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The practical realization of the di�erential drag technique for orbital relative maneuvers

must cope with the several and severe uncertainty sources a�ecting drag modeling. Ne-

glecting these uncertainties might yield to oversimpli�ed solutions whose representation of

a real-life scenario is questionable. The �rst outcome of this study consists in the synthesis

of a robust optimal controller which combines di�erential �atness theory and the scenario

approach to generate a reference path which can be easily followed. The second outcome

is the characterization of the relevant uncertainties of the di�erential drag problem, with a

special focus on the aerodynamic force. The developments are validated in a highly detailed

simulation environment including, among the perturbations, advanced drag modeling and

coupled attitude and orbital dynamics.

I. Introduction

Di�erential drag is regarded as a promising technique in low-Earth orbits (LEO), since it allows to turn
the often-undesired drag perturbation into a control force for relative maneuvers, e.g., formation keeping,
rendez-vous, and cluster keeping.1,2, 3 This results into the reduction, or even the removal, of propellant
needs for some missions and into consistent weight and volume saving. Nonetheless, relevant uncertainties in
drag modeling make its practical realization a challenge, especially if no other propulsive means is available
to accommodate them.

The main outcome of the paper is the development of a robust optimal control algorithm for di�erential
drag maneuvers. The control loop consists of three main blocks analogous to the ones developed by the
authors in.4 The �rst block consists of a drag estimator and it is aimed at observing the two spacecraft
and at deducing a �tted drag coe�cient from their dynamics. In addition, this block is also in charge of
the estimation of the uncertainties on the estimated drag. The second block is the maneuver planner. It
is in charge of the computation of a robust optimal reference trajectory. The problem is solved by means
of a direct transcription. Because the linearized dynamical system is di�erentially �at,5 by exploiting the
scenario approach,6,7 we are able to get rid of the equality constraints (defects) of the optimization problem,
to naturally include uncertainties in the constraints, and to quantitatively assess and impose a level of
robustness of the solution. To put it another way, the scenario approach allows us to arbitrary de�ne a
percentage of the stochastic domain where the reference path is feasible.8 Finally, the third block is aimed at
coping with on-line compensation of the drift from the scheduled path. For this purpose, a model predictive
control algorithm is exploited.

The second outcome of the paper is the characterization of the most relevant uncertainties of the di�er-
ential drag problem, with a special focus on the aerodynamic force. The characterization is carried out by
assuming operational conditions, i.e., it is based on the observation of the position of the satellites involved
in the maneuver. In addition, historical dataset are used to build a probabilistic model of the space weather
proxies. The resulting probabilistic model is exploited by the maneuver planner to generate a robust solution.

The paper is organized as follows: the rendez-vous problem analyzed and the notation are detailed in
Section II. Section III summarizes few notions on di�erential �atness and on the scenario approach. The
synthesis of the controller is discussed in Section IV. Finally, Section V provides with a numerical validation
of the algorithm. The simulations are carried out in a highly detailed environment including advanced drag
modeling and coupled attitude and orbital dynamics.
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II. Rendez-vous using di�erential drag

This study is focused on the rendez-vous problem between two satellites, namely the target and the
chaser, using di�erential drag as the only control force. It is assumed that the orbits of the satellites are
near-circular and quasi coplanar. Though the former assumption could be eventually removed, it is not the
case for the latter, which comes from the extremely modest authority of the di�erential drag in the out-of-
plane direction. Speci�cally, Ben-Yaacov et al. showed that the controllability is two order of magnitude
smaller in this direction even for highly inclined orbits.11 For this reason, the only in-plane position and

velocity of the relative dynamics are controlled herein.
The relative states are expressed in the mean local vertical local horizontal (LVLH) frame. The origin is

in the target. The x̂ and the ẑ axes point toward the mean position vector1 and the mean orbital momentum
of the target, respectively. The ŷ axis completes the right-hand frame.

In the following of the paper, in-plane mean relative curvilinear coordinates, w̃ = (x̃, ỹ, ṽx, ṽy)
T
, are

exploited instead of the Cartesian mean relative position and velocity, w = (x, y, ẋ, ẏ)
T
:

x̃ =

√
(rt + x)

2
+ y2 − rt ṽx = ẋ cosα− ẏ sinα

ỹ =

√
(rt + x)

2
+ y2 α ṽy = ẋ sinα+ ẏ cosα

(1)

where rt is the current mean radius of the target's orbit, and α = tan−1 y
rt+x

. The relative frame and the
graphical interpretation of the curvilinear coordinates are illustrated in Figure 1.

Figure 1. Relative frame and curvilinear states. The ẑ direction completes the right-hand frame.

The rendez-vous maneuver consist in the solution of the following two-point boundary value problem:

dw̃

dt
= ∇w


ẋ (w̃)

ẏ (w̃)

f (w̃, t, δ) · x̂
f (w̃, t, δ) · ŷ

+


0

0

0

1

∆fd (w̃, t, δ, u) ,

w̃(0) = w̃0,

w̃ (tf ) = 0;

(2)

here:

• w̃0 and tf are the initial conditions and the maneuvering time, respectively;

• f (w̃, t, δ) consists of all the non-inertial accelerations and di�erential forces per unit mass but the
di�erential drag contribution, which is expressed by the term ∆fd de�ned as:

∆fd = fd,c · (sinαx̂ + cosαŷ)− fd,t · ŷ (3)

1I.e., generated from the mean keplerian elements.
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where fd,c and fd,t are the aerodynamic force per unit mass acting on the chaser and on the target,
respectively. We note that no assumption is introduced on the direction of the aerodynamic force at this
moment. Indeed, some assumptions are introduced in the synthesis of the controller (see Section IV),
but not in the numerical simulations (see Section V). All the remaining components of the di�erential
aerodynamic force vector, i.e., fd,c − fd,t, are included in f (w̃, t, δ).

