of the standard Gaussian distribution and the parameters of the associated unbounded Gaussian distribution, respectively. Here, $\bar{\mu}_X$ and $\bar{\sigma}_X$ are obtained by solving

$$\bar{\mu}_X + [p_X(x_{\min}) - p_X(x_{\max})] \bar{\sigma}_X^2 = \mu_X,$$

$$1 + (x_{\min} - \bar{\mu}_X)p_X(x_{\min}) - (x_{\max} - \bar{\mu}_X)p_X(x_{\max})$$

$$- (p_X(x_{\min}) - p_X(x_{\max}))^2 \bar{\sigma}_X^2 \bar{\sigma}_X^2 = \sigma_X^2$$

where the dependency of p_X on its parameters are omitted for the sake of conciseness.

For more general applications of the maximum entropy principle, the numerical solution of the problem is an alternative. An interesting
IV. Uncertainty Characterization of Initial Conditions

As discussed in Sec. II, the two main sources of uncertainties considered in the present study are those in the initial states and atmospheric drag. Uncertainty characterization of the initial states is strongly related to the current status of the mission. Two scenarios may occur.

The spacecraft is in orbit. The uncertainty in the initial states depends on measured data, whereas the initial epoch can generally be considered as deterministic. TLEs and GPS are two common measurement techniques. The former is responsible for wider dispersion than the latter, but it is often the only option available for debris and nanosatellites. Relevant work on TLEs uncertainty was performed by Vallado [32] and Flohrer et al. [33]. Kahr et al. [34] estimated the uncertainty in the TLE’s positioning of nano and microsatellites by means of GPS data. In the same paper, it is shown that the exploitation of intermittent GPS data, in conjunction with TLEs, can enhance the accuracy of few-day predictions by one order of magnitude.

The mission is still in a design phase, which is the scenario studied in this paper. In this case, uncertainty in the initial states is related to the launch vehicle injection accuracy and to the deployment strategy. The set of nominal initial conditions may also not be fully defined, e.g., the initial right ascension of the ascending node (RAAN) may be unknown.

For the QB50 network, the reference initial conditions prior to the deployment are $h_{\text{ref}} = 320$ km, $i_{\text{ref}} = 79$ deg, and $e_{\text{ref}} = 0$ [26], where h_{ref}, i_{ref}, and e_{ref} are the initial altitude above the equatorial radius, the orbital inclination, and the eccentricity, respectively. Keplerian elements are used for orbit parametrization because the true anomaly is the only fast variable in this parameter set. Mean elements, instead of osculating elements, are considered to avoid an important sensitivity of the lifetime with respect to the initial anomaly resulting from short-period variations of the semimajor axis. Doing so, we can remove the initial anomaly from the uncertainty sources. Because the reference orbit is circular, the characterization of the initial argument of perigee is not relevant either. As no information is available yet, the initial RAAN is modeled as an aleatory variable with uniform uncertainty between 0 and 360 deg, in accordance with the maximum entropy principle.

The uncertainty in h_{ref}, i_{ref}, and e_{ref} depends on the accuracy of the launcher. Standard deviations of the Keplerian elements consistent with the performance of current launchers used for LEO are considered, namely, $\sigma_h = 2.5$ km, $\sigma_i = 0.03$ deg, and $\sigma_e = 3.5 \times 10^{-4}$ deg. These three variables are supposed to be independent because no information about their correlation is usually provided, and univariate PDFs are constructed in the following.

The initial altitude of the spacecraft is a nonnegative random variable, so that its support is \mathbb{R}^+. The mean and standard deviation of the PDF are constrained to be equal to the nominal values h_{ref} and σ_h, respectively. Thus, according to the maximum entropy principle, h_{ref} is modeled as a truncated Gaussian distribution with support \mathbb{R}^+ and with the imposed second-order descriptors, as shown in Fig. 4a. A similar problem is solved for the initial orbital eccentricity (Fig. 4b) and inclination. For these variables, the support is $[0,1]$ and \mathbb{R}, respectively.

The initial date t_0 is the last parameter necessary to fully define the initial state prior to the deployment of the constellation. The launch is foreseen for April 2015 [26]. However, because of the frequent delays in space missions, t_0 is modeled as a uniform random variable between April 1, 2015 and April 1, 2016. A wider launch window is not necessary, because the long-term variations in the atmospheric models are not considered herein.