• δ represents the uncertain environment. Indeed, δ includes all the stochastic uncertainties a�ecting
the aerodynamic force and the other orbital perturbations, e.g., solar radiation pressure and non-
modeled gravitational harmonics, but it is not necessary limited to them. To put it another way, δ
represents anything a�ecting the dynamic evolution of the states which is not modeled by means of
a deterministic contribution in f , i.e., depending only on w̃ and t. For instance, because the out-of
plane relative position is not among state variables, its in�uence on the evolution of w̃ is part of the
uncertain set.

• u is the control variable. Di�erential drag is imposed by controlling the relative ballistic coe�cient
between the chaser and the target. This can be achieved either by means of the reorientation of solar
panels or through attitude control. Because the aerodynamic force is uncertain, it is not possible to
directly impose a desired value of di�erential drag. So, regardless the method, we de�ne the control
variable, u(t) ∈ [−1, 1] such that:

∆fd(x̃, t, δ, 1) = max
u

(∆fd(x̃, t, δ, u)) , ∆fd(x̃, t, δ,−1) = min
u

(∆fd(x̃, t, δ, u)) . (4)

Because in the numerical simulations we do not make the assumption that the aerodynamic force is
proportional to cross section and that there is not lift, the con�gurations of the spacecraft corresponding
to u = 1 and u = −1 are not deterministically de�ned. However, a very good approximation consists
in choosing u = 1 such that the chaser and the target have their minimum and maximum cross section
exposed to their own orbital velocity, respectively, and vice versa for u = −1.

The main challenge associated to the practical exploitation of di�erential drag is that the huge uncertainty
in the magnitude of the control force.

III. Mathematical background

3.A. Di�erential �atness

Di�erential �atness was �rst introduced by Fliess.9 The use of di�erential �atness for the planning of orbital
rendez-vous maneuvers was proposed by Louembet.10 Consider a dynamical system ẇ = f (w,u) with n
states, w(t) : R→ Rn, and m ≤ n inputs, u(t) : R→ Rm. The system is said �at if a set of m variables

q = Q (w,u, u̇, ü, . . .) , (5)

exists such that
w = W (q, q̇, q̈, . . .) ,

u = U (q, q̇, q̈, . . .) .
(6)

The variables q ∈ Rm are referred to as �at outputs.
Flatness is a property of the system. Proving that a system is �at is not necessary an easy task. Linear

systems are di�erentially �at if and only if they are controllable.
The important property of the �atness exploited in this paper is that given a su�ciently smooth trajectory

for the �at outputs, q(t), the corresponding time evolution of the states and the control necessary to obtain
the trajectory are analytically determined by mapping q(t) through W and U , respectively.

3.B. The scenario approach

Consider the robust optimization problem

y∗ = arg

[
min
y

(
cTy

)]
s.t. :

g(y, δ) ≤ 0 ∀δ ∈ ∆.

(7)
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where y ∈ Rd, δ ∈ ∆, c, and g are the d-dimensional vector of design variables, a generic random quantity
(e.g., a set of random variables and stochastic processes) de�ned on the sample space ∆ and provided with
probability distribution P∆, a constant vector, and a set of constraints, respectively. The optimal solution of
Problem 7 is robust all over the uncertain domain ∆. In other words, given any sample δ ∈ ∆, y∗ is feasible,
i.e., g(y∗, δ) ≤ 0.

When the event space of ∆ is in�nite-dimensional � as it is most often the case � solving Problem 7
can be a real challenge. In this case, because the number of design variables is �nite, the problem is called
semi-in�nite. The scenario approach is a tool that allows to solve a relaxed version of the semi-in�nite

Problem 7, where the obtained solution is only feasible in a subset ∆ε ∈ ∆ such that P∆(∆ε) ≥ 1− ε. Here
ε ∈ (0, 1] is referred to as risk parameter.

Consider problem 7 and assume that g is convex with respect to y. The scenario approach states that:

given a con�dence parameter β ∈ [0, 1), a risk ε, and s independent instances (δ1, . . . , δs) of ∆
extracted according to P∆ and such that

s ≥ 2

ε
(d− lnβ) , (8)

the solution of the �nite-dimensional problem

y∗ = arg

[
min
y

(
cTy

)]
s.t. :

g(y, δ1) ≤ 0

...

g(y, δs) ≤ 0

(9)

satis�es all the constraints in ∆ but at most a portion ε with probability 1− β.

One of the most appealing features of the scenario approach, is that the risk ε is selected by the user, so
that it can be made as small as desired. Furthermore, since the only requirement for the scenario approach is
the convexity with respect to design variables, it has an extremely high level of generality and no requirement
exists for the uncertain set.

We note that the con�dence parameter, β, appears as the argument of a logarithm in Equation (8).
When β approaches 0 its logarithm decreases slowly. For practical purposes, the con�dence parameter can
be chosen small enough to be neglected for any practical purpose, e.g., β = 10−7 ⇒ − lnβ ' 16.

Another very interesting property of the scenario approach is that it does not require a probabilistic

characterization of the stochastic sources of the problem. In fact, even though it assumes the existence of a
probability distribution P∆, it does not require its knowledge, but it only requires the realization of a certain
number of samples. For this reason, the scenario approach facilitates the inclusion of uncertainty sources of
arbitrary nature in the dynamics, e.g., random variables, stochastic processes, and random �elds. Assume,
for example, that the uncertainty due to the high order harmonics of the gravitational �eld are included
in the rendez-vous problem. Because the variance of this perturbation decreases with the relative distance
and because it also depends on time given a �xed relative position, this uncertainty should be properly
characterized by means of a non-uniform and non-stationary random �eld dependent on the relative position
and on time. However, with the scenario approach it is only su�cient to generate a certain number of
samples. This can be achieved, for example, by comparing the speci�c force of the reference dynamics
equations with respect to a higher precision propagation.

More advanced and detailed results on the scenario approach are available in the references.6,7, 8

IV. Control algorithm

The proposed optimal control strategy consists of three modules: 1) the probabilistic drag estimator
evaluates the ballistic coe�cient of the two satellites in their minimum and maximum di�erential drag
con�guration and it computes a probabilistic model for the drag, 2) the maneuver planner schedules an
optimal reference trajectory, 3) The on-line compensator corrects the deviations from the reference path due
to non-modeled dynamics and uncertainties. The high-level control strategy is illustrated in Fig. 2.
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Figure 2. High-level optimal control strategy.

The drag estimator and the maneuver planner are activated few times within the maneuver. We note that
the maneuver planner requires computational resources which might not be available on board, especially
when considering small satellites. However, because this task is executed sporadically, the computation of
the reference path can be performed on-ground and uploaded. In this work, we only execute both the drag
estimator and the maneuver planner once at the beginning.

4.A. Probabilistic drag estimator

The probabilistic drag estimator is in charge of delivering to the maneuver planner: 1) a deterministic �best
�t� of the di�erential drag force, 2) a probabilistic model for its uncertainties. For this purpose, it requires
that the accurate position position of the target and the chaser is monitored for an observation time tobs.
The con�guration of the satellites (i.e., attitude or orientation of the drag panels) is imposed throughout
this period such that:

u(t) =

{
+1 ∀ 0 ≤ t ≤ tobs

2

−1 ∀ tobs
2 < t ≤ tobs

(10)

1. Deterministic component

The deterministic �t relies on some simplifying assumptions, namely: the drag is assumed to be the only
component of the aerodynamic force, the force is proportional to the local atmospheric density, ρ, and the
ballistic coe�cient of the target and of the chaser, Cb,t and Cb,c, is constant and varies linearly with u1.

The deterministic ballistic coe�cients are estimated by minimizing the drift between observed and sim-
ulated relative position. Simulated data can be generated on-board through a low-precision propagation
including J2 gravitational e�ect and drag perturbation only. The aerodynamic force of the simulated data
is given by:

f
(det)
d = −1

2
ρCb(u) ||vTAS ||vTAS (11)

where vTAS = v − Ωe × r, Cb, ρ, r, v, and Ωe are the airspeed, the ballistic coe�cient, the atmospheric
density, the inertial position and velocity, and the angular velocity of the Earth, respectively. A basic
analytical model is exploited to estimate the density:

ρ (r, θ, i;A,B,C,D) = A (1 +B cos (θ − C)) exp

r − re
√

1− e2
e sin2 i sin2 θ

D

 (12)

where θ, i, (A,B,C,D), re, and ee, are the mean argument of latitude and orbital inclination, the calibration
coe�cients of the model, and the equatorial radius and the eccentricity of the Earth, respectively. Though
relatively simple, this model is able to outline the more relevant characteristics of the upper atmosphere,
namely the exponential vertical structure, the day-night bulge, and the oblateness of the Earth. The coef-
�cients of the model are orbit-dependent and they were tuned using the Jacchia 71 model. We note that

1Under these assumptions, the exposed cross sections to the incoming �ow of the target and of the chaser are linearly
dependent on the control variable u.

5 of 19

American Institute of Aeronautics and Astronautics



the calibration of the simple model is not performed with the same model exploited for the high �delity
simulations presented in Section V, i.e., NRLMSISE-00. This is motivated by the scope of the paper to
consider a realistic scenario. In this way, the controller does not know the exact structure of the atmosphere.

The estimation is performed by solving:

Cb,t(u) =arg

[
min
Cb

(∫ tobs
2

u+1
2

tobs
2

u−1
2

(robs,t − rsim,t (Cb))
2
dt

)]

Cb,c(u) =arg

[
min
Cb

(∫ tobs
2

u+1
2

tobs
2

u−1
2

(robs,c − rsim,c (Cb))
2
dt

)], u = ±1 (13)

Here, robs and rsim are the observed and simulated inertial position, respectively. The subscripts t and c
indicate the target and the chaser, respectively.

The necessary condition for the exploitation of the di�erential drag is that the estimated di�erential
ballistic coe�cient, ∆Cb(u) = Cb,c(u) − Cb,t(u), is such that ∆Cb(1) < 0 and ∆Cb(−1) > 0. In this case,
the target is said to be feasible.

Finally, the deterministic component of the di�erential drag is given by:

∆f
(det)
d (t,w, u) = f

(det)
d,c (t, u, rsim,t(t) + w) · (sinαx̂ + cosαŷ)− f

(det)
d,t (t, u, rsim,t(t)) · ŷ (14)

where the dependency on the inertial states is disappeared because they are replaced by the low �delity
simulation of the position of the target, rsim,t(t).

2. Stochastic component

The probabilistic model provided by the drag estimator is de�ned as follows:

∆fd = γ(t, δ)∆f
(det)
d (t,w, u) (15)

where {γ(t, δ), t ∈ R+} is a non-stationary stochastic process de�ned on a probability triple (∆,F∆, P∆)
indexed by R+ with values in R+.

The process γ(t, δ) is decomposed into a fast and a slow contributions, γfast (t, δ) and γslow (t, δ), re-
spectively, such that γ(t, δ) = γfast(t, δ) γslow(t, δ). The fast component accounts for variations with time
scale smaller than the orbital period, while the slow components is introduced to account for longer-term
variations of the atmospheric density, i.e., of the order of one or more days. They are characterized in the
following.

Fast variations are modeled by means of a seasonal auto-regressive moving average process (SARMA),
ARMA(nar, nma)ns , where nar, nma, and ns are the order of the auto-regressive and moving average poly-
nomials, and the seasonal order, respectively.