A second source of uncertainty for the initial conditions is the deployment of the QB50 constellation. Even though the exact strategy for deployment is still unknown, the nanosatellites will be ejected thanks to a spring-loaded pusher plate with an ejection velocity between 1 and 1.5 ms$^{-1}$. Though negligible with respect to the orbital speed, the ejection velocity may be responsible for uncertainties of the order of launcher accuracy. For example, an ejection velocity in the flight direction leads to an increment of the semimajor axis of 2.6 km, which is larger than σ_h. Therefore, the ejection velocity is modeled as a vector with norm v_{ej} and direction uniformly distributed in $[1.0, 1.5]$ ms$^{-1}$ and in the space, respectively. Parameterizing the direction with azimuth Θ and elevation χ yields

$$p_{\Theta, \chi}(\Theta, \chi) = \frac{1}{360} \cos \chi \frac{1}{2} \left(\text{deg}^{-2} \right)$$

Here, Θ and χ are defined in $[0, 360]$ deg and $[-90, 90]$ deg, respectively. This distribution is uniform over the radian sphere and it is obtained by considering that the infinitesimal surface with these parameters is given by $\cos \chi d\Theta d\chi$.

V. Uncertainty Characterization of Atmospheric Drag

The second main source of uncertainty considered in this paper is the atmospheric drag. The drag force per unit of mass is computed using the empirical equation

$$f_d = -\frac{1}{2} C_d \rho v_{\text{TAS}} v_{\text{TAS}}$$

where C_d, ρ, v_{TAS}, and v_{TAS} are the ballistic coefficient, the atmospheric density, the true airspeed (TAS), and its modulus, respectively. According to Vallado and Finkelman [35], all the terms involved in Eq. (10) and the equation itself are affected by uncertainties.

In this paper, the TAS is calculated using the assumption of a corotating atmosphere

$$v_{\text{TAS}} = \dot{r} - \omega_E \times r$$

where ω_E is the Earth’s angular velocity. This means that we do not consider the upper-thermosphere winds, which can be of the order of
several hundreds of meters per second [36, 38]. However, the basic dynamics of the wind involve a movement from daylight to nighttime, which approximately results in a compensation of their effects throughout one orbit. Relevant work on the determination of these winds from experimental data is performed in [39], and different models are available in the literature [40, 41]. The thermospheric cooling trend [42] is also ignored herein.

We stress that the drag force is just one component of the aerodynamic force. Lift and side forces are also considered in our simulations, although their orders of magnitude and influence on lifetime are much smaller.

A. Atmospheric Model

The dominant uncertainty source in the drag estimation is the atmospheric density. One of the most advanced atmospheric models is NRLMSISE-00, which is a global, i.e., from ground to exosphere, empirical model developed by the U.S. Naval Research Laboratory. The model is calibrated by means of mass spectrometer, incoherent scatter, and accelerometer measurements. Two important inputs of the model are the daily and 81-day averaged radio flux indices, \(F_{10.7} \) and \(F_{10.7}^{\text{mod}} \). The 3-hour geomagnetic index \(K_{p} \) is another input of the model, but, for long-period propagations, its daily average \(A_{p} \) can be exploited. The other inputs required by NRLMSISE-00 are the position of the spacecraft and the Julian date (JD), which are outputs.

The total mass density is deduced directly from these inputs. NRLMSISE-00 is able to estimate the number densities of helium, atomic and molecular oxygen, atomic and molecular nitrogen, argon, and hydrogen, together with the local atmospheric temperature. The dominant uncertainty source in the drag estimation is the atmospheric density. One of the most advanced atmospheric models is NRLMSISE-00, which is a global, i.e., from ground to exosphere, empirical model developed by the U.S. Naval Research Laboratory. The model is calibrated by means of mass spectrometer, incoherent scatter, and accelerometer measurements. Two important inputs of the model are the daily and 81-day averaged radio flux indices, \(F_{10.7} \) and \(F_{10.7}^{\text{mod}} \). The 3-hour geomagnetic index \(K_{p} \) is another input of the model, but, for long-period propagations, its daily average \(A_{p} \) can be exploited. The other inputs required by NRLMSISE-00 are the position of the spacecraft and the Julian date (JD), which are outputs.

The total mass density is deduced directly from these inputs. NRLMSISE-00 is able to estimate the number densities of helium, atomic and molecular oxygen, atomic and molecular nitrogen, argon, and hydrogen, together with the local atmospheric temperature. The total mass density is deduced directly from these outputs.