Given the sequence of observations of the relative states during the observation time,{
w̃obs (ti) , ti =

i

nobs
tobs, i = 0, . . . , nobs

}
,

the seasonal order is chosen such that the period of the seasonal component is approximatively the orbital

one, i.e., ns = round
(
torb
tobs

nobs

)
. The estimation of the coe�cients of the SARMA process is then carried

out by using the sequence of data:{
D1 (ṽy,obs (ti)) + 2ωorbc ṽx,obs (ti)

∆f
(det)
d (ti, w̃obs (ti) , u(ti))

, i = 0, . . . , nobs

}
(16)

where ωorb = 2π
torb

and c =
√

1 +
3 J2 R2

e

8a2 (1 + 3 cos 2i), iorb, and Re are the constant angular orbital velocity,

the Scweighart-Sedwick coe�cient, the orbital inclination, and the Earth's equatorial radius, respectively.
The operator D1 (·) indicates a numerical approximation of the time derivative, e.g., by means of centered
�nite di�erences.

The exploitation of the sequence of Equation (16) for the characterization of γshort is due to the use of
the Schweighart-Sedwick equations12 in the controller plant, as detailed in Section 4.B.
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We note that the uncertainty in γfast cannot be attributed to the only uncertainties in the drag estimation,
but it also includes all the non-modeled perturbations, e.g., high order harmonics of the gravity �eld or
perturbations of the apparent forces, navigation errors, model error of the Schweighart-Sedwick equations,
and errors introduced by the di�erentiation using D1 as well.

Slow variations arise from more relevant changes of the magnitude of the atmospheric density. These are
mainly due to the correlation between the atmospheric density itself and the solar and geomagnetic activities,
which are stochastic processes in nature. Daily and 81-day averaged solar activity, F10.7 and F̄10.7 and daily
geomagnetic index, AP , are widely exploited proxies exploited in upper atmosphere models, e.g., Jacchia
71 and NRLMSISE-00. A probabilistic characterization of these proxies was proposed by the authors in13

and14 and it is summarized in the following.
The characterization of the proxies is carried out by using the data measured over the last 50 years

provided by the Celestrack database.15 A reduced set of data is retained according to the mission window,
i.e., the only data of the previous cycles that correspond to the same portion of the solar cycle are exploited
for uncertainty characterization.

Given the maximum duration of the maneuver, tf , the duration of the stochastic process, tproc, must
be no smaller than this. The three stochastic processes are modeled as three arrays of correlated random
variables. Given the short time span of the maneuvers compared to the solar cycle, the processes are
reasonably assumed to be stationary within the maneuvering time, i.e., the random variables used for the
modeling of the sequence of each of the three proxies are assumed to have the same marginal distribution. For
this purpose, the selected dataset is split into sequences of length nkn = ceil(

tproc
86400 s ). The three correlated

stochastic processes are modeled by means of three nkn-elements vectors of random variables, F10.7, F̄10.7,
and Ap, such that the generic k-th element is the value of the proxy evaluated at time tk = k 86400 s.

The following Gaussian copula is used to account for the statistical dependence both within and among
F10.7, F̄10.7, and Ap:

Z1

Z2

Z3

 chol(C)−−−−→


Ξ1

cN (ξ1)−−−−→ U1

F−1
F10.7

(u1;ϑF10.7)
−−−−−−−−−−−−→ F10.7

Ξ2
cN (ξ2)−−−−→ U2

F−1

F̄10.7
(u2;ϑF̄10.7

)
−−−−−−−−−−−−→ F̄10.7

Ξ3
cN (ξ3)−−−−→ U3

F−1
Ap

(u3;ϑAp)
−−−−−−−−−→ Ap

; (17)

here

• Z1, Z2, and Z3 are nkn-element vectors of independent standard Gaussian random variables,

• Ξ1, Ξ2, and Ξ3 are nkn-element vectors of correlated standard Gaussian random variables; chol (C) is
the Cholesky decomposition of their correlation matrix. It holds

[
ΞT

1 ,Ξ
T
2 ,Ξ

T
3

]
=
[
ZT

1 ,Z
T
2 ,Z

T
3

]
chol (C),

• U1, U2, and U3 are nkn-element vectors of correlated uniform random variables with support [0, 1],

• F(·) is the cumulative distribution function (CDF) of the marginal distribution that is chosen to �t the
model, and ϑ(·) is the vector of parameters de�ning the distribution.

Histogram are exploited to model the marginal probability density distributions. The value of the proxies is
then interpolated to yield a continuous process in time.

After characterizing the proxies with the cupola process, their uncertainty is recast into γslow as follows:

γslow(t, δ) =
ρJ71

(
rsim,t(t), t;F10.7(t, δ), F̄10.7(t, δ), Ap(t, δ)

)
ρ (rsim,t(t), θsim,t(t), isimt(t);A,B,C,D)

(18)

where ρJ71 is the atmospheric density computed with the Jacchia 71 model.

4.B. Maneuver planner

The maneuver planner schedules a robust optimal reference trajectory for the rendez-vous maneuver. The
methodology for robust maneuver planning of di�erentially �at system proposed by the authors in5 is ex-
ploited for this purpose. This methodology is detailed in the following, and it is then applied to the di�erential
drag problem in analysis.
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1. Mathematical formulation of the robust maneuver planning

Consider the robust optimal control formulation of a generic two-point boundary value problem:

w∗ = arg

[
min

w(t), t∈[0,T ]

(
max
δ∈∆
J (w, δ)

)]
s.t. :

ẇ = f (w,u, δ) ∀ t ∈ [0, T ] ∧ δ ∈ ∆

g (w,u, δ) ≤ 0 ∀ t ∈ [0, T ] ∧ δ ∈ ∆

w(0) = w0

w(T ) = 0,

(19)

where J : Rn×∆→ R, f ∈ Rn, w ∈ Rn, u ∈ Rm, δ ∈ ∆, T , and w0 are the objective function (convex with
respect to w), the right hand terms of the stochastic dynamics equations, the dynamic states, the control
forces per unit mass, a generic uncertain quantity de�ned on ∆, the maneuvering time, i.e., the time when
rendez-vous conditions are met, and the initial state vector, respectively. g ∈ Rc expresses constraints like
the saturation of the control variables.