1. Solar and Geomagnetic Proxies

Correlation between gas density and space weather proxies, e.g., solar radio flux and geomagnetic index, is crucial in the development of an atmospheric model. The sensitivity of the orbital lifetime with respect to these variables is very substantial [43]. This section focuses on the characterization of the solar and geomagnetic random variables. Different approaches were proposed in the literature to address this important problem. Among them, Ashrafi et al. [44] developed a prediction tool based on chaos theory, and proved that it is more suitable than statistical approaches for short-term prediction. Watari [45] and Loskutov et al. [46] introduced methodologies for the identification of periodic and chaotic components and for solar activity forecasting based on singular spectrum analysis. To generate realizations of realistic future solar flux trajectories (geomagnetic activity was not considered), Woodburn and Lynch [47] proposed to superpose to the trend of the trajectory a scalar exponential Gauss–Markov sequence.

The consideration of time-varying series complicates the uncertainty propagation because the problem belongs to the family of stochastic differential equations [48]. As an alternative for use in orbital lifetime estimation, Frayssé et al. introduced the concept of constant equivalent solar activity [8]. The idea is to consider a constant solar flux, and geomagnetic index throughout the propagation. If the satellite has a 25-year lifetime for the chosen constant equivalent solar activity, then its lifetime for possible future solar activities will also be 25 years, with a probability of 50%. The equivalent solar flux is a function of the ballistic coefficient \(C_{b} \) and of the altitude of the apogee \(h_{\text{ap}} \), whereas the daily geomagnetic index is set to 15. This technique is particularly appropriate for very long propagations in the order of one or several solar cycles.

In this work, we propose another approach to the problem. It is also based upon the idea of using an effective solar activity, but it is more suitable for propagations of the order of a fraction of the solar cycle. Instead of a deterministic effective solar activity, we consider a random effective solar activity. The main underlying assumption is that neglecting variations of the space weather proxies with respect to their averaged value in time, does not yield drastic variations of the orbital lifetime. To verify this conjecture, we performed two sets of simulations where the solar activity is modeled by means of 1) time series and 2) its temporal average. Then, we compared the resulting orbital lifetime in the two cases, which, for the sake of clarity, we refer to as true and approximated lifetime, respectively. Specifically, we exploited the stochastic process proposed by Woodburn and Lynch [47] to generate several realizations of the solar activity, and we computed statistics of the difference between the realizations of the true and the approximated lifetime. The schematic representation of this process is illustrated in Fig. 5a. The resulting distribution has a mean value of 0.5 day and a standard deviation of 2.4 days. Finally, we compared this result with the difference between the nominal and the realizations of the true lifetime. The nominal lifetime is computed with the trend of the solar activity according to the long term Schatten’s predictions and it is deterministic. This nominal trend is the deterministic component of the time series generated by Woodburn and Lynch [47]. The standard deviation of this difference is one order of magnitude larger than the one of the error between true and approximated lifetime, as illustrated in Fig. 5b. Hence, these results support that \(F_{10.7}, F_{10.7}^{\text{mod}}, \) and \(A_{p} \) can be considered in the context of this study as three different random variables that are constant during a single simulation. Their characterization is discussed in the following.

Here, \(F_{10.7}, F_{10.7}^{\text{mod}}, \) and \(A_{p} \) are characterized using the data measured over the last 50 years provided by the CelestTrak database [49]. Bearing in mind that QB50 has a lifetime of a few months and that the launch window is [April 2015, April 2016], the portion of the solar cycle between [October 2014, October 2016] is considered to be conservative. Thus, only the data of the previous cycles that correspond to the same portion of the solar cycle are exploited for uncertainty characterization. Because of the important variations in correspondence of the solar maxima and of the variability in the period of the solar activity, the identification of the selected dataset is achieved by identifying the minima of the solar flux curve smoothed by a moving-average filter of 2-year width. These minima are then used to define a dimensionless position between two consecutive minima of the solar cycle. This process is illustrated for the daily solar flux in Fig. 6; a similar process can be carried out for \(F_{10.7}^{\text{mod}} \) and \(A_{p} \). The data in the shaded windows are retained for uncertainty characterization. Because of the important variations in correspondence of the solar maxima and of the variability in the period of the solar activity, the identification of the selected dataset is achieved by identifying the minima of the solar flux curve smoothed by a moving-average filter of 2-year width. These minima are then used to define a dimensionless position between two consecutive minima of the solar cycle. This process is illustrated for the daily solar flux in Fig. 6; a similar process can be carried out for \(F_{10.7}^{\text{mod}} \) and \(A_{p} \). The data in the shaded windows are retained for uncertainty characterization. Figures 7 and 8 illustrate the correlations between the retained datasets of the three proxies and their marginal distributions (histograms in Fig. 8), respectively. The statistical model must be able
fluxes are defined on physical constraints impose that the chosen distributions of the solar variables of the MLE problem are the parameters of the marginal achieved by means of the MLE, as described in Sec. III.A. The design parameters defining the distribution.