The objective of Problem 19 is to �nd a deterministic trajectory of the states which is robust against un-
certainties in the dynamics, i.e., which could be ideally followed for any instance of the uncertain environment
δ ∈ ∆.

This problem is in�nite-dimensional because the design variables are continuous in time, and the feasi-
bility must be imposed on both the time range and the uncertain set. The proposed methodology combines

di�erential �atness and scenario approach to achieve a discretization of the time and the uncertain domain,

respectively.
Assume that a set of m �at outputs, q = Q (w,u, u̇, ü, . . .), is available such that

w = W (q, q̇, q̈, . . .) ,

u = U (q, q̇, q̈, . . . , δ) .
(20)

We note that the only mapping U is allowed to be non-deterministic, i.e., dependent on δ. Problem 19 is
then recast into

q∗ = arg

[
min

q(t), t∈[0,T ]

(
max
δ∈∆
J̃ (q, δ)

)]
s.t. :

g̃ (q, δ) ≤ 0 ∀ t ∈ [0, T ] ∧ δ ∈ ∆

W (q(0), q̇(0), q̈(0), . . .) = w0

W (q(T ), q̇(T ), q̈(T ), . . .) = 0

(21)

where J̃ (q, δ) = J (W(q, q̇, q̈, . . .), δ) and g̃(q, δ) = g(W(q, q̇, q̈, . . .),U(q, q̇, q̈, . . . , δ), δ). This formulation
is still in�nite-dimensional, but, thanks to di�erential �atness, the dynamics equations ẇ = f (w,u, δ) are
automatically satis�ed and they do not need to be enforced as equality constraints any more, e.g., by means
of a pseudospectral transcription.

The discretization in time is performed by expressing the �at outputs in function of a basis of l su�ciently
regular shape functions, Φ(t) = [φ1(t), . . . , φl(t)]

T
:

q(i) =

l∑
j=1

φ
(i)
j (t)qj = QΦ(i)(t) (22)

where the superscripts (i) are the order of the time derivative, and Q ∈ Rm×l is a matrix of coe�cients with
columns qj . The minimum regularity of the shape functions is determined by the maximum order of the
derivative of q(t) in the mapping of Equation (20).

To remove the boundary conditions in Problem (21), the basis Φ is projected into its subspace which
satis�es them. For this purpose, Φ is partitioned into l − 2n independent and 2n dependent elements1

Φ =

[
Φind

Φdep

]
. An analogous partition is performed for the corresponding columns ofQ, which is rearranged

1the choice of dependent functions is arbitrary provided that
[
Φdep(0), Φ̇dep(0), . . . ,Φdep(T ), Φ̇dep(T ), . . .

]
is not singular.
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as Q =
[
Qind,Qdep

]
. The discretized �at output becomes

q(i) = QindΦ̃
(i)

(t) + Ψ(i)(t) (23)

where

Φ̃
(i)

(t) = Φ
(i)
ind(t)−

[
Φind(0), Φ̇ind(0), . . . ,Φind(T ), Φ̇ind(T ), . . .

]
[
Φdep(0), Φ̇dep(0), . . . ,Φdep(T ), Φ̇dep(T ), . . .

]−1

Φ
(i)
dep(t),

Ψ(i)(t) = [q(0), q̇(0), . . . , q(T ), q̇(T ), . . .][
Φdep(0), Φ̇dep(0), . . . ,Φdep(T ), Φ̇dep(T ), . . .

]−1

Φ
(i)
dep(t),

and q(0), q̇(0), . . . and q(T ), q̇(T ), . . . are the boundary conditions of q, and they are solution of
W (q(0), q̇(0), . . .) = w0 and W (q(T ), q̇(T ), . . .) = 0, respectively. This is possible because the relationship
between states and �at outputs is assumed to be deterministic, and so are the boundary conditions of q(t).

The time discretization is �nalized by limiting the satisfaction of the constraints g̃ to a discrete number
p of check points, t1, . . . , tp. The number and location of the check points can be either deduced from the
properties of the basis, or it can be assessed by picking a number of uniformly-distributed random check
points in [0, T ] according to Equation (8). In this latter case, the risk ε should be extremely small. The �rst
option is pursued in this paper.

At this point, Problem (21) is reduced to the semi-in�nite approximation

Q∗ind = arg

[
min

Qind∈Rm×(l−2n)

(
max
δ∈∆
J̃ (QindΦ̃(t) + Ψ(t), δ)

)]
s.t. :

g̃
(
QindΦ̃(tk) + Ψ(tk), δ

)
≤ 0 k = 1, . . . , p; ∀δ ∈ ∆

(24)

The scenario approach can now be exploited to solve Problem 24. For this purpose, we note that the
objective function can be written under the form of Problem 7 by introducing a slack design variable, h,
such that

[Q∗ind, h
∗] = arg

[
min

Qind∈Rm×(l−2n),h∈R
h

]
s.t. :

J̃ (QindΦ̃(t) + Ψ(t), δ)− h ≤ 0 ∀δ ∈ ∆

g̃
(
QindΦ̃(tk) + Ψ(tk), δ

)
≤ 0 k = 1, . . . , p; ∀δ ∈ ∆

(25)

So, given an acceptable risk ε, and a con�dence parameter β (small enough to be considered zero for
practical purposes), and s independent samples (δ1, . . . , δs) ∈ ∆ such that Equation (8) is satis�ed (here
d = (l − 2n)m+ 1), Problem 24 is recast in the discrete form

Q∗ind = arg

[
min

Qind∈Rm×(l−2n)

(
max

δ∈(δ1,...,δs)
J̃ (QindΦ̃(t) + Ψ(t), δ)

)]
s.t. :

g̃
(
QindΦ̃(tk) + Ψ(tk), δ1

)
≤ 0 k = 1, . . . , p

...

g̃
(
QindΦ̃(tk) + Ψ(tk), δs

)
≤ 0 k = 1, . . . , p.