necessary to tune the model, i.e., the heights of each bin. histogram distributions are able to represent, with the highest fidelity, with a very limited number of parameters. On the other hand, were tested to model the marginal PDFs. On the one hand, labeled geomagnetic indicator is [0,400].

The identification of the parameters of the statistical model is achieved by means of the MLE, as described in Sec. III.A. The design variables of the MLE problem are the parameters of the marginal PDFs and the three off-diagonal elements of the correlation matrix

\[
\begin{align*}
Z_1 &\sim \text{Chol}(C) \\
Z_2 &\sim \text{Chol}(C) \\
Z_3 &\sim \text{Chol}(C)
\end{align*}
\]

Here, \(Z_1, Z_2, \) and \(Z_3\) are independent standard Gaussian random variables, \(\Xi_1, \Xi_2, \) and \(\Xi_3\) are correlated standard Gaussian random variables, and \(\text{Chol}(C)\) is the Cholesky decomposition of their correlation matrix. It yields \([\Xi_1, \Xi_2, \Xi_3] = [Z_1, Z_2, Z_3]\text{Chol}(C), U_1, U_2, \) and \(U_3\) are correlated uniform random variables with support [0,1], \(F\) is the cumulative distribution function CDF of the marginal distribution that is chosen to fit the model, and \(\theta_k\) is the vector of parameters defining the distribution.

The identification of the parameters of the statistical model is achieved by means of the MLE, as described in Sec. III.A. The design variables of the MLE problem are the parameters of the marginal PDFs and the three off-diagonal elements of the correlation matrix

\[
P_{F_{10.7}, F_{10.7}, A_p} = P_{F_{10.7}, F_{10.7}, A_p}(F_{10.7}, F_{10.7}, A_p, \theta_{F_{10.7}, F_{10.7}, A_p}, C_{1,2}, C_{2,3}, C_{3,1})
\]

Physical constraints impose that the chosen distributions of the solar flux indices are defined on \(\mathbb{R}^+\), whereas the support of the geomagnetic indicator is [0,400].

Several labeled PDFs and nonparametric histogram distributions were tested to model the marginal PDFs. On the one hand, labeled distributions are interesting because the resulting model can be tuned with a very limited number of parameters. On the other hand, histogram distributions are able to represent, with the highest fidelity, the statistical content of the dataset, but several parameters are necessary to tune the model, i.e., the heights of each bin.

Among the different labeled distributions we tested, beta distributions generated the maximum likelihood. However, the histogram model performed better. This result is illustrated in Fig. 8, which presents the beta and histogram marginal PDFs for the three variables. If the distributions of \(F_{10.7}\) and \(A_p\) appear to be sufficiently well fitted by the beta distributions, this is not the case for \(F_{10.7}\), and histogram distributions for the marginal PDFs are retained.

2. Model Uncertainty

Targeting practicality and efficient numerical computation, the most popular atmospheric models exploit a limited number of proxies to take the correlation between density and stochastic processes into account. This is why the uncertainty characterization of the density should also consider the uncertainty related to the discrepancy of the model with respect to reality. For instance, Scholz et al. compared the atmospheric densities given by different models including NRLMSISE-00, DTM-2009, JB-2008, and GITM [51]. They observed deviations in the order of 50% considering the same environmental conditions. In addition to the discrepancies among different models, Pardini et al. [52], Bowman and Moe [53], and Bowman and Hrnčir [54] studied the biases of different models by comparing physical and fitted drag coefficients. Overestimation of the density at low altitude was observed for all the models, with peaks of the order of 20%. The oversimplified physical drag modeling
exploited for the tuning of old models and the absence of long-term thermospheric cooling are responsible for this systematic overestimation.

To cope with model uncertainty of NRLMSISE-00, the work of Picone et al. [55] is exploited in this paper. They performed a statistical analysis between the NRLMSISE-00 model and experimental data and tabulated the biases and standard deviations of the gas composition and temperature for different ranges of altitudes, for in situ and ground-based measurements, and for quiet ($A_p \leq 10$), active ($A_p \geq 50$), and all geomagnetic conditions. Biases for number density of gas species n_j and for the temperature T are defined as

$$
\beta_{nj}^{(k)} = \exp \left[\mathbb{E} \left(\log \frac{n_j^{(data,k)}}{n_j^{(model,k)}} \right) \right] - 1
$$

(14)

$$
\beta_T^{(k)} = \mathbb{E} \left(\left(T^{(data,k)} - T^{(model,k)} \right)^{2} \right) - \beta_T^{(k)}
$$

(15)

respectively. Superscripts model and data correspond to the outputs of the NRLMSISE-00 model and experimental data, respectively. Here, $\mathbb{E} [\cdot]$ denotes the expectation operator with respect to the different measurements within a single dataset, k. The corresponding standard deviations are

$$
\sigma_{nj}^{(k)} = \sqrt{\mathbb{E} \left(\left(\log \frac{n_j^{(data,k)}}{n_j^{(model,k)}} \right)^2 \right) - \beta_{nj}^{(k)}^2}
$$

(16)

$$
\sigma_T^{(k)} = \sqrt{\mathbb{E} \left(\left(T^{(data,k)} - T^{(model,k)} \right)^2 \right) - \beta_T^{(k)^2}}
$$

(17)

In what follows, the measurements for all levels of geomagnetic activity in the altitude range [200, 400] km are considered. This is where most of the lifetime will be spent in our test case. The residual lifetime below 200 km is in the order of one day. To account for this variability, we define random variables, denoted η_{nj} and η_T, for each of the outputs of NRLMSISE-00 such that the corrected atmospheric properties are given by

$$
n_j = n_j^{(model)} \exp(\eta_{nj})
$$

(18)

$$
T = T^{(model)} + \eta_T
$$

(19)

These random variables are considered constant throughout a single orbit propagation. They are characterized using the maximum entropy principle in the following. Because the available information is given in terms of the bias and standard deviation and because their support is \mathbb{R}, the random variables η_{nj} are characterized by a normal distribution with second-order descriptors

$$
\mu_{nj} = \mathbb{E} \left(\log \left(1 + \beta_{nj}^{(k)} \right) \right)
$$

(20)

$$
\sigma_{nj} = \sqrt{\mathbb{E} \left(\sigma_{nj}^{(k)^2} + \mu_{nj}^{(k)^2} \right) - \beta_{nj}^{(k)^2}}
$$

(21)

here the expectation operator is with respect to the different datasets.

For the random variable η_T, nonnegativity of the temperatures must be enforced, i.e., $\eta_T = [-T, \infty)$. The resulting distribution depends on the temperature T and no feasible solution exists for $T < -\beta_T$, β_T being the mean value of $\beta_T^{(k)}$ across the different datasets. In practice, however, this temperature range is not physically meaningful; it is never reached using the NRLMSISE-00 model. The resulting distribution is a truncated Gaussian with left bound equal to $-T$ and second-order descriptors β_T and σ_T. We note that the distributions converge to the unbounded normal distribution for $T \gg -\beta_T + 3\sigma_T$, as illustrated in Fig. 9.

![Fig. 9 PDF of the model correction factor of the temperature in function of the external temperature (maximum entropy principle).](image)

The obtained second-order statistical descriptors of η_{nj} and η_T are listed in Table 2.

B. Ballistic Coefficient

The computation of the ballistic coefficient

$$
C_b = \frac{C_d A_{ref}}{m}
$$

(22)

where C_d, A_{ref}, and m are the dimensionless drag coefficient, the reference surface, and the mass of the spacecraft, respectively, is a very challenging and important problem for LEO propagation. The drag coefficient is itself a function of the atmospheric conditions, i.e., gas composition and external temperature, of the physical properties of the spacecraft, i.e., the mass and geometry, of its altitude, of the wall temperature, and of the gas–surface interaction.

Two complementary approaches exist for the determination of the drag coefficient. The first consists of its computation from observation of the orbital dynamics of the spacecraft, and it is referred to as fitted drag coefficient. This method does not require a physical modeling of the aerodynamic force, but it just assumes an underlying atmospheric model. The result is a coefficient that is consistent with the observed dynamics and that rectifies the bias of the atmospheric model. However, fitted coefficients can be computed only after the launch. The second approach consists of estimating aerodynamic coefficients by means of physical models. This method does not require an atmospheric model and it is appropriate for prelaunch analyses. However, the resulting coefficient can become biased with respect to observations. In this paper, the second approach is considered.