(26)

With high con�dence 1 − β, the solution of 26, is feasible in a subset ∆ε ⊂ ∆ such that the probability of
∆ε is no smaller than 1− ε.
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2. Application to the di�erential drag rendez-vous

The dynamical model used by the planner are the linearized in-plane Schweighart-Sedwick equations12

applied to the curvilinear relative states:

dw̃

dt
=


0 0 1 0

0 0 0 1(
5c2 − 2

)
ω2
orb 0 0 2ωorbc

0 0 −2ωorbc 0

 w̃ +


0

0

0

1

∆fd (t,w, δ, u) , (27)

where ωorb and c are the constant angular orbital velocity and the Scweighart-Sedwick coe�cient de�ned in
Section 4.A, respectively. These equations assume a circular reference orbit, secular-only perturbations of
the Earth oblateness, J2.

According to the assumptions introduced in Section 4.A, we note that the di�erential drag is linear in u,
i.e., it can be recast in the form:

∆fd (t,w, δ, u) = ∆fd,u (t,w, δ)u+ ∆fd,0 (t,w, δ) (28)

The system 27 is di�erentially �at. It can be veri�ed that a possible �at output for the system is

q = Q (w̃, u, u̇, ...) =
˙̃x− 2ωorbc ỹ

(5c2 − 2)ω2
orb

(29)

and the corresponding mapping of the states and control are

w̃ = W (q, q̇, ...) =


q̇

q̈−(5c2−2)ω2
orbq

2ωorbc

q̈
q(3)−(5c2−2)ω2

orbq̇

2ωorbc


u = U (q, q̇, ...) =

q(4)−(c2−2)ω2
orbq̈

2ωorbc
−∆fd,0 (t,W (q, q̇, ...) , δ)

∆fd,u (t,W (q, q̇, ...) , δ)

(30)

The constraints impose that the control variable, u, is bounded between -1 and 1. It follows

q(4)(tk)−
(
c2 − 2

)
ωorb

2q̈(tk)

2ωorbc
≤ ∆fd,u (t, q, q̇, ..., δ) + ∆fd,0 (t, q, q̇, ..., δ)

q(4)(tk)−
(
c2 − 2

)
ωorb

2q̈(tk)

2ωorbc
≥ −∆fd,u (t, q, q̇, ..., δ) + ∆fd,0 (t, q, q̇, ..., δ)

k = 1, . . . , p. (31)

We note that the constraints in Equation (31) are not convex in (q, q̇, . . .). This is due to the fact that
the simple density model depends on the relative position. However, for relatively small distances (say
few hundred kilometers in-track and and few hundred meters radial), it can be safely assumed that the
local density is the same for the two satellites. In this way, the right hand term of the equations becomes
independent on the �at outputs, and the set of constraints is convex. This assumption was made in the
simulations presented in Section V. Alternatively, a conservative approach consists in building a convex
inner polytope approximation of the constraints as proposed in.16

4.C. On-line compensator

On-line compensation is mandatory to account for non-modeled dynamics in the control plant and uncer-
tainties, whose e�ect is the deviation of the real trajectory from the scheduled one.

A model predictive control (MPC) algorithm is exploited for this purpose. At each evaluation, the on-line
compensator solves a problem analogous to the maneuver planner. The only di�erences are the boundary
conditions, the �xed horizon, and the performance index.

Initial conditions are provided by the current states at the beginning of the evaluation at time t. MPC is
based upon the receding horizon principle, so that the �nal time is not dependent on event constraints like
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in Equation (19), but the horizon is �xed to t + th. The computed corrected control is then applied to the
plant for a time tc ≤ th.

The cost function is aimed at minimizing the divergence from the reference path:

Jon−line =

∫ t+th

t

(q(t)− q∗(t))
T
P (q(t)− q∗(t)) dt (32)

where P is a positive de�nite matrix of user-supplied weights, q =
[
q, q̇, q̈, q(3)

]T
, and the symbol ∗ indicates

the reference path obtained from the solution of Problem (26).

V. Numerical simulations

The proposed case study consists of the rendez-vous between two satellites of the QB50 constellation.17

QB50 will be a constellation of 40 Double and 10 triple CubeSats.18 The launch is planned for 2016. The
constellation will be deployed on a highly-inclined near-circular LEO and the satellites will be separated by
several tens or hundreds kilometers.

The QB50 requirements for the `standard 2U CubeSats'19 impose that the long axis of the CubeSat
must be aligned with the orbital velocity. One of these standard CubeSats is considered to be the target.
QARMAN, a 3U CubeSat of the constellation developed by the Von Karman Institute for Fluid dynamics
and the University of Liège, will be the chaser. Both the target and the chaser are assumed to be provided
with 3-axis magnetotorquers and 3 reaction wheels with spin axes aligned with the edges of the CubeSat.
Quaternion feedback algorithm is exploited to follow the required attitude of the two satellites.

The target is assumed to be passive, i.e., its ballistic coe�cient cannot be controlled. The target's
reference attitude is 3-axis stabilized in its minimum-drag con�guration, i.e., with its long axis aligned
toward its orbital velocity direction, vt. Di�erential drag is imposed by changing the ballistic coe�cient of
the chaser. This is achieved by pitching the chaser about the orbital normal direction, ẑ.

Figure 3. Attitude dynamics notation. The target is supposed to �y with the long axis aligned to the orbital

velocity direction.

Table 1 lists the input parameters of the numerical simulations.

5.A. Simulation environment

The numerical simulations performed in this study are carried out in a highly detailed environment. Both
attitude and orbital dynamics are propagated in their complete non-linear coupled dynamics.