A large body of literature on the determination of physical drag coefficients is available, see [56,57]. For complex satellite geometries, direct simulation Monte Carlo (DSMC), which uses probabilistic Monte Carlo simulations to solve Boltzmann’s equation for finite Knudsen number fluid flows, is arguably the only way of computing this coefficient. However, this technique is extremely computationally intensive and does not lend itself to UQ. For simple geometries such as a CubeSat, semi-empirical analytic methods

<table>
<thead>
<tr>
<th>Output</th>
<th>Mean</th>
<th>Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, K</td>
<td>27.9</td>
<td>121.2</td>
</tr>
<tr>
<td>Helium, %</td>
<td>8.0</td>
<td>34.7</td>
</tr>
<tr>
<td>Total oxygen, %</td>
<td>1.6</td>
<td>25.4</td>
</tr>
<tr>
<td>Molecular nitrogen, %</td>
<td>-1.1</td>
<td>35.9</td>
</tr>
<tr>
<td>Argon, %</td>
<td>18.6</td>
<td>52.0</td>
</tr>
<tr>
<td>Hydrogen, %</td>
<td>4.0</td>
<td>31.4</td>
</tr>
<tr>
<td>Atomic nitrogen, %</td>
<td>-15.7</td>
<td>53.0</td>
</tr>
</tbody>
</table>
relying on the decomposition into elementary panels provide an accurate and computationally effective alternative. The semi-analytic method considered in this work is based upon the research of Sentman [58] and Cook [59] and upon the more recent contributions of Moe and Moe [60], Sutton [61], Fuller and Tolson [62], and Pliinski et al. [63]. The method is efficiently summarized in [39].

Consider a one-sided elementary panel, say the \(k \)th spacecraft panel, oriented with an angle \(\psi_k \) between the bulk velocity of the flow, \(\mathbf{v} \), and its normal, and provided with surface \(A_k \). Given the ratio of the bulk velocity to the most probable thermal velocity of the \(j \)th gas species

\[
W_j = \frac{v}{v_{\text{app},j}} = \left(\frac{BR}{m_j} \right)^{-1/2}
\]

where \(B \) and \(m_j \) are Boltzmann’s constant and the molecular mass of the \(j \)th species, respectively, the dimensionless drag coefficient is provided by Sentman’s formula

\[
C_d^{(k,j)} = \frac{P_{k,j}}{S_j} + \cos \psi_k \left(1 + \frac{1}{2W_j^2} \right) Z_{k,j} + \frac{\cos \psi_k}{v_{\text{inc}}} \sqrt{\pi Z_{k,j}} \cos \psi_k + P_{k,j} \right) \frac{A_k}{A_{\text{ref}}} \tag{24}
\]

with

\[
P_{k,j} = \frac{\exp(-W_{j}^2 \cos^2 \psi_k)}{S_j}
\]

\[
Z_{k,j} = 1 + \text{erf}(W_j \cos \psi_k)
\]

\[
v_{\text{inc}} = \sqrt{\frac{1}{2} \left(1 + \alpha \left(\frac{4RT_w}{v^2} - 1 \right) \right)}
\]

where \(v_{\text{inc}}, v_{\text{inc}}, R, T_w, \) and \(\alpha \) are the velocity of the reemitted particles and of the incoming particles, the specific gas constant, the spacecraft wall temperature, and the energy flux accommodation coefficient, respectively. This latter coefficient is an indicator of the gas–surface interaction. It determines whether the reflected particles retain their mean kinetic energy (for \(\alpha = 0 \)) or they acquire the spacecraft wall temperature \(T_w \) (for \(\alpha = 1 \)) [39]. The numerical simulations we carried out pointed out that the term \(4RT_w v^2 \) is very small with respect to 1. We therefore consider it as deterministic with \(T_w = 300 \text{ K} \). For the energy accommodation coefficient, to our knowledge, data for its stochastic characterization are not available, and we model it as \(\alpha = 5\times10^{-7}n_\Omega T(1 + 10^{-7}n_\Omega T)^{-1} \), as suggested by Pliinski et al. [64].