The orbital perturbations include aerodynamic force, a detailed gravitational �eld with harmonics up to
order and degree 10, solar radiation pressure and third-body perturbations of sun and moon. The external
torques are due to aerodynamics and gravity gradient, and the models proposed by Wertz20 for the reaction
wheels and magnetic rods are exploited.

In this study, the modeling of the aerodynamic perturbation assumes thermal �ow, variable accommo-
dation of the energy, and non-zero re-emission velocity. Under these hypotheses, the three extensively-used
simpli�cations involved in drag modeling fall into defect. Speci�cally, it is not true that the drag is the
only component of the aerodynamic force, that the drag coe�cient is constant, and that the drag is pro-
portional to the surface exposed to the incoming �ow. For complex satellite geometries, direct simulation

11 of 19

American Institute of Aeronautics and Astronautics



Table 1. Simulation parameters.

Julian date 01/04/2016 00:00 UTC

Maneuvering time 150 hhours

Mean elements of the target semi-major axis 6758 · 103 m

eccentricity 0.001

inclination 98 deg

RAAN 45 deg

argument of perigee 0 deg

true anomaly 0 deg

Initial relative states in-track position , i.e., ỹ 50 · 103 m

radial position, i.e., x̃ 100 m

in-track velocity, i.e., ṽy 0 m s−1

radial velocity, i.e., x̃ 0 m s−1

di�erential orbital inclination 0.01 deg

di�erential RAAN 0.01 deg

Space weather at t = 0s Daily solar �ux 150 sfu

81-day averaged �ux 130 sfu

geomagnetic index Ap 27

Target properties mass 2 kg

dimensions 0.1× 0.2× 0.1 m3

inertia Iy = 8 · 10−3 kg m2,

Ix = Iz = 3 · 10−3 kg m2

Chaser properties mass 4 kg

dimensions 0.1× 0.3× 0.1 m3

inertia Iy = 25 · 10−3 kg m2,

Ix = Iz = 5 · 10−3 kg m2

Attitude actuators wheels' maximum torque 0.03 · 10−3 N m

wheels' operating range [−6000, 6000]rpm

wheels' inertia 0.25 · 10−6 kg m2

Magnetic rods' dipole 0.2 A m2

Monte Carlo is arguably the only way of computing these coe�cients. However, this technique is extremely
computationally intensive. For simple convex geometries, semi-empirical analytic methods relying on the
decomposition into elementary panels provide an accurate and computationally-e�ective alternative. The
semi-analytic method considered in this work is based upon the research of Sentman21 and Cook22 and upon
the more recent contributions summarized in.23

This model was used in our orbital propagator to compute the aerodynamic coe�cients of the satellites
at every time step. The two satellites are modeled with a parallelepiped shape and the principal axes are
assumed to be aligned with the edges of the parallelepiped. This is very appropriate when considering
satellites with body-mounted solar arrays. The contribution to the aerodynamic force and torque of possible
appendices, e.g., antennas, is neglected.

The atmospheric model exploited in the propagator is NRLMSISE-00. Short-term random variations
are included by adding a second-order stationary stochastic process to the total mass density. The power
spectral density of the process is the one proposed by Zijlstra24 rescaled for the altitude of the maneuver.
The atmosphere is assumed to co-rotate with the Earth, but thermospheric winds are neglected.

The realization of the trajectories of the space weather proxies is performed by exploiting the same
Gaussian cupola presented in Section 4.A.

Table 2 summarizes the main features of the simulation environment and it compares them to the coun-
terpart of the control plant discussed in Section 4.B.

5.B. Results

The main purpose of these simulations is to assess the bene�t of using the robust reference trajectory against
a non-robust one. For this reason, a Monte Carlo analysis is carried out as follows:

• a single propagation is performed from t = 0 to t = tobs. The deterministic and probabilistic model of
the drag are estimated;

• a nominal and a robust and reference trajectory are generated. The nominal one is generated without
the scenario approach by using the only deterministic contributions to the drag, i.e., estimated ballistic
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Table 2. Di�erences between the simulation environment and the plant of the controller.

Simulation environment Control plant

Orbital dynamics Full non-linear osculating relative dynamics. Linearized equations for mean curvilinear relative
states.

Attitude dynamics 3 DoF Euler equations. None.

Atmospheric model

NRLMSISE-00 with short-term stochastic variations.
Geodetic altitude from the reference ellipsoid. Space
weather proxies modeled with set of correlated random
variables.

Exponential vertical structure and sinusoidal periodic
variations (day-night). Geocentric altitude from the
reference ellipsoid.

Aerodynamic force Sentman's model with more recent updates.
Drag force only. Linear relationship between ballis-
tic coe�cient and exposed cross section. Probabilistic
model for random variations.

Gravitational model Harmonics up to order and degree 10. J2 secular e�ect.

Other perturbations
Luni-solar third-body perturbations, solar radiation
pressure.

None.

External torques
Gravity gradient and aerodynamic torque computed
on with the Sentman's model and more recent updates. None.

Attitude control
Three-axis magnetic coils and three reaction wheels.
Quaternion feedback control algorithm. Mangetic coils
desaturate wheels in permanence.

None.

coe�cients, the simple atmospheric model ρ (r, θ, i;A,B,C,D), and seasonal component of the SARMA
process characterizing γfast. The robust trajectory is computed by setting the risk and con�dence
parameters of the scenario approach to ε = 0.1, and β = 10−3, respectively;

• starting from t = tobs, 1000 realizations of the stochastic processes related to the space weather proxies
are generated by exploiting the conditional probability of the Gaussian cupola de�ned in Equation (17)
given the values of the proxies for t < tobs. The on-line propagation is performed for each realization;

The results obtained for the three modules of the controller are analyzed in the following.