Summing up the contributions of the panels with a positive contribution to the drag and of the different gas species, Eq. (22) is recast into

\[
C_d = \frac{A_{\text{ref}}}{m} \sum_{k,j} \frac{n_j}{n_{\text{tot}}} C_d^{(k,j)} \tag{26}
\]

This equation was used in our orbital propagator to compute the ballistic coefficient at every time step. The main contribution to uncertainty depends on the outputs of the atmospheric model, which were already characterized in the previous section. Another contribution is spacecraft attitude, which determines the angles \(\psi_k \). The requirements for a standard QB50 spacecraft impose that the angle \(\delta \) between the CubeSat’s long axis and the velocity be smaller than 5 deg with 3 – \(\sigma \) confidence [65]. There is no requirement on the roll angle \(\epsilon \). According to the maximum entropy principle, the attitude angles \(\delta \) and \(\epsilon \) are modeled as a Gaussian random variable with zero mean and a standard deviation of \(5/3 \) deg, and a uniform random variable with values in \([0, 360] \) deg, respectively. We emphasize that this analysis does not account for the commissioning, which in the case of QB50 is required to be within the first two orbiting days. For other spacecraft, commissioning might last several weeks, especially for nanosatellites with limited attitude control. During commissioning, the spacecraft is running and considering this phase would require six degree-of-freedom propagation and the characterization of the initial angular rates, which is beyond the scope of this paper.

We note that the results of the discussed analytic method were compared with full-blown DSMC simulations performed at the von Karman Institute for Fluid Dynamics. Table 3 shows that errors in the order of 1% were achieved, thus validating our approach. Another interesting finding from this table is that the ballistic coefficient is indeed insensitive with respect to wall temperature.

VI. Probability Density Function of Orbital Lifetime

Table 4 and 5 presents an overview of our characterization of the uncertainty sources affecting the orbital lifetime of the standard QB50 satellite in our study. As already mentioned, we postpone to a
low-altitude satellites. The developments were illustrated using one CubeSat of the QB50 constellation. Uncertainties in the initial state of the satellite and in the atmospheric drag force, as well as uncertainties that may be introduced by atmospheric density models, were considered. Future improvements of the methodology could consider thermospheric winds, the correlation of the atmospheric temperature with solar activity, and the characterization of the initial states measures through TLEs or GPS data. Provided that sufficient information is available, the methodology could also be extended to other quantities of interest, such as, the SRP. The proposed characterization of the space weather proxies is only appropriate for medium-length propagations, where the mission window can be identified within a fraction of the solar cycle. The extension to very long predictions could be investigated through the use of the equivalent solar activity.

The proposed probabilistic characterization facilitates the application of uncertainty propagation and sensitivity analysis methods to allow insight to be gained into the impact that these uncertainties have on the orbital lifetime, as will be described in a companion paper [25].

Appendix: Numerical Implementation of the Maximum Entropy Principle

In this Appendix, a numerical implementation of the principle based on piecewise linear shape functions is carried out. The support \(I_X = [x_{\min}, x_{\max}] \) is divided into \(M \) uniform intervals of width \(\Delta x = \frac{x_{\max} - x_{\min}}{M} \) with nodes \(x_0, x_1, \ldots, x_M \). If either \(x_{\min} \) or \(x_{\max} \) is unbounded, a finite \(x_{\min_0} \) or \(x_{\max_0} \) should be selected such the PDF value at this modified bound is practically zero.

The generic PDF is constructed using linear shape functions \(\phi_j(x) \)

\[
p_X(x) = \sum_{j=0}^{M} \phi_j(x) \theta_j \quad \text{(A1)}
\]

where \(\theta_j \) is nonnegative and represents the evaluation of the PDF at node \(x_j \), whereas \(\phi_j \) is such that

\[
\phi_0(x) = \begin{cases}
\frac{x - x_0}{\Delta x} & \text{if } x_0 \leq x < x_1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi_j(x) = \begin{cases}
\frac{x - x_{j-1}}{\Delta x} & \text{if } x_{j-1} \leq x < x_j \\
\frac{x - x_{j+1}}{\Delta x} & \text{if } x_j \leq x < x_{j+1} \text{ for } j = 1, \ldots, M - 1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi_M(x) = \begin{cases}
\frac{x - x_{M-1}}{\Delta x} & \text{if } x_{M-1} \leq x \leq x_M \\
0 & \text{otherwise}
\end{cases}
\]

According to Eq. (4), the entropy of the synthesized PDF is

\[
S_X = -\frac{\Delta x^2}{4} \sum_{j=1}^{M} S_{X, j} \quad \text{(A3)}
\]

where

\[
S_{X, j} = \begin{cases}
0 & \text{if } \theta_j = \theta_{j-1} = 0 \\
2 \theta_j (3 \log(\theta_j \Delta x) - 1) & \text{if } \theta_j = \theta_{j-1} \text{ and } \theta_j > 0 \\
\theta_j (2 \log(\theta_j \Delta x) - (j-1) \theta_{j-1}) - \theta_{j-1} (2 \log(\theta_{j-1} \Delta x) - (j-2) \theta_{j-2}) & \text{otherwise}
\end{cases}
\]

\[
\theta_j \text{ if } \theta_{j-1} = 0 \quad \text{if } \theta_{j-1} > 0
\]

Equations (5) and (6) are therefore recast into

\[
\max_{\theta_0, \ldots, \theta_M} S_X(\theta_0, \ldots, \theta_M) \text{ s.t.} \quad \text{(A5)}
\]
\[
I_X = \int p_X(x; \theta_0, \ldots, \theta_M) \, dx = \Delta x \left(\frac{\theta_0}{2} + \sum_{j=1}^{M-1} \frac{\theta_j + \theta_{M}}{2} \right) = 1
\]
(A6)

\[
\theta_j \geq 0 \quad j = 0, \ldots, M
\]
(A7)

\[
z(\theta_0, \ldots, \theta_M) \geq 0
\]
(A8)

\[
g(\theta_0, \ldots, \theta_M) = 0
\]
(A9)

Equations (A6) and (A7) impose that \(p_X \) satisfies the properties of a PDF, whereas the available information related to the specific problem is expressed by Eqs. (A8) and (A9). For instance, the moments of the distribution are often known and can be expressed in terms of the shape functions. For the second-order descriptors, it follows that

\[
\mu_X = \frac{1}{\Delta x} \sum_{j=1}^{M} \left[\left(\frac{x_j^3}{6} - \frac{x_j^2 x_{j-1}}{2} + \frac{x_j x_{j-1}^2}{3} \right) \theta_{j-1} + \left(\frac{x_j^2}{6} - \frac{x_j x_{j-1}^2}{2} + \frac{x_j^2}{3} \right) \theta_j \right]
\]
(A10)

\[
\sigma_X^2 = \frac{1}{\Delta x} \sum_{j=1}^{M} \left[\left(-\frac{1}{4} x_j^4 x_{j-1} + \frac{2\mu_X + x_j}{3} x_j x_{j-1} \right) \theta_{j-1} - \frac{2\mu_X x_j - \mu_X^2 x_j}{2} \theta_{j-1} \right] \right. \\
\left. + \left(\frac{x_j^5}{5} \right) - \left(\frac{x_j^4}{4} \right) x_j \theta_{j-1} + \frac{2\mu_X x_j - \mu_X^2 x_j}{2} \theta_{j-1} \right] \theta_j
\]
(A11)

where \(x_{j,m} = x_j - x_m \). All the other constraints of the problem should also be expressed as a function of the design variables \(\theta_0, \ldots, \theta_M \).

This implementation through linear shape functions turned out to be computationally effective in our simulations, as discussed in Secs. IV and V, but it can also be extended to any suitable family of shape functions.

Figure 11 displays the application of the method to the initial altitude prior to ejection and the weighted divergence

\[
\sqrt{\int_{\mathbb{R}} (p_\tilde{X}(\tilde{x}) - \tilde{p}_X(\tilde{x}))^2 \tilde{p}_X(\tilde{x}) \, d\tilde{x}} \quad \text{with} \quad \tilde{x} = \frac{X}{\sigma_X}
\]
(A12)

between the discrete PDFs \(p_\tilde{X}(\tilde{x}) \) computed using the numerical implementation of the maximum entropy principle and the analytical solution \(\tilde{p}_X(\tilde{x}) \). We note that this norm attributes high weights to errors corresponding to high probabilities. The figure shows that the convergence rate is quadratic for the three cases. We note that the solution of the optimization problem showed no sensitivity to the initial guess.

Acknowledgments

Lamberto Dell’Elce would like to acknowledge the Belgian National Fund for Scientific Research for its financial support funds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA fellowship). This work was performed in the framework of the European Space Agency project “Uncertainty quantification for aerospace application” (grant manager: D. Giordano, European Space Agency; principal investigator: T. Magin, von Karman Institute for Fluid Dynamics). The authors would also like to thank Tamas Banyai and Thierry Magin (von Karman Institute for Fluid Dynamics) for carrying out the DSMC simulations.

References