1. Probabilistic drag estimator

In this work, we selected an observation time equal to tobs = 8torb.
Figure 4(a) compares the real drag force of the target with the one estimated with the deterministic

component of the drag estimator. The drag estimated with the Jacchia 71 model, which was used to tune
the simpli�ed model, is also illustrated. As anticipated in Section 4.A, the controller ignores the exact
structure of the atmosphere. This is emphasized by the relevant di�erence between the estimated and
the real drag force in Figure 4(a). Nonetheless, the good match between the simple and the largely more
advanced Jacchia 71 model, validates our claim stating that the former is able to detect the main features
of the structure of the upper atmosphere.

The fast variations model, γfast(t, δ) and the estimation dataset introduced in Equation (16) are illus-
trated in Figure 4(b). The seasonal component corresponding to the orbital period is well de�ned, and it
can be checked that its peaks roughly correspond to the peaks of maximum discrepancy between the real
and the estimated drag in Figure 4(a).

Concerning the slow variations model, Figures 5(a) and 5(b) illustrates the identi�ed probability dis-
tribution of the space weather proxies on a period of tproc = 20 days. The autocorrelation of the daily
solar �ux smoothly decreases with the time increment, while the one of the 81-day averaged �ux is always
close to one. This is due to the fact that the averaged �ux exhibits negligible variations within the window
[0, tproc]. Nonetheless, if the initial value of the proxies is changed, large variations can be expected from
one realization of the process to the other according to the marginal distribution. Indeed, high values of the
daily �ux are expected when its average is also high. This consideration is consistent with the high cross
correlation between daily and averaged values. These considerations are supported by Figure 5(c), which
shows few trajectories generated with the identi�ed distribution and the initial conditions listed in Table
1. The low values of both the autocorrelation of Ap and its correlation with the other variables emphasize
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Figure 4. Deterministic drag model and fast stochastic variations.

that the geomagnetic activity is a largely more rapid process with respect to the others and, as such, more
di�cult to predict.

2. Maneuver planner

The selected objective function is aimed at minimizing the amplitude of the oscillations in the x̃− ỹ diagram.
It can be proven that this conditions is satis�ed by J =

∫ tf
0
ṽ2
xdt.

In this paper, because of their simple implementation, truncated Fourier series with fundamental fre-
quency f = 1

2tf
are used for the basis of the �at outputs, i.e.,

Φ(i)(t) =



0i

(2πf)
i
cos (2πft+ 0.5πi)

(2πf)
i
sin (2πft+ 0.5πi)

(4πf)
i
cos (4πft+ 0.5πi)

(4πf)
i
sin (4πft+ 0.5πi)

...


. (33)

The series is truncated when harmonics become smaller than half of the orbital period. A uniform temporal
grid of check points with frequency resolution 10 times larger than the highest frequency of the expansion is
considered. This is estimated large enough to prevent relevant violation between check points.

The blue curve in Figure 6 illustrates the bounds imposed to the di�erential drag by the deterministic
components of the estimated drag. The light-red region is the envelop of the samples required by the scenario
approach generated with the stochastic model. The bounds in the robust case (red curves) are given by the
worst case of all these samples and, indeed, they are narrower with respect to the ones of the nominal case.
These bounds become closer and closer as time passes. This is due to the fact that slow variations due to
γslow(t, δ) might yield to much lower levels of the atmospheric density at the end of the maneuver compared
to the initial one (which is used to �t the deterministic component of the drag model). In addition, the
robust bounds are also narrower than the nominal ones at the very beginning because of the fast variations.

The robust and nominal reference path are illustrated in Figure 7(a). As expected, the nominal solution
is `smoother', i.e., it is more optimal than the robust one. This is due to the fact that the available di�erential
drag is larger than in the case of the robust solution, as illustrated in Figure 7(b). Nonetheless, the solution
obtained in the nominal case is evidently infeasible for the bounds imposed in the robust case.

3. On-line compensator

Figure 8 illustrates the tracking error of the relative states for the 1000 Monte Carlo samples. The robust
solution performs better than the nominal one for all the components, in particular in the �nal part of
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Figure 7. Scheduled reference path. The nominal solution is more optimal than the robust one in the sense

that it achieves a `smoother' path. However, the nominal solution is infeasible for the bounds imposed in the

robust counterpart.

the maneuver, where the robust solution is much more conservative than the nominal one because of the
long-term drift. This results in an enhancement of the satisfaction of the rendez-vous conditions.

The probability distribution of the root mean square tracking error for the two reference paths is illus-
trated in Figure 9. Also in this case, the tracking of the robust reference path is systematically better than
the nominal one. In addition, not only the peaks of the distributions in the robust case are shifted to the
left, but also they are higher, i.e., narrower distribution. Finally, the better performance of the tracking in
the robust case can also be appreciated in Figure 10, where 99% percentiles of the on-line trajectories are
superimposed to the reference path. At the end of the maneuver, these bounds are much closer to the origin
when using the robust reference trajectory.

VI. Conclusions

A robust control algorithm for the di�erential-drag based rendez-vous was proposed. The core of the
algorithm is the computation of a robust reference trajectory which is feasible for the largest majority of the
uncertainties. The method relies on a probabilistic estimation of the aerodynamic drag based on observations
of the spacecraft position and historical data of the space weather proxies.

The developments were validated by means of high �delity simulations and showed that using a robust
reference path is bene�cial in terms of the tracking accuracy of the reference path itself.
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Carlo samples, while coloured bounds are 99% con�dence bounds. Red and blue are related to the tracking of

the robust and of the nominal reference path, respectively.
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Figure 9. Probability density distribution for the root mean square error between planned and on-line trajec-

tory. Red and blue are related to the tracking of the robust and of the nominal reference path, respectively.
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Figure 10. Comparison between the reference trajectories and the Monte Carlo samples. The colored regions

indicate 99% con�dence bounds on the trajectory of the samples. The tracking of the reference path is better

with the robust reference path.
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